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ABSTRACT

Context-based offline meta-reinforcement learning (meta-RL) methods typically
extract contexts summarizing task information from historical trajectories to achieve
adaptation to unseen target tasks. Nevertheless, previous methods may lack general-
ization and suffer from ineffective adaptation. Our key insight to counteract this issue
is that they fail to capture both task characteristic and task contrastive information
when generating contexts. In this work, we propose a framework called task char-
acteristic and contrastive contexts for offline meta-RL (TCMRL), which consists of
a task characteristic extractor and a task contrastive loss. More specifically, the task
characteristic extractor aims at identifying transitions within a trajectory, that are
characteristic of a task, when generating contexts. Meanwhile, the task contrastive
loss favors the learning of task information that distinguishes tasks from one another
by considering interrelations among transitions of trajectory subsequences. Con-
texts that include both task characteristic and task contrastive information provide
a comprehensive understanding of the tasks themselves and implicit relationships
among tasks. Experiments in meta-environments show the superiority of TCMRL
over previous offline meta-RL methods in generating more generalizable contexts,
and achieving efficient and effective adaptation to unseen target tasks.

1 INTRODUCTION

Context-based offline meta-reinforcement learning (meta-RL) is an approach for learning how to extract
contexts from a series of meta-training tasks and achieving adaptation to new environments. Specifically,
contexts encompass crucial statistical information about tasks, which is derived from historical trajecto-
ries. Recent methods (Dorfman et al., 2021; Gao et al., 2023; Li et al., 2021b; Wang et al., 2023; Yuan &
Lu, 2022) leverage contexts extracted from offline data, instead of extensive online interactions with ei-
ther real or simulated environments. During the meta-training phase, they learn how to extract contexts
from historical trajectories sampled from offline datasets of meta-training tasks. During the meta-testing
phase, a few trajectories of unseen target tasks are collected to generate the corresponding contexts. An
agent then seeks to adapt efficiently and effectively to these unseen target tasks with extracted contexts.

However, most of these recent context-based offline meta-RL methods face the challenge of context
shift, where contexts encountered during meta-training and meta-testing may have substantial
differences. Context shift happens notably because the behavior policy may overfit the offline datasets
during the meta-training phase, leading to mismatches with data of unseen target tasks during the
meta-testing phase, and yielding poor performance and generalization. Note that this issue is related
to the classical memorization problem in meta-learning (Yin et al., 2020) and the Markov decision
process (MDP) ambiguity problem (Li et al., 2020; 2021a).

Our key observation is that the limited generalization of contexts related to previous methods arises from
failure to capture task characteristic information and task contrastive information, both of which are
crucial components of task information. Contexts that include both of them provide a comprehensive
understanding of each task and implicit relationships among tasks, resulting in improved generalization.
First, task characteristic information refers to the characteristic of each task, reflecting the consistency
of contexts within the same task. Although a particular task corresponds to a series of different historical
trajectories, all of them reflect similar task characteristic information. Such information typically arises
in transitions related to characteristics of tasks, while these transitions are few in number within a
trajectory (Arjona-Medina et al., 2019; Faccio et al., 2022). In contrast, other transitions within the
trajectory relate to redundant information, as they commonly occur across most tasks. Our motivation
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Figure 1: Motivation of our framework. In different tasks within the “Door-Open" task set,
transitions involving the grabbing and reaching operations relate to task objectives, reflecting the task
characteristic information. These transitions vary according to distinct positions of the doorknob and
endpoint corresponding to different tasks. Meanwhile, overlooked interrelations among transitions
within trajectory subsequences reflects the task contrastive information.

is illustrated in Figure 1. For instance, in the “Door-Open” task set within the Meta-World ML1
environment (Yu et al., 2019), transitions associated with operations about “Grabbing the doorknob”
and “Reaching the endpoint” directly relate to the characteristics of tasks while those related to the
general moving operations of the robot arm are less important. Moreover, different tasks within the
“Door-Open” task set involve distinct characteristic information due to variations in the positions of
the doorknob and endpoint. All aforementioned methods fail to effectively identify transitions that are
characteristics of tasks and filter out redundant information from general transitions, resulting in a lim-
ited understanding of each task and contexts with limited generalization. We aim to identify transitions
that are characteristics of a task from the trajectory to capture the task characteristic information and
emphasize their roles to improve the generalization of contexts. Second, task contrastive information
refers to the different task information of various tasks and distinguishes tasks from one another. The
trajectories of different tasks comprise transitions related to task dynamics and reward functions, which
are core factors of tasks. To generate generalizable contexts, task contrastive information should be
extracted from trajectories, highlighting the differences in these factors across tasks. More specifically,
such information exists in both the overall trajectory and interrelations among transitions. Previous
methods either fail to capture the task contrastive information or only capture it from complete trajecto-
ries while overlooking the interrelations among transitions. This leads to an insufficient understanding
of implicit relationships among tasks and confusion among contexts of different tasks, hindering the
adaptation to unseen target tasks. We aim to discover the overlooked interrelations among transitions
for capturing exhaustive task contrastive information that distinguishes tasks from one another.

To this end, we propose a framework called task characteristic and contrastive contexts for offline
meta-RL (TCMRL) to improve the generalization of contexts. Specifically, we propose a task
characteristic extractor that applies an attention mechanism to identify transitions related to
characteristics of tasks and assign high attention weights to them when generating contexts for
capturing task characteristic information. To effectively optimize the task characteristic extractor,
we introduce a context-based reward estimator and design specific loss functions from the perspectives
of positive and negative reward estimation, and sparsity in attention weights. Additionally, we propose
a task contrastive loss to discover the overlooked interrelations among transitions from trajectory
subsequences. Moreover, the extracted interrelations are extended to the entire trajectory with these
subsequences as basic units for capturing exhaustive task contrastive information. In summary,
TCMRL improves the generalization of contexts by capturing comprehensive task information that
includes both task characteristic information and task contrastive information, enabling more efficient
and effective adaptation to unseen target tasks. The main contributions of TCMRL are fourfold:

• We experimentally demonstrate that the issue of context shift arises from a lack of both
task characteristic information and task contrastive information, and capture them from
trajectories separately to improve the generalization in offline meta-RL.

• We propose a task characteristic extractor to identify and emphasize transitions related to
task characteristics, and introduce a context-based reward estimator and a series of specific
loss functions for optimization.
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• We propose a task contrastive loss that favors the learning of task information that
distinguishes tasks from one another by discovering overlooked interrelations among
transitions from trajectory subsequences.

• We demonstrate the effectiveness of the proposed TCMRL through extensive experiments
on the MuJoCo environments and the Meta-World ML1 task sets, and results show significant
performance improvements compared with previous meta-RL methods.

2 RELATED WORK

Meta-reinforcement learning. Meta-reinforcement learning aims to acquire learning strategies from
a series of meta-training tasks and achieve adaptation to unseen target meta-testing tasks. Previous
meta-RL studies can be primarily categorized into two distinct methods: context-based methods and
optimization-based methods. Context-based methods encode contexts from the critical statistical
information about tasks, which is generally presented in the form of history trajectories. This process
is commonly accompanied by the utilization of recurrent (Fakoor et al., 2020; Wang et al., 2017),
recursive (Mishra et al., 2018), or probabilistic (Rakelly et al., 2019; Zintgraf et al., 2020) structures.
Moreover, optimization-based methods (Finn et al., 2017; Foerster et al., 2018; Houthooft et al.,
2018) formalize the process of the task adaptation as the execution of policy gradients over limited
samples, aiming to acquire an optimal initialization of the policy. TCMRL is most closely related
to the context-based meta-RL.

Context-based offline meta-reinforcement learning. Context-based offline meta-RL methods focus
on acquiring generalizable contexts from offline datasets of historical trajectories, rather than relying on
online interactions with environments during the meta-training phase. It aims to adapt to unseen target
tasks during the meta-testing phase. MBML (Li et al., 2020) and BOReL (Dorfman et al., 2021) assume
the prior knowledge of reward functions across diverse tasks. FOCAL (Li et al., 2021b) utilizes behavior
regularization to restrict the task inference while FOCAL++ (Li et al., 2021a) enhances it by introducing
attention mechanisms and contrastive learning. SMAC (Pong et al., 2022) employs semi-supervised
learning that introduces additional online data but heavily relies on annotation functions extracted
from offline datasets. CORRO (Yuan & Lu, 2022) improves the generalization of contexts through
contrastive learning. IDAQ (Wang et al., 2023) leverages a return-based uncertainty quantification to
ensure in-distribution contexts of tasks. CSRO (Gao et al., 2023) designs a max-min mutual information
representation learning mechanism to reduce the impact of context shift. However, FOCAL, SMAC,
IDAQ and CSRO rely on the mean context encoding that treats each transition within a trajectory
individually and assigns them the same attention weights, failing to identify transitions related to task
characteristics and learn task information that distinguishes tasks from one another. FOCAL++ and
CORRO replace the mean context encoding with attention mechanisms but lack focused optimization.
They only capture coarse task characteristic information and a portion of the task contrastive informa-
tion, overlooking the interrelations among transitions. In contrast to these existing studies, TCMRL
focuses on capturing task characteristic information and task contrastive information to improve the
generalization of contexts, leading to efficient and effective adaptation to unseen target tasks.

3 PRELIMINARIES

The formulation of a reinforcement learning (RL) task commonly takes the form of a fully observable
Markov decision process (MDP), which can be defined as a tuple M = ⟨S,A,p,r,γ,ρ0⟩. S is the
state space, A is the action space, s ∈ S and a ∈ A respectively represent the state and action at
time-step t, p(st+1|st,at) is the transition dynamics, r(st,at) is the reward function, ρ0 is the initial
state distribution, and γ ∈ [0,1) is the discount factor for future rewards. A stochastic policy is a
distribution π(ati|sti) of actions. Nevertheless, context-based offline meta-RL is generally formalized
as partially observable Markov decision processes (POMDPs) (Kaelbling et al., 1998), where states
obtained from environments remain only partially visible. It assumes that the information of each
task is the unobservable part called the context and the agent needs to collect it from offline data
as one of the conditions to make decisions: ati ∼ π(ati|sti,ci), where ci is the context related to the
task information of task Ti and the complete state is formed by combining sti and ci. Moreover, the
definition of the marginal state distribution at time-step t is µt

π(s
t
i) and the primary goal of the agent,

which is the same in both MDPs and POMDPs, is to maximize the objective function maxπJM(π)=
Esti∼µt

π,a
t
i∼π[

∑∞
t=0γ

tr(sti,a
t
i)], which represents the expectation of the accumulated rewards over time.

As a context-based offline meta-RL method, TCMRL assumes access to a set of ntask meta-training
tasks T={T1,...,Tntask

} and a set of unseen target tasks T∗. Each task is individually modeled as a

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Offline 

dataset

(ℎ′𝑖
1, ℎ′𝑖

2, … , ℎ′𝑖
𝑇)

ℎ′𝑖
𝑡 = [𝑠′𝑖

𝑡
, 𝑎′𝑖

𝑡
, 𝑟′𝑖

𝑡
, 𝑠′𝑖

𝑡+1]

(ℎ𝑖
1, ℎ𝑖

2, … , ℎ𝑖
𝑇)

ℎ𝑖
𝑡 = [𝑠𝑖

𝑡, 𝑎𝑖
𝑡, 𝑟𝑖

𝑡, 𝑠𝑖
𝑡+1]

𝑒(ℎ𝑖
𝑡)

Task characteristic extractor (TCE)

𝑞(𝑐𝑖
𝑡,  𝑐𝑖)

(𝑐𝑖
1, 𝑐𝑖

2, … , 𝑐𝑖
𝑇)

Context-based reward estimator (CRE)
 𝑟(𝑠′𝑖

𝑡, 𝑎′𝑖
𝑡, 𝑐𝑖),

 𝑟𝑟𝑒𝑣𝑒𝑟𝑠𝑒(𝑠′𝑖
𝑡, 𝑎′𝑖

𝑡, 𝑐𝑖
𝑛𝑒𝑔

)

(𝑤𝑖
1, 𝑤𝑖

2, … , 𝑤𝑖
𝑇)(1 − 𝑤𝑖

1, 1 − 𝑤𝑖
2, … , 1 − 𝑤𝑖

𝑇)

Task context 𝑐𝑖Reverse task  context 𝑐𝑖
𝑛𝑒𝑔

𝐿𝑇𝐶𝐸
𝑛𝑒𝑔

𝐿𝑇𝐶𝐿

Task context trajectory 𝒉𝑖

Meta-training tasks Meta-testing tasks

𝜋(𝑎𝑖
𝑡|𝑠𝑖

𝑡, 𝑐𝑖)

𝑒(ℎ𝑗
𝑡)

𝜋(𝑎𝑗
𝑡|𝑠𝑗

𝑡 , 𝑐𝑗)

(a) Meta-training (b) Meta-testing

𝒯4

𝒯1

𝒯3

𝒯2

𝒯1
∗ 𝒯2

∗

Execution trajectory 𝒉′𝑖

(𝑤𝑗
1, 𝑤𝑗

2, … , 𝑤𝑗
𝑇)

Task context 𝑐𝑗

𝐿𝑇𝐶𝐸
𝑝𝑜𝑠

(𝑐𝑗
1, 𝑐𝑗

2, … , 𝑐𝑗
𝑇)

𝐿𝑇𝐶𝐸
𝑠𝑝𝑎 Task characteristic extractor (TCE)

𝑞(𝑐𝑖
𝑡,  𝑐𝑖)

Figure 2: Framework overview. (a) Meta-training meta-trains a context encoder e(ht
i), a task

characteristic extractor q(cti,ci), a context-based reward estimator r̂(sti,a
t
i,ci) and a context-based

policy π(ati|sti,ci). The context-based reward estimator r̂(sti,a
t
i,ci) is used to optimize q(cti,ci) with

Lspa
TCE , Lpos

TCE and Lneg
TCE . Task contrastive loss LTCL discovers interrelations among transitions. (b)

Meta-testing utilizes the meta-trained modules e(ht
i), q(c

t
i,ci) andπ(ati|sti,ci) for efficient and effective

adaptation to unseen target tasks with contexts extracted from a few trajectories collected from them.

POMDP. The set of offline datasets D={D1,...,Dntask
} corresponds to the set of meta-training tasks.

More details about preliminaries of context-based offline meta-RL can be found in Appendices B and C.

4 METHOD

As illustrated in Figure 2, TCMRL consists of two main phases: meta-training and meta-testing.
Specifically, during the meta-training phase, TCMRL learns how to extract contexts ci from historical
trajectories hi sampled from the offline datasetDi, which corresponds to the meta-training task Ti.
During the meta-testing phase, trajectories hj corresponding to the unseen target task Tj are collected
to extract the contexts cj . TCMRL then utilizes cj to achieve efficient and effective adaptation to Tj .

4.1 META-TRAINING

TCMRL operates in the meta-training phase to capture task characteristic information and task
contrastive information separately. It (1) applies our task characteristic extractor (TCE) to identify and
emphasize transitions related to the task characteristic within the trajectory and optimizing it through
our context-based reward estimator from three perspectives, hence capturing the task characteristic
information; and (2) constructs task contrastive loss to discover the overlooked interrelations among
transitions from trajectory subsequences, for capturing task contrastive information.

4.1.1 TASK CHARACTERISTIC EXTRACTOR

Structure. Previous context-based offline meta-RL methods (Gao et al., 2023; Li et al., 2021b; Wang
et al., 2023) typically employ a context encoder e(ht

i) to encode each transition ht
i within the historical

trajectory hi into the representation cti, where hi corresponds to the meta-training task Ti and consists
of T time-steps. Each transition ht

i=(sti,a
t
i,r

t
i ,s

t+1
i ) is composed of state sti, action ati, reward rti and

next state st+1
i . Subsequently, these methods treat each representation cti∈{cti}

T
t=1 with equal weight

and aggregate them through ci=mean({cti}
T
t=1).

For a trajectory hi, which is sampled from the offline datasetDi of task Ti and composed of transitions
{ht

i}
T
t=1, we regard ci as a coarse context that indeed obtains partial task information. This is because

it overemphasizes redundant information from less important transitions, rather than identifying and
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emphasizing transitions related to the task characteristics. Then, we propose a task characteristic
extractor q(cti,ci) that assigns importance scores (scoreti)

T
t=1 for all transition representations {cti}

T
t=1

based on ci. It aims to identify transitions, within the trajectory hi, that are task characteristic of
the task Ti and assign them high scores for capturing the task characteristic information. In contrast,
most general transitions within the trajectory hi are assigned low importance scores since they
appear across many tasks and are associated with redundant information. To aggregate transition
representations {cti}

T
t=1 into the context ci that includes task characteristic information based on their

scores {(scoreti)}Tt=1, we generate a sequence of attention weights wi= {(wt
i)}Tt=1 with a softmax

function, where wt
i ∈ [0,1], and

∑T
t=1w

t
i=1. The complete process is as follows:

cti=e(ht
i), (1)

ci=mean(c1i ,c
2
i ,...,c

T
i ) (2)

scoreti=q(cti,ci), (3)

(w1
i ,...,w

T
i )=softmax(score1i ,...,score

T
i ), (4)

ci=

T∑
t=1

wt
i ·cti. (5)

Optimization. Inspired by the proposition of Liu et al. (2023) to detect critical frames in videos,
we design specific loss functions to optimize the task characteristic extractor from three distinct
perspectives for effectively capturing the task characteristic information. Initially, we optimize the
task characteristic extractor from the perspective of sparsity corresponding to the sequence of attention
weights (wt

i)
T
t=1. Our objective is to accurately assign higher importance scores and corresponding

attention weights to these transitions that are characteristic of the task, as only a few key transitions
within the trajectory provide the main task characteristic information (Arjona-Medina et al., 2019;
Faccio et al., 2022). Furthermore, because of the properties of attention weights (

∑T
t=1w

t
i = 1),

assigning high attention to general transitions results in that contexts include more redundant
information instead of task characteristic information. Therefore, since it is difficult to constrain the
importance scores (scoreti)

T
t=1, we impose a strict requirement on the overall sparsity of the sequence

of attention weights (wt
i)

T
t=1. This constraint serves to mitigate the risk of excessive weight allocation to

general transitions for effectively capturing the task characteristic information. The learning objective
of sparsity in attention weights Lspa

TCE is implemented through the L1 regularization as follows:

Lspa
TCE=

T∑
t=1

∥∥wi

∥∥
1
. (6)

To better optimize our task characteristic extractor, a way to measure how well the context includes task
characteristic information is essential. We reformulate a context-based reward estimator r̂(sti,a

t
i,ci),

which is different from the conventional reward estimator r̂(sti,a
t
i) widely used in RL. In r̂(sti,a

t
i),

reward estimation is confined to the current state sti and the action ati. In contrast, r̂(sti, a
t
i, ci)

incorporates the context ci as an additional input to provide task information. We employ it at the level
of transitions within a trajectory. For every input state, action and context, r̂(sti,a

t
i,ci) performs the

reward estimation and contexts that effectively represent task information lead to accurate estimations.
More details of the context-based reward estimator can be found in Appendix F.3.

The remaining two perspectives encompass the positive and negative reward estimation obtained
through supervised learning with the context-based reward estimator. Additionally, these two
perspectives utilize the context, which is jointly generated by the context encoder e(ht

i) and the
task characteristic extractor q(cti, ci), as one of the inputs to the context-based reward estimator

r̂(s′
t
i,a

′t
i,ci). The additional inputs come from another trajectory h′

i={h′t
i}

T

t=1, which is called the
execution trajectory and sampled from the offline datasetDi related to the same task Ti. Each transition
h′t

i=(s′
t
i,a

′t
i,r

′t
i,s

′t+1
i ) within h′

i has the same components as ht
i in hi.

We design Lpos
TCE to optimize the task characteristic extractor from the perspective of positive reward

estimation for assigning high attention weights to transitions, within a trajectory, that are the task
characteristic of a task and capturing the task characteristic information. Specifically, a context ci
of the task Ti is generated with the task characteristic extractor, which identifies and emphasizes
transitions that are the task characteristic of Ti. Therefore, if the context-based reward estimator
can make accurate predictions for transitions within h′

i under the condition of ci, it indicates that
the task characteristic extractor effectively captures task characteristic information from hi. The
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objective of Lpos
TCE is to optimize the task characteristic extractor by minimizing estimation errors

of the context-based reward estimator under the condition of ci. The learning objective is as follows:

Lpos
TCE=

T∑
t=1

(r̂(s′
t
i,a

′t
i,ci)−r′

t
i)

2
. (7)

Meanwhile, Lneg
TCE is designed to optimize the task characteristic extractor from another perspective

of negative reward estimation. Specifically, while the task characteristic extractor assigns transitions
related to the task characteristic with greater importance scores and thus higher attention weights, it
simultaneously reduces the attention weights of the remaining transitions. This distinction is reflected
in the importance scores (scoreti)

T
t=1 and the subsequent attention weights (wt

i)
T
t=1. Consequently,

an additional sequence of negative weights (1 − wt
i)

T
t=1 is generated, and through a similar pro-

cess, the sequence of transition representations {cti}Tt=1 is aggregated to the reverse context cnegi

(cnegi =
∑T

t=1(1−wt
i) · cti). Notably, the sum of (1−wt

i)
T
t=1 is not 1, but this does not affect the

calculation process. In this setup, the less important transitions play the more important roles, causing
the reverse context cnegi to primarily capture redundant information from general transitions within
the trajectory, rather than the task characteristic information. Therefore, we design Lneg

TCE to mitigate
the impact of redundant information by preventing the context-based reward estimator from making
accurate reward predictions when cnegi is applied as a condition. To achieve this, we construct negative
rewards for each transition h′t

i via adding random noise to the reward r′
t
i, serving as the corresponding

incorrect estimation targets. In detail, we define r′ti
neg

=r′
t
i+rnoise, where rnoise is sampled from a

Gaussian distribution of noise. Instead of directly designing Lneg
TCE around incorrect reward estimation,

we induce reward estimation conditioned on cnegi to approximate the corresponding negative rewards. It
allows us to design both Lpos

TCE and Lneg
TCE with a similar structure. The learning objective is as follows:

Lneg
TCE=

T∑
t=1

(r̂reverse(s
′t
i,a

′t
i,c

neg
i )−r′ti

neg
)
2
. (8)

More experimental analysis about the negative reward r′
t
i

neg
can be found in Appendix G.3.

Notably, the context encoder, task characteristic extractor and context-based reward estimator are
implemented with neural networks and trained simultaneously within TCMRL, without any sequential
dependencies. We employ Lpos

TCE (Eq. 7) to train all of them, while Lneg
TCE (Eq. 8) is not used to

optimize the context-based reward estimator. This is because Lneg
TCE is associated with the bias

of reward estimation and the negative reward r′
t
i

neg
is not an exact or accurate estimation target.

Overall, we simultaneously minimize all three losses Lspa
TCE , Lpos

TCE and Lneg
TCE , to optimize the task

characteristic extractor for capturing the task characteristic information.

4.1.2 TASK CONTRASTIVE LOSS

Task contrastive information is essential for improving the generalization of contexts as it reflects the
differences in task dynamics and reward functions across tasks. TACO (Zheng et al., 2023) is a method
that learns state and action representations related to the task dynamics by maximizing the mutual
information between current states paired with action sequences and representations of the future
states. We generalize this idea into a mutual information objective to capture the structural information
of subsequences and propose a task contrastive loss that discovers the overlooked interrelations among
transitions from trajectory subsequences to capture task contrastive information that distinguishes tasks
from one another. Furthermore, we extend the interrelations among transitions to the entire trajectory
with these subsequences as basic units for obtaining exhaustive task contrastive information. Such
information leads to a complete understanding of the implicit relationships among tasks. To the best of
our knowledge, we are the first to discover overlooked interrelations among transitions from trajectory
subsequences through contrastive learning for capturing exhaustive task contrastive information.

As shown in Figure 3, for a subsequence of lengthK corresponding to the task Ti, we regard the average
of transition representations from the first K−1 steps as prior context representation and consider
the K-th step transition representation as target context representation. Then, we maximize the mutual
information I between the prior context representation and the target transition representation:

I (mt
i;c

t+K−1
i ), (9)

where K is a fixed hyperparameter that satisfies K > 1 and mt
i is a convenient representation for

mean(cti,...,c
t+K−2
i ). We approximate the lower bound of the mutual information with the InfoNCE

6
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Figure 3: Computation process of task contrastive loss. TCMRL discovers interrelations among
transitions from a complete trajectory by using subsequences of length K as the fundamental units.
Such interrelations among transitions are constructed based on the mutual information between the
prior and target transition representations and used to capture task contrastive information.

loss function (van den Oord et al., 2018), which is defined as follows:

LInfoNCE=−log
exp(zq ·zk+/τ)∑B
i=1exp(z

q ·zki /τ)
, (10)

where τ is the temperature hyperparameter, zq is a query vector and {zk1 ,...,zkB} is a set of B key
vectors. We assume the key zk+∈{zk1 ,...,zkB} is the only one matching zq .

To construct the task contrastive loss, we operate in sequences of transition representations
{{cti}Tt=1}

B

i=1 related to B tasks {Ti}Bi=1 through two distinct levels of steps. First, we compute the
mutual information I in Eq. 9 with Eq. 10 to discover interrelations among transitions in subsequences
{(cti,c

t+1
i ,...,ct+K−1

i )}Bi=1. It relies on the matching relationship between the prior and target context
representations within the subsequence of the same task, as both reflect the same task dynamic and
reward function, and share a sequential relationship within the subsequence. However, this process
only considers the interrelations between each transition within mt

i and the transition corresponding
to ct+K−1

i . Second, we extend these interrelations to entire trajectories with sets of subsequences
as the basic units. This operation further discovers interrelations among each transition and up to K
surrounding transitions while except for the first and last K−1 transitions in the trajectory, all other
transitions contribute to both mt

i and ct+K−1
i . The complete computation process is as follows:

LTCL=− 1

T−K+1

1

B

T−K+1∑
t=1

B∑
i=1

log
mt

iWct+K−1
i∑B

l=1m
t
lWct+K−1

l

, (11)

whereW is a parameter of the weight, which is learnable and provides a similarity measure between
mt

i and ct+K−1
i . Although the computation of LTCL in Eq. 11 appears to involve a double loop with

time complexity related to both B and T , it can be computed through matrix operations with time
complexity of the inner loop. The inner loop can be written in a matrix-form as follows:

Linner=−
B∑

i=1

log
mt

iWct+K−1
i∑B

l=1m
t
lWct+K−1

l

=−Tr(M), Mij =log
mt

iWct+K−1
i∑B

l=1m
t
lWct+K−1

l

. (12)

Meanwhile, the outer loop primarily relates to the parallel computations of prior context representations.
In summary, our task contrastive loss can discover overlooked interrelations among transitions and
capture exhaustive task contrastive information, leading to contexts with generalization.

4.2 META-TESTING

During the meta-testing phase, TCMRL aims to achieve efficient and effective adaptation to the set of
unseen target tasksT∗ with our trained context encoder e(ht

j), task characteristic extractor q(ctj ,cj) and
context-based policyπ(atj |stj ,cj). When facing an unseen target task Tj , TCMRL begins by collecting a

limited number of trajectorieshj={ht
j}

T

t=1
. Subsequently, we utilize e(ht

j) to generate representations

{ctj}
T

t=1
for transitions {ht

j}
T

t=1
. Then, q(ctj ,cj) inputs ctj and cj and outputs the importance score

scoretj . Furthermore, the sequence of scores (scoretj)
T

t=1
generated by Eq. 3 is transformed into the

sequence of attention weights (wt
j)

T

t=1
with Eq. 4. Finally, by the aggregation of {ctj}

T

t=1
and (wt

j)
T

t=1

with Eq. 5, we obtain the context cj , which is a partial input to π(atj |stj ,cj) for generating actions.

7
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Table 1: Performance in meta-environments with normalized scores.
Task set/Environment TCMRL (ours) IDAQ CSRO CORRO FOCAL++ FOCAL MACAW BOReL

Basketball 0.82±0.11 0.64±0.15 0.58±0.10 0.57±0.04 0.71±0.25 0.41±0.24 0.00±0.00 0.00±0.00
Box-Close 0.62±0.09 0.51±0.11 0.51±0.02 0.60±0.03 0.44±0.03 0.15±0.09 0.36±0.11 0.05±0.01

Button-Press-Topdown 0.81±0.12 0.57±0.11 0.66±0.09 0.55±0.14 0.51±0.10 0.45±0.10 0.38±0.36 0.02±0.02
Dial-Turn 0.98±0.01 0.91±0.05 0.81±0.09 0.87±0.07 0.80±0.13 0.84±0.09 0.00±0.00 0.00±0.00

Disassemble 0.59±0.13 0.41±0.14 0.56±0.06 0.49±0.06 0.32±0.08 0.25±0.04 0.05±0.00 0.04±0.00
Door-Close 1.01±0.00 0.99±0.00 0.74±0.18 0.98±0.01 1.01±0.00 0.97±0.01 0.00±0.00 0.37±0.19
Door-Lock 0.99±0.00 0.97±0.01 0.94±0.02 0.89±0.05 0.96±0.00 0.90±0.02 0.25±0.11 0.14±0.00

Door-Unlock 1.18±0.02 1.11±0.02 1.13±0.01 1.15±0.01 1.11±0.02 0.97±0.03 0.11±0.01 0.13±0.03
Door-Open 1.00±0.00 0.94±0.02 0.98±0.00 0.91±0.05 0.92±0.01 0.76±0.13 0.06±0.01 0.11±0.01

Drawer-Close 1.01±0.01 0.99±0.02 1.00±0.01 0.94±0.02 0.97±0.01 0.96±0.04 0.53±0.50 0.00±0.00
Drawer-Open 0.90±0.03 0.82±0.06 0.54±0.21 0.74±0.04 0.84±0.05 0.64±0.10 0.11±0.02 0.10±0.00
Faucet-Open 1.08±0.02 1.05±0.02 1.05±0.01 1.07±0.00 1.06±0.00 1.01±0.02 0.08±0.04 0.12±0.05
Hand-Insert 0.72±0.05 0.63±0.04 0.64±0.02 0.63±0.13 0.56±0.06 0.29±0.07 0.02±0.01 0.00±0.00
Lever-Pull 0.86±0.02 0.84±0.02 0.79±0.03 0.81±0.03 0.62±0.06 0.72±0.07 0.20±0.16 0.05±0.00

Peg-Insert-Side 0.45±0.05 0.30±0.04 0.27±0.14 0.36±0.10 0.19±0.07 0.08±0.03 0.00±0.00 0.00±0.00
Pick-Out-Of-Hole 0.71±0.06 0.25±0.25 0.54±0.13 0.52±0.14 0.29±0.17 0.15±0.16 0.59±0.06 0.00±0.00

Pick-Place 0.32±0.09 0.19±0.03 0.11±0.03 0.25±0.05 0.14±0.03 0.07±0.02 0.05±0.05 0.00±0.00
Reach 0.92±0.03 0.85±0.03 0.75±0.20 0.43±0.36 0.87±0.04 0.62±0.05 0.63±0.04 0.04±0.01
Soccer 0.60±0.06 0.44±0.04 0.54±0.11 0.58±0.07 0.29±0.03 0.11±0.03 0.38±0.31 0.04±0.02

Window-Close 0.95±0.01 0.93±0.01 0.93±0.02 0.92±0.01 0.94±0.01 0.79±0.01 0.54±0.44 0.03±0.00

Sparse-Point-Robot 12.98±0.29 7.74±0.68 − − 11.59±0.15 11.66±0.46 0.00±0.00 0.00±0.00
Half-Cheetanh-Vel -79.7±11.3 -133.4±23.9 -114.5±14.0 -113.2±17.2 -116.7±14.9 -117.7±13.6 -234.0±23.5 -301.4±36.8
Point-Robot-Wind -4.75±0.26 -6.03±0.22 − − -4.89±0.31 -5.46±0.26 − −

Hopper-Rand-Params 368.62±10.37 325.74±27.09 331.65±33.62 293.32±17.49 318.86±20.14 314.41±29.00 − 52.82
Walker-Rand-Params 354.97±19.72 324.04±31.40 316.81±16.31 301.49±5.06 313.02±24.22 303.07±4.28 311.68 269.74

Notably, the data collection process can be divided into two distinct stages. In the initial stage, the
agent randomly samples actions atj to collect the trajectory hj for extracting context cj , while in the
subsequent stage, actions atj are sampled based on the context-based policy π(atj |stj ,cj).

Pseudo-codes of both the meta-training and meta-testing phases can be found in Appendix A.

5 EXPERIMENTS

We evaluate TCMRL on two main issues: (1) whether generalizable contexts can be extracted and
(2) whether an efficient and effective adaptation to unseen target tasks can be achieved. Our code is
available at https://anonymous.4open.science/r/TCMRL/.

5.1 EXPERIMENTAL SETUP

We compare TCMRL with FOCAL (Li et al., 2021b), FOCAL++ (Li et al., 2021a), IDAQ (Wang
et al., 2023), CSRO (Gao et al., 2023), CORRO (Yuan & Lu, 2022), MACAW (Mitchell et al., 2021)
and BOReL (Dorfman et al., 2021) in the Sparse-Point-Robot, Half-Cheetah-Vel, Point-Robot-Wind,
Hopper-Rand-Params and Walker-Rand-Params environments, and task sets of the Meta-World ML1
environment (Yu et al., 2019). Notably, for a fair comparison, we employ the same offline datasets
for all baselines, leading to some performance biases compared with their original performance. More
details about the baselines, the experimental environments and their corresponding datasets are in
Appendices E, D and H respectively. The visual analyses are in Appendix G.7, while the analyses
about the length of subsequences are in Appendix G.4.

5.2 COMPARISON WITH BASELINES

We report experimental results in two forms: one is through table, where we directly compare
the results of TCMRL with baselines in a numerical format, as shown in Table 1, and the other is
through figure, aiming to showcase the complete processes, as shown in Figure 4. Notably, Table 1
showcases the performance of 20 selected Meta-World ML1 tasks and the complete experimental
results are in Appendix G. The comparative results in Figure 4 depict the analysis between TCMRL and
baselines in the Sparse-Point-Robot, Half-Cheetah-Vel, Point-Robot-Wind, Hopper-Rand-Params and
Walker-Rand-Params environments, and three task sets of Meta-World ML1 (Button-Press-Topdown,
Dial-Turn and Reach). Notably, in Table 1, instances denoted by “−” indicate the absence of
experimental results for the corresponding baselines within the specified environments. This is
due to the lack of support for these experiments and it will not undermine the comparative analysis.
Furthermore, all experimental results are averaged across six random seeds and their variances
are measured with a 95% bootstrap confidence interval. In summary, TCMRL exhibits superior
performance and sample efficiency compared with all baselines in all these environments.
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Figure 4: Comparisons of the effectiveness of adaptation. The experimental results of TCMRL,
IDAQ, CSRO, CORRO, FOCAL++, FOCAL, MACAW and BOReL in the Sparse-Point-Robot,
Half-Cheetah-Vel, Point-Robot-Wind, Hopper-Rand-Params and Walker-Rand-Params environments,
and three task sets of Meta-World ML1 (Button-Press-Topdown, Dial-Turn and Reach).

In Figure 4, TCMRL demonstrates superior adaptation to unseen target tasks compared with other meth-
ods. With our task characteristic extractor to capture the task characteristic information and task con-
trastive loss to obtain the task contrastive information, TCMRL makes a comprehensive understanding
of task information. Then, TCMRL can extract generalizable contexts from trajectories, leading to effi-
cient and effective adaptation to unseen target tasks. In the Button-Press-Topdown, Dial-Turn and Reach
task sets, as well as the Hopper-Rand-Params and Walker-Rand-Params environments, TCMRL exhibits
faster convergence to superior performance compared with all baselines, despite similar initial perfor-
mance. Moreover, in the Point-Robot-Wind and Point-Robot-Sparse environments, even when starting
with lower initial performance levels, TCMRL outperforms all baselines in terms of convergence speed.
In the Half-Cheetah-Vel environment, TCMRL achieves better performance, despite a slightly slower
convergence compared with FOCAL. IDAQ, CSRO, CORRO and FOCAL++ exhibit similar sample
efficiency to TCMRL but markedly lower performance. Apart from achieving performance similar to
FOCAL but significantly lower than TCMRL in the Reach task set, MACAW exhibits poor performance
in other environments. Meanwhile, BOReL demonstrates the worst performance in most environments.

5.3 ABLATION STUDY

TCMRL employs two main parts: the task characteristic extractor and the task contrastive loss. We
build two different variants of the complete framework: one without the task characteristic extractor
(w/o TCE) and another without task contrastive loss (w/o TCL). The results in Figure 5 demonstrate
that these two variants exhibit similar performance for the three task sets within the Meta-World ML1
(Button-Press-Topdown, Dial-Turn and Reach) and the Half-Cheetah-Vel, Hopper-Rand-Params
and Walker-Rand-Params environments, while their sample efficiency and performance are lower
than that of TCMRL. Overall, the combined utilization of the task characteristic extractor and the
task contrastive loss is essential for capturing comprehensive task information. This enables TCMRL
to generate generalizable contexts and achieve efficient and effective adaptation to unseen target tasks.

5.4 EFFECTS OF OPTIMIZATION PERSPECTIVES ON THE TASK CHARACTERISTIC EXTRACTOR

To explore the effects of optimization perspectives corresponding to the task characteristic extractor, we
build different variants based on TCMRL with only the task characteristic extractor. For simplicity, we
abbreviate sparsity in attention weights as sparsity. First, we build variants that make the optimization
with one of the three perspectives: with sparsity, with positive reward estimation and with negative
reward estimation. Second, we build variants that complete the optimization by excluding one of the
three perspectives: without sparsity, without positive reward estimation and without negative reward
estimation. We conduct experiments with all these variants in the Half-Cheetah-Vel and Hopper-Rand-
Params environments, and the Reach task set within Meta-World ML1. The results in Figure 6(a)-(c)
demonstrate that the performance achieved by optimizing only from one of the three perspectives is
inferior to that achieved with all perspectives. Moreover, the perspective of positive reward estimation
is directly associated with the training of both the task characteristic extractor and the context-based
reward estimator, leading to the best performance when employed individually. The perspectives of
sparsity in attention weights and negative reward estimation achieve limited performance when applied
individually because they only make optimization as constraints. The results in Figure 6(d)-(f) show
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Figure 5: Ablation experiments on modules. The variant named w/o TCE removes the task
characteristic extractor. The variant named w/o TCL removes the task contrastive loss.
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Figure 6: Effects of the optimization perspectives on the task characteristic extractor. Variants
in (a), (b) and (c) only utilize one of the three perspectives to optimize the task characteristic extractor,
while variants in (d), (e) and (f) make optimization with one of the three perspectives removed.

that the removal of any optimization perspective results in a performance decline. Specifically, when the
perspectives of sparsity in attention weights or negative reward estimation are removed, the performance
is degraded due to missing part of the constraints. When the perspective of positive reward estimation
is removed, the performance is limited with two constraints. Overall, the combined utilization of these
three perspectives can achieve valid optimization of the task characteristic extractor, while the perspec-
tive of positive reward estimation plays a major role and the perspective of negative reward estimation
and sparsity in attention weights are effective constraints. More analyses can be found in Appendix G.2.

6 CONCLUSION

We propose TCMRL, an offline meta-RL framework that captures comprehensive task information,
which includes both task characteristic information and task contrastive information. It leads to
contexts with improved generalization, and achieves efficient and effective adaptation to unseen target
tasks. Specifically, we propose a task characteristic extractor that identifies and emphasizes transitions,
within a trajectory, that are characteristic of a task when generating the context. A context-based reward
estimator and a series of specific loss functions are used to optimize the task characteristic extractor
and ensure the accurate assignment of attention weights. Moreover, we propose a task contrastive
loss to learn task information that distinguishes tasks from one another by considering the overlooked
interrelations among transitions from trajectory subsequences. Our experimental evaluations in
deterministic continuous control meta-environments demonstrate the superior performance of TCMRL
compared with previous offline meta-RL methods.
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REPRODUCIBILITY STATEMENT

Here we detail the efforts that we have made to ensure the reproducibility of our work. Specifically,
we provide an anonymous link where the source code of TCMRL is downloadable in Section 5. In
Appendix D, we provide detailed descriptions of the environments and task sets used in our work.
In Appendix F, we provide detailed descriptions of the method for constructing offline datasets,
implementation details, and hyperparameter settings. We also provide the average returns of our offline
datasets in Appendix H.
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A PSEUDO-CODE OF TCMRL

We present our meta-training process in Algorithm 1 and our meta-testing process in Algorithm ??.

Algorithm 1 TCMRL meta-training.
Input: The set of offline datasets D={Di}ntask

i=1 ; Context encoder e(ht
i); Task characteristic extractor

q(cti,ci); Context-based reward estimator r̂(sti,a
t
i,ci); Task contrastive loss LTCL; Context-based

policy π(ati|sti,ci); Q-function Q.
1: while not done do
2: for step in training steps do
3: Sample Di∼D corresponding to Ti and sample historical trajectory hi from it
4: Extract {cti}

T
t=1 from {ht

i}
T
t=1 through e(ht

i) (Eq. 1)
5: Compute LTCL (Eq. 11)
6: Compute ci (Eq. 2)
7: Compute (scoreti)

T
t=1 for {cti}

T
t=1 with ci and q(cti,ci) (Eq. 3)

8: Compute (wt
i)

T
t=1 for {cti}

T
t=1 through softmax function and (scoreti)

T
t=1 (Eq. 4)

9: Compute ci with {cti}
T
t=1 and (wt

i)
T
t=1 (Eq. 5)

10: Update e(ht
i), q(c

t
i,ci) and r̂(sti,a

t
i,ci) to minimize Lspa

TCE , Lpos
TCE and Lneg

TCE (Eq. 6, Eq. 7
and Eq. 8)

11: Update π(ati|sti,ci) and Q with offline RL algorithm SAC (Haarnoja et al., 2018)
12: end for
13: end while

Algorithm 2 TCMRL meta-testing.
Input: The set of unseen target tasksT∗; Context encoder e(ht

i); Task characteristic extractor q(cti,ci);
Learned context-based policy π(ati|sti,ci); Random explore step tr.

1: for each unseen target task Tj∼T∗ do
2: hj={}
3: for t=0,...,T−1 do
4: if t<tr then
5: Agent randomly samples an action atj to collect transition ht

j=(stj ,a
t
j ,r

t
j ,s

′t
j)

6: else
7: Compute context cj with e(ht

i) and q(cti,ci) (Eq. 1, Eq. 2, Eq. 3, Eq. 4 and Eq. 5)
8: Agent uses π(ati|sti,ci) to roll out ht

j=(stj ,a
t
j ,r

t
j ,s

′t
j)

9: end if
10: hj=hj∪ht

j

11: end for
12: Compute context cj with e(ht

i) and q(cti,ci) (Eq. 1, Eq. 2, Eq. 3, Eq. 4 and Eq. 5)
13: Roll out π(ati|sti,ci) for evaluation
14: end for

B PRELIMINARIES OF META-LEARNING

We choose the standard supervised meta-learning to illustrate the concept of meta-learning (see,
e.g., (Finn et al., 2017)). We assume tasks Ti are sampled from a distribution of tasks p(T ). The
problem setting of the meta-learning consists of two phases: the meta-training phase and the meta-
testing phase. These two phases confront distinct sets of tasks, with no overlap between the tasks
they encounter. During the meta-training phase, a meta-model is learned through a set of meta-
training tasks T. We sample a set of meta-training data D from these tasks. For a particular task
Ti, the corresponding meta-training data Di consists of a subset for training (xi,yi) and a subset
for testing, while xi = (x1

i ,x
2
i ,...,x

T
i ) and yi = (y1i ,y

2
i ,...,y

T
i ) are sampled from p(xi,yi|Ti), and

x∗
i = (x∗1

i ,x
∗2
i , ... ,x

∗T
i ) and y∗i = (y∗1i ,y

∗2
i , ... ,y

∗T
i ) are sampled from p(x∗

i ,y
∗
i|Ti). During the

meta-testing phase, the learned meta-model is utilized to address a set of unseen target tasksT∗ and tries
to achieve efficient and effective adaptation. We denote the meta-parameters learned during the meta-
training phase as θ and the task-specific parameters computed based on the meta-training tasks as ϕ.
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Following Grant et al. (2018) and Gordon et al. (2019), we assess meta-learning algorithms that
aim to use the meta-training data D corresponding to the set of meta-training tasks T to maximize
conditional likelihood q(ŷ∗=y∗|x∗,θ,D), which is related to three distributions: q(θ|D) that generates
the distribution of the meta-parameters θ from the meta-training data D, q(ϕ|Di,θ) that generate the
distribution of the task-specific parameters ϕ and q(ŷ∗|x∗,ϕ,θ) that is the predictive distribution. The
learning objective of these distributions is as follows:

− 1

N

∑
i

Eq(θ|D)q(ϕ|Di,θ)

 1

T

∑
(x∗,y∗)∈Di

logq(ŷ∗=y∗|x∗,ϕ,θ)

. (13)

Meta-learning algorithms can be primarily categorized into two kinds of distinct algorithms:
optimization-based algorithms and context-based algorithms. Specifically, MAML (Finn et al., 2017)
is a classic optimization-based meta-learning algorithm. Within MAML, θ and ϕ denote the weights of
the predictor network, q(ϕ|Di,θ) is a delta function that is positioned at a location determined through
gradient optimization, and ϕ parameterizes the predictor network q(ŷ∗|x∗,ϕ). Moreover, it utilizes
the meta-training dataDi and the parameter θ in the predictor model for determining the task-specific
parameter ϕ, and this process is as follows:

ϕ=θ+
α

T

∑
(x,y)∈Di

∇θlogq(y|x,ϕ=θ). (14)

Meanwhile, the conditional neural processes (CNP) (Garnelo et al., 2018) is a notable context-based
algorithm, which defines q(ϕ|D,θ) as a mapping from D to the parameter ϕ. Features e(D) extracted
from the meta-training data are aggregated through a network aggθ(·), and the output is computed
through ϕ=aggθ ·e(D). Subsequently, the parameter θ defines a predictor network that inputs ϕ and
x∗ and outputs the prediction of the distribution q(ŷ∗|x∗,ϕ,θ).

C PRELIMINARIES OF CONTEXT-BASED OFFLINE META-RL

We assume that context-based offline meta-RL corresponds to a set of tasks consisting of a series of
meta-training tasks and a series of meta-testing tasks (unseen target tasks). These tasks within this
set shares the same state space S and action spaceA, but exhibit variations in their transition dynamics
p(st+1

i |sti,ati) or reward functions r(sti,a
t
i). Moreover, a distribution of these tasks is modeled as joint

distribution of transition dynamics p(st+1
i |sti,ati) and reward functions r(sti,a

t
i), with the following

form:
p(T ) :=p(p(st+1

i |sti,ati),r(sti,ati))=p(p(st+1
i |sti,ati))p(r(sti,ati)). (15)

This task distribution corresponds to a series of MDPs, and a meta-policy designed by context-based
offline meta-RL methods aims to perform well across all these MDPs. These MDPs are formed
as POMDPs since they consider the task information of each task to be the unobservable part.
Consequently, a context encoder e(·) is utilized to map the task information of the historical trajectory
h that corresponds to the task T to a representation of the context c ∈ C, where C is the space of
contexts. The form of the augmented state is as follows:

Saug←S×C, saug←concat(s,c). (16)
This set of MDPs is also defined as task-augmented MDP (TA-MDP) (Li et al., 2021b;a).

Previous context-based offline meta-RL methods (Li et al., 2021b; Rakelly et al., 2019; Wang et al.,
2023) typically obtain task information of taskTi by aggregating transitions from the historical trajectory
h1:t
i ={s1i ,a1i ,r1i ,s2i ...,sti,ati,rti ,s

t+1
i } into a representation of the continuous latent space of contexts C.

These methods have proved that the quality of contexts, or the ability of the context encoder to extract
task information from historical trajectories, directly influences the performance of the meta-policy and
its adaptation to unseen target tasks. In addition, as a traditional and successful context-based offline
meta-RL method, probabilistic representations for actor-critic RL (PEARL) (Rakelly et al., 2019)
generates contexts ci in the form of vectors. Moreover, the complete process of adaptation to unseen
target tasks involves sampling the vector ci from the corresponding probabilistic distribution qe(ci|hi),
which is parameterized by an encoder e. Here, hi is a complete historical trajectory corresponding
to the episode of task Ti. Specifically, the context encoder is implemented by a neural network and
the input historical trajectory consists of a series of transitions ht

i=(sti,a
t
i,r

t
i ,s

t+1
i ). Additionally, the

context ci is one of the inputs of the context-based policy π(ati|sti,ci) for making action decisions.
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D EXPERIMENTAL ENVIRONMENTS

• Sparse-Point-Robot. The Sparse-Point-Robot environment consists of a 2D navigation
problem, simulated by the MuJoCo physics simulator and introduced in PEARL (Rakelly
et al., 2019). In this environment setting, each task involves guiding the agent from the origin
to a specific goal position situated on the unit circle centered at the origin. The non-sparse
reward is defined as the negative of the distance between the current location and the goal
position of the agent. In the case of a sparse-reward scenario, the reward is set to 0 when the
agent is outside a neighborhood surrounding the goal, which is controlled by the goal radius.
Conversely, when the agent is inside this neighborhood, it receives a reward of 1 minus the
distance at each step, yielding a positive value. We use the sparse-reward scenario.

• Half-Cheetah-Vel. The Half-Cheetah-Vel environment serves as a multi-task MuJoCo
benchmark wherein tasks exhibit variations in their reward functions. Specifically, definitions
of these tasks are revolved around the specification of the target velocity of the agent. The
distribution of the target velocity follows a uniform distribution denoted as U [0,vmax].

• Point-Robot-Wind. The Point-Robot-Wind environment is a variant of the 2D navigation
environment called Point-Robot. In this variant, each task solely differs in their transition
functions, while sharing the same reward function. Specifically, each task is characterized
by a distinct wind, which is uniformly sampled from [−l,l]2. Consequently, whenever the
agent takes a step, it undergoes a drift determined by the corresponding wind.

• Hopper-Rand-Params. The Hopper-Rand-Params environment controls the forward
movement of a single-legged robot. Tasks encompass diverse aspects such as body mass,
body inertia, joint damping, and friction. Each parameter is determined by the default value
multiplied by a coefficient randomly selected from the range [1.5−3,1.53]. The state space
is R11 and the action space is [−1,1]3. Meanwhile, the reward function comprises forward
velocity and bonuses for staying alive and controlling costs.

• Walker-Rand-Params. The Walker-Rand-Params environment controls the forward
movement of a bipedal robot. Similar to the Hopper-Rand-Params environment, each
parameter is determined using the same method. Meanwhile, the reward function mirrors that
of Hopper-Rand-Params. The state space encompasses R17, while the action space is [−1,1]6.

• Meta-World ML1 (Yu et al., 2019). The Meta-World ML1 environment comprises 50
robot arm manipulation task sets. Specifically, each task entails controlling a robotic
arm to accomplish a given objective, as evident from their descriptive names such as
Button-Press-Topdown, Dial-Turn, Reach, and Window-Open. These tasks closely resemble
real-world scenarios and actions.

Additionally, in the meta-RL environments we employed, each task is characterized by distinct
goals. In the Sparse-Point-Robot and Half-Cheetah-Vel environments, their task sets both consist
of 100 tasks, of which 80 tasks are designated as meta-training tasks and 20 tasks are designated as
meta-testing tasks. In the Point-Robot-Wind and Meta-World ML1 environments, their task sets both
comprise 50 tasks, wherein 40 tasks are meta-training tasks and 10 tasks are meta-testing tasks. In
the Hopper-Rand-Params and Walker-Rand-Params environments, their task sets both consist of 40
tasks, while 30 tasks are meta-training tasks and 10 tasks are meta-testing tasks. Notably, all these
MuJoCo environments and Meta-World ML1 task sets have MIT licenses.

E BASELINES

• FOCAL (Li et al., 2021b). FOCAL introduces behavior regularization to the learned
policy framework while utilizing a deterministic context encoder for efficient task inference.
Furthermore, it incorporates a novel negative-power distance metric within a bounded context
embedding space, enabling gradient propagation that is decoupled from the Bellman backup
process. Specifically, it treats all online experiences as effective data for generating contexts.

• FOCAL++ (Li et al., 2021a). FOCAL++ is a framework that has been built upon and is
expanding the foundation of FOCAL. It aims to address the problem of MDP ambiguity (Li
et al., 2020), which is due to the biased distribution of the fixed datasets, through attention
mechanism and contrastive learning objectives.

• IDAQ (Wang et al., 2023). IDAQ is a framework that extends the foundations of FO-
CAL. It leverages a return-based uncertainty quantification to generate context within the in-
distribution. Additionally, it utilizes effective task belief inference methods to tackle new tasks.

• CSRO (Gao et al., 2023). CSRO is an approach that addresses the context shift problem
with only offline datasets by minimizing the influence of policy in context during both the
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meta-training and meta-test phases. Specifically, a max-min mutual information represen-
tation learning mechanism is designed to diminish the impact of the behavior policy on task
representations during the meta-training phase. The non-prior context collection strategy
is introduced to reduce the effect of the exploration policy during the meta-testing phase.

• CORRO (Yuan & Lu, 2022). CORRO is a context-based meta-RL framework for addressing
the change of behavior policies. It aims to learn how to obtain robust task representations
through contrastive learning.

• MACAW (Mitchell et al., 2021). MACAW is an optimization-based meta-learning algorithm
that adheres to the offline meta-RL setting. In addition, it employs the simple and supervised
regression objectives for both the inner and outer loops of meta-training, ensuring effective
performance.

• BOReL (Dorfman et al., 2021). BOReL is an algorithm that addresses the challenges of
the offline meta-RL from the view of Bayesian RL (BRL). Its main objective is to learn a
Bayes-optimal policy using offline data. Moreover, it extends the VariBAD BRL approach
(Zintgraf et al., 2020) by incorporating an off-policy learning framework and an adaptive
neural belief estimate and focuses on planning an exploration strategy that maximizes
information gain based on the learned belief model.

Notably, all these baselines have MIT licenses.

F IMPLEMENTATION DETAILS

F.1 OFFLINE DATA COLLECTIONS

To ensure a fair comparison, we follow the same approach as IDAQ in generating the offline datasets,
which are used during the meta-training phase (see Appendix H).

For each training task, we employ SAC (Haarnoja et al., 2018) to train an agent and store the policy
at various training times as the behavior policy. Each policy is employed to roll out 50 trajectories
in the corresponding environment to construct offline datasets. Notably, this is a common approach
for constructing offline datasets in the field of offline meta-RL (Li et al., 2021b;a; Yuan & Lu, 2022;
Wang et al., 2023; Gao et al., 2023).

F.2 EXPERIMENTAL DETAILS

Our experiments are conducted on a machine with NVIDIA GeForce RTX 2080 Ti and implemented
with PyTorch.

TCMRL employs the Adam optimizer (Kingma & Ba, 2015) with a learning rate of 3e−4 for the
policy, Q-network, V-network and context encoder, and a learning rate of 1e−4 for the dual critic.
We set the batch size to 256, and the discount factor to 0.99. We implement our task characteristic
extractor with a multi-layer perceptron (MLP) neural network architecture. Each hidden layer is a fully
connected layer with 256 units and the activation function is the sigmoid function. The context-based
reward estimator is also implemented with an MLP architecture, while each hidden layer is a fully
connected layer with 256 units.

As depicted in Figure 4, we train 100000 steps in the Point-Robot-Wind and Point-Robot-Sparse
environments, and 40000 steps in the Half-Cheetah-Vel environment. Moreover, for most of
Meta-World ML1 tasks, such as “Button-Press-Topdown”, “Dial-Turn” and “Reach”, we train
them for 300000 steps. However, it has been observed that training with excessively long steps
leads to performance degradation for some tasks, such as “Door-Close”. Therefore, based on the
observations, we reduce the number of training steps for them. Moreover, because the hyperparameter
K used in discovering interrelations among transitions is crucial and sensitive, we carefully set it
for each task to ensure optimal performance. Specifically, we set K to 5 for Point-Robot-Wind, 2
for Point-Robot-Sparse and 4 for Half-Cheetah-Vel. Additionally, on the Meta-World ML1 task set,
taking a few tasks as examples, we set K to 6 for “Reach”, “Basketball” and “Bin-Picking”, 4 for
“Button-Press-Topdown” and “Dial-Turn” and 8 for “Box-Close”. Furthermore, we set the dimension
of the context to 20 in most environments, while it is set to 40 in the Walker-Rand-Params environment.
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F.3 DETAILS OF THE CONTEXT-BASED REWARD ESTIMATOR

Actually, we employ two different processing levels to handle environments with sparse and dense
rewards respectively. When handling reward-dense environments, the context-based reward estimator
r̂(sti,a

t
i,ci) operates at the level of transitions within a trajectory as Eq. 7 and Eq. 8, since there is rich

reward information at each trajectory step.

While meeting reward-sparse environments, the operation of the context-based reward estimator
shifts to the level of trajectories, since there is limited reward information in only a few trajectory
steps. In such cases, we input state-action pairs of the entire trajectory, and the context to estimate
the cumulative reward of the entire trajectory. The learning objective of positive reward estimation
Lpos
TCE in reward-sparse environments is as follows:

Lpos
TCE=(r̂(s′

1
i ,a

′1
i ,...,s

′T
i ,a

′T
i ,ci)−

T∑
t=1

r′
t
i)

2. (17)

Meanwhile, the learning objective of negative reward estimation Lneg
TCE in reward-sparse environments

is as follows:

Lneg
TCE=(r̂reverse(s

′1
i ,a

′1
i ,...,s

′T
i ,a

′T
i ,c

neg
i )−

T∑
t=1

r′
t
i

neg
)2. (18)

We conduct experiments in the Sparse-Point-Robot environment, which is reward-sparse and these
results can be found in Table 1 and Figure 4.

G MORE EXPERIMENTAL RESULTS

G.1 COMPLETE EXPERIMENTAL RESULTS

Table 2 shows the experimental results in 50 Meta-World ML1 task sets and MuJoCo tasks.
Additionally, it is worth mentioning that all Meta-World ML1 tasks are originally named with a “-v2"
suffix. However, for the sake of conciseness, we have omitted this suffix in our presentation. Overall,
TCMRL demonstrates superior performance compared with all baselines, achieving more efficient and
effective adaptation to unseen target tasks. Notably, FOCAL++ utilizes attention mechanisms at both
the sequence-wise and batch-wise. We conduct comparisons not only with the complete FOCAL++
but also separately with these two different attention mechanisms. Meanwhile, CORRO employs
two distinct methods for the generation of negative samples: one leverages the condition variational
auto-encoder (CVAE), while the other utilizes the reward randomization (RR). The results of CORRO
presented in Table 1 and Table 2 represent the maximum performance attained across both CORRO
with CVAE and CORRO with RR, serving as a comprehensive result for comparison. The comparative
results between TCMRL and FOCAL++ can be found in Appendix G.5 while results between TCMRL
and CORRO can be found in Appendix G.6.

G.2 ADDITIONAL ANALYSIS OF
EFFECTS OF OPTIMIZATION PERSPECTIVES ON THE TASK CHARACTERISTIC EXTRACTOR

To further analyze the effects of different optimization perspectives on the task characteristic extractor
(sparsity in attention weights, positive reward estimation and negative reward estimation), we conduct
experiments in more environments to explore their individual effects. The results in Figure 7 and Fig-
ure 8 align with the conclusions drawn in Section 5.4 in the Walker-Rand-Params environment, and the
Button-Press-Topdown and Dial-Turn task sets within Meta-World ML1. Additionally, some special
cases required further analysis. As mentioned in Section 5.4, the perspective of positive reward estima-
tion primarily involves direct training of the context-based reward estimator and the task characteristic
extractor, demonstrating significant importance. Meanwhile, the perspectives of both sparsity in atten-
tion weights and negative reward estimation mainly serve as constraints. The performance and sample
efficiency shown in Figure 7 present the results when optimization is performed solely from one of three
perspectives. The variant with positive reward estimation shows the best performance in these environ-
ments among all variants that only optimize the task characteristic extractor from a single perspective
because of its effect on training. The variant with sparsity exhibits significant performance fluctuations
in the Button-Press-Topdown and Dial-Turn task sets within Meta-World ML1, since the limited
effectiveness of optimization solely from the single perspective of constraint. The variant with negative
reward estimation demonstrates relatively stable performance in the Button-Press-Topdown task set,
whereas it still exhibits significant performance fluctuations in the Dial-Turn task set. This is due to
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Table 2: Comparison between IDAQ, CSRO, CORRO, FOCAL++, FOCAL, MACAW, and BOReL
with online adaptation and TCMRL.

Task set/Environment TCMRL (ours) IDAQ CSRO CORRO FOCAL++ FOCAL MACAW BOReL

Assembly 0.56±0.15 0.55±0.13 0.26±0.18 0.38±0.08 0.51±0.11 0.28±0.05 0.33±0.01 0.04±0.00
Basketball 0.82±0.11 0.64±0.15 0.58±0.10 0.57±0.04 0.71±0.25 0.41±0.24 0.00±0.00 0.00±0.00

Bin-Picking 0.65±0.10 0.53±0.16 0.57±0.13 0.47±0.14 0.51±0.24 0.31±0.21 0.66±0.11 0.00±0.00
Box-Close 0.62±0.09 0.51±0.11 0.51±0.02 0.60±0.03 0.44±0.03 0.15±0.09 0.36±0.11 0.05±0.01

Button-Press-Topdown 0.81±0.12 0.57±0.11 0.66±0.09 0.55±0.14 0.51±0.10 0.45±0.10 0.38±0.36 0.02±0.02
Button-Press-Topdown-Wall 0.47±0.02 0.43±0.03 0.37±0.02 0.35±0.05 0.42±0.02 0.40±0.07 0.05±0.02 0.05±0.01

Button-Press 0.81±0.05 0.74±0.08 0.69±0.05 0.72±0.04 0.79±0.05 0.68±0.14 0.02±0.01 0.01±0.01
Button-Press-Wall 1.07±0.03 1.04±0.04 1.04±0.01 1.02±0.04 0.98±0.07 0.99±0.06 0.02±0.00 0.01±0.00

Coffee-Button 0.83±0.12 0.73±0.14 0.79±0.08 0.77±0.04 0.75±0.16 0.66±0.16 0.15±0.13 0.02±0.00
Coffee-Pull 0.51±0.05 0.40±0.05 0.48±0.01 0.43±0.04 0.32±0.04 0.23±0.04 0.19±0.12 0.00±0.00
Coffee-Push 1.27±0.08 1.22±0.13 1.22±0.01 1.17±0.16 1.00±0.05 0.64±0.07 0.01±0.01 0.00±0.00

Dial-Turn 0.98±0.01 0.91±0.05 0.81±0.09 0.87±0.07 0.80±0.13 0.84±0.09 0.00±0.00 0.00±0.00
Disassemble 0.59±0.13 0.41±0.14 0.56±0.06 0.49±0.06 0.32±0.08 0.25±0.04 0.05±0.00 0.04±0.00
Door-Close 1.01±0.00 0.99±0.00 0.74±0.18 0.98±0.01 1.01±0.00 0.97±0.01 0.00±0.00 0.37±0.19
Door-Lock 0.99±0.00 0.97±0.01 0.94±0.02 0.89±0.05 0.96±0.00 0.90±0.02 0.25±0.11 0.14±0.00

Door-Unlock 1.18±0.02 1.11±0.02 1.13±0.01 1.15±0.01 1.11±0.02 0.97±0.03 0.11±0.01 0.13±0.03
Door-Open 1.00±0.00 0.94±0.02 0.98±0.00 0.91±0.05 0.92±0.01 0.76±0.13 0.06±0.01 0.11±0.01

Drawer-Close 1.01±0.01 0.99±0.02 1.00±0.01 0.94±0.02 0.97±0.01 0.96±0.04 0.53±0.50 0.00±0.00
Drawer-Open 0.90±0.03 0.82±0.06 0.54±0.21 0.74±0.04 0.84±0.05 0.64±0.10 0.11±0.02 0.10±0.00
Faucet-Close 1.13±0.01 1.12±0.01 1.10±0.01 1.11±0.01 1.11±0.00 1.06±0.02 0.07±0.01 0.13±0.03
Faucet-Open 1.08±0.02 1.05±0.02 1.05±0.01 1.07±0.00 1.06±0.00 1.01±0.02 0.08±0.04 0.12±0.05

Hammer 0.85±0.06 0.83±0.06 0.77±0.07 0.79±0.05 0.83±0.04 0.58±0.07 0.10±0.01 0.09±0.01
Hand-Insert 0.72±0.05 0.63±0.04 0.64±0.02 0.63±0.13 0.56±0.06 0.29±0.07 0.02±0.01 0.00±0.00

Handle-Press-Side 0.96±0.02 0.88±0.02 0.57±0.03 0.33±0.10 0.83±0.04 0.77±0.10 0.49±0.41 0.02±0.01
Handle-Press 0.77±0.06 0.88±0.05 0.34±0.03 0.31±0.07 0.90±0.02 0.87±0.02 0.28±0.10 0.01±0.00

Handle-Pull-Side 0.31±0.08 0.12±0.04 0.14±0.02 0.10±0.06 0.26±0.07 0.11±0.08 0.00±0.00 0.00±0.00
Handle-Pull 0.92±0.02 0.89±0.02 0.35±0.27 0.63±0.19 0.76±0.04 0.66±0.03 0.00±0.00 0.00±0.00
Lever-Pull 0.86±0.02 0.84±0.02 0.79±0.03 0.81±0.03 0.62±0.06 0.72±0.07 0.20±0.16 0.05±0.00

Peg-Insert-Side 0.45±0.05 0.30±0.04 0.27±0.14 0.36±0.10 0.19±0.07 0.08±0.03 0.00±0.00 0.00±0.00
Peg-Unplug-Side 0.69±0.01 0.56±0.07 0.22±0.04 0.22±0.07 0.50±0.03 0.19±0.09 0.00±0.00 0.00±0.00
Pick-Out-Of-Hole 0.71±0.06 0.25±0.25 0.54±0.13 0.52±0.14 0.29±0.17 0.15±0.16 0.59±0.06 0.00±0.00

Pick-Place 0.32±0.09 0.19±0.03 0.11±0.03 0.25±0.05 0.14±0.03 0.07±0.02 0.05±0.05 0.00±0.00
Pick-Place-Wall 0.43±0.15 0.28±0.12 0.36±0.18 0.34±0.24 0.18±0.06 0.09±0.04 0.39±0.25 0.00±0.00

Plate-Slide-Back-Side 0.97±0.03 0.97±0.02 0.31±0.16 0.64±0.22 0.96±0.02 0.77±0.20 0.02±0.01 0.01±0.00
Plate-Slide-Back 0.98±0.02 0.96±0.02 0.29±0.13 0.80±0.04 0.89±0.04 0.58±0.06 0.21±0.17 0.01±0.00
Plate-Slide-Side 1.07±0.08 1.07±0.08 0.98±0.03 0.99±0.01 0.99±0.07 0.70±0.14 0.00±0.00 0.00±0.00

Plate-Slide 1.01±0.02 1.01±0.03 1.00±0.00 0.91±0.02 0.92±0.01 0.83±0.09 0.01±0.00 0.01±0.00
Push-Back 0.58±0.04 0.52±0.05 0.17±0.10 0.21±0.07 0.21±0.05 0.16±0.04 0.00±0.00 0.00±0.00

Push 0.64±0.12 0.55±0.10 0.60±0.07 0.57±0.08 0.62±0.09 0.34±0.14 0.28±0.19 0.00±0.00
Push-Wall 0.77±0.11 0.71±0.15 0.71±0.02 0.69±0.07 0.74±0.07 0.43±0.06 0.23±0.18 0.00±0.00

Reach 0.92±0.03 0.85±0.03 0.75±0.20 0.43±0.36 0.87±0.04 0.62±0.05 0.63±0.04 0.04±0.01
Reach-Wall 0.94±0.05 0.93±0.05 0.91±0.01 0.84±0.07 0.92±0.03 0.53±0.18 0.82±0.02 0.06±0.00
Shelf-Place 0.84±0.12 0.70±0.18 0.54±0.05 0.59±0.15 0.53±0.04 0.32±0.11 0.01±0.01 0.00±0.00

Soccer 0.60±0.06 0.44±0.04 0.54±0.11 0.58±0.07 0.29±0.03 0.11±0.03 0.38±0.31 0.04±0.02
Stick-Pull 0.37±0.08 0.32±0.06 0.16±0.01 0.33±0.04 0.33±0.04 0.17±0.07 0.00±0.00 0.00±0.00
Stick-Push 0.85±0.05 0.73±0.09 0.71±0.06 0.76±0.05 0.83±0.05 0.46±0.15 0.17±0.17 0.00±0.0
Sweep-Into 0.66±0.02 0.61±0.06 0.53±0.02 0.44±0.03 0.58±0.03 0.33±0.05 0.00±0.00 0.01±0.00

Sweep 0.84±0.03 0.77±0.04 0.75±0.06 0.53±0.18 0.37±0.11 0.32±0.08 0.20±0.20 0.00±0.00
Window-Close 0.95±0.01 0.93±0.01 0.93±0.02 0.92±0.01 0.94±0.01 0.79±0.01 0.54±0.44 0.03±0.00
Window-Open 0.98±0.02 0.96±0.02 0.50±0.03 0.48±0.02 0.88±0.03 0.81±0.07 0.15±0.11 0.03±0.00

Sparse-Point-Robot 12.98±0.29 7.74±0.68 − − 11.59±0.15 11.66±0.46 0.00±0.00 0.00±0.00
Half-Cheetanh-Vel -79.7±11.3 -133.4±23.9 -114.5±14.0 -113.2±17.2 -116.7±14.9 -117.7±13.6 -234.0±23.5 -301.4±36.8
Point-Robot-Wind -4.75±0.26 -6.03±0.22 − − -4.89±0.31 -5.46±0.26 − −

Hopper-Rand-Params 368.62±10.37 325.74±27.09 331.65±33.62 293.32±17.49 318.86±20.14 314.41±29.00 − 52.82
Walker-Rand-Params 354.97±19.72 324.04±31.40 316.81±16.31 301.49±5.06 313.02±24.22 303.07±4.28 311.68 269.74

the diversity among task sets. The performance and sample efficiency shown in Figure 8 illustrates
the results when optimization under one of three perspectives is removed. Compared with optimizing
the task characteristic extractor solely from one of three perspectives, the variants without sparsity
and without negative reward estimation exhibit superior performance. The variant without positive
reward estimation implies optimization based on the perspectives of sparsity in attention weights and
negative reward estimation, which serve as constraints. It demonstrates relatively stable performance
in the Button-Press-Topdown task set, but significant performance fluctuations persist in the Dial-Turn
task set. This phenomenon aligns with our previous analysis. Due to variations across different task
sets, optimization with both two constraints may stabilize the task characteristic extractor to assign
attention weights to transitions, within a trajectory, that are characteristic of a task. However, significant
fluctuations may persist in some environments or task sets. In general, the combined effect of these three
perspectives is indispensable and allows the effective optimization of the task characteristic extractor.

G.3 ANALYSIS OF NEGATIVE REWARD

To generate generalizable contexts with task characteristic information, we train the task characteristic
extractor (TCE) from three different perspectives. One of these perspectives is the negative reward
estimation, where we introduce negative reward r′

t
i

neg
by adding random noise to the reward r′

t
i

(r′ti
neg

= r′
t
i+rnoise). In addition, we conduct experiments where we directly select the maximum

reward r′
max
i or the minimum reward r′

min
i from the trajectory h′

i and use it as the negative reward
with larger biases for all transitions h′t

i within the trajectory h′
i. Based on the three methods, we

can construct corresponding variants TCE with random rewards, TCE with the maximum reward and
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Figure 7: Additional analysis of the effects of single optimization perspectives on the task
characteristic extractor. Experiments in two task sets of Meta-World ML1 (Button-Press-Topdown
and Dial-Turn), and the Walker-Rand-Params environment for exploring the separate effect on
optimization perspectives on the task characteristic extractor.
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Figure 8: Additional analysis of the effects of optimization perspectives on the task characteristic
extractor. Experiments in two task sets of Meta-World ML1 (Button-Press-Topdown and Dial-Turn),
and the Walker-Rand-Params environment for exploring the effects of optimization perspectives on
the task characteristic extractor when one of them is removed.
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Figure 9: Analysis of negative reward. Experiments in the Half-Cheetah-Vel and Hopper-Rand-
Params environments, and the Reach task set within Meta-World ML1 for analyzing the effects of
different negative rewards. The variant named TCE with random rewards is the method we select
for generating the negative reward r′

t
i

neg
. Meanwhile, the variants named TCE with the maximum

reward and TCE with the minimum reward respectively mean methods that treat the maximum reward
r′

max
i or the minimum reward r′

min
i from the trajectory h′

i as negative rewards.

TCE with the minimum reward on TCMRL with only the task characteristic extractor. The results
in Figure 9 depict that making the maximum or minimum reward the negative reward and employing
them to optimize the task characteristic extractor yield similar but limited performance. This is due
to the adverse effects of employing excessively biased negative rewards as constraints in the variants
TCE with the maximum reward and TCE with the minimum reward. Moreover, in the Reach task
set within Meta-World ML1, these two variants with excessively biased negative rewards (TCE with
the maximum reward and TCE with the minimum reward) illustrate large performance fluctuations.
In contrast, those negative rewards with appropriate random biases can effectively serve as constraints,
aiding in optimizing the task characteristic extractor.
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Figure 10: Effect on length of subsequences. Experiments in the Half-Cheetah-Vel, Hopper-Rand-
Params and Walker-Rand-Params environments and three task sets within Meta-World ML1 (Reach,
Button-Press-Topdown and Dial-Turn) for interrelations among transitions under various subsequence
lengths, including 2, 4, 8, 16 and 32 steps.

G.4 EFFECT ON LENGTH OF SUBSEQUENCES

We discover interrelations among transitions from K-step subsequences instead of the entire trajectory.
Thus, K is a crucial and fixed hyperparameter. Figure 10 shows our separate experiments to explore
the impact of different values of K ∈ {2, 4, 8, 16, 32} in three task sets of Meta-World ML1
(Button-Press-Topdown, Dial-Turn and Reach), and the Half-Cheetah-Vel, Hopper-Rand-Params
and Walker-Rand-Params environments.

In the Half-Cheetah-Vel environment (see Figure 10(a)), when K is set to 2, the performance and
sample efficiency are suboptimal. This is because directly treating adjacent transition representations in
a long sequence as subsequences results in incomplete interrelations among transitions. Although the
interrelations discovered from such short subsequences are partially effective, they lack completeness.
Yet, when K is set to 4, the performance and sample efficiency are optimal. Discovering interrelations
from subsequences of this length effectively enhances the adaptability of TCMRL to unseen target
tasks. However, as we increase K to larger values in {8, 16, 32}, the performance deteriorates
significantly. This suggests that on longer subsequences, the limited interrelations among transition
representations make it challenging to capture meaningful task contrastive information.

In the Hopper-Rand-Params environment (see Figure 10(b)), when K is set to 2, the performance
and sample efficiency are limited, due to the incomplete interrelations among transitions. When K is
set to 4, there is a performance improvement, but it remains suboptimal. This is because subsequences
of length 4 are not suitable for discovering the interrelations among transitions. When K is set to 8,
the performance and sample efficiency are optimal, which means that 8 is an appropriate length for
constructing subsequences. As in the case of the Half-Cheetah-Vel environment, as K continues to
increase, the performance instead keeps decreasing.

Overall, discovering interrelations from subsequences of appropriate length can indeed obtain
overlooked interrelations among transitions, thereby capturing exhaustive task contrastive informa-
tion. For different environments, achieving optimal performance and sample efficiency requires
constructing subsequences with different values of K. For example, the optimal K value is 8 in the
Walker-Rand-Params environment and the Reach task set, while it is 16 in the Button-Press-Topdown
and Dial-Turn task sets. Generally, as the value of K increases, the performance initially improves
until it reaches an appropriate value, and then declines. Such a trend is frequently observed, and there
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may be special situations in certain environments. For instance, in the Reach and Dial-Turn task sets of
Meta-World ML1, excessively high values of K (16, 32) result in significant performance fluctuations.
This is due to the challenge of effectively capturing meaningful task contrastive information from
excessively long subsequences. Meanwhile, in the Walker-Rand-Params environment, the difference
in performance between leveraging K of 2 and 4 is minimal, since the limited interrelations among
transitions are discovered from such relatively short subsequences.

G.5 COMPARISON WITH FOCAL++

We compare TCMRL with FOCAL++ (Li et al., 2021a), which directly introduces the attention mech-
anism to achieve robust task inference. Specifically, FOCAL++ utilizes the attention mechanism from
both sequence-wise attention and batch-wise attention perspectives. For each trajectory, the sequence-
wise self-attention (Vaswani et al., 2017) is applied to capture the correlation within the transition di-
mensions. For each task, the batch-wise gated attention is applied to recalibrate the weights of transition
samples. Although both TCMRL and FOCAL++ employ attention mechanisms, the implementation in
TCMRL differs significantly. Specifically, the attention mechanism of the task characteristic extractor
in TCMRL generates fine contexts based on the mean context encoding operation, and is optimized
from the perspectives of positive and negative reward estimation with the context-based reward esti-
mator and sparsity in attention weights. For a comprehensive comparison, we construct variants of
FOCAL++ with these two distinct attention mechanisms, designated as FOCAL++(sequence-wise) and
FOCAL++(batch-wise), and we compare these two variants with the original FOCAL++ and TCMRL
in all experimental environments. The comparative results in Table 3 show that TCMRL outperforms
FOCAL++, FOCAL++(sequence-wise) and FOCAL++(batch-wise) across most environments and
task sets within Meta-World ML1, achieving effective adaptation to unseen target tasks.

G.6 COMPARISON WITH CORRO

We compare TCMRL with CORRO (Yuan & Lu, 2022), which is a recent method that generates robust
contexts through contrastive learning. Specifically, while treating different contexts corresponding
to the same task as positive samples, it primarily constructs negative samples in two ways. First, in the
cases where the overlap of state-action pairs between tasks is larger, it employs pre-trained condition
variational auto-encoder (CVAE) (Sohn et al., 2015) for generating negative samples. Second, in the
cases where the overlap of state-action pairs between tasks is small, it generates negative samples by
reward randomization. The comparative results in Table 4 demonstrate that TCMRL outperforms both
CORRO with CVAE and CORRO with RR across most environments and task sets within Meta-World
ML1, showcasing superior performance.

G.7 VISUALIZATION ANALYSIS

We report the t-SNE visualization (van der Maaten & Hinton, 2008) of the contexts of TCMRL,
IDAQ, CSRO, CORRO, FOCAL++ and FOCAL in the Half-Cheetah-Vel environment in Figure 11,
respectively. Additionally, we showcase two methods of generating negative samples in CORRO:
CORRO with condition variational auto-encoder (CVAE) and CORRO with reward randomization (RR).
In addition to FOCAL++, we also present two variants that correspond to the two attention mechanisms
of FOCAL++: FOCAL++(sequence-wise) and FOCAL++(batch-wise). It provides a visual evidence of
the efficacy of TCMRL in achieving effective clustering of context vectors. This observation showcases
the capacity to effectively simultaneously preserve intrinsic similarity and extrinsic distinctiveness
among corresponding contexts. However, in the visualizations corresponding to IDAQ, CSRO,
FOCAL++, FOCAL++(sequence-wise), FOCAL++(batch-wise) and FOCAL, while the majority of
contexts exhibit clustering effects, there are instances where the clustering of contexts for different tasks
lacks tightness and leads to confusion. Specifically, the similarity among contexts belonging to the
same task in IDAQ, CSRO and FOCAL is not sufficiently strong, and there is partial overlapping and
ambiguity among contexts associated with different tasks. The visualization of contexts generated by
CORRO with CVAE and CORRO with RR both indicate inadequate clustering trends. Local clustering
is observed among different contexts corresponding to the same task, yet they exhibit a scattered
distribution overall, while contexts corresponding to different tasks suffer from significant confusion.

Meanwhile, we present the t-SNE visualization in the Hopper-Rand-Params environment in Figure 12.
The visualization results of contexts generated by TCMRL demonstrate a strong clustering tendency
and clear boundaries among contexts of different tasks. It means that TCMRL can effectively capture
the task characteristic information and task contrastive information. However, the visualization of con-
texts generated by IDAQ, CSRO and FOCAL++ exhibit good clustering properties, yet there are many
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Table 3: Detailed comparison between FOCAL++ and TCMRL.
Task set/Environment TCMRL (ours) FOCAL++ FOCAL++(sequence-wise) FOCAL++(batch-wise)

Assembly 0.56±0.15 0.51±0.11 0.48±0.12 0.47±0.09
Basketball 0.82±0.11 0.71±0.25 0.68±0.17 0.66±0.09

Bin-Picking 0.65±0.10 0.51±0.24 0.39±0.26 0.46±0.14
Box-Close 0.62±0.09 0.44±0.03 0.42±0.03 0.40±0.06

Button-Press-Topdown 0.81±0.12 0.51±0.10 0.44±0.08 0.47±0.11
Button-Press-Topdown-Wall 0.47±0.02 0.42±0.02 0.39±0.02 0.38±0.04

Button-Press 0.81±0.05 0.79±0.05 0.76±0.09 0.75±0.09
Button-Press-Wall 1.07±0.03 0.98±0.07 0.90±0.08 0.88±0.14

Coffee-Button 0.83±0.12 0.75±0.16 0.71±0.13 0.65±0.19
Coffee-Pull 0.51±0.05 0.32±0.04 0.31±0.05 0.27±0.02
Coffee-Push 1.27±0.08 1.00±0.05 0.69±0.13 0.91±0.03

Dial-Turn 0.98±0.06 0.80±0.13 0.74±0.22 0.68±0.17
Disassemble 0.59±0.13 0.32±0.08 0.28±0.08 0.29±0.10
Door-Close 1.01±0.00 1.01±0.00 0.95±0.06 0.79±0.13
Door-Lock 0.99±0.00 0.96±0.00 0.96±0.00 0.95±0.01

Door-Unlock 1.18±0.02 1.11±0.02 1.09±0.01 1.06±0.01
Door-Open 1.00±0.00 0.92±0.01 0.92±0.00 0.87±0.03

Drawer-Close 1.01±0.01 0.97±0.01 0.96±0.06 0.96±0.04
Drawer-Open 0.90±0.03 0.84±0.05 0.71±0.14 0.73±0.02
Faucet-Close 1.13±0.01 1.11±0.00 1.10±0.01 1.10±0.01
Faucet-Open 1.08±0.02 1.06±0.00 1.05±0.01 1.00±0.05

Hammer 0.85±0.06 0.83±0.04 0.81±0.04 0.77±0.09
Hand-Insert 0.72±0.05 0.56±0.06 0.54±0.05 0.54±0.06

Handle-Press-Side 0.96±0.02 0.83±0.04 0.80±0.11 0.67±0.14
Handle-Press 0.77±0.06 0.90±0.02 0.89±0.01 0.89±0.01

Handle-Pull-Side 0.31±0.08 0.26±0.07 0.19±0.08 0.11±0.10
Handle-Pull 0.92±0.02 0.76±0.04 0.61±0.07 0.33±0.21
Lever-Pull 0.86±0.02 0.62±0.06 0.50±0.13 0.23±0.19

Peg-Insert-Side 0.45±0.05 0.19±0.07 0.14±0.07 0.12±0.05
Peg-Unplug-Side 0.69±0.01 0.50±0.03 0.45±0.04 0.40±0.06
Pick-Out-Of-Hole 0.71±0.06 0.29±0.17 0.18±0.20 0.27±0.18

Pick-Place 0.32±0.09 0.14±0.03 0.13±0.03 0.10±0.02
Pick-Place-Wall 0.43±0.15 0.18±0.06 0.16±0.07 0.16±0.03

Plate-Slide-Back-Side 0.97±0.03 0.96±0.02 0.93±0.02 0.92±0.03
Plate-Slide-Back 0.98±0.02 0.89±0.04 0.87±0.05 0.79±0.04
Plate-Slide-Side 1.07±0.08 0.99±0.07 0.96±0.07 0.88±0.11

Plate-Slide 1.01±0.02 0.92±0.01 0.90±0.01 0.86±0.03
Push-Back 0.58±0.04 0.21±0.05 0.20±0.07 0.18±0.05

Push 0.64±0.12 0.62±0.09 0.58±0.14 0.55±0.13
Push-Wall 0.77±0.11 0.74±0.07 0.71±0.09 0.55±0.03

Reach 0.92±0.06 0.87±0.04 0.81±0.04 0.69±0.07
Reach-Wall 0.94±0.05 0.92±0.03 0.92±0.03 0.83±0.02
Shelf-Place 0.84±0.12 0.53±0.04 0.37±0.11 0.34±0.05

Soccer 0.60±0.06 0.29±0.03 0.22±0.06 0.19±0.02
Stick-Pull 0.37±0.08 0.33±0.04 0.32±0.06 0.26±0.03
Stick-Push 0.85±0.05 0.83±0.05 0.76±0.08 0.69±0.05
Sweep-Into 0.66±0.02 0.58±0.03 0.53±0.05 0.47±0.03

Sweep 0.84±0.03 0.37±0.11 0.35±0.07 0.35±0.06
Window-Close 0.95±0.01 0.94±0.01 0.94±0.01 0.81±0.03
Window-Open 0.98±0.02 0.88±0.03 0.85±0.05 0.75±0.03

Sparse-Point-Robot 12.98±0.29 11.59±0.15 11.41±0.21 10.54±0.68
Half-Cheetanh-Vel -79.7±11.3 -116.7±14.9 -124.2±10.1 -151.9±28.4
Point-Robot-Wind -4.75±0.26 -4.89±0.31 -4.91±0.29 -6.22±0.39

Hopper-Rand-Params 368.62±10.37 318.86±20.14 299.41±36.16 291.79±44.72
Walker-Rand-Params 354.97±19.72 313.02±24.22 291.97±33.47 285.62±45.16

instances where boundaries between contexts of different tasks appear blurred or even overlapping.
This suggests that they can effectively capture the task characteristic information, but struggle to obtain
the task contrastive information. In the visualization result corresponding to FOCAL, contexts exhibit a
certain degree of clustering tendency along with obvious confusion. It is extremely limited for FOCAL
to capture both the task characteristic information and task contrastive information. The visualization
of contexts generated by CORRO with CVAE, CORRO with RR, FOCAL++(sequence-wise) and
FOCAL++(batch-wise) demonstrate poor clustering tendencies. Although there are instances of con-
texts within the same task clustering together locally, the boundaries between contexts corresponding
to different tasks cannot be effectively delineated, resulting in significant confusion among contexts.

We also show the t-SNE visualization in the Reach task set within Meta-World ML1 in Figure 13. The
visualization results of contexts corresponding to TCMRL exhibit clear clustering of contexts related
to the same task, while those contexts of different tasks are separated. Nevertheless, the visualizations
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Table 4: Detailed comparison between CORRO and TCMRL.
Task set/Environment TCMRL (ours) CORRO with CVAE CORRO with RR

Assembly 0.56±0.15 0.34±0.08 0.38±0.08
Basketball 0.82±0.11 0.57±0.04 0.50±0.17

Bin-Picking 0.65±0.10 0.47±0.14 0.30±0.07
Box-Close 0.62±0.09 0.45±0.14 0.60±0.03

Button-Press-Topdown 0.81±0.12 0.55±0.14 0.21±0.24
Button-Press-Topdown-Wall 0.47±0.02 0.35±0.05 0.33±0.03

Button-Press 0.81±0.05 0.72±0.04 0.68±0.01
Button-Press-Wall 1.07±0.03 1.02±0.04 0.97±0.09

Coffee-Button 0.83±0.12 0.76±0.12 0.77±0.04
Coffee-Pull 0.51±0.05 0.43±0.04 0.22±0.06
Coffee-Push 1.27±0.08 1.14±0.09 1.17±0.16

Dial-Turn 0.98±0.06 0.87±0.07 0.83±0.02
Disassemble 0.59±0.13 0.24±0.12 0.49±0.06
Door-Close 1.01±0.00 0.84±0.12 0.98±0.01
Door-Lock 0.99±0.00 0.89±0.05 0.88±0.09

Door-Unlock 1.18±0.02 1.07±0.03 1.15±0.01
Door-Open 1.00±0.00 0.91±0.05 0.78±0.15

Drawer-Close 1.01±0.01 0.81±0.07 0.94±0.02
Drawer-Open 0.90±0.03 0.74±0.04 0.10±0.05
Faucet-Close 1.13±0.01 1.10±0.01 1.11±0.01
Faucet-Open 1.08±0.02 1.04±0.01 1.07±0.00

Hammer 0.85±0.06 0.79±0.05 0.64±0.09
Hand-Insert 0.72±0.05 0.57±0.10 0.63±0.13

Handle-Press-Side 0.96±0.02 0.33±0.10 0.28±0.16
Handle-Press 0.77±0.06 0.25±0.11 0.31±0.07

Handle-Pull-Side 0.31±0.08 0.10±0.06 0.08±0.09
Handle-Pull 0.92±0.02 0.63±0.19 0.33±0.15
Lever-Pull 0.86±0.02 0.78±0.06 0.81±0.03

Peg-Insert-Side 0.45±0.05 0.36±0.10 0.25±0.09
Peg-Unplug-Side 0.69±0.01 0.22±0.07 0.22±0.04
Pick-Out-Of-Hole 0.71±0.06 0.52±0.14 0.37±0.12

Pick-Place 0.32±0.09 0.15±0.05 0.25±0.05
Pick-Place-Wall 0.43±0.15 0.34±0.24 0.20±0.07

Plate-Slide-Back-Side 0.97±0.03 0.64±0.22 0.36±0.04
Plate-Slide-Back 0.98±0.02 0.80±0.04 0.21±0.05
Plate-Slide-Side 1.07±0.08 0.74±0.07 0.99±0.01

Plate-Slide 1.01±0.02 0.91±0.02 0.72±0.13
Push-Back 0.58±0.04 0.21±0.07 0.15±0.09

Push 0.64±0.12 0.57±0.08 0.56±0.06
Push-Wall 0.77±0.11 0.55±0.07 0.69±0.07

Reach 0.92±0.06 0.43±0.36 0.24±0.10
Reach-Wall 0.94±0.05 0.84±0.07 0.16±0.04
Shelf-Place 0.84±0.12 0.59±0.15 0.42±0.18

Soccer 0.60±0.06 0.54±0.02 0.58±0.07
Stick-Pull 0.37±0.08 0.33±0.04 0.24±0.08
Stick-Push 0.85±0.05 0.76±0.05 0.14±0.03
Sweep-Into 0.66±0.02 0.43±0.01 0.44±0.03

Sweep 0.84±0.03 0.53±0.18 0.22±0.22
Window-Close 0.95±0.01 0.92±0.01 0.89±0.01
Window-Open 0.98±0.02 0.48±0.02 0.46±0.01

Half-Cheetanh-Vel -79.7±11.3 -113.2±17.2 -151.2±27.2
Hopper-Rand-Params 368.62±10.37 293.32±17.49 209.70±12.39
Walker-Rand-Params 354.97±19.72 301.49±5.06 295.60±12.44

of contexts generated by IDAQ and CSRO reveal only a partial clustering tendency, yet many contexts
remain dispersed. The contexts of CSRO also exhibit instances of confusion. The visualization of
contexts corresponding to FOCAL shows poor clustering tendencies, with contexts of only a few tasks
achieving effective clustering. The visualizations of contexts generated by CORRO with CVAE and
FOCAL++(batch-wise) demonstrate some degree of local clustering along with more pronounced
confusion. Meanwhile, CORRO with RR and FOCAL++(sequence-wise) fail to generate contexts
with task characteristic information and task contrastive information.
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Figure 11: t-SNE visualization in Half-Cheetah-Vel. t-SNE visualization of the learned context
vectors of TCMRL, IDAQ, CSRO, FOCAL, CORRO with CVAE, CORRO with RR, FOCAL++,
FOCAL++(sequence-wise) and FOCAL++(batch-wise) drawn from 20 randomly selected tasks in
the Half-Cheetah-Vel environment.

Overall, TCMRL can indeed provide a comprehensive understanding of tasks themselves and implicit
relationships among tasks, resulting in generalizable contexts with both task characteristic information
and task contrastive information.

G.8 ANALYSIS IN REWARD-SPARSE ENVIRONMENT

We conduct experiments in the Spare-Point-Robot environment, which is reward-sparse. All tasks
in this environment only differ by the reward function and conform to the following definition:

Definition 1 (Reward-sparse transition). For a particular task Ti within a reward-sparse en-
vironment, a transition of it (sti, a

t
i, s

t+1
i , Ri(s

t
i, a

t
i)) is defined as a reward-sparse transition if

∀Ti ∈{T },Ri(s
t
i,a

t
i)= c. Following the policy invariance under reward transformations (Ng et al.,

1999) and the setting in Li et al. (2021a), the constant c is assumed to be 0.

Definition 2 (Reward-sparse task). For an offline datasetDi={(sti,ati,s
t+1
i ,Ri(s

t
i,a

t
i))} correspond-

ing to a particular task Ti within a reward-sparse environment, it includes two different types of
transitions due to variations in rewards:

Di={(sti,ati,st+1
i ,Ri(s

t
i,a

t
i))}∪{(sti,ati,st+1

i ,0)}, (19)
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Figure 12: t-SNE visualization in Hopper-Rand-Params. t-SNE visualization of the learned context
vectors of TCMRL, IDAQ, CSRO, FOCAL, CORRO with CVAE, CORRO with RR, FOCAL++,
FOCAL++(sequence-wise) and FOCAL++(batch-wise), drawn from 20 randomly selected tasks in
the Hopper-Rand-Params environment.

Table 5: Weights of transitions in the Spare-Point-Robot environment.
Transitions Mean of weights Median of weights

Transitions with non-zero rewards 0.0009839126 0.0009260265
Transitions with zero rewards 0.00081827847 0.0001407934

where transitions {(sti, ati, s
t+1
i , 0)} are reward-sparse transitions defined in Definition 1, while

{(sti,ati,s
t+1
i ,Ri(s

t
i,a

t
i))} are the rest of the transitions. Additionally, the criteria used to categorize

these transitions differ across various reward-sparse environments.

Moreover, we propose a task characteristic extractor to identify transitions, within a trajectory, that
are characteristic of a task, and assign high attention weights to these transitions when generating
contexts. In reward-sparse environments, it should assign low attention weights to transitions with zero
rewards. To evaluate its effectiveness, we conduct experiments in the Sparse-Point-Robot environment.
Results presented in Table 5 indicate that although only a few transitions with non-zero rewards relate
to the task characteristics, the attention weights for all transitions with non-zero rewards, both in terms
of mean and median, are higher than those for transitions with zero rewards.
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Figure 13: t-SNE visualization in Reach-v2. t-SNE visualization of the learned context vec-
tors of TCMRL, IDAQ, CSRO, FOCAL, CORRO with CVAE, CORRO with RR, FOCAL++,
FOCAL++(sequence-wise) and FOCAL++(batch-wise), drawn from 20 randomly selected tasks in
the Reach task set within Meta-World ML1.

G.9 COST ANALYSIS OF TCMRL

To access the computation costs of our proposed TCMRL framework, we experiment in the
Half-Cheetah-Vel environment with an RTX 2080 Ti. Following the setting in Appendix F.2, our
experiments consist of a total of 40000 steps. The results in Table 6 demonstrate that the computation
costs of TCMRL are manageable and within accepted limits. Specifically, CORRO is not an end-to-end
method, and the two-stage training process requires significantly more time. Moreover, to further
analyze our task characteristic extractor and task contrastive loss, we calculate the computation costs
for two variants: TCMRL w/o TCE (without task characteristic extractor) and TCMRL w/o TCL
(without task contrastive loss). Results in Table 7 show that their computation costs are acceptable.
Notably, due to the high and fluctuating GPU memory usage of the attention mechanism used by
FOCAL++, we do not provide a corresponding analysis.

H OFFLINE DATASET RETURNS

Table 8 shows the average returns of the offline datasets, which are utilized in the meta-training phase.
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Table 6: Computation costs comparison between IDAQ, CSRO, CORRO and TCMRL.
Method Training time + Testing time Training time GPU memory usage

TCMRL (ours) 4h26m10s 2h10m29s 1314MB
IDAQ 4h34m24s 1h51m40s 1272MB
CSRO 4h31m56s 1h48m9s 1274MB

CORRO 6h31m51s 3h56m8s 1296MB

Table 7: Computation costs analysis of TCE and TCL.
Method Training time + Testing time Training time GPU memory usage

TCMRL 4h26m10s 2h10m29s 1314MB
TCMRL w/o TCE 4h28m13s 1h49m13s 1294MB
TCMRL w/o TCL 4h12m31s 1h47m16s 1272MB

I POTENTIAL SOCIAL IMPACTS

The potential social impact includes the carbon footprint of the experiments and future work based
on TCMRL.
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Table 8: Dataset average returns on experimental environments.
Task/Environment Dataset return

Assembly 4275.42
Basketball 4086.65

Bin-Picking 4254.52
Box-Close 4009.24

Button-Press-Topdown 3563.66
Button-Press-Topdown-Wall 3774.26

Button-Press 3857.22
Button-Press-Wall 2886.57

Coffee-Button 4035.74
Coffee-Pull 4205.87
Coffee-Push 1531.27

Dial-Turn 3840.01
Disassemble 3940.74
Door-Close 4487.84
Door-Lock 3352.69

Door-Unlock 3585.54
Door-Open 4455.43

Drawer-Close 4238.61
Drawer-Open 4045.54
Faucet-Close 4033.40
Faucet-Open 4147.91

Hammer 4274.10
Hand-Insert 3744.95

Handle-Press-Side 4969.13
Handle-Press 4794.29

Handle-Pull-Side 2838.50
Handle-Pull 3907.89
Lever-Pull 923.90

Peg-Insert-Side 3797.08
Peg-Unplug-Side 4128.75
Pick-Out-Of-Hole 3573.91

Pick-Place 3560.12
Pick-Place-Wall 2437.79

Plate-Slide-Back-Side 4721.63
Plate-Slide-Back 4726.75
Plate-Slide-Side 3517.98

Plate-Slide 4390.86
Push-Back 3809.79

Push 3016.54
Push-Wall 3721.30

Reach 4873.55
Reach-Wall 4804.65
Shelf-Place 2802.44

Soccer 2841.48
Stick-Pull 4147.37
Stick-Push 4124.41
Sweep-Into 4061.64

Sweep 4356.22
Window-Close 3583.68
Window-Open 4320.14

Sparse-Point-Robot 7.24
Half-Cheetanh-Vel -138.29
Point-Robot-Wind -7.84

Hopper-Rand-Params 450.84
Walker-Rand-Params 496.33
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