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Abstract
Semantic parsing helps conversational systems001
in satisfying users’ requests through dialogues.002
To train these models, collecting annotated003
dialogues as a dataset is a very expensive004
and time-consuming process. In this paper,005
our goal is to utilize large language models006
and active learning to replace Wizard-of-Oz007
(WoZ) collection via crowdsourcing for boot-008
strapping training data for task-driven seman-009
tic parsers. We first demonstrate the utility of010
utterances generated by GPT-3 when seeded011
with prior training dialogues, as evaluated by012
human judges. We then explore the use of013
parser uncertainty on generated outputs as a014
selection criteria for annotation and contrast015
this with a strategy based on Core-sets. Our016
pipeline leads to more useful examples on av-017
erage, motivating future work on active gener-018
ation for bootstrapping semantic parsers.019

1 Introduction020

Semantic parsers power conversational systems in021

satisfying user requests, e.g., modifying calendar022

entries, making reservations, asking questions, and023

buying tickets through dialogues (Bordes et al.,024

2016; Yu et al., 2019a; Andreas et al., 2020). These025

parsers translate natural utterances into executable026

programs, typically constructed through access to a027

large amount of annotated training data (Guu et al.,028

2017; Yu et al., 2019b). The complex nature of029

natural dialogues and attendant semantic represen-030

tations account for the fact that relatively few large-031

scale corpora exist, targeting a limited number of032

domains. We wish to guide synthetic dialogue gen-033

eration to produce examples with most impact on034

semantic parser accuracy once annotated.035

Building natural semantic parsing corpora re-036

quires (1) collecting examples of a user interacting037

with a software agent (i.e., user utterances in a038

form of a dialogue); and (2) annotating those ut-039

terances (i.e., tagging utterances with executable040

programs). In this work, we focus on step 1: how041

to efficiently produce examples of interactions with 042

a software agent. Ideally, one might wish to simply 043

deploy a conversational system to real users, then 044

use those interactions as the data to drive future 045

improvements to the agent. Yet in practice, real 046

user interactions with software agents are often 047

protected as a matter of privacy, and without initial 048

annotated examples, there is no trained software 049

agent to drive ongoing data collection. 050

We turn to the use of large language models 051

(LLMs), focusing on GPT-3 (Brown et al., 2020), 052

with the goal of replacing humans in generat- 053

ing example interactions (user utterances) with a 054

software agent. We first consider the utility of 055

GPT-3 prompted generation (to replace humans), 056

measured for diversity and human assessed qual- 057

ity. Experimental results on conversational system 058

benchmarks Taskmaster-3 (Byrne et al., 2019), and 059

SMCalFlow (Andreas et al., 2020) illustrate the 060

promise of this approach. 061

We then consider the cost of annotation: can we 062

generate and select example dialogues that are most 063

useful to annotate for improving a semantic parser? 064

We first introduce an approximation of uncertainty 065

for a black-box parser. Then, we investigate the 066

effect of different active learning schemes in im- 067

proving parser accuracy. Our findings suggest the 068

combination of LLMs and active learning is an ef- 069

fective approach for bootstrapping initial data in 070

rich semantic parsing domains. 071

2 Related Work 072

Semantic parsers play a major role in conversa- 073

tional systems by translating natural utterances 074

into executable programs (Zettlemoyer and Collins, 075

2009; Dong and Lapata, 2018; Cheng et al., 2020). 076

Prior work has considered how to minimize the 077

cost of semantic parsing training data collection. 078

Work such as Williams et al. (2015) proposed ac- 079

tive learning for example selection, while Yao et al. 080

(2020) and Elgohary et al. (2021) exemplify strate- 081
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gies for interactively providing feedback to a sys-082

tem on its interpretation of a given example. Shah083

et al. (2018), Lin et al. (2020) and Acharya et al.084

(2021) combine a user with a system simulator (us-085

ing template) with crowdsourcing.086

Closest to this work are efforts defining a user087

simulator interaction with a dialog system in a rein-088

forcement learning (self-play) setting to gather the089

data (El Asri et al., 2014; Su et al., 2017; Zhao et al.,090

2019; Tseng et al., 2021). Such approaches have091

the benefit of complete data generation without a092

human annotation step, but have relied on template093

language generation, with dialogues created using094

logical forms (the target language of the parser),095

rather than true natural language.096

In this work we are concerned with generation of097

natural language and adopt a different approach, di-098

rectly incorporating large autoregressive language099

models (Radford et al., 2019; Brown et al., 2020)100

to simulate users based on dialague prompts. More-101

over, concerning with efficiency of our pipeline, we102

utilize active learning schema (Sener and Savarese,103

2018; Ren et al., 2020) to identify the most infor-104

mative generated outputs from language models105

and augment them into the training set.106

3 Active Simulated User107

To generate examples of user interactions with a108

software agent, our framework consists of 3 steps:109

1) Generating user utterances by prompting GPT-3,110

2) Actively filtering generated utterances using ac-111

tive learning schema, and 3) Generating dialogues112

by iteratively prompting GPT-3 using filtered ut-113

terances and then sampling the most informative114

dialogues to a subset for manual annotation.115

Step 1: Utterance Generation To generate dia-116

logue utterances (turns), we start by generating the117

first user utterance. Incorporating GPT-3, we create118

prompts by randomly choosing first user utterances119

from the current training data (in a low-resource120

setting where you initially have a few hundred seed121

instances), and then asking GPT-3 to generate ut-122

terances similar to sampled instances in the prompt.123

Therefore, we construct a prompt like this:124

Generate a similar utterance.
U: What time is my dinner scheduled?
· · ·
U: Is it going to snow in Spokane?
U:

125

A natural question that might arise is whether126

generating utterances based on our proposed ap- 127

proach will have good quality and diversity. We 128

empirically investigate this in Section 4.1. 129

Step 2: Active Filtering We consider two ap- 130

proaches to select candidate generated utterances 131

for annotation. We select based on: (1) parser un- 132

certainty, or (2) example diversity. Typically, a se- 133

mantic parser is employed in an environment such 134

that the top-1 prediction is used in a downstream 135

conversational system. Such use cases do not obvi- 136

ously require a confidence-calibrated model: this is 137

problematic if we wish to measure the relative level 138

of uncertainty a parser may have in interpreting dif- 139

ferent synthetic user utterances. Here, to approxi- 140

mate the parser uncertainty, we illustrate a post-hoc 141

confidence estimation strategy based on measuring 142

the average pairwise differences between the ele- 143

ments of a k-best list of model predictions. Intu- 144

itively, the more distinct the examples produced by 145

a model for a given utterance, the less confident 146

the model is in its prediction. We investigate this 147

empirically in Section 4.2. As our diversity-based 148

sampling baseline, we use the concept of Core-sets 149

(Sener and Savarese, 2018) applied on sentence rep- 150

resentations based on S-RoBERTa (Reimers and 151

Gurevych, 2019). We adopt the state-of-the-art 152

semantic parser on SMCalFlow (Platanios et al., 153

2021) as our base parser throughout the paper. 154

Step 3: Dialogue Generation After filtering the 155

generated utterances, to generate the whole dia- 156

logue, we first choose the number of turns that 157

we plan to have for this dialogue uniformly from 158

1-3 turns. Then, we iteratively generate the next 159

user utterance in the dialogue by creating a prompt 160

containing the most similar dialogues (considering 161

only user utterances) in the seed training data to 162

our current generated dialogue (based on Leven- 163

shtein distance) with an equal or higher number of 164

turns than our current turn in the generation. Then, 165

concatenating our current generated dialogue to the 166

prompt we ask GPT-3 to generate the next user turn. 167

Assuming we want to generate the second user turn 168

in a dialogue, we construct a prompt like this: 169

Generate the next utterance in the dialogue.
U1: When is the second event on my calendar

for today?
U2: When is my second event tomorrow?
· · ·
U1: When is my sister’s birthday? (this utter-

ance is generated in step 1)
U2:

170
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CalFlow Taskmaster

Orig 73.25 75.53
Gen 68.75 67.07

(a) Quality.

Max-D Ent

Orig 15.02 5.87
Gen 14.01 6.51

(b) Diversity, SMCalFlow.
Table 1: Quality and diversity of generated vs origi-
nal utterances. We evaluate diversity in SMCalFlow by
calculating pair-wise maximum distance (Max-D) and
Entropy (Ent) based on S-RoBERTa representations.

To further improve the efficiency of our pipeline,171

after generating dialogues using GPT-3, we sample172

the most informative ones in an active setting by173

calculating a score for entire dialogues using the174

max of our utterance level score, whether uncer-175

tainty or diversity.1176

4 Experiments177

In this section, we first investigate the quality and178

diversity of our generated utterances prompted via179

GPT-3. Then, to incorporate uncertainty as a mech-180

anism for active filtering, we first validate our ap-181

proximation of model confidence, and then study182

the effect of different active learning samplings on183

the parser performance over SMCalFlow. Finally,184

we conduct a simulated study using generated dia-185

logues with different active filtering methods, pro-186

viding a lower bound on the parser performance187

incorporating our proposed pipeline.188

4.1 Utility of Generated Utterances189

The major challenge in utilizing GPT-3 generated190

dialogues/utterances to populate conversational sys-191

tem datasets is determining whether the generated192

instances are diverse and high quality enough (i.e.,193

the probability that a user might bring up the gen-194

erated utterances in a conversation about a spe-195

cific domain). To study the quality of generated196

utterances using GPT-3, we adopt SMCalFlow (An-197

dreas et al., 2020)—consisting of dialogues regard-198

ing calendars, people, locations, and weather—and199

Taskmaster-3 (Byrne et al., 2019)—consisting of200

dialogues about movie ticketing (more details in201

Appendix). To create the GPT-3 prompts, we ob-202

serve that considering only 10 examples in each203

prompt yields desirable performance.204

Quality To evaluate the quality of the generated205

utterances, we conduct a user study asking par-206

ticipants to score each utterance from 0-100, cap-207

turing the quality of each instance. We consider208

1During development we confirmed that the mean utter-
ance score of a dialogue was not effective.

Figure 1: Approximating the parser confidence by in-
vestigating the correlation between average pairwise
distance in top-k predicted programs and the accuracy.

100 instances for each baseline and assign 3 users 209

for every sample (screenshot of user study in ad- 210

dition to examples of low and high quality origi- 211

nal/generated instances is provided in Appendix). 212

The result of our user study on quality evaluation is 213

provided in Table 1a. As shown, the outputs of our 214

GPT-3 prompting scheme are comparable with the 215

original utterances, demonstrating their capability 216

to replace humans in data collection. 217

Diversity We further investigate the diversity of 218

generated utterances in comparison to original ones 219

with over 20k random instances using two diversity 220

measures. The results are presented in Table 1b. 221

As shown, the generated utterances demonstrate a 222

similar/better level of diversity in comparison to 223

the original instances. 224

4.2 Active Generation 225

Approximating Uncertainty We investigate our 226

approximation of uncertainty by capturing the cor- 227

relation between the average pairwise distance be- 228

tween the top-10 predictions and the placement of 229

the gold program in the top-10 predictions on SM- 230

CalFlow dev set. We adopt Levenshtein distance 231

(Miller et al., 2009) to measure the similarity be- 232

tween the predicted programs2. The correlation 233

between the similarity of predictions and the model 234

accuracy is depicted in Figure 1. As it shows, there 235

is a high correlation between the average pairwise 236

similarity of predicted programs and model accu- 237

racy, thereby validating our conjecture. 238

Active Learning in Conversational Systems In 239

here, our goal is to evaluate the impact of active 240

2We investigate a variety of similarity metrics and Leven-
shtein distance shows the highest correlation with accuracy.
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(a) Generated dialogues (b) Generated vs SMCalFlow dialogues
Figure 2: Semantic parser performance by actively simulating dialogues in a low-resource setting.

Hits@1 Hits@10

Random (250) 41.2 57.7
Random (1000) 53.9 71.8
Core-set (1000) 54.8 72.4
Uncertainty (1000) 56.2 73.3

Table 2: Effect of active learning approaches in sam-
pling SMCalFlow dialogues in a low-resource setting.
We start from 250 random samples and add extra 750
samples based on different sampling methods.

sampling (more specifically, our approximation of241

uncertainty) on the performance of the parser over242

SMCalFlow. We start with 250 random dialogues243

and increase the training size to 1000 instances244

(since we are more concerned with a limited la-245

beled regime, we believe this is a reasonable inter-246

val) using different active learning approaches. The247

top-1 and top-10 exact match parser accuracy over248

SMCalFlow dev set is depicted in Table 2. As it249

shows, our uncertainty approximation performs bet-250

ter than other baselines, outperforming the random251

sampling with 2-3% gain over accuracy. Moreover,252

the Core-set sampling also demonstrates a minor253

improvement over random sampling.254

Active Dialogue Simulation To investigate the255

degree by which we can replace users in collecting256

data procedure, we conducted a simulated study.257

Starting with 250 random dialogues from the SM-258

CalFlow training set, we start populating the train-259

ing data using our proposed pipeline (examples260

of generated dialogues with different number of261

user turns is provided in Appendix). We simu-262

late the user annotation process by incorporating263

a parser trained on all SMCalFlow training data264

and consider the top predicted program from the265

parser as the gold annotation for generated utter-266

ances. The result of top-10 exact match for our267

proposed pipeline with different filtering strategies268

is provided in Figure 2a. As it shows, both of our 269

active sampling approaches perform worse than 270

the random strategy. We believe that this is be- 271

cause these methods choose the most uncertain 272

instances, so there is a higher probability that the 273

parser mispredicts them, resulting in augmenting 274

more mislabeled samples into the training. To in- 275

vestigate this phenomenon, we consider another 276

baseline in which we first filter the dialogues that 277

the model is at a certain level of confidence in their 278

prediction (we consider dialogues with less than 70 279

average pairwise Levenshtein distance on predicted 280

programs. We tune this parameter on the dev set), 281

to reduce the amount of mislabeled data. This base- 282

line successfully outperforms the random sampling, 283

setting a lower bound on the parser performance. 284

We also compare the performance of parser trained 285

with our generated dialogues versus SMCalFlow 286

dialogues in Figure 2b, demonstrating the room for 287

improvement upon introducing human in the loop. 288

5 Conclusion 289

Collecting annotated dialogues constitutes a 290

promising approach to train semantic parsers in 291

conversational systems. However, gathering natu- 292

ral dialogues and annotating them is prohibitively 293

expensive. In this work, we investigate whether 294

we can automate this process by generating dia- 295

logues prompted via GPT-3 (Brown et al., 2020). 296

We first demonstrate that GPT-3 can generate high- 297

quality and diverse utterances. Then providing an 298

approximation for the parser uncertainty, we inves- 299

tigate the impact of active learning approaches in 300

the conversational system. Finally, we evaluate our 301

active dialogue simulation in improving the parse 302

performance, motivating future work on active gen- 303

eration for bootstrapping semantic parsers. 304
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High-Quality Low-Quality

SM
C

al
Fl

ow

Orig

Add a team meeting
to my calendar for to-
day at 5 pm.

i need any job.

When is Kwanzaa. Hello.

Gen

Add Pick up Cake to
my schedule at 2:30
today.

i am sick.

find descriptions
and url’s of unread
emails in my inbox.

Maybe.

Ta
sk

m
as

te
r

Orig

I’d like to see a
move.

hello sir.

Can you book two
tickets for me to see
Parasite tonight at
AMC Norwalk 20
around 6PM?

hey there do you
know where to this
new movie where
everyone gaga over
villan thanos snap?

Gen

I want to see some
movies.

Hello.

Could you show me
the movie times for
the Eureka Theater
10?

Are you a human?

Table 3: Examples of high and low quality origi-
nal/generated utterances.

A Conversational System Benchmarks 462

In this work, we adopt SMCalFlow (Andreas et al., 463

2020), a conversational system dataset consisting 464

of around 40K natural dialogues regarding calen- 465

dars, people, locations, and weather. We also con- 466

sider Taskmaster-3 (Byrne et al., 2019), a dataset 467

consisting of 23,789 dialogues about movie tick- 468

eting, i.e., conversations in which users try to pur- 469

chase tickets after deciding on the theater, time, 470

movie name, number of tickets, and date. 471

B Generated Samples 472

We provide the examples of low and high qual- 473

ity original/generated user utterances in Table 3. 474

Moreover, examples of generated dialogues with 475

different number of user turns is provided in Table 476

4. 477

C User Study 478

We provide the screenshot of our user study’s in- 479

struction assessing the quality of generated and 480

original utterances in Figure 3. 481
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Figure 3: Screenshot of user study instruction.

Generated User Turns

1 turn User: I need a meeting next Thursday at 3pm.

2 turns
User (1): Do I have any appointments today?
User (2): Do I have any meeting with Chris
today?

3 turns

User (1): How the weather going to be in San
Francisco next weekend?
User (2): Thanks!
User (3): So it will be sunny?

Table 4: Random examples of generated dialogues with
different number of user turns.
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