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Abstract

Invariant Risk Minimization (IRM) (Arjovsky
et al., 2020) proposes an optimization scheme
that uses causal features to improve generalization.
However, in most realizations, it does not have an
explicit feature selection strategy. Prior investiga-
tion (Rosenfeld et al., 2020; Zhang et al., 2023)
reveals failure cases when searching for causal fea-
tures, and in light of these concerns, recent work
has demonstrated the promise of using sparsity
(Zhou et al., 2022; Fan et al., 2024) in IRM, and
we make two specific contributions on that theme.
First, for the original sparse IRM formulation, we
present the first correct non-asymptotic analysis
of the effectiveness of sparsity for selecting in-
variant features. We show that sparse IRM with
L0 constraints can select invariant features and ig-
nore spurious and random features. We show that
sample complexity depends polynomially on the
number of invariant features and otherwise loga-
rithmically on the ambient dimensionality. Second,
we present the first invariant feature recovery guar-
antees with a computationally-efficient implemen-
tation of such sparse IRM based on iterative hard-
thresholding. Prior methods are limited to combi-
natorially searching over the space of all sparse
models, but we present a different loss function.
We show this new optimization implies recovery
of invariant features under standard assumptions.
We present empirical results on standard bench-
mark datasets to demonstrate the effectiveness and
efficiency of the proposed sparse IRM models.

1 INTRODUCTION

While overparameterized deep neural networks (DNN) are
ubiquitous in the modern landscape of machine learning, the

risk of memorization or other shortcuts leading to poor out-
of-distribution performance remains an issue. The baseline
assumption that training and test data are drawn i.i.d. from
the same distribution, necessary for Empirical Risk Mini-
mization (ERM) (Vapnik, 1991) to provide generalization
guarantees, is arguably not true in many modern settings but
also challenging to work around.

One approach to out-of-distribution (OOD) generalization
is Invariant Causal Prediction (ICP) (Peters et al., 2016), in
which data is drawn from different training environments,
but the parent “causes" of the label, or target variable, are
unchanging and independent of the environment. In other
words, given the set of causal features, the conditional dis-
tribution of the label must be identical across multiple train-
ing environments. A popular line of work that has been
developed in recent years is Invariant Risk Minimization
(IRM) (Arjovsky et al., 2020), which aims to find an invari-
ant data representation that induces a classifier that performs
uniformly across all environments, including unseen test en-
vironments.

To take an illustrative example, consider classifying cows
and camels. (Beery et al., 2018; Arjovsky et al., 2020)
show that a model may be fooled into learning the back-
ground (green pastures and yellow desert respectively) over
actual identifying features, thereby misclassifying, e.g., a
cow on beach sand. Many following works build on this
paradigm to adapt it to a variety of experimental and the-
oretical frameworks (Ahuja et al., 2022, 2020; Lin et al.;
Creager et al., 2021). However, others have identified when
it is impossible to provide formal guarantees in the nonlinear
and linear regimes (Rosenfeld et al., 2020), which can lead
to poorer generalization than unconstrained ERM (Kamath
et al., 2021). Prior works demonstrate a large train-test gap
in a variety of models and domain generalization datasets
(Lin et al., 2022; Zhou et al., 2022; Krueger et al., 2021;
Gulrajani and Lopez-Paz, 2020).

Fan et al. (2024) addresses the statistical challenge of es-
timating a stable linear relationship across multiple envi-



ronments with a data model that relaxes restrictions on the
heterogeneity of the environments, requiring only the con-
ditional expectation of the response and not the joint dis-
tribution to remain invariant for invariant features, but is
restricted to linear models and does not extend to overpa-
rameterized deep models. In contrast, Zhou et al. (2022)
suggest that IRM fails to drop spurious features when paired
with deep models. They propose a global sparsity constraint
to further eliminate spurious features from feature represen-
tation, based on a probabilistic approach (Zhou et al., 2021)
to the lottery ticket hypothesis (Frankle and Carbin, 2018).

Two key challenges arise from this line of work. First, the
sample complexity result in (Zhou et al., 2022) does not cor-
rectly capture the non-asymptotic case, due to errors in the
analysis which mix up empirical and population terms, and
the result incurs an additional dependency on the ambient
dimensionality when working with finite samples. Second,
the existing methods for sparse IRM are computationally
inefficient. They either require searching over subsets of fea-
tures, (Fan et al., 2024) or probabilistically prune network
weights, which is computationally slow (Zhou et al., 2022).

We address the first challenge by providing a correct result
through a generalized information-theoretic analysis. With
dinv invariant features and d total features, we present an
information theoretic analysis with L0-norm constraint se-
lecting dinv features. We show that a variant of the IRM
formulation will provably find the correct dinv features, with
sample complexity depending polynomially on dinv and log-
arithmically on d. The analysis is effectively information
theoretic, with no consideration for computational demands,
and it implies working with all the

(
d
dinv

)
L0-constrained

problems, but showing that this will identify the correct
invariant features. For the second concern, we focus on
practical efficient algorithms based on projected gradient
descent (PGD) based on L1-norm constraints and iterative
hard thresholding (IHT) (Blumensath and Davies, 2009;
Jain et al., 2014), to avoid the combinatorial complexity of
the L0-constrained approach. Our approach is efficient and
guaranteed to recover the invariant optimal predictors. To
summarize, our work makes the following contributions:

Non-Asymptotic Theory. We present a non-asymptotic
analysis of using sparsity to select invariant features on
the proposed IdepRM penalty. Our results show that L0

constrained estimation in IRM is able to find the correct
invariant features under suitable assumptions. The sample
complexity is O(poly(dinv) log(d)), where d includes the
undesirable features. Our model captures more realistic sce-
narios where spurious features vary in their correlation with
the label, using novel scale parameters. Expressing complex-
ity in terms of these parameters decouples it from dataset
size (see Section 3.2).

Modularity. Prior work on sparse IRM necessarily trains
deep neural networks with sparse subnetwork selection, i.e.,

to change the training procedure to get invariant features. In
contrast, our approach, based on sparsity on the last layer of
the neural network, can be directly applied to many different
settings, including the myriad pretrained models, without
the need to change their training. Further, the modularity
in our approach, i.e., feature selection happening at the last
layer, makes it flexible by allowing the ability to “hot-swap"
different sparse estimators, e.g., based on IHT or PGD with
convex relaxations.

Experiments. We present experimental results with dif-
ferent instances of our sparse IRM, demonstrating better
performance than that of existing IRM methods, includ-
ing Sparse IRM with subnetworks. We also show that our
methods are computationally efficient.

2 RELATED WORK

Invariant Risk Minimization Invariance as an indicator
of causality was introduced by Peters et al. (2016), who out-
line the goal of seeking a subset of features that are causal
for a target variable or label. The features are generated by
structural equation models (SEMs), where interventions on
different features create different environments. They sug-
gest that with access to a sufficient number of independent
environmental interventions, or environments, the invariant
features can be recovered. The IRM paradigm (Arjovsky
et al., 2020) applies this idea to learning causal features
across a number of training domains. Because this optimiza-
tion question is computationally intractable, they propose
the IRMv1 variant, which uses the gradient norm as a con-
straining penalty for invariance.

A number of followup works propose variants that imple-
ment the paradigm, including IRM games (Ahuja et al.,
2020), IRM with information bottlenecking (Ahuja et al.,
2021a; Li et al.), risk extrapolation (Krueger et al., 2021),
and learning spurious features without environment index
(Tan et al., 2023). Theoretical works on the IRM paradigm
largely analyze linear models (Arjovsky et al., 2020; Rosen-
feld et al., 2020; Wang et al.), although analyses of nonlinear
models for analysis exist to varying degrees of generality
(Rosenfeld et al., 2020; Lai and Wang, 2024). Some of these
works also highlight simple failure cases of IRM (Rosenfeld
et al., 2020; Ahuja et al., 2021b). The data generation model
introduced by (Arjovsky et al., 2020) has also been extended
to overparameterized models (Zhou et al., 2022), or to cover
different types of environmental variables (Kaur et al., 2022;
Rosenfeld et al., 2020).

Domain Generalization IRM is closely related to other
methods that tackle Domain Generalization (DG), which
broadly targets good OOD generalization on unseen envi-
ronments after training on more than one training domain.
Similar lines of work include distributionally robust opti-
mization (Sagawa et al., 2020; Volpi et al., 2018), which



aims to improve the overparameterized models over worst-
case training loss on different data groups. Domain adapta-
tion covers methods which also leverage information of the
test domain to best capture distributional shift (Ben-David
et al., 2006; Sun and Saenko, 2016; Ganin et al., 2016).

Sparse Representation Highly overparameterized DNNs
are prevalent in modern machine learning, and many works
have developed techniques to eliminate unnecessary weights
or finding sparse representations (Han et al., 2016; Li et al.,
2017; Hinton et al., 2015). A simple and popular technique
is to use constrained L0 norm, or its convex relaxation with
LASSO, to enforce sparsity. Alternatively, projected gradi-
ent descent (PGD) methods are fast, efficient, and provably
recover the optimal parameter with low estimation error
(Loh and Wainwright, 2013; Negahban et al., 2009; Agar-
wal et al., 2010; Banerjee et al., 2015). Other paradigms
explored to induce sparsity include probability-based meth-
ods for pruning (Louizos et al., 2017; Srinivas et al., 2017;
Molchanov et al., 2017), which have shown empirical suc-
cess in this regime as well. Finally, Zhou et al. (2022); Fan
et al. (2024) provide evidence that combining sparsity with
IRM can improve generalizability across domains, requiring
knowledge of the number of sparse, invariant features, and
combinatorially iterating through all feature subsets to find
the causal subset.

3 PROBLEM SETTING

3.1 IRM SETTING

We denote a training set D = {De}e∈E composed of en-
vironmental training datasets De := {(xei , yi)}

ne
i=1, xei ∈

X ⊆ Rp, yi ∈ Y ⊆ R. Each point is drawn i.i.d. from an
environmental distribution P e(xe, y). Each environmental
dataset De has ne points for a total of n =

∑
e∈E ne points

in total. In the IRM paradigm outlined by Arjovsky et al.
(2020), the goal is to find a predictor f : X → Y , defined
as f(x) = v⊤Φ(x), with a linear component v ∈ Rd and a
feature extractor Φ : X → Rd.

The mapping Φ is said to be invariant if there exists a v
such that f(x) is minimized across all environments si-
multaneously. Specifically, we define the population risk
Re(v) = Re(v⊤Φ(xe)) = Ee[ℓ(f(xe), y)] and empirical
risk R̂e(v) =

∑ne

i=1 ℓ(f(x
e
i ), yi), per environment. The

IRM formulation looks for the best (Φ,v) that minimizes
the following constrained problem:

min
Φ:X→Rd

v:Rd→Y

∑
e∈E

Re(v⊤Φ(xe)),

subject to v ∈ argmin
ve:Rd→Y

Re
(
(ve)⊤Φ(xe)

)
∀e ∈ E .

(1)
We consider a generative model in the style of previous
lines of work in IRM (Rosenfeld et al., 2020; Ahuja et al.,

2021a; Zhou et al., 2022) that explicitly has invariant, en-
vironmental (“non-invariant”), and random features. As
coined by Ahuja et al. (2022), these are confounder, or anti-
causal, models in which P e1(y|Φ(xe)) ̸= P e2(y|Φ(xe)) if
Φ(xe) = xe.

3.2 DATA GENERATION

IRM struggles to discover invariant data representations in
the overparameterized regime, where the number of model
parameters exceeds the size of the training set (Li and Liang,
2018; Allen-Zhu et al., 2019). Even in the simple linear
model introduced by Zhou et al. (2022), unmodified IRM
fails to recover the underlying invariant structure. Because
the data representation Φ(xe) may not completely isolate
the invariant features, we are interested in finding the subset
of invariant features in the data representation.

We let xe = Φ(xe), and work directly with the represen-
tation. This reflects the interpretation that xe is the output
of the all-but-last layer of a deep neural network, which
may have captured non-invariant features. Then, for a given
sample (xe, y) drawn from any environment e ∈ E , write
the feature vector as a concatenation of invariant, spurious,
and random feature blocks, i.e., (xe)⊤ = [x⊤

inv, (x
e
s)

⊤,x⊤
r ],

for xe ∈ Rd and xinv ∈ Rdinv ,xes ∈ Rds ,xr ∈ Rdr , where
d = dinv + ds + dr. Although the term “spurious" formally
refers to features that are not caused by the label yet share a
strong correlation with it (Rosenfeld et al., 2020), we adopt it
as the common nomenclature for features that are caused by
the label for clarity. We use the superscript e to denote a de-
pendency on the environment to which the feature belongs;
any variable (i.e., xinv,xr) that does not have the superscript
indicates that it is independent of the environment. The de-
pendencies are illustrated in Figure 1. We use⊙ to represent
the Hadamard (element-wise) product between two vectors
of the same length d, i.e., (v ⊙w)i = viwi ∀i ∈ [d]. The
generative model is as follows:

y = γ⊤xinv + ϵinv ,

xes = yζs +αe ⊙ ϵs ,

xr = ζr ⊙ ϵr .

(2)

As discussed in Zhou et al. (2022), the label y is generated
from a fixed vector γ ∈ Rdinv , which is invariant across
environments. Spurious features depend on both the labels
as well as the environment; the variable αe ∈ Rds controls
the environment-dependent noise in each spurious feature
and ϵinv, ϵs, ϵr are independent noise variables added to the
system. We assume they are sub-Gaussian and centered,
and we are interested in the regime in which ds, dr are very
large. Additional scaling parameters ζs ∈ Rds and ζr ∈
Rdr . ζs control the strength of the correlation between a
spurious feature [xes]j for j ∈ [ds] and the label, y. Likewise,
ζr determines the scale of the random features. We also
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Figure 1: Causal relationship between observed variables
in the generative model by Zhou et al. (2022). All variables
are observed at training time, but the type of an individual
feature xe is unknown.

Table 1: List of variables for the generative model with
invariant features. * indicates newly introduced variables.
Column header Dim. is short for dimensionality.

Variable L2 norm Dim. Definition

γ 1 dinv Ground truth
ϵinv - 1 Ground truth
ζs cs ds *Label correlation
αe ca ds Spurious noise
ϵs - ds Sub-Gaussian noise
ζr cr dr *Noise scale
ϵr - dr Sub-Gaussian noise

assume the basic noise random variables ϵinv, ϵs, ϵr are sub-
Gaussian.

3.3 SELECTING INVARIANT FEATURES

Presented with a large feature vector dominated by spurious
and random features, we want to find a model f(xe) =
v⊤xe that is invariant across xe drawn from different e ∈ E
as in Equation (2). By the IRM paradigm (Arjovsky et al.,
2020; Rosenfeld et al., 2020), this can only be achieved if
f(xe) depends only on invariant features, i.e., the support
of v is a subset of the features xeinv. Thus, we formulate the
problem in terms of subsets of features.

Formally, let S be a subset of features, S ∈ 2d, that repre-
sents the footprint for v. We denote the set of all predictors
that are only nonzero on S as Sp(S). Then,

Sp(S) := {v ∈ Rd : vi = 0 ∀i /∈ S}, (3)

and contains v that can take any value in features in S, and
are 0 elsewhere.

We define the invariant footprint, i.e., the subset of invariant
features corresponding to xinv, as Sinv. Formally,

Sinv := {i ∈ [d] | xei ∈ xinv}. (4)

This is a small subset of all features if dinv ≪ d, and at
training time, it is not known which of the available features

are members of this set. We are then interested in seeking
the optimal invariant predictor, as defined below.

Definition 1 (Optimal Invariant Predictor). Let the optimal
invariant predictor β∗ be

β∗ := argmin
v∈Sp(Sinv)

∑
e∈E
Re(v). (5)

In other words, it is the best parameter that relies only on
the invariant features xeinv.

Two hurdles are evident: first, finding β∗ requires prior
knowledge of which features belong in Sinv, which we don’t
have. Thus, it is an information-theoretic target, i.e., without
consideration for computational demands, since solving the
outer problem of the best subset S. This involves searching
over

(
d
dinv

)
subsets if we know dinv; otherwise, the search

space is 2dinv . Further, we will be working with empirical
loss whereas β∗ is defined based on population loss.

Remark 1. In the problem setting defined by Equation (2),
β∗ = [γ⊤, (0ds)⊤, (0dr )⊤], and is also a solution to Equa-
tion (1); this is easily shown, and details are provided in
Proposition 14 in the appendix.

We also use the subscript S and superscript e notation to
represent environment and feature-restricted population op-
tima,

βeS := argmin
v∈Sp(S)

Re(v), β∗
S := argmin

v∈Sp(S)

∑
e∈E
Re(v). (6)

We extend this notation to the empirical minimizers,

β̂eS := argmin
v∈Sp(S)

R̂e(v), β̂S := argmin
v∈Sp(S)

∑
e∈E
R̂e(v). (7)

IRM introduces a penalty that penalizes non-invariant clas-
sifiers. It is generally formulated

L(v) :=
∑
e∈Etr

Re(v) + ρ
∑
e∈E
J e(v), (8)

with penalty weight ρ > 0 for some J e : Rd → R+ that
captures a violation of invariance in Φ across environments.

For the analysis, we first adapt the IRM minimax
penalty (Zhou et al., 2022), otherwise called the loss dif-
ference penalty, as a proxy for the constraint imposed
by the original bi-level optimization formulation. With
vS ∈ Sp(S) ⊆ Rd, we have

L(vS) :=
∑
e∈E
Re(vS)

+ ρ
∑
e∈E

max
ve
S∈Sp(S)

[Re(vS)−Re (veS)] .
(9)



If there exists some vS which minimizes Equation (9), From
this, the minimax loss can also be defined for a given subset
of features S ∈ 2d,

L(S) := min
vS∈Sp(S)

L(vS) = L(β∗
S). (10)

However, computing this loss in practice, e.g., to use with
gradient descent, would require solving an inner optimiza-
tion problem in order to find the second term of the penalty,
minve∈Sp(S)Re(ve). In practice, the penalty is often re-
placed with the gradient norm penalty introduced by (Ar-
jovsky et al., 2020).

LIRMv1(v) :=
∑
e∈Etr

Re(v) + ρ
∑
e∈Etr

∥∇vRe(v)∥22. (11)

We show in Proposition 2 why this is an appropriate proxy
for the minimax loss under reasonable assumptions, which
are satisfied with linear least squares.

Remark 2. While the formulation in Equation (11) is a
commonly used penalty in IRM optimization, and receives
a detailed treatment in Fan et al. (2024), it does not absolve
the need to search over all subsets |S| ≤ dinv which may
provide candidates for the invariant classifier. In fact, the
variation across different subsets in Equation (10), under
loss functions optimized over all of Rd, prevents the direct
application of LASSO and other convex relaxation tech-
niques to Equation (10). As a result, both Zhou et al. (2022)
and Fan et al. (2024) resort to gradient descent over the full
space of Rd.

3.4 OPTIMIZATION

With the loss defined for the population case, we are ready
to examine the minimax formulation for finite samples, the
empirical counterpart to Equation (10):

L̂(vS) :=
∑
e∈E
R̂e(vS)

+ ρ
∑
e∈E

max
ve
S∈Sp(S)

[
R̂e(vS)− R̂e (veS)

]
.

(12)

Again, we use the empirical minimizers defined in Equa-
tion (7) to indicate the loss incurred by the minimum of a
given subset of features S:

L̂(S) = min
vS∈Sp(S)

L̂(vS) = L̂(β̂S). (13)

This results in a two-step breakdown of the IRM problem.
First, for any given subset S ∈ 2d, we solve Equation (12),
which can be solved by standard optimization methods. Sec-
ond, we need to optimize over different subsets S ∈ S ⊆ 2d,
to obtain the minimum over all subsets, which is a combina-
torial problem over

(
d
dinv

)
subsets:

L̂(S̄) = min
S∈S
L̂(S). (14)

In this setting, we first provide a sample complexity re-
sult (Theorem 1) when Sinv is optimal, i.e., the minimum
number of samples n ≥ n0 needed per environment such
that S̄ = Sinv. Thus, if n ≥ n0, running the combinatorial
optimization will indeed find the correct set of invariant
features.

Remark 3. Zhou et al. (2022) implement such optimiza-
tion by searching for a robust, sparse data representation
by applying ProbMask, a subnet-discovery alogrithm (Zhou
et al., 2021) to the IRM problem. However, this approach
is not sparse feature selection, but rather finding a robust
representation that is sparse: the output of the representa-
tion is not necessarily sparse, and the last linear layer of
their model is fully connected and dense. Both our analysis
(Section 4) and experiments (Section 5) follow the line of
sparse feature selection instead, by explicitly applying a
sparsity constraint on the last layer.

Remark 4. We also note that although many earlier works
consider IRM for classification (Rosenfeld et al., 2020;
Wang et al.), our regression model can be generalized to
classification with conditional Bernoulli (or conditional
multimodal) models. Further detail can be found in Ap-
pendix C.1.

4 EFFICIENT SPARSE IRM

We want to show sample complexity bounds under which
we can guarantee, with high probability, recovery of the
invariant feature subset Sinv by minimizing Equation (12).
In Section 4.3, we will examine both the use of the IRMv1
penalty, and the minimax penalty, the latter of which pro-
vides an additional result that demonstrates the optimality of
the population parameter on even the empirical loss. We then
provide an analysis of computationally efficient methods for
maintaining sparsity. This involves fast projected gradient
methods like Iterative Hard Thresholding, and we address
this in terms of the gradient norm penalty Equation (11)
which is more commonly used in practice.

4.1 THEORETICAL RESULTS

We first establish that, although IRM methods aim to elimi-
nate spurious features already, that it fails in the overparame-
terized regime, motivating the need for sparsity-constrained
IRM methods.

Proposition 1. IRM fails in the overparameterized setting.
We assume that d > ntot =

∑
e∈E ne ≥ dinv,

L̂(Sinv) ≥ L̂(S), |S| > ntot (15)

Proof. Note min|S|>dinv L̂(S) = 0 in the linear setting. In-
deed, the set Sinv belongs to the set of footprints with cardi-
nality |S| > ntot, so min|S|>ntot L̂(S) is necessarily a lower
bound.



Empirically, the IRM paradigm alone struggles to eliminate
the spurious features xs and random features xr, which to-
gether constitutes the majority of features input to the linear
classifier. Then, the natural starting point is the formulation
of L̂(v) as a IRM minimax loss function from Equation (12)
with an explicit L0 constraint,

min
v∈Rd

L̂(v) s.t. ∥v∥0 ≤ dinv. (16)

In this setting, we provide a guarantee of invariant feature
recovery with finite samples on the minimax penalty.

Theorem 1 (Informal: sample complexity of optimizing
Eqn. 12). Assume at least n samples per environment e ∈ E ,
for a total of N = |E|n across the whole training set. If

n ≥ O

(
poly(dinv) log

(
|E|d
δ

))
,

together with assumptions in Appendix A.2, with probability
at least (1− δ), the following holds:

L̂(Sinv) < L̂(S), ∀|S|≤ dinv, S ̸= Sinv , (17)

Remark 5. The formal statement and a more detailed treat-
ment of the constants in the sample complexity are provided
in Appendix B.

Theorem 1 provides a sample complexity under which we
guarantee that the resulting model depends on exactly the
invariant features Sinv. With the definitions in Equation (7),
we see that it is equivalent to the statement L̂(β̂inv) < L̂(β̂S)
for all |S| ≤ dinv. Informally, this implies that a parame-
ter using any non-invariant features incurs a large enough
penalty that it will have higher loss than L̂(β̂inv). Our result
applies to |E| environments, noting that the minimum num-
ber of samples per environment scales with log(|E|d/δ),
logarithmic in both the number of environments and the
ambient dimensionality. In practice, this is easy to satisfy
and is reflected in standard benchmarks Colored MNIST
(Arjovsky et al., 2020), ColoredObject (Lin et al., 2014;
Zhou et al., 2022), and MNISTCIFAR (Shah et al., 2020).

The next result shows that the empirical loss L̂ is also able
to differentiate between the invariant optimal predictor β∗

inv
from the population optimizers on non-invariant footprints
S ̸= Sinv, which we show in Theorem 2. This unusual con-
nection between empirical loss and population minimizer is
a consequence of the structure of the IRM penalty in Equa-
tion (10), and we are able to achieve this result with only
mildly higher sample complexity: a multiplicative factor
O(poly(dinv)) more than the sample complexity in Theo-
rem 1.

Theorem 2 (Sample complexity for sparse IRM with pop-
ulation optima). For population minimizers as defined in
Equation (6), and n samples per environment e ∈ E , for a
total of N = |E|n across the whole training set, we have

L̂(β∗) < L̂(β∗
S), |S|≤ dinv, S ̸= Sinv, (18)

if n > O
(

poly(dinv) log
(
d·|E|
δ

))
with constants specified

in Appendix B.3.

Details that characterize this further are found in the proofs
of Theorem 1 and Theorem 2 in Appendix B.

Remark 6. If we assume ζs = 1ds and ζr = 1dr , we
get the original linear model by Zhou et al. (2022). How-
ever, this will yield sample complexity and estimation error
bounds which are dimension-dependent, i.e., dependent on
dinv, ds, and dr. To motivate variable ζs as an example,
consider that for ds features, the size of the data ∥xe∥2 is
O(
√
ds) when ζs = 1. If we instead let the scaling param-

eter ζs be changed, we allow different spurious features
to correlate differently with labels. In addition to being a
substantially more realistic assumption on the data, it allows
us to create scale-dependent bounds. Then, the scale may
be as low as O( dinv

ds+dr
) when instead generating the data

with a fixed ∥ζes∥22. Corollary 9 compares this case.

4.2 PROOF SKETCHES

To prove Theorem 1, our analysis follows an approach simi-
lar to Zhou et al. (2022), but avoids the several errors in that
analysis required to show Equation (12). Our approach is
sketched in this section with full details in Appendix B.

Proof sketch. First, we break down the minimax penalty, de-
fined in Equation (9), into a sum of three error components.
In other words, J (β̂S) = ξa(S) + ξb(S) + ξc(S). We let
c1, c2, c3 > 0 be positive constants, Sspu be the set of spuri-
ous features, and α2

i =
1
|E| (α

e
i )

2 be the average value of the
αi scaling for a spurious feature i across environments.

ξa(S) =
∑
e∈E

[
R̂e(β̂S)−Re (β∗

S)
]
≤ c1

√
log( 1δ )

|E|n
, (19)

ξb(S) =
∑
e∈E

[
R̂e(β̂eS)−Re (βeS)

]
≤ c2

√
log( |E|δ )

n
.

(20)
These two intermediate quantities ξa(S) and ξb(S) bound

similar gaps, but ξa(S) works with the across-environment
minimizers β̂S and β∗

S , and ξb(S) bounds the environment-
specific β̂eS and βeS . Both sum the gap across all environ-
ments, and the generalization-style bound is tighter for
ξa(S)’s single classifier and greater sample complexity.

ξc(S) =
∑
e∈E

[Re(β∗
S)−Re (βeS)]

≥ c3 min
i∈Sspu

|α2
i − (αei )

2|. (21)

Note that Equation (19) and Equation (20) are not a re-
sult of directly applying Hoeffding’s inequality for sub-
Gaussian random variables, as the different errors are not



independent. Instead, we apply triangle inequality and
R̂e(β̂S) − R̂e(β∗) < 0, by by definition of β̂S . We may
then apply Hoeffding’s inequality on the errors incurred on
β∗. Thus, ξa(S), ξb(S) decrease with sample complexity.

Equation (21), can be computed directly; its lower bound
can be derived under reasonable assumptions of the environ-
mental parameter αe, detailed in Appendix A.2. Intuitively,
the more αi varies across environments, the better the bound.
With these quantities, we compute the samples required n
to have any non-invariant footprint S ̸= Sinv elicit a higher
loss L̂(S), provided that |S| ≤ dinv. Critically, ξc(Sinv) = 0,
and ξc(Sinv) > O for all S ̸= Sinv. The full proof can be
found in Appendix B.

Remark 7. The quantity ξc(S) is positive as long as there
exist environments e1, e2 ∈ E and some spurious feature
such that i ∈ S, where αe1i ̸= αe2i . Intuitively, ξc(S) cap-
tures the difference between environmental distributions,
when only accessing features in S. As a result, ξc(Sinv) = 0,
since Sinv contains only features that remain invariant across
environments. Then, it is possible to lower bound ξc(S)
for S ̸= Sinv by leveraging environmental separation of
the underlying distributions. It benefits from more “widely-
ranging" values of αe. In this way, it links back to previous
works like (Ahuja et al., 2021a), which impose requirements
on differences in environment to present general sample
complexity results.

The proof of Theorem 2 follows the same structure as that
of Theorem 1, with an additional poly(dinv) term incurred
by |R̂(β∗

S)−R̂(β̂∗
S)| and |R̂(βeS)−R̂(β̂eS)|. The full proof

can be found in Appendix B.3.

Remark 8. Zhou et al. (2022) provides a bound for ξb(Φ) =
ξb(S) which requires R̂e(β̂eS) − R̂e(βeS) ≤ |R̂e(β̂eS) −
R̂e(βeS)|= ∥β̂eS − βeS∥Σ̂e . The equality is formally stated
in Lemma 1 of Zhou et al. (2021) but is in general untrue
for arbitrary feature subset S in the non-asymptotic setting.
As a result, their final claim that this term is O(n−0.5) is
incorrect as well; they are missing an important term that
arises from the misspecified model. We provide a corrected
analysis in Lemma 5 in our appendix.

Under the generative model introduced in Equation (2), it is
impossible for ERM and Sparse ERM to recover the invari-
ant features only in the asymptotic case; see Appendix B.4.
In this setting, both IRM and IRM with sparsity constraints
can recover the optimal invariant predictor. For the non-
asymptotic case, we provide sample complexity bounds for
Sparse IRM that leverage the invariant feature dimension-
ality. The result follows in Theorem 1, and the full proof is
found in Appendix B.

4.3 EFFICIENT ALGORITHMS

The loss formulation in Theorem 1 uses a L0 constraint,
which is not computationally practical. We refer to the
the rich line of work proving sharp convergence rates and
bounds on estimation error under constraints for regres-
sion problems (Negahban et al., 2009; Agarwal et al., 2010;
Banerjee et al., 2015). We later leverage a subset of these
works (Loh and Wainwright, 2013; Jain et al., 2014) which
show the same guarantees for methods in the family of
Projected Gradient Descent (PGD) or Iterative Hard Thresh-
olding (IHT) algorithms, which provide bounds for high-
dimensional statistical settings. We apply IHT to solve Equa-
tion (12) and show that the sparse invariant feature recovery
is possible with these fast, space-efficient methods.

Algorithm 1 Sparse IRM with Iterative Hard-Thresholding

1: Input: target nonzero features dinv < d, D = {De}e∈E
and De := {(xei , yi)}

ne
i=1.

2: Initialize weights v.
3: for training iteration t = 1, 2, · · · , T do
4: vt+1 ← projs(v

t − η∇vL̂(vt))
5: t = t+ 1
6: end for

Let s ∈ N be the sparsity level. Then, the hard thresholding
projection operator projs : Rd → Rd is defined as:

projs(v) := arg min
u∈Rd

{
∥v − u∥22

∣∣ ∥u∥0 ≤ s
}
, (22)

where ∥u∥0 denotes the number of nonzero entries in u.
Algorithm 1 directly projects the gradient descent update
onto the non-convex feasible set. Previous works (Jain et al.,
2014) have shown that, despite the non-convexity of the
problem, tight, minimax lower bounds can be achieved on
the learned parameter, and we use constants from Theorem
3 in Jain et al. (2014) for sparse linear regression. Details
are included in Appendix C.1.

Theorem 3 (Sparse IRM with IHT). Assume
n samples per training environment, for n >

Q
(

poly(dinv) log(d) log
(

|E|
δ

))
. Together with as-

sumptions in Appendix A.2, using the IRMv1 penalty as
defined in Equation (11), Algorithm 1 returns a parameter
β̃ ∈ Rd With s chosen to be O(dinv), we have with
probability at least 1− δ, a bound on the estimation error,

∥β̃ − β∗
inv∥2 = O

(
λ2
max

√
dinv log d

n
+

σinv

κs

)
. (23)

The full proof and definitions for constants Q, σinv, andκs
are provided in Appendix C.1. Because we do not know
∥β∗∥0 = dinv beforehand, we discuss tuning s as a hy-
perparameter in Section 5. Overall, both methods provide
guarantees of low estimation error in high probability, while



being fast and having low memory cost, scaling to much
larger models and datasets.

5 EXPERIMENTS

Algorithms: We compare our approach, IRM with itera-
tive hard thresholding (IRMv1 + IHT), with relevant base-
lines ERM, sparse ERM, the oracle, and IRM-based meth-
ods. For IRM-based methods, we use IRMv1 (Arjovsky
et al., 2020), and we provide Proposition 2 to prove it is
an acceptable proxy for the minimax formulation in Equa-
tion (12). In order, ERM is the standard training loop on
the mixture of all environments; and sparse ERM adds IHT
(Jain et al., 2014). The oracle trains ERM with spurious fea-
tures zeroed, upper bounding accuracies for other methods.
For the IRM-based methods, we compare with the original
IRMv1 (Arjovsky et al., 2020), and IRMv1 with ProbMask
(IRMv1+PM) (Zhou et al., 2022, 2021). When comparing
sparsity-based methods, we fix the target density of the
feature representation to be same across methods.

Datasets: We use common invariant representation learning
benchmarks, ColoredMNIST (2-CMNIST) is the original
binary dataset introduced in Arjovsky et al. (2020), and
FullColoredMNIST (10-CMNIST) (Ahmed et al., 2021) is
also generated from MNIST, with two environments, 10
labels and 10 colors. MNISTCIFAR concatenates MNIST
digits and CIFAR-10 images (Shah et al., 2020). The or-
acle baseline is constructed per dataset and only has the
designated invariant features: the grayscale MNIST for 2-
and 10-CMNIST, and the CIFAR image for MNISTCIFAR.
Parameters for the dataset configurations, including label
noise and environmental correlation, are in Appendix F.

Hyperparameter selection: Because we do not know dinv
at train time, it is common to treat s in algorithm 1 as a
hyperparameter as in e.g. (Wainwright, 2019). Specifically,
we take a uniform grid search per dataset. We find also
that accuracy is not affected significantly by small perturba-
tions in s, which is demonstrated by data from additional
experiments on MNISTCIFAR in Table 4.

Evaluation metrics: Top-1 test accuracy is compared for
the three tasks. For ResNet-18 on MNISTCIFAR, we also
provide training time results, and the relative timing in com-
parison to standard ERM.

Discussion: We observe that IRM with IHT can match or
exceed the performance of competing methods, including
IRM with ProbMask sparsity, for larger models and datasets.
Sparse ERM, IRMv1+PM, and IRMv1+IHT were computed
with 88% weight density in Table 2; this corresponds to 12%
of the weights zeroed out by sparsificaiton methods. The L1

norms of the layer also reflect the sparsification. ProbMask
incurs a noticeable computational overhead – an additional
23% over IRMv1. IHT only adds a 4% cost. We expect
time savings to scale up with larger models. Additionally,

we provide results for a MLP with two hidden layers of
dimension 390, the median configuration of the model used
by (Zhou et al., 2022) on these datasets.

6 CONCLUSIONS

In this paper, we provide a non-asymptotic analysis of IRM
with sparsity constraints. First, we generalize the data model,
relaxing the data model to allow for varying correlation be-
tween spurious features and the label. Next, we provide
the non-asymptotic results for sparse IRM, including a re-
finement and correction of previous work in sparse IRM,
including theoretical guarantees for L1- and L0-constrained
IRM, resulting in a sparse representation that selects invari-
ant features. Finally, we demonstrate that these methods can
be computed in a fast and efficient matter using projected
gradient descent-based methods, and we provide experimen-
tal results that demonstrate improved test accuracy and time
savings on domain generalization datasets.
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