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Abstract

A well-known metric for quantifying the similarity between two clusterings is1

the adjusted mutual information. Compared to mutual information, a corrective2

term based on random permutations of the labels is introduced, preventing two3

clusterings being similar by chance. Unfortunately, this adjustment makes the4

metric computationally expensive. In this paper, we propose a novel adjustment5

based on pairwise label permutations instead of full label permutations. Specifically,6

we consider permutations where only two samples, selected uniformly at random,7

exchange their labels. We show that the corresponding adjusted metric, which8

can be expressed explicitly, behaves similarly to the standard adjusted mutual9

information for assessing the quality of a clustering, while having a much lower10

time complexity. Both metrics are compared in terms of quality and performance11

on experiments based on synthetic and real data.12

1 Introduction13

A well-known metric for quantifying the similarity between two clusterings of the same data is14

the adjusted mutual information [Nguyen et al., 2009; Vinh et al., 2010]. Compared to mutual15

information, this metric is adjusted against chance, meaning that the similarity cannot be due to16

randomness but only to the structure of the dataset, appearing in both clusterings. This is the reason17

why this metric is widely used in unsupervised learning, see [Zhang et al., 2013; Thirion et al., 2014;18

Taha and Hanbury, 2015; Yang et al., 2016; Wang et al., 2017] for various applications.19

The standard way of adjusting mutual information against chance is through random label permuta-20

tions of one of the clusterings [Vinh et al., 2010]. Unfortunately, this adjustment makes the metric21

computationally expensive. Specifically, the time complexity of the metric is in O(max(k, l)n),22

where k, l are the numbers of clusters in each clustering and n is the number of samples [Romano et23

al., 2014]. As a comparison, the time complexity of mutual information is equal to O(kl) given the24

contingency matrix of the clusterings, i.e., the matrix counting the number of samples in each pair of25

clusters, one per clustering. The additional computational effort required by adjustment is significant26

as the number of samples n is typically much larger than the numbers of clusters k, l.27

In this paper, we propose a novel adjustment based on pairwise permutations. That is, we consider28

permutations where only two samples, selected uniformly at random, exchange their labels. We29

show that the corresponding adjusted metric, we refer to as pairwise adjusted mutual information,30

is as efficient as adjusted mutual information for assessing the quality of a clustering, with a much31

lower time complexity. In particular, the time complexity is the same as that of mutual information.32

The gain in complexity is significant, as the computation time is now independent of the number of33

samples n, given the contingency matrix.34

The rest of the paper is organized as follows. We first provide the definition and key properties of35

adjusted mutual information in the general setting of information theory. We then introduce mutual36

information with pairwise adjustement and explain why the exact same properties are satisfied by37
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this new notion of adjusted mutual information. The application of both notions of adjustment to38

clustering, including the explicit expressions of the corresponding metrics, is presented in section 4.39

Experiments on both synthetic and real data are presented in section 5. Section 6 concludes the paper.40

2 Adjusted mutual information41

Let P be the uniform probability measure on Ω = {1, . . . , n}, for some positive integer n. Let X,Y42

be random variables on the probability space (Ω, P ). Without any loss of generality, we assume that43

X and Y are mapping from Ω to sets consisting of consecutive integers, starting from 1. Denoting by44

H the entropy, the mutual information between X and Y is defined by [Cover and Thomas, 1991]:45

I(X,Y ) = H(X) +H(Y )−H(X,Y ). (1)

This is the information shared by X and Y , which is equal to 0 if X and Y are independent. A
distance between X and Y can then be defined by:

d(X,Y ) = H(X,Y )− I(X,Y ) = H(X|Y ) +H(Y |X).

This distance, known as the variation of information, is a metric in the quotient space of random46

variables under the equivalence relation X ∼ Y if and only if there is some bijection ϕ such that47

X = ϕ(Y ) [Meilă, 2003].48

Adjusted mutual information. The adjusted mutual information betweenX and Y , corresponding49

to the mutual information between X and Y adjusted against chance, is defined by:50

∆I(X,Y ) = I(X,Y )− E(I(X,Yσ)), (2)

where Yσ is the random variable Y ◦ σ, for any permutation σ of {1, . . . , n}, and the expectation is51

taken over all permutations σ, chosen uniformly at random.52

Remark 1 (Normalization). It is frequent to also normalize adjusted mutual information, so as to53

get a score between 0 and 1 [Vinh et al., 2010; Romano et al., 2014]. In this paper, we only focus on54

the adjustment step. Note that normalization can be equally applied to both considered notions of55

adjustment and thus be studied separately.56

We have the equivalent definition:57

∆I(X,Y ) = E(H(X,Yσ))−H(X,Y ),

=
1

2
(E(d(X,Yσ))− d(X,Y )). (3)

This equivalence follows from Proposition 1 and the fact that the definition is symmetric in X and Y .58

All proofs are available in the supplementary material.59

Proposition 1. We have for any random variables X and Y :60

H(X) = E(H(Xσ)),

E(H(X,Yσ)) = E(H(Xσ, Y )),

E(I(X,Yσ)) = E(I(Xσ, Y )).

In view of (3), we expect ∆I(X,Y ) to be positive if X and Y share information, as X is expected to61

be closer to Y (for the distance d) than to Yσ, a randomized version of Y . There are specific cases62

where ∆I(X,Y ) = 0, as stated in Proposition 2; these cases will be interpreted in terms of clustering63

in section 4.64

Proposition 2. We have ∆I(X,Y ) = 0 whenever Y (or X , by symmetry) is constant or equal to65

some permutation of {1, . . . , n}.66

Adjusted entropy. Observing that H(X) = I(X,X), we define similarly the adjusted entropy of
X by:

∆H(X) = ∆I(X,X) = H(X)− E(I(X,Xσ)).

By (1), we get:67

∆H(X) = E(H(X,Xσ))−H(X) =
1

2
E(d(X,Xσ)). (4)

Since d is a metric, this shows that the adjusted entropy of X is non-negative.68
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Proposition 3. We have ∆H(X) = 0 if and only if X is constant or equal to some permutation of69

{1, . . . , n}.70

Proposition 3 characterizes random variables with zero adjusted entropy. Again, this result will be71

interpreted in terms of clustering in section 4.72

3 Pairwise adjustment73

In this section, we introduce pairwise adjusted mutual information. The definition is the same as74

adjusted mutual information, except that the permutation σ is now restricted to the set of pairwise75

permutations. Specifically, we consider permutations σ for which there exists i, j ∈ {1, . . . , n}76

such that σ(i) = j and σ(j) = i, whereas σ(t) = t for all t 6= i, j. We consider the set of such77

permutations σ where the samples i, j are drawn uniformly at random in the set {1, . . . , n}. We78

denote by σp such a random permutation. Observe that σp is the identity with probability 1/n (the79

probability that i = j).80

Pairwise adjusted mutual information. We define the pairwise adjusted mutual information as:

∆pI(X,Y ) = I(X,Y )− E(I(X,Yσp)).

This is exactly the same definition as the adjusted mutual information, except for the considered81

permutations σp. It can be readily verified that the same properties apply, with the exact same proofs,82

a key property being that the random permutations σp and σp−1 have the same distributions. In83

particular, we have the analogue of (3):84

∆pI(X,Y ) = E(H(X,Yσp
))−H(X,Y ),

=
1

2
(E(d(X,Yσp

))− d(X,Y )). (5)

Moreover, ∆pI(X,Y ) = 0 whenever X or Y is constant or equal to some permutation of {1, . . . , n}.85

Pairwise adjusted entropy. We also define the pairwise adjusted entropy as:

∆pH(X) = ∆pI(X,X) = H(X)− E(I(X,Xσp)).

We have ∆pH(X) ≥ 0, with equality if and only if X is constant or equal to some permutation of86

{1, . . . , n}.87

4 Application to clustering88

Let A = {A1, . . . , Ak} and B = {B1, . . . , Bl} be two partitions of some finite set {1, . . . , n} into k89

and l clusters, respectively. Let Ω = {1, . . . , n} and P be the uniform probability measure over Ω.90

Consider the random variables X and Y defined on (Ω,P) by X−1(i) = Ai for all i = 1, . . . , k and91

Y −1(j) = Bj for all j = 1, . . . , l. Note that X(ω) and Y (ω) can be interpreted as the labels i and j92

of sample ω in clusterings A and B, for each ω ∈ {1, . . . , n}.93

We denote by ai = |Ai| the size of cluster Ai, by bj = |Bj | the size of cluster Bj , and by94

nij = |Ai ∩ Bj | the number of samples both in cluster Ai and cluster Bj , for all i = 1, . . . , k and95

j = 1, . . . , l. The matrix (nij)1≤i≤k,1≤j≤l is known as the contingency matrix. Note that ai and bj96

are the sums of row i and column j of the contingency matrix, respectively.97

Adjusted mutual information. A well-known metric for assessing the similarity s(A,B) between98

clusterings A and B is the adjusted mutual information1 ∆I(X,Y ) between the corresponding99

random variables X and Y . In words, this is the common information shared by clusterings A and B100

not due to randomness.101

By Proposition 2, we have s(A,B) = 0 whenever clustering A (or B, by symmetry) is trivial, that is,102

it consists of a single cluster or of n clusters (one per sample). This is a key property, showing the103

interest of the adjustment.104

1Recall that we don’t normalize the metric, see Remark 1.
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It is known that [Vinh et al., 2010]:105

s(A,B) = −
k∑
i=1

l∑
j=1

nij
n

log
nij
n

+

k∑
i=1

l∑
j=1

min(ai,bj)∑
c=(ai+bj−n)+

ai!bj !(n− ai)!(n− bj)!
n!c!(ai − c)!(bj − c)!(n− ai − bj + c)!

c

n
log

c

n
,

(6)

with the notation (·)+ = max(·, 0). The time complexity of this formula, which is dominated by the106

second term, is in O(max(k, l)n) [Romano et al., 2014]. In particular, it is linear in the number of107

samples n.108

Interestingly, we can similarly assess the quantity of information q(A) contained in clustering109

A through the adjusted entropy ∆H(X) of the corresponding random variable X . This is the110

information contained in A not due to randomness. We have q(A) ≥ 0 and, by Proposition 3,111

q(A) = 0 if and only if clustering A is trivial, that is, it consists of a single cluster or of n clusters112

(one per sample).113

Since q(A) = s(A,A), it follows from (6) that:114

q(A) = −
k∑
i=1

ai
n

log
ai
n

+

K∑
i,j=1

min(ai,aj)∑
c=(ai+aj−n)+

+
ai!aj !(n− ai)!(n− aj)!

n!c!(ai − c)!(aj − c)!(n− ai − aj + k)!

c

n
log

c

n
.

The time complexity of this formula, also dominated by the second term, is in O(kn). Again, this115

complexity is linear in the number of samples n.116

Pairwise adjusted mutual information. The main contribution of the paper is the following new117

measure of similarity sp(A,B) between clusterings A and B, based on the pairwise adjusted mutual118

information ∆pI(X,Y ) between the corresponding random variables X and Y . We have an explicit119

expression for this similarity:120

Theorem 1. We have for any clusterings A,B:121

sp(A,B) = 2

k∑
i=1

l∑
j=1

nij(n− ai − bj + nij)

n2

(
nij
n

log
nij
n
− nij − 1

n
log

nij − 1

n

)

+ 2

k∑
i=1

l∑
j=1

(ai − nij)(bj − nij)
n2

(
nij
n

log
nij
n
− nij + 1

n
log

nij + 1

n

)
.

The time complexity of this formula is in O(kl), like mutual information. It is independent of the122

number of samples n, given the contingency matrix. Corollary 1 shows that the time complexity123

reduces to O(m), where m is the number of non-zero entries of the contingency matrix, provided the124

latter is stored in sparse format.125

Corollary 1. We have for any clusterings A,B:126

sp(A,B) = 2
∑

i,j:nij>0

nij(n− ai − bj + nij)

n2

(
nij
n

log
nij
n
− nij − 1

n
log

nij − 1

n

)

+ 2
∑

i,j:nij>0

(ai − nij)(bj − nij)
n2

(
nij
n

log
nij
n
− nij + 1

n
log

nij + 1

n
+

1

n
log

1

n

)

− 2

n2 − k∑
i=1

a2i −
l∑

j=1

b2i +
∑

i,j:nij>0

n2ij

 1

n
log

1

n
.

Similarly, we can define the quantity of information qp(A) in clustering A through the pairwise127

adjusted entropy ∆pH(X) of the corresponding random variable X . Again, qp(A) ≥ 0, with128

qp(A) = 0 if and only if clustering A is trivial.129
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Corollary 2. We have for any clustering A:130

qp(A) = 2

k∑
i=1

ai(n− ai)
n2

(
ai
n

log
ai
n
− ai − 1

n
log

ai − 1

n
− 1

n
log

1

n

)
.

Note that the time complexity of this formula in O(k). It only depends on the number of clusters k,131

and not on the number of samples n.132

5 Experiments133

In this section, we compare both notions of adjusted mutual information through experiments134

involving synthetic and real data. The experiments are run on a computer equipped with an AMD135

Ryzen Threadripper 1950X 16-Core Processor and 32 GB of RAM, with a a Debian 10 OS. All codes136

and datasets used in the experiments are available in the supplementary material.137

Synthetic data. We start with the simple case of n = 100 samples with clusters of even sizes,138

consisting of consecutive samples. Specifically, we consider the set of clusterings A(s), consisting of139

clusters of size s (except possibly the last one), for s = 1, 2, . . . , 100. In particular, both A(1) and140

A(100) are trivial clusterings while A(5) consists of 20 clusters of size 5.141

Figure 1 gives the similarity between clusterings A(10) and A(s) with respect to s in terms of adjusted142

mutual information, for both notions of adjustment, i.e., s(A(10), A(s)) and sp(A(10), A(s)). We143

observe very close behaviors, suggesting that both notions of adjustment tend to capture the same144

patterns in the clusterings. Note that the maximum similarity is attained for s = 10 in both cases, as145

expected. The similarity is equal to 0 for s ∈ {1, 100} for both cases, in agreement with Proposition146

2. We also observe local peaks at s = 20, 30, . . . , 90, which can be interpreted by the fact that147

clustering A(10) is a refinement of clustering A(s) for these values of s; similarly, the local peak at148

s = 5 may be interpreted by the fact that clustering A(5) is a refinement of clustering A(10). The149

Spearman correlation between both metrics over all values of s is equal to 0.99.
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(a) Full adjustment
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(b) Pairwise adjustment

Figure 1: Comparison of metrics on synthetic data (n = 100).

150

We now consider random clusterings. Specifically, we assign n samples to k clusters independently151

at random, according to some probability distribution p = (p1, . . . , pk), which is itself drawn at152

random2. Consider three such random clusterings A, B, C (with the same parameters n and k, but153

different probability distributions p). We would like to know whether A is “closer" to B or to C. In154

particular, we are interested in testing whether both notions of adjusted mutual information give the155

same ordering in the sense that:156

(s(A,B)− s(A,C))(sp(A,B)− sp(A,C)) ≥ 0. (7)

2Namely, p ∝ U where U = (U1, . . . , Uk) is a vector of k i.i.d. random variables uniformly distributed over
[0, 1].

5



We compute the average precision score (fraction of triplets A,B,C for which (7) is true) over 1 000157

independent samples of A,B,C, for different values of n and k. We repeat the experiment 100 times158

to get the mean and standard deviation. The results are given in Table 1. We observe a very high159

precision score, always higher than 93%, showing that both notions of adjusted mutual information160

tend to give the same ordering of these random clusterings.161

n k Precision score

100 2 0.972± 0.004
100 5 0.952± 0.007
100 10 0.943± 0.006
100 20 0.955± 0.008
500 20 0.936± 0.007

1000 20 0.933± 0.006
1000 50 0.949± 0.008

Table 1: Precision score (mean ± standard deviation)

For the performance gain, we compare the computation times of both versions of adjusted mutual162

information for the similarity between clusterings A and B, where A consists of k = 10 clusters163

of same size and B is a random clustering, drawn as in the previous experiment. Both versions of164

adjusted mutual information are coded in Python, with the standard version imported from scikit-learn.165

Figure 2 shows the computation time when the number of samples n grows from 102 to 107. The166

performance gain brought by pairwise adjustement is significant. In particular, the computation time167

becomes independent of the number of samples.168

102 103 104 105 106 107

Number of samples

10 4

10 3

10 2

10 1

100

Co
m

pu
ta

tio
n 

tim
e 

(s
)

Full adjustement
Pairwise adjustement

Figure 2: Computation time with respect to n (mean ± standard deviation).

Real data. We first consider the 79 datasets of the benchmark suite [Gagolewski, 2020]3. We apply169

to each dataset each of the following clustering algorithms:170

• k-means171

• Affinity propagation172

• Mean shift173

• Spectral clustering174

• Ward175

• Agglomerative clustering176

• DBSCAN177

• OPTICS178

• Birch179

• Gaussian Mixture180

3See https://github.com/gagolews/clustering_benchmarks_v1
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We use the scikit-learn4 implementation of these algorithms, with the corresponding default param-181

eters5. We get 10 clusterings per dataset. The quality of each clustering is assessed through the182

similarity with the available ground-truth labels, using adjusted mutual information with either full183

adjustment or pairwise adjustment. We then compute the Spearman correlation of the corresponding184

similarities, a value of 1 meaning the exact same ordering of the 10 clusterings with full adjustment185

and pairwise adjustment. The results are shown in Figure 3, together with the speed-up in computation186

time due to pairwise adjustment. In both cases, the 79 datasets are ordered by the number of samples,187

ranging from 105 to 105 600 [Gagolewski, 2020].188
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(a) Spearman correlation.
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(b) Speed-up of pairwise adjustment.

Figure 3: Comparison of metrics on the Gagolewski benchmark.

We first observe that the correlation is very high, suggesting again that both notions of adjusted mutual189

information tend to provide the same results. For 65 datasets among 79, the Spearman correlation is190

higher than 95%. As for the computation time, we observe a significant performance gain, by one191

order of magnitude for the largest datasets.192

We have conducted the same experiments with OpenML [Vanschoren et al., 2013]6. We selected all193

datasets with at least 1,000 but no more than 50,000 samples, at most 100 features (all numerical), no194

missing data and ground-truth labels forming clusters of at least 5 samples on average. The results195

are shown in Figure for the resulting 34 datasets. Again, the datasets are ordered by the number of196

samples, here ranging from 1,188 to 45,918. The conclusions are similar. In particular, the Spearman197

correlation is higher than 95% for 30 datasets among 34, and the performance gain exceeds 25 for the198

largest datasets.199
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(a) Spearman correlation.
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(b) Speed-up of pairwise adjustment.

Figure 4: Comparison of metrics on OpenML datasets.

4https://scikit-learn.org/
5Dimension reduction is applied to the MNIST datasets, consisting of 70 000 images of size 28× 28 each,

see the supplementary material for details.
6https://www.openml.org
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6 Conclusion200

We have proposed another way of adjusting mutual information against chance, through pairwise201

label permutations. The novel metric, whose explicit expression is given in Theorem 1, has a much202

lower complexity than the usual adjusted mutual information. Interestingly, both metrics can also be203

used to assess the quantity of information contained in a clustering, which the common property of204

being equal to 0 if and only if the clustering is trivial, as stated in Proposition 3; again, the pairwise205

adjusted entropy, given in Corollary 2, has a much lower complexity. Experiments on synthetic and206

real data show that pairwise adjusted mutual information tends to provide the same results as the usual207

adjusted mutual information for comparing clusterings, while involving much less computations.208

For future work, we plan to extend this idea to other similarity metrics. While the practical interest209

is less obvious for the Adjusted Rand Index [Hubert and Arabie, 1985], due to the fact that the210

time complexity of this metric is already independent of the number of samples, it would be worth211

considering other versions of information theoretic measures, as those studied in [Romano et al.,212

2016].213
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Checklist246

1. For all authors...247

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s248

contributions and scope? [Yes] A variant of adjusted mutual information.249

(b) Did you describe the limitations of your work? [Yes] Pairwise adjustement only applied250

to mutual information in the present work, see Section 6.251

(c) Did you discuss any potential negative societal impacts of your work? [N/A]252

(d) Have you read the ethics review guidelines and ensured that your paper conforms to253

them? [Yes]254

2. If you are including theoretical results...255

(a) Did you state the full set of assumptions of all theoretical results? [Yes] No specific256

assumption is required. Theorem 1, Corollary 2 and 3 give explicit expressions using257

notations defined at the beginning of Section 4.258

(b) Did you include complete proofs of all theoretical results? [Yes] See the supplementary259

material.260

3. If you ran experiments...261

(a) Did you include the code, data, and instructions needed to reproduce the main experi-262

mental results (either in the supplemental material or as a URL)? [Yes] See the Jupyter263

notebooks in the supplementary material.264

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they265

were chosen)? [N/A] This is a metric for unsupervised learning. No data split required,266

no hyperparameter.267

(c) Did you report error bars (e.g., with respect to the random seed after running ex-268

periments multiple times)? [Yes] See Table 1 and Figure 2 (not applicable to other269

experiments).270

(d) Did you include the total amount of compute and the type of resources used (e.g., type271

of GPUs, internal cluster, or cloud provider)? [Yes] See the running times provided in272

the Figures; the resources used are detailed at the beginning of section 5.273

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...274

(a) If your work uses existing assets, did you cite the creators? [Yes] See the references for275

the datasets.276

(b) Did you mention the license of the assets? [N/A]277

(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]278

279

(d) Did you discuss whether and how consent was obtained from people whose data you’re280

using/curating? [N/A]281

(e) Did you discuss whether the data you are using/curating contains personally identifiable282

information or offensive content? [N/A]283

5. If you used crowdsourcing or conducted research with human subjects...284

(a) Did you include the full text of instructions given to participants and screenshots, if285

applicable? [N/A]286

(b) Did you describe any potential participant risks, with links to Institutional Review287

Board (IRB) approvals, if applicable? [N/A]288

(c) Did you include the estimated hourly wage paid to participants and the total amount289

spent on participant compensation? [N/A]290
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