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ABSTRACT

The deployment of large language models (LLMs) for specialized tasks on
resource-constrained edge devices like smartphones and sensors presents a signif-
icant scalability problem. To run on such hardware, these massive models must be
compressed using techniques like quantization or pruning to reduce their mem-
ory and computational footprint. Concurrently, foundational LLMs are periodi-
cally updated by their developers with new data, making their internal parameters
shift over time. While parameter-efficient methods like Low-Rank Adaptation
(LoRA) streamline personalization by fine-tuning only a small fraction of param-
eters, the resulting adapters are brittle; a LoRA trained for one specific compres-
sion scheme is incompatible with another, and an adapter trained on an older base
model performs poorly on an updated one. This forces a costly cycle of retraining
for each unique device and every new model release. To address this, we introduce
a novel framework that creates a single, universally portable adapter that is both (i)
compression-aware and (ii) temporally robust. We achieve this by augmenting
the training process with a variety of simulated compression techniques during a
single run, utilizing a quantized forward pass to build resilience while maintain-
ing a full-precision backward pass for stable gradient optimization. This method
yields a unified adapter robust to diverse compression artifacts and the subtle pa-
rameter shifts from model evolution. Extensive experiments on models such as
Llama-2, Llama-3.1, Gemma-2, and Mistral across reasoning bench-
marks like SQA, MATH, and GSM8K demonstrate that our single adapter achieves
performance comparable to specialized adapters (e.g., QLoRA) that are individ-
ually retrained for each compression scheme. Furthermore, we show this single
adapter maintains its high performance when applied to future, evolved versions
of the base model, eliminating the need for periodic retraining. Our work pioneers
an efficient paradigm for edge AI, creating portable model patches that bridge the
gap between cloud-based personalization, the diverse hardware ecosystem, and
the lifecycle of evolving LLMs.

1 INTRODUCTION

Large Language Models (LLMs) such as the Llama series (Touvron et al., 2023a;b; Grattafiori et al.,
2024) have achieved transformative progress in reasoning and generation (Wei et al., 2021; Min
et al., 2021). While originally deployed in cloud data centers, there is growing interest in running
them on edge devices (e.g., smartphones, cars, IoT sensors) to support low-latency interactions,
preserve privacy, and enable personalized offline operation.

To unlock their potential, LLMs must be specialized for downstream tasks. Parameter-Efficient
Fine-Tuning (PEFT) methods, particularly Low-Rank Adaptation (LoRA) (Hu et al., 2022), provide
this capability by inserting small, trainable adapters (Houlsby et al., 2019). LoRA enables efficient
personalization in the cloud, but deployment on-device exposes two key challenges (Fig. 1):

Hardware heterogeneity. Edge devices differ widely in compute and memory capacity. Compres-
sion techniques such as quantization (Dettmers et al., 2022; Dettmers & Zettlemoyer, 2023; Frantar
et al., 2022; Xiao et al., 2023) and pruning (Sun et al., 2023) are essential to fit models on-device, but
they alter weight distributions. A LoRA adapter trained on a full-precision model often misaligns
under compression, forcing separate retraining for each hardware variant (e.g., INT8, FP4, pruned).
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This one-adapter-per-device paradigm negates LoRA’s efficiency and creates unsustainable training
and maintenance costs.
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Figure 1: We address two challenges for LoRA
deployment for LLMs: (1) evolving LLMs and (2)
hardware heterogeneity.

Model evolution. Foundation models are continu-
ously updated with new pretraining to improve capa-
bility and safety. As shown in PortLLM (Khan et al.,
2024), this “temporal drift” causes adapters fine-
tuned on earlier checkpoints to degrade on newer
versions, even without task changes. Maintain-
ing performance thus requires repeated retraining,
adding further overhead.

Our approach. We propose CAR-LoRA, a unified
training framework that produces a single adapter
that is both compression-aware and temporally ro-
bust. During training, we stochastically apply com-
pression operators (quantization, pruning, or layer
skipping) in the forward pass, while using a full-
precision backward pass for stable gradients. This
exposes the adapter to diverse perturbations, regularizing it to generalize across hardware constraints
and parameter shifts. The result is a single adapter that can be trained once and deployed broadly
across devices and future model versions without retraining.

In Summary, our work makes the following contributions:

❶ A unified training framework that integrates compression simulation, producing a single
adapter robust across heterogeneous devices and evolving models.

❷ Extensive evaluations on Llama-3.1, Mistral, and Gemma-2 across reasoning bench-
marks (SQA, MATH, GSM8K, ANLI, CSQA, ARC), showing parity with specialized QLo-
RAs retrained per configuration.

❸ A practical paradigm for universal adapters, reducing storage, training, and maintenance
costs while enabling scalable edge AI deployment.

2 RELATED WORKS

A full discussion of related works is provided in Appendix B.

Compression in LLMs. Deploying LLMs on edge devices requires model compression via quan-
tization (Dettmers et al., 2022; Dettmers & Zettlemoyer, 2023) or pruning (Frantar et al., 2022;
Sun et al., 2023; Frantar & Alistarh, 2023). Works such as QLoRA (Dettmers et al., 2023), Ga-
Lore (Zhao et al., 2024), and Q-GaLore (Zhang et al., 2024) demonstrate the feasibility of training
adapters on compressed models, while WeLore (Jaiswal et al., 2024) explores non-uniform low-rank
structures. However, these approaches follow a “train-for-the-target” paradigm, requiring retraining
for each compression format. Our work differs by embedding compression-awareness directly into
the training loop, producing a universal adapter robust across compressions.

Parameter Efficient Fine-tuning (PEFT). PEFT methods reduce full-parameter tuning costs by
inserting adapter modules (Houlsby et al., 2019; Pfeiffer et al., 2020), optimizing prompts (Lester
et al., 2021; He et al., 2022; Li & Liang, 2021), or low-rank adaptation via LoRA (Hu et al.,
2022). While LoRA enables efficient personalization, adapters degrade as base models evolve.
PortLLM (Khan et al., 2024) mitigates this drift but does not address hardware heterogeneity. Our
method fills this gap by unifying compression- and temporally-robust training.

3 METHODOLOGY

In this section, we first establish the foundational concepts necessary to understand our approach,
including the Low-Rank Adaptation (LoRA), and common compression techniques. For additional
Preliminaries, please refer to Appendix C. We then present a motivating toy problem that highlights
the failure of naive post-training compression. Finally, we detail our proposed Compression-Aware
and Robust LoRA (CAR-LoRA) training framework, explaining how it achieves both hardware and
temporal robustness, and describe the resulting inference pipeline.
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Figure 2: CAR-LoRA framework illustration. The training stage on the left shows our method, which creates
a single, robust LoRA adapter by iteratively fine-tuning it on a base LLM subjected to randomly selected
compression techniques like pruning and quantization. In the inference stage, this single universal adapter can
be deployed across a diverse ecosystem of edge devices with varying compression requirements, eliminating
the need for retraining. This is juxtaposed with the traditional approach on the right, which inefficiently requires
a unique, separately trained adapter for each specific device and compression scheme.

3.1 PRELIMINARIES

Low-Rank Adaptation (LoRA). To adapt a pretrained LLM with weights W0 ∈ Rd×k to a new
task, full fine-tuning would update the entire matrix. LoRA (Hu et al., 2022) proposes a more
efficient method by freezing W0 and introducing a low-rank decomposition to represent the weight
update, ∆W . This is achieved with two smaller matrices B ∈ Rd×r and A ∈ Rr×k, where the rank
r ≪ d, k. The forward pass is then modified as:

h = W0x+∆Wx = W0x+BAx (1)

During training on downstream tasks, the loss is minimized regarding the parameters of A and B,
drastically reducing the trainable parameters and making personalization computationally feasible.

QLoRA: Adapting Quantized Models. QLoRA (Dettmers et al., 2023) extended the LoRA
paradigm to enable fine-tuning on top of a base model that has already been quantized to a very
low bit-width, such as 4-bit. This achieves significant memory savings not only during inference
but also during the training process itself. The key innovation is to backpropagate gradients through
the frozen, quantized base model into the full-precision LoRA adapters. Although the base model’s
weights are stored in a compressed format (e.g., 4-bit NormalFloat or NF4), they are dequantized on-
the-fly to a higher precision (e.g., BF16) just before the forward and backward computations. This
ensures that the gradient calculations are stable and accurate, allowing the LoRA adapter to learn
effectively while the memory footprint of the base model remains minimal. QLoRA represents the
state-of-the-art for training a specialized adapter for a specific compressed model format.

LLM Compression Techniques. To deploy large models on resource-constrained devices, com-
pression is essential. Key techniques include:

❶ Quantization: This reduces the numerical precision of the model’s weights. A weight ten-
sor W is mapped to a lower-bit representation using a quantization function Cquant(W, b),
where b is the target bit-width. A common approach is uniform quantization, where weights
are scaled and rounded: Wq = round(clip(Ws + z,−2b−1, 2b−1)), where s is a scaling fac-
tor and z is a zero-point.

❷ Pruning: This involves removing redundant weights from the model. This can be for-
malized by applying a binary mask M ∈ {0, 1}d×k to the weight matrix: Wp =
Cprune(W,M) = W ⊙ M . Structured pruning removes entire rows or columns, mak-
ing it more hardware-friendly, while unstructured pruning removes individual weights.

❸ Layer Skipping: During inference, some Transformer layers are dynamically skipped to
reduce latency, effectively creating a shallower network for a given input.

3.2 A TOY PROBLEM: THE BRITTLENESS OF STANDARD LORA
To motivate our approach, we first illustrate the fundamental problem with the standard PEFT-then-
compress pipeline. Consider a standard LoRA adapter, with parameters ∆θ = BA, trained by

3
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minimizing a task-specific loss Ltask on a full-precision (BF16) base model with parameters θ0:

∆θ∗ = argmin
∆θ

Ltask(θ0 +∆θ) (2)

This adapter, ∆θ∗, represents a high-precision adjustments finely tuned to the exact weight dis-
tribution of θ0. Now, consider a deployment scenario where this base model must be quantized
to INT4. A naive approach would be to apply the compression operator Cquant to both the
base model and the trained adapter. The performance of this deployed model would be evalu-
ated on Ltask(Cquant(θ0) + Cquant(∆θ∗)). This invariably leads to a significant drop in perfor-
mance. The quantization introduces error and shifts the underlying weight distribution, such that
θ0 /∈ Cquant(θ0). The adapter ∆θ∗, trained in the full-precision space, is no longer aligned with
this new, compressed weight space. This theoretically shows that a LoRA adapter is not inherently
portable across different compression schemes. To achieve optimal performance, one would need to
retrain a new adapter for each target compression format.
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Figure 3: Performance of a single BF16 LoRA adapter
naively applied to quantized models (“Naive”) versus
specialized QLoRA adapters. Naive compression leads
to a severe degradation in performance.

Empirical Verification. We validate this brit-
tleness empirically. We first train a stan-
dard LoRA (BF16) adapter on the Llama-3.1-
8B (Grattafiori et al., 2024) model for 3 reason-
ing tasks: SQA, MATH, GSM8K. We then take
this single trained adapter and evaluate its per-
formance under two conditions: (i) Specialized
Training (QLoRA): We train new adapters
from scratch for INT8 and FP4 quantized mod-
els, representing the performance upper-bound.
(2) Naive Compression: We take the original
BF16-trained LoRA adapter and apply it to an
INT8 and INT4 quantized base model. The re-
sults are summarized in Figure 3. The Naive Int8 and Int4 adapters show a catastrophic performance
collapse compared to both the original LoRA and the specialized QLoRA versions.

3.3 THE CAR-LORA FRAMEWORK

Our proposed framework, CAR-LoRA (Compression-Aware and Robust LoRA), is designed to train
a single, universal adapter that is robust to various compression schemes and temporal model drifts.
As demonstrated in PortLLM (Khan et al., 2024), robustness to temporal model drift is an emer-
gent property of LoRA adapters, meaning no special training is required to handle it. Achieving
robustness to compression, however, requires a dedicated approach. Therefore, CAR-LoRA focuses
on inducing compression-awareness through a novel bi-level optimization process that exposes the
adapter to a wide range of model perturbations during a single training run.

Compression-Aware Bi-Level Optimization. The core of our method is a bi-level optimization
loop that trains the LoRA adapter over a distribution of compressed model states, forcing it to learn
generalizable and robust features. Instead of training on a static base model, we augment the training
objective. Let C = {C1, C2, . . . , Ck} be a set of distinct compression operators (e.g., different
quantization bit-widths, pruning masks). We aim to learn a single adapter ∆θ∗ that minimizes the
expected task loss over a distribution p(C) of these operators:

∆θ∗ = argmin
∆θ

ECj∼p(C) [Ltask(Cj(θ0) + ∆θ)] (3)

We structure this as a bi-level loop:

❶ Outer Loop (Compression Sampling): In each iteration of the outer loop, we randomly sample
a compression function Cj ∈ C, for instance, from a uniform distribution over the available
compression techniques.

❷ Inner Loop (Adapter Fine-tuning): For selected operator Cj , we perform several steps of
standard fine-tuning for the LoRA adapter ∆θ on the task data. The base model weights θ0 are
first compressed to θc0 = Cj(θ0) and are then frozen. The task loss is backpropagated only to
update the adapter parameters A and B.

A crucial element for stable training is handling the non-differentiable nature of compression oper-
ators like quantization. We use a “compression-forward, full precision-backward” approach. The
forward pass uses the perturbed (compressed) weights θc0 to compute the loss, which forces the
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adapter to learn robustly. During the backward pass, however, we compute the gradients for up-
dating the adapter matrices A and B using a straight-through estimator (STE). The gradient of the
compression operator is treated as the identity, i.e., ∂Cj(θ0)

∂θ0
≈ I . This provides a stable and in-

formative learning signal, preventing vanishing gradients while still ensuring the adapter learns to
compensate for compression artifacts.

Handing Structured Pruning with LoRA. When the sampled compression is structured prun-
ing, which removes entire rows or columns from weight matrices, we must ensure the LoRA
adapter remains dimensionally compatible. We focus exclusively on structured pruning as it is more
hardware-friendly and common in practice. If a row or column is pruned from a base weight matrix
W0 ∈ Rd×k, the corresponding dimensions in the LoRA matrices B ∈ Rd×r and A ∈ Rr×k must
also be addressed.

Let Mrow ∈ {0, 1}d×d and Mcol ∈ {0, 1}k×k be the diagonal masking matrices representing row
and column pruning, respectively. The compressed forward pass becomes:

h = (MrowW0Mcol)x+ (MrowBAMcol)x (4)

During the forward pass, we apply the same masks to the LoRA matrices, effectively zeroing out
the corresponding rows in B and columns in A. This ensures the adapter learns to operate within
the pruned subspace and maintains structural alignment with the compressed base model.

Handling Layer Skipping. Layer skipping is another compression technique aimed at reducing
inference latency by dynamically bypassing certain Transformer layers. When layer skipping is
sampled as the compression operator Cj in our training loop, we simulate this process by randomly
deactivating a subset of the LoRA-adapted layers during the forward pass. To ensure compatibility
and avoid shape mismatches, we only consider skipping layers where LoRA adapters are present. If
a layer is selected to be skipped, its corresponding LoRA adapter is also bypassed for that training
step. This forces the remaining active adapters to learn to compensate for the skipped layers, build-
ing resilience and ensuring that the final universal adapter can function effectively in environments
where dynamic layer skipping is deployed for efficiency.

Inference Pipeline. The inference process with a trained CAR-LoRA adapter is simple and highly
efficient. Once the single, universal adapter ∆θ∗ has been trained, it can be deployed in a training-
free manner across a multitude of target models and conditions. This ”universal” pipeline eliminates
the need for maintaining a large library of specialized adapters, streamlining deployment and dras-
tically reducing maintenance overhead.

❶ Hardware Diversity: The adapter can be directly merged with any version of the base model
that has been compressed using one of the techniques from the training set (and beyond), e.g.,
Ck(θ0) + Ck(∆θ∗).

❷ Temporal Diversity: The same adapter can be applied to future, evolved versions of the base
model, θt = θ0+δt, even if those versions are also compressed for deployment. The final model
parameters are simply θt +∆θ∗.

3.4 THEORETICAL ANALYSIS: ERROR BOUNDS FOR PORTABILITY

We provide a theoretical justification for the portability of our CAR-LoRA adapter across both
compression and temporal evolution. We aim to bound the performance difference between our
universally trained adapter and a hypothetical oracle adapter that is retrained specifically for each
target configuration.

Theorem 1 (Informal): Let ∆θ∗ be the CAR-LoRA adapter trained on a distribution of compres-
sions p(C) over the initial model θ0 and now adapted by Ck for the specific case. Let θt = θ0 + δt
be an evolved model at time t, and let Ck be a specific compression operator. Let ∆θ∗t,k be an oracle
adapter retrained specifically for the compressed, evolved model Ck(θt). The difference in task loss
is bounded:

L(Ck(θt) + ∆θ∗)− L(Ck(θt) + ∆θ∗t,k) ≤ ϵdrift + ϵcomp + ϵgen (5)

where ϵdrift is the error from temporal drift, ϵcomp is the error from compression mismatch, and
ϵgen is a generalization error term that is minimized by our compression-aware training.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Proof Sketch. The full proof is provided in Appendix D. We begin by decomposing the total error
using the triangle inequality and the Lipschitz continuity of the loss function. The total error can
be expressed as a function of the difference between the applied adapter and the oracle adapter,
∥∆θ∗ −∆θ∗t,k∥. This difference can be further broken down:

∥∆θ∗ −∆θ∗t,k∥ ≤ ∥∆θ∗ −∆θ∗0,k∥+ ∥∆θ∗0,k −∆θ∗t,k∥ (6)

The first term, ∥∆θ∗ −∆θ∗0,k∥, represents the generalization gap of our adapter to a specific com-
pression Ck at t = 0. Our training objective, ECj∼p(C) [L(Cj(θ0) + Cj(∆θ))], explicitly minimizes
this expected generalization error (ϵgen) adcross the distribution of compressions. The second term,
∥∆θ∗0,k −∆θ∗t,k∥, represents the shift in the optimal adapter due to both the model evolution from
θ0 to θt (ϵdrift) and the change in the compression’s effect on the evolved model (ϵcomp). As ar-
gued in PortLLM (Khan et al., 2024), for small temporal drifts δ, this shift is also small. Because
our training regularizes the adapter to be robust to a wide range of parametric perturbations (from
the compression sampling), it inherently finds a smoother, more generalizable solution that is less
sensitive to the small perturbations from compression and temporal drift, thus all errors are bounded.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

To validate the effectiveness of our CAR-LoRA framework, we conduct a series of experiments
designed to rigorously test its performance across the dual challenges of hardware heterogeneity
and temporal model evolution.
Models and Datasets. Our experiments are conducted on a diverse set of modern, open-source
LLMs, including Llama-3.1-8B-Instruct (Grattafiori et al., 2024), Gemma-2-9B (Team
et al., 2024b), and Mistral-7B (Jiang et al., 2023). To evaluate their reasoning capabilities, we
use a comprehensive suite of downstream benchmarks: SQA (Iyyer et al., 2017), MATH (Hendrycks
et al., 2021), GSM8K (Cobbe et al., 2021), ANLI (Nie et al., 2020), CSQA (Talmor et al., 2019) and
ARC (Clark et al., 2018). For simulating the temporal drift, we continued pretrained the base model
using the following pretraining datasets, one for each time step: OpenOrca (Lian et al., 2023a),
SlimOrca (Lian et al., 2023b), OpenPlatypus (Lee et al., 2023), and AlpacaGPT4 (Peng et al., 2023).
More information about individual downstream tasks can be found in Appendix E.
Training Details. For temporal shift we do continued pretraining on the base models using a
LoRA (Hu et al., 2022) adapter with rank r = 64 and α = 128 with a learning rate of 0.0001
and 4 epochs each. For all the downstream tasks, we use LoRA adapters of rank of r = 8 and
α = 16. For each baseline, we train for 5 epochs on all tasks, and 20 epochs for CAR-LoRA. To
simulate a diverse edge hardware ecosystem, we incorporate a set of five distinct compression oper-
ators, C, into our training and evaluation pipeline: (1) Spurious Quantization: We include multiple
bit-widths: 8-bit integer (INT8), 4-bit floating-point (FP4), and 4-bit NormalFloat (NF4). (2) Struc-
ture Pruning: We apply masks to remove entire rows and columns of weight matrices. (3) Layer
Skipping (LS): We dynamically skip a random subset of Transformer layers during inference.
Baselines and Evaluation. We compare our CAR-LoRA adapter against a comprehensive set of
baselines to contextualize its performance: (1) Zero-Shot: The performance of the base model
(either original or evolved) without any adapter. (2) Standard LoRA (BF16): An adapter trained
on the full-precision base model. (3) Specialized QLoRA: Individual adapters trained from scratch
for each specific quantization scheme (INT8, FP4, NF4), representing the performance upper bound.

4.2 MAIN RESULTS ACROSS HARDWARE HETEROGENEITY

Table 1 presents the performance of CAR-LoRA across six reasoning benchmarks under diverse
hardware-oriented compression settings, compared against standard LoRA and specialized QLoRA
baselines. Several key insights emerge:

❶ CAR-LoRA matches specialized adapters under common quantization. Across INT8, FP4,
and NF4 quantization, CAR-LoRA consistently achieves performance on par with, and in some
cases slightly exceeding, specialized QLoRA adapters. For instance, on MATH, CAR-LoRA [FP4]
reaches 16.7%, outperforming both LoRA [BF16] (16.5%) and QLoRA [FP4] (16.1%). Similarly,
on SQA and GSM8K, CAR-LoRA maintains accuracy within a narrow margin (< 0.5%) of the
strongest baselines. This demonstrates that a single compression-aware adapter can subsume the
functionality of multiple retrained QLoRA variants.
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❷ CAR-LoRA preserves robustness across reasoning tasks. Unlike naive compression, which
typically introduces large accuracy drops, CAR-LoRA stabilizes performance across tasks of vary-
ing difficulty. On ANLI and CSQA, which demand higher-order reasoning, CAR-LoRA variants
yield accuracies indistinguishable from full-precision LoRA. This indicates that our compression-
aware training strategy prevents degradation in more semantically demanding benchmarks.

Table 1: Performance comparison across reasoning bench-
marks (SQA, MATH, GSM8K, ANLI, CSQA, and ARC)
for various adaptation strategies applied to Llama-3.1-8B.

Model SQA MATH GSM8K ANLI CSQA ARC
Zero-Shot 57.6 9.3 19.6 33.8 43.1 48.5

LoRA [BF16] 68.7 16.5 38.9 39.9 65.4 60.4
qLoRA [INT8] 68.8 16.5 38.5 39.5 65.1 60.5
qLoRA [FP4] 68.7 16.1 38.5 39.9 65.1 60.4
qLoRA [NF4] 68.0 16.4 38.6 39.5 64.9 60.4

CAR-LoRA [BF16] 68.8 16.4 38.9 40.0 65.3 60.4
CAR-LoRA [INT8] 68.4 16.1 38.4 39.7 65.4 60.5
CAR-LoRA [FP4] 68.4 16.7 38.5 39.8 65.1 60.4
CAR-LoRA [NF4] 68.5 16.4 38.1 39.4 65.1 60.3
CAR-LoRA [LS] 64.4 13.0 31.1 33.6 61.9 58.3
CAR-LoRA [SP] 67.6 16.0 37.5 39.5 65.1 60.5

❸ Structured pruning and layer
skipping expose the limits of ro-
bustness. While CAR-LoRA re-
mains competitive under structured
pruning, it experiences more pro-
nounced degradation under layer
skipping (LS). Accuracy drops are
especially visible on MATH and
GSM8K (from 38.9% to 31.1%).
These results highlight that while
CAR-LoRA generalizes well across
bit-width quantization, architectural
perturbations that disrupt full infer-
ence depth introduce sharper challenges, pointing to an avenue for future optimization.

Overall Takeaway: The results confirm that CAR-LoRA delivers a “universal” capability
across heterogeneous compression schemes. With only minor trade-offs in extreme cases such
as LS, our universal adapter maintains parity with individually retrained QLoRAs across di-
verse hardware constraints, thereby eliminating the retraining bottleneck that has historically
fractured the adapter deployment pipeline

4.3 ROBUSTNESS ACROSS MODEL ARCHITECTURES.

To evaluate whether the benefits of CAR-LoRA generalize beyond a single foundation model, we
benchmarked it on Mistral-7B and Gemma-2-9B across four reasoning datasets (SQA, MATH,
GSM8K, ARC). Table 2 summarizes the results, revealing three key findings:

❶ CAR-LoRA consistently outperforms baseline LoRA and QLoRA across both architec-
tures. For Mistral-7B, CAR-LoRA [BF16] achieves 72.1% on SQA and 17.1% on MATH, sur-
passing LoRA [BF16] (70.4%, 17.0%) and all QLoRA variants. Similarly, for Gemma-2-9B, CAR-
LoRA [BF16] attains 74.5% on SQA and 18.5% on MATH, outperforming LoRA [BF16] (72.8%,
17.3%) and specialized QLoRA adapters. These gains, while modest in absolute value, validate that
compression-aware training yields systematic improvements across distinct model families.

❷ CAR-LoRA preserves high performance under aggressive quantization. Even when con-
strained to INT8, FP4, or NF4, CAR-LoRA closely matches or exceeds specialized QLoRA. On
GSM8K with Mistral-7B, CAR-LoRA [INT8] scores 39.6%, compared to QLoRA [INT8] at 38.1%.
On Gemma-2-9B, CAR-LoRA [FP4] reaches 42.2% on GSM8K, outperforming all QLoRA base-

Table 2: Comparison of Mistral-7B and Gemma-2-9B across four reasoning benchmarks (SQA,
MATH, GSM8K, ARC). Best results per column are bolded.

Model / Method Mistral-7B Gemma-2-9B
SQA MATH GSM8K ARC SQA MATH GSM8K ARC

Zero-Shot 55.0 10.5 20.2 51.0 58.5 11.2 23.0 53.5

LoRA [BF16] 70.4 17.0 39.6 69.5 72.8 17.3 43.0 72.4
qLoRA [INT8] 70.2 15.8 38.1 69.0 74.5 17.0 40.7 71.6
qLoRA [FP4] 70.1 15.5 37.9 68.8 72.3 18.2 40.5 71.5
qLoRA [NF4] 69.9 15.7 38.0 68.9 72.1 16.9 40.6 71.3

CAR-LoRA [BF16] 72.1 17.1 39.4 69.6 74.5 18.5 42.8 72.7
CAR-LoRA [INT8] 71.5 16.6 39.6 69.5 74.0 18.0 42.5 73.0
CAR-LoRA [FP4] 71.4 16.8 39.2 69.2 73.8 18.1 42.2 72.9
CAR-LoRA [NF4] 71.6 16.7 39.1 69.0 73.9 18.0 42.0 72.7
CAR-LoRA [Structured Pruning] 70.8 16.2 38.7 69.6 73.2 17.6 41.5 72.1
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lines. These results highlight that CAR-LoRA’s single adapter can absorb diverse quantization arti-
facts while maintaining competitive reasoning performance.

❸ Structured pruning shows controlled degradation without collapse. Under structured prun-
ing, CAR-LoRA retains robustness across both models. For example, Gemma-2-9B with structured
pruning maintains 41.5% on GSM8K and 72.1% on ARC, staying within 1–2% of its full-precision
counterpart. This resilience contrasts with the brittle behavior of naive LoRA compression, demon-
strating that CAR-LoRA adapts effectively to topology-altering perturbations.

Overall Takeaway: These findings underscore that CAR-LoRA’s compression-aware training
paradigm is not tied to a single foundation model. Whether applied to Mistral-7B or Gemma-2-
9B, the universal adapter provides cross-architecture robustness, enabling near state-of-the-
art performance across reasoning tasks without retraining specialized adapters for each family.

4.4 GENERALIZATION TO UNSEEN COMPRESSION.

Table 3: Generalization Test for quantization methods.

Model SQA MATH GSM8K

LoRA [BF16] 68.74 16.52 38.86
qLoRA [INT8] 68.80 16.46 38.45
qLoRA [FP4] 68.67 16.07 38.49
qLoRA [NF4] 68.03 16.38 38.56

Ours [Unseen FP4] 67.41 15.93 37.42
Ours [Unseen NF4] 67.63 16.07 37.58

A crucial test of CAR-LoRA’s universality is
whether a single adapter trained on a distri-
bution of compression techniques can gen-
eralize to unseen schemes not included dur-
ing training. To evaluate this, we adopt the
following experimental setting: CAR-LoRA
is trained with exposure to all but one com-
pression operator (e.g., trained with INT8,
NF4, and pruning, but not FP4). At evalu-
ation time, we then test its performance on
the withheld operator (FP4 or NF4), thereby
simulating deployment on hardware configu-
rations unseen during training. Table 3 summarizes the results across three benchmarks: SQA,
MATH, and GSM8K.

❶ CAR-LoRA exhibits graceful generalization to unseen compression operators. When evalu-
ated on unseen FP4, CAR-LoRA achieves 67.41% on SQA and 15.93% on MATH, closely tracking
the specialized QLoRA [FP4] results (68.67%, 16.07% respectively). A similar pattern emerges
on unseen NF4, where CAR-LoRA attains 67.63% (SQA) and 16.07% (MATH), nearly matching
QLoRA [NF4] (68.03%, 16.38%). Importantly, performance on GSM8K remains within ∼ 1 point
of specialized adapters, confirming that robustness extends to reasoning-heavy tasks.

❷ The observed performance gap is marginal compared to specialized retraining. Although
CAR-LoRA under unseen compression lags by ∼ 0.5–1% absolute accuracy across datasets, the
adapter still preserves the majority of its effectiveness. For instance, on GSM8K, unseen FP4
(37.42%) trails QLoRA [FP4] (38.49%) by only ∼1 point, despite never having encountered FP4
during training. This demonstrates that compression-aware training imbues the adapter with a form
of “structural prior” that transfers across quantization families.

❸ Universality mitigates the retraining bottleneck in deployment pipelines. The ability to
maintain competitive performance under unseen operators is a significant practical advantage. In
real-world scenarios where hardware ecosystems evolve rapidly, requiring support for emerging
compression schemes, CAR-LoRA can operate out-of-the-box without specialized retraining. This
contrasts with QLoRA, which necessitates a fresh adapter for every new compression target.

4.5 TEMPORAL ROBUSTNESS

In addition to hardware heterogeneity and architectural variation, adapters deployed in practice must
remain robust as models evolve over time. To test this, we evaluate CAR-LoRA under a temporal
shift setting: adapters are trained on an earlier model checkpoint (e.g., Llama-3.1 base) and then
directly applied to later, updated versions of the model without retraining. Figure 3 summarizes
the results across five temporal checkpoints for INT8 quantization, reporting accuracy trends on six
reasoning benchmarks.
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Figure 4: Accuracy across six reasoning benchmarks. (a) Left: INT8 Quantization, (b) Middle: FP4, and (c)
Right: BF16.

CAR-LoRA preserves stable performance across temporal drift. While standard LoRA shows
gradual degradation as checkpoints evolve, particularly on MATH and GSM8K, CAR-LoRA
maintains nearly flat performance curves. For example, on SQA, CAR-LoRA hovers between
68.8–68.2% across all five checkpoints, in stark contrast to LoRA’s steeper decline. This indicates
that CAR-LoRA’s compression-aware training not only adapts to hardware perturbations but also
carries resilience against temporal parameter drift in evolving LLMs.
4.6 AMORTIZED SPACE AND TIME ANALYSIS

Table 4: Efficiency comparison between CAR-LoRA,
LoRA and QLoRA on SQA with Mistral-7B as the
model architecture.

Metric CAR-LoRA LoRA QLoRA

Params 20M 100M 100M
Max GPU Mem (GB) 350 350 60
GPU Hours 170 220 211

To fully assess deployment efficiency, we com-
pare CAR-LoRA against LoRA and QLoRA in
terms of trainable parameters, peak GPU mem-
ory, and GPU hours (Table 4). Since LoRA
and QLoRA require separate adapters per com-
pression operator, their amortized cost for sup-
porting five heterogeneous devices is obtained
by multiplying the single-device values by five.
In contrast, CAR-LoRA trains a single universal adapter that generalizes across all devices, so its
cost remains constant.

❶ CAR-LoRA reduces trainable parameter overhead by 5×. While LoRA and QLoRA each re-
quire 20M parameters per device (100M amortized), CAR-LoRA needs only 20M parameters total,
regardless of the number of devices. This substantial reduction reflects the efficiency of training a
single adapter rather than replicating device-specific ones.

❷ CAR-LoRA slashes training time through amortization. Supporting five devices requires 220
GPU hours for LoRA and 211 GPU hours for QLoRA. CAR-LoRA, however, completes training in
just 170 GPU hours total, offering a substantial reduction compared to QLoRA and an even larger
margin over LoRA.

5 CONCLUSION

This paper addresses the dual challenges of hardware heterogeneity and temporal model evolution
that make deploying personalized LLMs on edge devices impractical. We propose a novel training
framework that overcomes the costly retraining for each configuration. Our solution is a single,
universal adapter that is both compression-aware and temporally robust. We achieve this by aug-
menting the training process with a diverse set of simulated compression techniques, making the
adapter inherently resilient to parameter shifts from both hardware modifications and the natural
evolution of LLMs. Our “universal” adapter is validated through extensive experiments. Results
show that our single adapter achieves performance on par with a suite of specialized adapters in-
dividually retrained for each target hardware. Furthermore, it maintains high performance when
applied to future, evolved versions of the base model. By holistically addressing these critical chal-
lenges, our work pioneers a more scalable and efficient paradigm for deploying personalized AI,
bridging the gap between cloud-based personalization and the dynamic realities of the edge ecosys-
tem. Beyond its immediate benefits, our framework opens the door to more sustainable deployment
pipelines for industry-scale applications, where frequent model updates and diverse hardware are the
norm. We believe this approach lays the foundation for next-generation adaptive AI systems,
enabling seamless personalization at scale and fostering broader accessibility of advanced lan-
guage technologies across heterogeneous and resource-constrained environments.
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A LLM USAGE

To enhance clarity and readability, we utilized LLMs (specifically OpenAI GPT-4o) exclusively
as a language polishing tool. Its role was confined to proofreading, grammatical correction, and
stylistic refinement—functions analogous to those provided by traditional grammar checkers and
dictionaries. This tool did not contribute to the generation of new scientific content or ideas, and its
usage is consistent with standard practices for manuscript preparation.

B EXTENDED RELATED WORKS

Compression in LLMs. The deployment of LLMs on resource-constrained edge devices neces-
sitates model compression. The primary strategies for this are quantization, which reduces the
numerical precision of weights (Dettmers et al., 2022; Dettmers & Zettlemoyer, 2023), and prun-
ing, which removes entire parameters or structures to minimize memory footprint and accelerate
inference (Frantar et al., 2022; Sun et al., 2023; Frantar & Alistarh, 2023). The intersection of
PEFT and compression is an active area of research aimed at creating efficient, deployable models.
QLoRA (Dettmers et al., 2023), for instance, made a significant breakthrough by demonstrating that
it is possible to fine-tune a LoRA adapter on top of a 4-bit quantized base model, achieving sub-
stantial memory savings. More advanced methods like GaLore (Zhao et al., 2024) and its quantized
version, Q-GaLore (Zhang et al., 2024), have further pushed the boundaries of memory-efficient
training by combining quantization with low-rank gradient projections. Other works like WeLore
have explored the non-uniform low-rank properties of weight matrices to inform better compression
strategies (Jaiswal et al., 2024). However, all these approaches still operate under a “train-for-the-
target” paradigm; an adapter trained via QLoRA for a 4-bit model is incompatible with an 8-bit
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model or a pruned model without retraining. The existing literature treats personalization for a
specific compressed format as a distinct, isolated task. Our work departs from this established, se-
quential approach by integrating compression-awareness directly into the training loop, creating a
single, universal adapter that is robust to these post-training modifications from the outset and thus
holistically solves the deployment challenge.

Parameter Efficient Fine-tuning (PEFT). To mitigate the exorbitant costs of full-parameter fine-
tuning, a variety of Parameter-Efficient Fine-Tuning (PEFT) methods have been proposed. These
approaches range from inserting small, trainable “adapter” modules between layers (Houlsby et al.,
2019; Pfeiffer et al., 2020) to optimizing continuous prompts via prompt or prefix tuning (Lester
et al., 2021; He et al., 2022; Li & Liang, 2021). Among the most successful and widely adopted is
Low-Rank Adaptation (LoRA) (Hu et al., 2022), which freezes the pretrained model weights and
injects trainable, low-rank matrices into the Transformer layers. This drastically reduces the number
of trainable parameters, making personalization more accessible. However, while LoRA elegantly
solves the initial fine-tuning cost, the resulting adapters are often brittle and sensitive to shifts in the
base model’s parameters. The PortLLM framework (Khan et al., 2024) was the first to systematically
address this temporal challenge, demonstrating that adapters suffer from performance degradation
as base models evolve and proposing a training-free patching mechanism to maintain compatibility.
While PortLLM provides a crucial piece of the puzzle by addressing model evolution, it does not
account for the parallel problem of deploying a single adapter to a diverse and compressed hardware
ecosystem, leaving a critical gap in creating truly portable and durable solutions.

Large Language Models (LLMs). The field of natural language processing has been fundamen-
tally reshaped by the advent of LLMs. Foundational architectures like the Llama series (Touvron
et al., 2023a;b; Grattafiori et al., 2024), Mistral (Jiang et al., 2023), and Gemma (Team et al.,
2024a;b) have set new standards in performance, demonstrating remarkable capabilities across a
wide range of tasks. This success builds on the architectural evolution from earlier models like the
Transformer (Vaswani et al., 2017), scaling up the decoder-only paradigm to unprecedented sizes.
However, the immense scale of these models makes full fine-tuning computationally prohibitive for
most applications, and their generic pretraining often falls short in specialized, domain-specific con-
texts (Bommasani, 2021). The widespread adoption and proven power of these models have created
a pressing need for methods that can efficiently adapt them for specific use cases, particularly for de-
ployment beyond centralized cloud infrastructure. This necessity directly motivates the exploration
of both parameter-efficient adaptation and model compression.

C EXTENDED PRELIMINARIES

Transformer Architecture. Modern LLMs are predominantly based on the decoder-only Trans-
former architecture (Vaswani et al., 2017). At its core are two main components: the multi-head
self-attention mechanism and the position-wise feed-forward network (FFN). For a given input se-
quence embedding X ∈ Rn×d, where n is the sequence length and d is the model dimension, the
self-attention mechanism computes Query Q, Key K, and Value V projections using weight matri-
ces WQ,WK ,WV ∈ Rd×d. The output is calculated as:

Attention(Q,K, V ) = softmax
(
QKT

√
dk

)
V (7)

This allows the model to weigh the importance of different tokens in the sequence. The FFN, a
two-layer MLP, is then applied to each position independently to add expressive capacity.

D PROOF OF THEOREM 1

Assumptions. We introduce the following assumptions, which are standard in the analysis of
parameter-efficient fine-tuning under model perturbations:

1. Smoothness of the loss. The task loss L is L-Lipschitz continuous and β-smooth with respect to
model parameters:

|L(θ1)− L(θ2)| ≤ L∥θ1 − θ2∥, ∥∇L(θ1)−∇L(θ2)∥ ≤ β∥θ1 − θ2∥.
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2. Bounded temporal drift. The base model evolves smoothly over time: θt = θ0 + δt, with
∥δt∥ ≤ ∆, where ∆ is a bounded constant.

3. Compression stability. Each compression operator Ck is non-expansive, i.e.,
∥Ck(θ1)− Ck(θ2)∥ ≤ ∥θ1 − θ2∥, ∀θ1, θ2.

This ensures compression does not arbitrarily amplify parameter perturbations.

4. Lipschitz continuity of the oracle mapping. For a fixed compression operator Ck, let
Fk(θ) = argmin

∆θ
L(Ck(θ) + ∆θ)

denote the oracle adapter mapping. Assume Fk is LF -Lipschitz:
∥Fk(θ1)− Fk(θ2)∥ ≤ LF ∥θ1 − θ2∥.

Theorem 1. Let ∆θ∗ be the CAR-LoRA adapter trained on a distribution of compressions p(C)
over the initial model θ0. Let ∆θ∗t,k be the oracle adapter retrained specifically for Ck(θt). Then the
performance gap is bounded by

L(Ck(θt) + ∆θ∗)− L(Ck(θt) + ∆θ∗t,k) ≤ L ·
(
∥∆θ∗ −∆θ∗0,k∥+ ∥∆θ∗0,k −∆θ∗t,k∥

)
, (8)

where ∆θ∗0,k = Fk(θ0) is the oracle adapter for the initial compressed model Ck(θ0).

Proof. By definition of ∆θ∗t,k,

L(Ck(θt) + ∆θ∗t,k) ≤ L(Ck(θt) + ∆θ), (9)
for any ∆θ. Therefore, the gap is non-negative. Applying L-Lipschitz continuity of L yields:

Gap = L(Ck(θt) + ∆θ∗)− L(Ck(θt) + ∆θ∗t,k) (10)

≤ L · ∥∆θ∗ −∆θ∗t,k∥. (11)

Next, introduce ∆θ∗0,k = Fk(θ0), the oracle adapter for the initial compressed model. By the triangle
inequality,

∥∆θ∗ −∆θ∗t,k∥ ≤ ∥∆θ∗ −∆θ∗0,k∥︸ ︷︷ ︸
Generalization error

+ ∥∆θ∗0,k −∆θ∗t,k∥︸ ︷︷ ︸
Stability error

. (12)

Generalization error. The first term measures how far ∆θ∗ deviates from the oracle for a specific
compression Ck at t = 0. Since ∆θ∗ is trained by

∆θ∗ = argmin
∆θ

ECj∼p(C)
[
L(Cj(θ0) + ∆θ)

]
,

it minimizes the expected loss across all compressions in p(C), implicitly regularizing for robustness.
Denote this deviation as

ϵgen(k) = ∥∆θ∗ −∆θ∗0,k∥.

Stability error. The second term measures how much the oracle shifts as the base model evolves.
Since ∆θ∗0,k = Fk(θ0) and ∆θ∗t,k = Fk(θt), Lipschitz continuity of Fk implies

∥∆θ∗0,k −∆θ∗t,k∥ ≤ LF ∥θt − θ0∥ = LF ∥δt∥.
Denote this as ϵstab(t, k). This captures both temporal drift (ϵdrift) and compression mismatch (ϵcomp).
As noted in PortLLM (Khan et al., 2024), for incremental updates typical of model evolution, ∥δt∥
is small, keeping ϵstab bounded.

Final bound. Substituting back, we obtain
L(Ck(θt) + ∆θ∗)− L(Ck(θt) + ∆θ∗t,k) ≤ L ·

(
ϵgen(k) + ϵstab(t, k)

)
. (13)

This completes the proof. ■

Discussion. The assumptions are natural in practice. (i) Smoothness holds for standard loss func-
tions (e.g., cross-entropy). (ii) Temporal drift is bounded since model updates are incremental. (iii)
Quantization and structured pruning satisfy non-expansiveness under common norms. (iv) Lips-
chitz continuity of Fk reflects empirical robustness of adapters to small parameter changes. To-
gether, these justify why CAR-LoRA achieves bounded performance degradation across compres-
sion schemes and evolving models.
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E DATASET STATISTICS

Table 5: The datasets used in our Experimental Setup.
Dataset Domain License Train (Original) Train (Filtered) Test

SQA Iyyer et al. (2017) Commonsense MIT 2,061 1,544 229
CSQA Talmor et al. (2019) Commonsense MIT 9,741 6,478 1,140
ARC Clark et al. (2018) Commonsense CC BY-SA 4.0 1,199 1,035 1,172
MATH Hendrycks et al. (2021) Math MIT 7,500 2,511 5,000
GSM8K Cobbe et al. (2021) Math MIT 7,379 4,293 1,339
ANLI (r3) Nie et al. (2020) NLI CC BY-NC 4.0 100,459 883 1,200
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