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ABSTRACT

The COVID-19 corona virus has claimed 4.1 million lives, as of July 24, 2021. A variety of machine learning mod-
els have been applied to related data to predict important factors such as the severity of the disease, infection rate
and discover important prognostic factors. Often the usefulness of the findings from the use of these techniques
is reduced due to lack of method interpretability. Some recent progress made on the interpretability of machine
learning models has the potential to unravel more insights while using conventional machine learning models.1–3

In this work, we analyze COVID-19 blood work data with some of the popular machine learning models; then we
employ state-of-the-art post-hoc local interpretability techniques(e.g.- SHAP, LIME), and global interpretability
techniques(e.g. - symbolic metamodeling) to the trained black-box models to draw interpretable conclusions. In
the gamut of machine learning algorithms, regressions remain one of the simplest and most explainable models
with clear mathematical formulation. We explore one of the most recent techniques called symbolic metamod-
eling to find the mathematical expression of the machine learning models for COVID-19. We identify Acute
Kidney Injury (AKI), initial Albumin level (ALB I), Aspartate aminotransferase (AST I), Total Bilirubin initial
(TBILI) and D-Dimer initial (DIMER) as major prognostic factors of the disease severity. Our contributions are
- (i) uncover the underlying mathematical expression for the black-box models on COVID-19 severity prediction
task (ii) we are the first to apply symbolic metamodeling to this task, and (iii) discover important features and
feature interactions. Code repository: https://github.com/ananyajana/interpretable covid19.

Figure 1. (a)The symbolic metamodeling method takes as input the query data to the trained black-box model and the
query output variable value and performs symbolic regression to find the best fitting symbolic model expression g(x)
(b) This method transforms the problem of finding out the unknown function in the model space to finding out the
symbolic expression in the symbolic model space
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1. INTRODUCTION

COVID-19 or novel corona virus disease is a highly contagious disease spread through close contact with infected
persons. The corona virus pandemic has resulted in unprecedented challenges to all aspects of our society
such as healthcare, economy and education. A large number of techniques have been proposed and applied to
different COVID-19 related scientific questions such as identifying the important factors,4–6 predicting disease
severity,7,8 predicting patient mortality, predicting infection rate,9 the role of co-morbidities, predicting ICU
requirement10,11 etc. The recent Deep Learning models are known to produce high accuracy results for these
tasks. However, most of these models do not offer deep understanding of how the methods work and do not
provide interpretable results.. Yan et. al12 propose an interpretable machine learning model - a decision tree
with three features - 1) lactic dehydrogenase (LDH), 2) lymphocyte and 3) high-sensitivity C-reactive protein
(hs-CRP). While this model is very simple, it does not generalize well, as found out by a later study by Barish
et. al.13 Tsiknakis et. al14 propose a deep learning network to predict the severity of the disease from chest X
ray images. They interpret the results by applying attention maps which are further verified by medical experts.
Ramchandani et. al9 propose a model to forecast the infection rate changes in COVID-19 cases. This work
explains the second order feature interactions but lacks the interpretability at the individual feature level.

Arik et. al15 propose a compartmental disease modeling technique to forecast the progression of COVID-19.
In this work, the authors explore the evolution of the different compartments to explain the prediction. Pal
et. al16 propose an interpretable deep learning models to classify COVID-19 infected patients cough from non-
COVID-19 patients cough. The authors use a feature embedding and cough embedding module to achieve this
goal. Chen et. al17 propose a Random Forest based model to classify severe COVID-19 cases from non-severe
ones. They identify a total of 10 features from their 52 feature dataset. Gemmer et.al18 propose an alternative
fuzzy classifier based approach for the task of mortality prediction. Matsuyama et.al19 propose a convolutional
neural network based model for screening with chest CT image where wavelet coefficients of the entire image are
used without cropping. Zokaeinikoo et. al20 propose to classify chest radiography images using convolutional
deep neural network and apply an attention mechanism for interpretability. Tian et. al21 proposes to use an
LSTM and GRU based architecture for predicting the number of covi19 positive cases in 3-day, 5-day and 7-day
window. Their prediction take into account five risk factors including population size, preventable hospitaliza-
tion rate, and violent crime rate. Wu et al.22 uses local interpretability models like LIME and SHAP and also
visualize the relationship of the identified important features with the severity, but they also lack a mathematical
formulation of the models.

Most of these models focus on local interpretability methods for numerical models and Class Activation
Maps and Saliency Maps for image based machine learning models. Our main contribution is that we use
local interpretability methods to identify important features contributing to the machine learning outcome and
we also provide a mathematical formulation for the COVID-19 severity models and thereby helping in global
interpretability. Our work is organized as the follows - We first describe the dataset and its preprocessing and
then we inroduce and outline the interpretability techniques. Next we provide details on the experiments we
performed and the results. Finally we conclude with a brief discussion of the results and their relevance.

2. DATASET DESCRIPTION

2.1 Data cleaning and Preprocessing

We have a private dataset of 565 patients who were diagnosed with COVID-19 and underwent treatment at
the specific site between January 1, 2020 and April 30, 2020. The data was protected using HIPAA. The data
was de-identified before being shared and is compliant with the IRB guidelines at the relevant institutes(Robert
Wood Johnson hospital and Rutgers University). The data consists of different types of information such as
demographic information, COVID-19 screening method, information regarding hospital stay, laboratory findings
of different blood constituents, whether the patients had prior co-morbidities etc as given in the Table 1. We had
a total of 92 initial features in the dataset. Some of these features were nominal variables with multiple possible
values such as Prior Co-morbidities, Prior Medications, symptoms. We one-hot? encoded these variables. We
also combined some of the features when they did not result in loss of information, e.g. we merged the features
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Patient Information Features
Basic Information Age, Gender, Race/Ethnicity, BMI, Medical History, Prior medications, co-

morbidities,
Presenting Symptoms Duration of GI Symptoms prior to admission, Co-infections, GI bleed
Method of Diagnosis RT-PCR, Qualitative, Isothermal, Non-PCR, Serological Test, Chest computed

tomography
Laboratory/Imaging WBC, Hgb, Hct, MCV, Platelet, count initial, Neutrophil Abs initial, Lym-

phocyte Abs initial, Fibrinogen, Initial, D-Dimer, Glucose Initial, BUN initial,
Cr initial, K initial, GFR initial, AKI, Na initial, Bicarb initial, Alb initial-
worst-day5, Tbili initial, EGD, Initial EKG, Alk Phos-initial-worst-day5, CT
chest, ALT initial-worst-day5, CXR, AST initial-worst-day5, LDH inital, CPK
initial, Troponin initial, Ferritin Initial, ProBNP, CRP initial, HBa1c, TSH, T4
Free, Lipase initial, ABG, VBG, Urine Blood, Stool studies, IL-6, Autoimmune
markers, T-spot, Colonoscopy, Liver biopsy, Abd ultrasound

Treatment Mechanical ventilation, SpO2, Duration of GI symptoms after admission, Ad-
mitted to ICU, Length of stay in ICU,Died in hospital, Severe Outcomes, Read-
mission within 30 days

Table 1. Initial Features in the Dataset

Race and Ethnicity as Race Ethnicity. For the patients who have been admitted multiple times, we discarded
all the admission records except the chronologically last one.

2.2 Outcome Severity Metric

We define a new severity metric SEVER to measure the severity of the disease outcome. The severity met-
ric(SEVER) is assigned the value 1 if any of the following is true: - (i) the patient died in the hospital, (ii)
the patient had been admitted to ICU, (iii) the patient required mechanical ventilation support. Otherwise the
outcome severity is assigned the value 0.

2.3 Feature Selection

We had a total of 214 features in the dataset after the initial data cleaning and one-hot encoding. All of
these features might not be important. Moreover, building a model with all the features could make the model
unnecessarily complex. Hence in this step we discard some of the non-useful features and select the most
important features in the dataset.

We drop the features ADMDATE (date of admission), DISDATE (date of discharge), T stay (type of stay),
LENG (length of hospital stay), PAT ID (patient ID), V ID (visit ID), ID (another ID), TREATMENT (treat-
ment offered to the patients) from feature sets. The reason behind excluding these features is that they are not
intrinsic properties/features of a patient.

There are many missing values in our dataset. We exclude the features where more than 20% of the patients
have missing values of the features while calculating feature importance.

The one-hot encoded binary categorical features with 90% (or more) of the values from the same category
have been discarded due to low variance.

Mutual information is the amount of information about a random variable that can be obtained by observing
another random variable. It is expressed as

I(X,Y ) =
∑
x,y

p(x, y)log p(x,y)
p(x)p(y)

Where p(x, y) is the joint distribution and p(x) and p(y) are the marginal distributions of the two random
variables X and Y . We then select the features(attributes) where the mutual information with the outcome
variable is high. There are still missing values in the dataset. We get rid of those patient records who still have
missing features. We normalize of the values to be in the range [0, 1].

We then calculate the correlation between the features and also the outcome variable. We discard the features
which have very high correlation with any other feature or the outcome variable. This is to ensure the model is
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Figure 2. Feature Correlation Matrix

not unnecessarily a complex model with a large number of features. From the correlation matrix Fig. 2 we find
that Hgb and Hct are highly correlated and similarly ALT I and AST I are highly correlated with correlation
value > 0.8 We also notice that SPO and WBC has negative correlation with the outcome variable SEVER, this
is consistent with the medical knowledge as we know that the oxygen saturation level drops with COVID-19
severity and White Blood Corpuscle count increases. We discard the feature SPO as SPO is explicitly indicative
of the disease severity and we intend to explore other prognostic features which may be rather implicit. At this
stage we have 392 patients with 20 attributes or features listed in Table. 2.3

3. LOCAL AND GLOBAL INTERPRETABILITY TECHNIQUES

Local interpretability methods offer explanation of the outcome for individual data points whereas global inter-
pretability techniques try to explain the model globally. In this work we use two local interpretability techniques
- SHAP, LIME and one global interpretability technique symbolic metamodelling. All of these techniques are
model agnostic.

3.1 Shapley Additive Analysis(SHAP)

This approach2 is based on the game theoretic concept of Shapley values that determines how players contributed
marginally to the cost and gain. This method computes the contribution of each feature in the final prediction
for an instance. Each feature is treated as if the player is in a coalition or a cooperative game. Shapley values
tells us how to fairly distribute the payout or the predicted outcome among the players or features. These values
are computed for each of these features or players. Shapley value is the average marginal contribution of a feature
across all possible coalitions of features.

3.2 Local Interpretable Model-agnostic Explanations(LIME)

This method is based on the concept of local surrogate models. A local surrogate model tries to explain the
prediction of individual instances.3 In this method, the black-box model is probed multiple times with samples
which are perturbed versions or variations of the samples from the original dataset. The predictions for these
perturbed versions are noted. A modifed dataset is built with the perturbed samples and the corresponding
predictions. An interpretable model is trained on this modified dataset and this interpretable model is weighted
by the proximity of the sampled instances to the instances of interest.
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Variable Name Medical Meaning Description
AKI (any time during the hospitalization) Acute kidney injury Laboratory/Imaging
ALB I or Alb initial (3.5 - 5.5 g/dL) Albumin Laboratory/Imaging
ALK I or Alk Phos inItial (45- 115 IU/L) Alkaline phosphatase Laboratory/Imaging
AST I or AST intial (10-55 IU/L) Aspartate aminotransferase Laboratory/Imaging
BUN initial (6-23mg/dL) Blood urea nitrogen Laboratory/Imaging
CR or Cr initial (.5-1.2mg/dL) Creatinine Laboratory/Imaging
CXR2 bilateral opacities/infiltrates Laboratory/Imaging
DIMER or D-Dimer initial (0-500 ng/mL) - Laboratory/Imaging
EKG or Initial EKG QTc interval number (esp if
received Hydroxychloroquine
or Azythromycin) Electrocardiogram Laboratory/Imaging
GFR initial (>60mL/min/1.73M*M) Glomerular filtration rate Laboratory/Imaging
Glucose initial (70-100mg/dL) - Laboratory/Imaging
Hct initial (36.7-44.7%) Hematocrit Laboratory/Imaging
MCV initial (78.0-99.0fL) Mean corpuscular volume Laboratory/Imaging
NA I or Na initial (136-145mmol/L) Sodium Laboratory/Imaging
TBILI or Tbili initial (0.1 - 1.2 mg/dL) Total Bilirubin Laboratory/Imaging
WBC initial (4.9 – 10.0 Thousand/ul) White blood cells Laboratory/Imaging
RACE E Race and Ethnicity Personal Information
Age - Personal Information
Prior Cmorbidities(HTN) Hypertension Co-morbidities
SYMP20 or AMS Altered mental status Presenting Symptoms

Table 2. Features Selected and their medical meaning

3.3 Symbolic Metamodeling

Symbolic metamodel1 can be thought of as a global surrogate model or model of a model. Metamodels usually
offer a white-box or transparent approximation of the black-box model. The main challenge associated with
black-box models is the lack of knowledge about the underlying function. This method tries to approximate the
underlying function with the help of Meijer-G functions. Meijer-G functions are a very general class of function
which can express most of the special functions like exponential, logarithm, cosine, hypergeometric etc. Meijer-G
function is defined as a line integral in the complex plane L and is dependent on real-valued parameters. It can
be expressed as:

Gm,np,q

(
a1, . . . , ap
b1, . . . , bq

∣∣∣∣z)
= 1

2πi

∫
L z

s
∏m

j=1 Γ(bj−s)
∏n

j=1 Γ(1−aj+s)∏q
j=m+1 Γ(1−bj+s)

∏p
j=n+1 Γ(aj−s) ds

where Γ denote the gamma function. The metamodel proposed in this work1 is parameterized by Meijer-G
functions which enables the application of gradient descent algorithms for parameter optimization. This method
is a post-hoc analysis technique. It queries a trained model for the outcome variable value with respect to a
given input data point as seen in Fig. 1. The query input data point and the model’s outcome value pair is
used by the symbolic metamodel to train itself and perform gradient descent for parameter optimization. This
technique gives a metamodel with a closed form algebraic solution.

4. EXPERIMENTS ON COVID-19 DATA

4.1 Training different machine learning models

We use three different machine learning models for the severity prediction task - Random Forest, Light Gradient
Boosting Mechanism(LightGBM) and Extreme Gradient Boosting(XGBoost) Trees. We use a 70:30 train-test
split on our data of 392 patient records. The test set contains 118 patient records(82:non-severe and 36:severe
outcomes).
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4.1.1 Random Forest

Random Forest is an ensemble learning method used for classification and regression problems. This method
constructs a number of decision trees at training time and the final prediction is the class which is the mode
or mean/average of all those decision trees. Random Forests try to address the overfitting problem in single
Decision Trees. However, as this method produces a collection of decision trees, it is complicated to interpret
the model although it performs superior to a single decision tree.

4.1.2 Light Gradient Boosting Machine or LightGBM

Gradient boosting method is an ensemble method where weak learners are converted to be better learners over
iterations. LightGBM is a high-performance, decision tree based gradient boosting framework. It splits the tree
leaf-wise according to the best fit at that stage. Since the split is leaf-wise the loss reduction is usually better
than level-wise loss reduction as in case of other boosting algorithms. This loss is reduced by using gradient
descent.

4.1.3 Extreme Gradient Boosting or XGBoost

XGBoost is one of the most widely used gradient boosting method. This method is dependent on pre-sorted
algorithm and histogram based algorithms for finding the best split and the split is depth-wise which is unlike
the level-wise split in lightGBM. This method is well regularized i.e. it tries to penalize more complex models
by using L1 and L2 loss.

4.2 Results

We run our experiments using the three black-box models and note the important features as shown in Table. 4.2.

Model AUC Important Features(descending order)
Random Forest 0.8285 ’AKI’, ’WBC’, ’ALB I’, ’BUN’, ’AST I’
LightGBM 0.8333 ’AKI’, ’MCV’, ’EKG’, ’ALB I’, ’CR’,
XGBoost 0.8196 ’AKI’, ’CXR2’, ’Hct’, ’AST I’, ’Prior Co1’

Table 3. Important features identified by individual methods

4.2.1 Metric

We used Area Under the ROC Curve(AUC) as the metric for measuring the performance of the black-box models
and their white-box approximations.

4.3 Interpreting the Models

4.3.1 SHAP Analysis

The SHAP analysis of a patient’s outcome prediction via the three different trained machine learning models is
shown in Fig. 3. As the analysis reveals AKI and ALB I reduce the outcome value for this particular patient.
SHAP method also gives a global summary based on the instance-wise analysis. In the SHAP summary plots
for the three different methods i.e. Random Forest, LightGBM and XGBoost in Fig. 4 we see that all of them
unanimously put Acute Kidney Injury as the most important feature to predict disease severity outcome. We
also note that all the summary plots also reveal ALB I and AST I unanimously in the top five major prognostic
features. Higher values of AKI, higher values of AST I and lower values of ALB I push the outcome value higher.
This is consistent with medical knowledge.23–25

4.3.2 LIME Analysis

The trained Random Forest model was probed using LIME method, and the local explanations were generated
for the two patients as shown in the Fig. 5. One of the two patients had a severe outcome and the other one
had a non-severe outcome. The LIME analysis on the Random Forest model also shows that higher values of
Acute Kidney injury(AKI) tries to increase the prediction value i.e. make the patient outcome severe whereas
higher ALB I value try to make the patient outcome non-severe. Similarly high AST I tries to make the patient
outcome severe.
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Figure 3. SHAP analysis for a patient with non-severe outcome by different black-box models(blue:features which reduce
the outcome value, pink:features which try to push the prediction value higher) [zoom in for better view]

Figure 4. SHAP Summary plots for the three black-box models[zoom in for better view]

4.3.3 Symbolic Metamodeling

We provide the symbolic models or mathematical formulations for the three individual machine learning models
in the Table. 4.3.3. Here X0,... X19 are the 20 features in our dataset with the mapping as - AKI[X0], ALB I[X1],
ALK I[X2], AST I[X3], Age[X4], BUN[X5], CR[X6], CXR2[X7], DIMER[X8], EKG[X9], GFR BIN[X10], Glu-
cose[X11], Hct[X12], MCV[X13], NA I[X14], Prior Co1[X15], RACE E[X16], SYMP20[X17], TBILI[X18], WBC[X19].
We also delve deeper into the individual formulas(refer to the code repository) to gain more insights into the
individual black box models as follows:

4.3.4 Symbolic metamodel for Random forest

The most important five features i.e. values of the coefficients in descending order are TBILI[X18](0.00919),
AST I[X]3(0.00865), DIMER[X8](0.00312), EKG[X9](.00071), ALB I[X2](0.00041) As we can see, AST I and
ALB I which are two of the top five features determined by Random Forest(refer Table. 4.2 are part of the
top five features from the symbolic metamodel as well. The feature interactions with highest coefficients are
SYMP20[X17]AST I[X3](3.81), Hct[X12]Age[X4](3.16). AST I, which is already found to be an important feature
is found to be a part of the most important feature interaction.
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Figure 5. LIME analysis(red:features that decrease the prediction value, and green:features that increase the prediction
value)

Model Expression(Symbolic Metamodelling) AUC(Model) AUC(Symbolic metamodel)

Random Forest 1

5.63e0.2293X
3
0X3

1−0.0488X3
0X3

10+....−0.0007X9
0.8285 0.7896

LightGBM 1

2.34e0.0209X
3
0X3

1−0.0006X3
0X3

10+....−0.0001X9
0.8333 0.7632

XGBoost 1

14.01e0.4132X
3
0X3

1−0.0297X3
0X3

10+....−.000098X9
0.8196 0.7517

Table 4. mathematical expressions obtained using symbolic metamodelling

4.3.5 Symbolic metamodel for lightGBM

The most important five features i.e. values of the coefficients in descending order are DIMER[X8](0.000555),
EKG[X9](0.000188), ALK I[X2](0.000148), AST I[X3](0.000142), TBILI[X18](0.000086) As we can see, EKG
which is one of the top five features determined by LightGBM(refer Table. 4.2) is part of the top five features
from the its symbolic metamodel as well.

The feature interactions with highest coefficients are AST I[X3]DIMER[X8](0.6419), SYMP20[X17]BUN[X5](0.636)
We notice the AST I is one of the most important features for this metamodel and it is also part of the most
important feature interaction for this metamodel.

4.3.6 Symbolic metamodel for XGBoost model

The most important five features i.e. values of the coefficients in descending order are DIMER[X8](0.06701),
AST I[X]3(0.02893), TBILI[X18](0.00186), AKI[X0](0.00143), Glucose[X11](0.00121)

As we can see, AST I and AKI which are two of the top five features determined by XGBoost(refer Ta-
ble. 4.2 are part of the top five features from the its symbolic metamodel as well. Interestingly one of the
important features decided by all the black-box models i.e. ALB I, although not present in the top five features
in this metamodel, it is part of one of the two most important feature interactions - NA I[X14]WBC[X19(4.71)
AKI[X0]ALB I[X1](4.47)

We also notice that all the symbolic metamodels evaluate TBILI and DIMER to be important features. This
insight is neither captured by the black-box models nor their local interpretations although medical knowledge
confirms this.26,27 As we can see from the results in Table. 4.3.3, there is some gap between the performance of
the models and the white-box approximations. This is due to the fact that our dataset is fairly small and usually
the search space of Meijer-G functions is much larger in comparison, however, even with our limited dataset we
could provide a meaningful functional form.
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4.4 Discussion

In this work we interpreted the COVID-19 outcome severity at individual patient’s level as well as globally. Our
black-box models identified Acute Kidney Injury (AKI), initial Albumin level (ALB I) and Aspartate amino-
transferase (AST I) as important features. Using the local interpretation methods we explored how these features
contributed to the individual outcomes and finally we provided a global relationship between the features. This
helped us determine which features are important and by how much they contribute globally to the outcome,
exactly how they are related to each other and their specific interactions. The global formulation also helped us
discover two important features which were neither captured by the black-box model nor the local interpretabil-
ity methods - Total Bilirubin initial (TBILI) and D-Dimer initial( DIMER). Hence the global interpretation
significantly boosted the trust-worthiness of our black-box models. Using the interpretability method alongwith
black-box models helped us identify five major prognostic features - Acute Kidney Injury (AKI), initial Albu-
min level (ALB I), Aspartate aminotransferase (AST I), Total Bilirubin initial (TBILI) and D-Dimer initial(
DIMER).

Recently after more covid19 datasets became available privately and publicly, some works have been done
on interpreting the black-box models, our work is the first to use both global and local interpretability tech-
niques with machine learning and draw meaningful conclusions from these complementary methods. All the
interpretability techniques used in this work are model agnostic and can be easily extended to Deep Learning
models and get a mathematical formulation. Given our encouraging results we can conclude that incorporating
interpretability methods in both machine learning and deep learning methods applied to larger datasets will help
us uncover more interesting insights into this disease.
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