NTPP: Generative Speech Language Modeling for Dual-Channel Spoken
Dialogue via Next-Token-Pair Prediction

Qichao Wang “! Zigiao Meng “'?> Wengian Cui® Yifei Zhang* Pengcheng Wu* Bingzhe Wu’ Irwin King

3

Liang Chen Peilin Zhao '

Abstract

Inspired by the impressive capabilities of GPT-
40, there is growing interest in enabling speech
language models (SLMs) to engage in natural,
fluid spoken interactions with humans. Recent
advancements have led to the development of
several SLMs that demonstrate promising results
in this area. However, current approaches have
yet to fully exploit dual-channel speech data,
which inherently captures the structure and dy-
namics of human conversation. In this work, we
systematically explore the use of dual-channel
speech data in the context of modern large lan-
guage models, and introduce a novel genera-
tive modeling paradigm—Next-Token-Pair Pre-
diction (NTPP)—to enable speaker-independent
dual-channel spoken dialogue learning using
decoder-only architectures for the first time. We
evaluate our approach on standard benchmarks,
and empirical results show that our proposed
method, NTPP, significantly improves the con-
versational abilities of SLMs in terms of turn-
taking prediction, response coherence, and natu-
ralness. Moreover, compared to existing methods,
NTPP achieves substantially lower inference la-
tency, highlighting its practical efficiency for real-
time applications. Demo and code can be found
athttps://audio-3059.pages.dev.

1. Introduction

The emergence of large language models (LLMs), espe-
cially the GPT series as referenced in (Patel et al., 2023;
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Figure 1. The dual-channel speech encapsulates various conversa-
tional turn-taking events, including: (a) Overlap, (b) Backchannel,
(c) Pause, and (d) Interruption. These events are intermingled
within the single-channel audio stream but could be explicitly ob-
served in the dual-channel audio stream.

OpenAl, 2023; 2024), has significantly revolutionized the
realm of artificial intelligence. These potent language mod-
els (LMs) derive their capabilities from pretraining on vast
text corpora, utilizing decoder-only transformer architec-
tures, and are steered by a next-token prediction (NTP)
objective function. Recently, there’s been a surge of inter-
est in merging LLMs with other modalities, such as images
(Radford et al., 2021; Li et al., 2023; Liu et al., 2023b), audio
(Zhang et al., 2023a; Hassid et al., 2023), protein sequences
(Lin et al., 2022; Madani et al., 2023), and more. Among
these modalities, audio or speech data is particularly crucial
as it allows LLMs to engage in real-time vocal interactions
with humans. The recently introduced GPT-40 model (Ope-
nAl, 2024) demonstrates exceptional proficiency in handling
real-time interactions with users in conversational contexts.
During the demo presentation, it was capable of generat-
ing genuine emotional responses and engaging users with
prompt reactions. However, these functionalities present
additional challenges, as the model must accurately interpret
the unique audio information embedded in human speech
while performing inference with minimal delay.

A wide range of advanced speech language models (SLMs)
(Xie & Wu, 2024; Zhang et al., 2023a; Fang et al., 2024,
Hassid et al., 2023; Rubenstein et al., 2023; Nguyen et al.,
2024, Fathullah et al., 2024; Nachmani et al., 2024) has been
developed to enable real-time voice interactions with human
users. These models typically rely on single-channel audio
data and some of them focus on aligning audio and text
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Table 1. Comparisons to existing dual-channel spoken dialogue
generative models.

Model Speaker-Independent  Encoder-Free ~VAD-Free Single KVCache
dGSLM v v

LSLM v v

Moshi v

NTPP (Ours) v v v v

streams. However, the potential of dual-channel speech data
has been somewhat under-explored. Dual-channel speech,
which records the audio channels of two speakers inde-
pendently, offers distinct advantages over single-channel
data. Notably, it can explicitly capture various conversa-
tional dynamics, such as overlaps, pauses, and interruptions,
providing a richer representation of real-world interactions.
Some examples of these turn-taking events are illustrated in
Figure 1. These dynamics can help train SLMs to engage
in more natural and fluent conversations with human users
across diverse scenarios.

dGSLM (Nguyen et al., 2023) was the first to introduce
textless generative spoken dialogue modeling for simulat-
ing dual-channel speech using a Siamese two-tower trans-
former architecture. More recently, LSLM (Ma et al., 2024)
proposed token fusion strategies, in which dual-channel
audio tokens are combined and fed into a causal trans-
former. Moshi (Défossez et al., 2024), in contrast, presents a
text-based multi-channel speech sequence model that aligns
multi-scale audio streams with textual streams in parallel.
However, these approaches generally either rely on an ad-
ditional encoder—randomly selecting one speaker’s chan-
nel as the input condition—or lack speaker-independence,
meaning the learned distribution is not permutation invariant
with respect to speaker order.

In this research, we propose a novel dual-channel speech
autoregressive generative model based on an innovative
paradigm called next-token-pair prediction (NTPP), utiliz-
ing a decoder-only transformer architecture. The model is
trained to predict the next pair of speech tokens conditioned
on previously generated spoken dialogues. This approach
capitalizes on the time-aligned structure of dual-channel
speech sequences, enabling a more precise representation of
the generative distribution in spoken dialogues. To expand
its applicability in advanced speech language models, we ex-
tend our solution from vector quantization (VQ) tokenizers
(van den Oord et al., 2017) to the more advanced residual
vector quantization (RVQ) (Lee et al., 2022) tokenizers.

Compared to existing approaches, NTPP offers four key
advantages. First, instead of modeling a conditional dis-
tribution, NTPP directly estimates the joint distribution of
both speakers. Second, it adopts a decoder-only architecture,
which provides improved learning and parameter efficiency
compared to models requiring additional encoders (Dao

etal., 2022). Third, NTPP eliminates the need for a voice ac-
tivity detection (VAD) module, learning diverse turn-taking
behaviors in a fully data-driven manner. Fourth, it maintains
a single KVCache (Pope et al., 2023b), enabling greater
memory and inference efficiency. Table 1 summarizes these
advantages in comparison to existing methods.

We conduct comprehensive experiments to evaluate the
performance of our approach across multiple dimensions.
First, we assess continual dialogue generation by provid-
ing preceding conversational context, following established
benchmarks (Nguyen et al., 2023). We further evaluate
response success rates during interruption events in syn-
thesized streaming multi-turn conversations. The results
demonstrate that our method enables SLMs to more effec-
tively model the distribution of turn-taking events in spoken
dialogue. In addition, we perform human evaluations to
assess the meaningfulness and naturalness of the generated
responses. To test speaker independence, we permute the
input channels of different speakers and observe the robust-
ness of model performance; our NTPP exhibits the highest
stability among all baselines. Finally, we measure inference
latency to determine whether the model can generate timely
and coherent responses—excluding initial non-informative
tokens. Our findings show that NTPP delivers faster re-
sponse times, with performance remaining strong, particu-
larly as the number of conversation turns increases. To sum
up, our contributions can be summarized as follows:

* We introduce a novel next-token-pair prediction
(NTPP) paradigm for generative spoken dialogue mod-
eling, implementing a decoder-only architecture with
innovative design enhancements.

* We develop compatible solutions for both VQ and RVQ
speech tokenizers, enabling a broad range of SLMs to
effectively learn from dual-channel speech using our
proposed method.

* We comprehensively evaluate NTPP, highlighting its
strengths in conversational event simulation, speaker
independence, and inference latency, among others.

2. Related Works

Speech Language Models (SLMs). Recent advance-
ments in SLMs have focused on integrating LLMs (OpenAl,
2023; Dubey et al., 2024; Chu et al., 2024) to unify au-
dio and text processing (Ao et al., 2022; Tang et al., 2022;
Wang et al., 2023; Rubenstein et al., 2023). Some models,
such as SpeechT5 (Ao et al., 2022) and SpeechNet (Tang
et al., 2022), adopt an encoder-decoder framework to handle
various speech-related tasks. However, these approaches
require specialized pre-processing and post-processing mod-
ules tailored to different input and output modalities. In con-
trast, models like VioLA (Wang et al., 2023), AudioPaLM



NTPP: Generative Speech Language Modeling for Dual-Channel Spoken Dialogue via Next-Token-Pair Prediction

Speaker Channel A -I|I|l-l--l-|||||- -||||I-|--l-|||||-

Tokenizer

565
( b b b b
Sf *S2 *IS3 "S54 Fss

De-tokenizer

Speaker Channel B -I|I|I-I--I-I|||I--|-|||||-|-|||||-
5
P(SP159) = D" P($LIs1, 58,59
t=1

(a) Turn—-based Dialogue Modeling

Speaker Channel A -I|||I-|--|-|||||--||I||.|--|-|||||-

Tokenizer

st sf | sf ] st

E Encoder J
pr— — 2
sp sh +lsh ish 4
De-tokenizer
Speaker Channel B -I|||I-I--I-I|||I--|-|||||-|-|||||-
5

P(s?159) = Z PSPISE_ 1y )P, S8 g, oy 59)

t=1
(b) NTP with context encoder

Speaker Channel A -I|III-I--I-II|II--I|I|I-I--l-l|||l-

Tokenizer

Si 152 1S5 154 |~ Dual-channel *@]

ws?_ﬁi]_ Transformer _,’Sg]
De-tokenizer

Speaker Channel B .|||||.|..|.|||||...-||||m-|||||-

a ¢b) — a o a acacd b b bbb
P(5%5") = P(sf, 55,55, 5§ 5,57, 53,58, 5 s¢)
5

Decoder

S5

- b b b
= Z P(s, s ISt 5¢-1, -, ST, ST)
t=1

(c) Our NTPP learning paradigm

Figure 2. An illustration of three different generative models for spoken dialogue is shown: (a) Turn-based dialogue modeling, as
formulated in Eq. 4, which is commonly used in cascading and multi-modal approaches; (b) The NTP paradigm with a context encoder
architecture, adopted by models such as LSLM, Moshi, and similar variants; (c) Our NTPP paradigm, which employs a decoder-only
transformer. Replacing the decoder-only architecture with an encoder-decoder Siamese transformer yields the dGSLM.

(Rubenstein et al., 2023), SpeechGPT (Zhang et al., 2023a),
and SpeechGen (Wu et al., 2023) utilize decoder-only trans-
formers, representing both discrete audio and text tokens
within a shared vocabulary. Building on these advance-
ments, our work leverages SLMs as pre-trained foundation
models, further refining them through continual pre-training
on the dual-channel speech.

Spoken Dialogue Language Models. Recently, there has
been growing interest in spoken dialogue language mod-
eling, inspired by the advancements of GPT-40 (OpenAl,
2024). Works such as LLama-Omni (Fang et al., 2024) and
Mini-Omni (Xie & Wu, 2024) generate voice-based dia-
logue data from text-based question-answering pairs. These
SLMs are trained on both speech and text sequences, with
inference optimized for parallel processing. However, these
approaches resemble multi-modal models (Liu et al., 2023b;
Alayrac et al., 2022; OpenAl, 2023) and are not well-suited
for handling real-time, streaming spoken interactions. A
promising yet relatively underexplored direction is dual-
channel speech language modeling. dGSLM (Nguyen et al.,
2023) addressed dual-channel speech sequence generation
prior to the emergence of modern LLMs, relying on con-
ventional encoder-decoder architectures. In contrast, LSLM
(Ma et al., 2024) and Moshi (Défossez et al., 2024) leverage
LLMs to model dual-channel speech autoregressively, em-
ploying speaker fusion strategies and RQ-transformer (Lee
et al., 2022) connections, respectively.

3. Preliminaries

SLMs. SLMs are usually obtained via continually pre-
training LLMs on large-scale single-channel speech se-
quences. To fit the NTP learning paradigm in LLMs, input
continuous speech signals, x € R with time length T, are
firstly transformed into a sequence of discrete speech tokens
S = (s1,...,87) = Q(x) (T <« T") using a quantizer Q.

The quantization operation Q is mapping each latent feature
f;, where f = £(x) € RT*? is downsampled latent feature
of x derived from an encoder &, to the code index s; of its
nearest embedding vector:

s; = argmin||z, — fi||2, (M
ve[V]

where z; denotes the ith embedding vector of the learnable
codebook z € RV *4 containing |V'| vectors. We refer the
readers for the detailed VQ techniques to (van den Oord
et al., 2017). If the VQ-tokenizer is adopted, then LLMs are
trained via the typical NTP objective:

T

p(s1, 82, 57) = [ [ p(silse-1, o s2,51). (@)
t=1

Another popular quantization technique used for speech
tokenizers is RVQ (Lee et al., 2022) since it can maintain
higher reconstruction quality. Specifically, each feature f; is
estimated by D codes in a residual manner such that £, =
Zi1+2;2+...+2; p where each z,4 is indexed s;4. Therefore,
the latent feature is represented by a two-dimensional array
of indices S € RT*P . Then the probability distribution
p(S) is factorized as

T D
p(s1,s2,.57) = [ [[ p(stalS<tsst.<a)- 3)

1d=1

t=

LLMs trained continually using Eq.2 or Eq.3 effectively cap-
ture the underlying generative distribution of speech tokens,
which are seamlessly integrated into the text vocabulary.

Generative Spoken Dialogue Modeling. The spoken di-
alogue is a pair of speech signals (x%,x"), containing two
speakers’ conversations (speakers a and b). By applying the
previously mentioned quantization techniques, (x%, x®) can
be converted to a pair of speech token sequences (5%, S?).
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Training SLM with autoregressive transformers on the dual-channel speech sequence
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Figure 3. The illustration of the autoregressive transformer for learning the dual-channel speech sequence, with the token pair embedding
operation (left), the overall architecture (middle) and the pair-wise causal masking mechanism (right).

Existing popular approaches model dialogue in a sequential
generation manner, p(S%|.S%), treating one speaker sequence
(assume a) as a given condition:

T
p(8°15%) = [ p(stlst- 1.1, 9). @
t=1
As previously mentioned, this approach is limited to han-
dling multi-turn (even one-turn) conversations and cannot
support real-time interactions with human users, as it fails
to leverage the time-alignment property inherent in human
speech conversations. Recently, some works have started
to focus on the full duplex capabilities of spoken dialogue
language models. Moshi (Défossez et al., 2024) and LSLM
(Ma et al., 2024) leverage different architectures follow-

ing the NTP manner to learn the conditional distribution
p(SS) of the dual-channel speech:

T

p(S°|5*) = HP(SE:)‘S?—LD St1:1)-
t=1

&)

Moshi employs the RQ-transformer to encode both s?_;
and s{_,.; into a conditional latent representation for pre-
dicting s?; LSLM, on the other hand, explores various token
fusion strategies to merge s¢ and s? at each time step t.
Although LSLM adopts a decoder-only architecture, it still
models p(S®S%), as its training objective focuses solely on
predicting S®. In contrast, dGSLM employs a two-tower
Siamese transformer with an encoder-decoder architecture
to model the joint distribution p(S¢, S?), thereby enabling
speaker-independent learning. In this work, we achieve
the same goal using a decoder-only architecture NTPP. A
comparison of these approaches is illustrated in Figure 2.

4. Methods: Next-Token-Pair Prediction
4.1. NTPP Dual-Channel Generative Modeling

Existing spoken dialogue models are mainly learning the
conditional distribution p(S®|.S¢) (or p(S¢|S?)) as shown in

Eq. 4 and Eq. 5. In this work, we propose a novel approach,
called next-token-pair prediction (NTPP), that explicitly
learns the joint distribution of speaker sequences p(S¢, S?)
using the decoder-only transformer. Specifically, the model
learns to predict the next token pair (s¢,s?) at time step ¢
conditioned on the previously generated token pairs from
step ltostept — 1:

p(s°,8") b sb o)

a a
82900y ST 51, 82, 0y ST

a
p(s
T
_ a _b|_a a _a _b b b
_Hp(st’8t|st—1a-~-a32a31a3t—1a-~-a32751)'
t=1

(6)
Unlike Eq. 4 and Eq. 5, the above Eq. 6 is learning to
predict both s¢ and s? during the training process. Then we
decompose the distribution p(s¢, s?|s¢ |, s |, ..., 5%,5%)
by assuming a conditional independence between s¢ and s?
at each step t such that

b b):

a .b|.a a .a b
p(stast|5t—17'-'75275175t—17'-'752751

b b
p(stlst-1.1, St—lzl)P(S?‘S?—lm 8{_1.1)-

N

We illustrate this conditional independence and the dialogue
distribution modeling in Figure 2. The probability distri-
bution in Eq.6 and Eq.7 adheres to a fundamental induc-
tive bias that a person’s speech is influenced by both his
own previous statements and what he has heard in the past.
This approach naturally incorporates mutual dependence, as
both p(sf|s¢_1.1. 87_1.1) and p(s|sf_1.1, s¢_1,1) are mod-
eled. Additionally, the time-alignment property of the two
speaker sequences is preserved through the joint prediction
of (s¢, s?) at each time step t.

4.2. Autoregressive Dual-channel Speech Transformer

The remaining challenge is how the model can learn
p(S%, S%) as defined in Eq. 6 and Eq. 7 in decoder-only
architectures. To address this, we propose the autoregres-
sive dual-channel speech transformer. The two speech
sequences are rearranged in an interleaved order: S =
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((5%,8%), (5% 1,82 1), ..., (5%, %)). At each time step ¢, the

model predicts a pair of tokens S; = (s, s?). This design
requires only minimal modifications to adapt the decoder-
only transformer architecture of LLMs. Specifically, two
essential components are adjusted to accommodate the se-
quence of token pairs: the token pair embedding operation
and the pair-wise causal attention masking mechanism.

Token Pair Embedding. The token pair embedding op-
eration is used to transform each index token s; back to
continuous latent embedding. For token pair .S;, there are
three important latent embeddings: codebook embedding z;,
positional embedding p; and channel embedding c;. z{ and
z! can be easily retrieved from the codebook Z by querying
token indices s¢, s? respectively. For positional embedding,
we inherit the rotary positional encoding (Su et al., 2024) to
indicate which time step that each token belongs to. Note
that each token pair s¢ and s? share the same positional
embedding such that p¢ = p? since they are aligned at
the same time step t. Compared to the conventional SLM
architecture, we have two aligned speech sequences instead
of one single sequence. Hence, to inform the model about
the speaker role of each sequence, we additionally include
a channel embedding c; for each token to help the model
distinguish which speaker generates the token. c; is a sim-
ple one-hot encoding c; = one-hot(id), where id is either
a or b. Following the implementation of Llama 3 (Dubey
et al., 2024), we add both positional embedding and channel
embedding to the query q and key vectors k derived in the
attention mechanism. Then the token embedding operation

for each token pair (s¢, s?) is as follows:

®)
®

a=Wqlz{,z}] + [p{,pY] + [cf, cf],
k = Wglz{, z)] + [p}, pf] + [cf, c7],

where W and W g are projection matrices for queries q
and keys k respectively.

Pair-wise Causal Masking. In the standard LLM atten-
tion mechanism, causal masking ensures that each token
can only attend to previous tokens, preventing any access
to future tokens. Consequently, the masking matrix M is
structured as a lower-triangular matrix. In our dual-channel

sequence setting, the key distinction lies in the diagonal of
the masking matrix. Specifically, the 2 x 2 block-wise diag-
onal entries m in M € R?7*27 follow a pair-wise causal
masking strategy. Within each block m, only the diagonal
entries remain unmasked, while all other entries are masked.
This enforces the constraint that s¢ and s? cannot attend to
each other at any given time step ¢.

The solution described above applies to the simple VQ tok-
enizer case, as illustrated in Figure 3. We omit the training
loss function here, as it is nearly identical to the NTP train-
ing loss, with the only difference being the inclusion of
an additional loss term for predicting the second speech
channel sequence.

4.3. Generalizing Solutions to RVQ Tokenizers

As mentioned in the preliminary section, the RVQ-tokenizer
is widely adopted in SLMs for achieving higher recon-
struction quality. It is a non-trivial challenge to extend
our solutions to the RVQ-tokenizer since each speech
sequence becomes a 2D array of codes S € RT*P instead
of a one-dimensional index token sequence. How to
maintain the decoder-only transformer architecture to
learn p(S?, S?) remains a tricky issue. To solve this issue,

we flatten S into a one-dimensional sequence S%/® =

b b b b b b .
(5971 U0 (8300 1oy 8510 oo (57 oy s 1)) (e

ther a or b) with sequence length 7" x D. In this way, the
dual-channel speech sequence can be re-arranged as

S = ( ?78?7 ) %’Sg“) = ((Slll,la "'aslll,D)v
(511),17 o Sl{,D)a sty (S’lll",lv ) S%,D)v (S%,17 i SZZJ",D))'
(10)
This sequence is similar to the VQ-based interleaving se-
quence and just additionally contains D residual depth to-
kens for each time step ¢ and each speaker channel.

RVQ Token Pair Embedding. The codebook embedding
z:, the channel embedding c; and the positional embedding
Pp: remain the same operation as VQ-based solution. The
same p; is shared by S¢ and S?. The same channel embed-
ding c; is shared by s; 4 for all d. One challenging problem
brought by RVQ-tokenizer is how to identify the depth of
each token. For example, when the ith token is input to the
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model, how could the model know the depth of the token
(range from 1 to D)? To alleviate this issue, we introduce
the cyclic depth embedding d as follows:

d = (sin((27 x 1)/ D), cos((2m x 1)/ D)) (11)

Note that this embedding is cycled with step length D.
That is, d; = d;p for every position 7 (In VQ-tokenized
sequences, ¢ = t; While in RVQ-tokenized sequences,
t =i/(2D) due to D depth tokens for each channel).

RVQ Causal Masking. The causal masking strategy for
RVQ-based tokenized sequences closely resembles that of
VQ-based tokenized sequences. However, since the depth
increases from 1 to D (transitioning from VQ to RVQ), the
2D x 2D block-wise diagonal entries m of the masking ma-
trix M € R(TP)*(TD) are specifically adjusted. The upper
triangular part of m remains masked to ensure that current
tokens cannot attend to future tokens—this includes pre-
venting shallow-depth tokens s; 4 from attending to deeper-
depth tokens s; -4 for each step ¢ and each channel). Ad-
ditionally, the bottom-left D x D submatrix is masked to
ensure that s¢ and s? do not attend to each other.

The extended solutions in the section 4.3 RVQ-tokenized
sequences are illustrated in Figure 4. Note that we omit the
special start tokens during discussions for simplicity.

5. Experiments
5.1. Dataset and Baselines

Dataset. Our NTPP is trained using a two-stage pipeline.
In the first stage, we establish the SLM with foundational
speech capabilities by training the model on three speech
datasets, totaling approximately 140,000 hours. This phase
focuses on both speech understanding and synthesis. Un-
like other models (Fang et al., 2024; Xie & Wu, 2024) that
require additional text alignments, our approach follows a
textless learning paradigm. This eliminates the need for
speech-text alignment, reducing data preprocessing require-
ments and significantly increasing the amount of available
training data. In the second stage, we equip our SLMs with
the ability to listen and speak simultaneously through NTPP
training. For this, we leverage the Fisher dataset (Cieri et al.,
2004), which contains 2,200 hours of phone conversations
between randomly paired participants discussing predefined
topics. A key advantage of the Fisher dataset is that each
speaker’s audio is recorded on separate channels, provid-
ing high-quality dual-channel speech streams essential for
NTPP training. Since the original audio is sampled at 8kHz,
we use Librosa ! to upsample it to 16kHz for consistency
with our training setup.

Baselines We evaluate NTPP’s performance by comparing

"https://librosa.org/doc.
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Figure 5. Comparison of training loss curves across different mod-
els. Solid lines show the training progress for different foundation
models. Dashed lines represent an ablation study comparing a
model trained with textual data (w Text) versus without (w/o Text).

it with established generative speech systems. In terms of
turn-taking statistics within generated dialogues, we com-
pared NTPP specifically with dGSLM (Nguyen et al., 2023),
as it represents a comparable full-duplex generative model
trained on the Fisher dataset. Following dGSLM’s setting
(Nguyen et al., 2023), we include a cascaded baseline which
consists of an Automatic Speech Recognition(ASR) model,
followed by a text-based language model and a Text-To-
Speech (TTS) module. Following the settings of (Nguyen
et al., 2023), we select wav2vec2-large(Baevski et al., 2020),
KenLM(Heafield, 2011), and Google TTS API as the mod-
ules respectively. For assessing the meaningfulness and
naturalness of the interaction, we extend our comparison to
include Moshi (Défossez et al., 2024) and SyncLLM (Pope
et al., 2023a). Notably, SyncLLM is a full-duplex dialogue
agent designed for real-time, overlapping speech interac-
tions through the joint, streaming processing of speech input
and output.

5.2. SLM Training & Implementation Details

Audio Tokenizer & Token Vocoder. We train an RVQ
speech tokenizer based on (Zeghidour et al., 2022), which
encodes each second of audio into 40 discrete tokens from a
codebook of size 4096. Due to the limitations of the single-
speaker token vocoder presented in (Kong et al., 2020), we
train a multi-speaker HiFi-GAN to decode speech signals
from discrete tokens. The HiFi-GAN architecture consists
of a generator and multiple discriminators. The generator
uses look-up tables to embed discrete representations and
the embedding sequences are up-sampled by a series of
blocks composed of transposed convolution and a residual
block with dilated layers. The speaker embedding is con-
catenated to each frame in the up-sampled sequence. The
discriminator features a Multi-Period Discriminator and a
Multi-Scale Discriminator, which have the same architec-
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Table 2. Turn-taking statistics (event occurrences and durations/min) for generated dialogues, compared to ground truth using mean
absolute differences (JA|) between predicted and ground truth values. NTPP model results cover different temperature settings [0.1, 0.5,
0.9]. Lower |A| values indicate better performance, with the best results highlighted in bold.

Model Number of occurrences / min Cumulated duration /min
|ATPU| |APause| |AGap| |AOverlap| |AIPU| |APause| |AGap| |AOverlap

dGSLM w/o CA 39 2.9 3.6 1. 12.1 8.3 1.4 2.5
dGSLM 1.6 34 2. 2.9 4.6 3.6 1.8 1.9
LSLM 2.2 3.6 2.4 32 4.1 34 1.5 2.3
Cascaded 4.1 7.0 7.4 6.5 4.3 5.5 0.9 3.6
NTPPy1 1.4 2.1 2.0 1. 32 2.5 1.2 2.1
NTPPy5 1.5 1.9 1.8 1.5 2.9 3.0 0.9 2.2
NTPPyg 1.3 2.3 1.5 0.9 33 2.8 1.4 1.9

ture as (Kong et al., 2020).

LLM Backbones. We leverage three well-known LLMs
as the backbone of our SLM: LLaMA 3.1-8B (Dubey et al.,
2024), Mistral-7B-v0.1 (Jiang et al., 2023a), and Gemma-
2-9B (Team et al., 2024). We evaluate the performance of
SLM:s obtained by training these LLMs with the NTP objec-
tive on a large-scale single-channel audio dataset. Perplexity
on the test set is used as the evaluation metric. Figure 5
shows the training loss curves over time for all three mod-
els. Each model demonstrates a consistent downward trend,
indicating effective learning. Mistral-7B and Gemma show
comparable learning dynamics, while LLaMA 3.1—known
for its strong reasoning capabilities in text—achieves lower
training loss more quickly. This finding supports our hypoth-
esis that stronger text-based models serve as more effective
initializations for continual speech learning, consistent with
the perspective of treating audio as a new language.

Perplexity curves highlights that during the pre-training
phase, the NTPP model demonstrates superior performance
when trained exclusively on audio data (“w/o Text”) com-
pared to when trained with both audio and its ASR text tran-
scriptions (“w Text”). Specifically, the audio-only approach
leads to significantly faster convergence and consistently
lower perplexity—a measure indicating better predictive ca-
pability of the model. The results show that the audio-only
setting leads to significantly faster convergence and consis-
tently lower perplexity throughout training. This indicates
that eliminating the ASR transcript—which may introduce
recognition errors or redundancy—allows the model to fo-
cus on more informative acoustic cues, thereby facilitating
more stable and efficient learning. In contrast, the inclu-
sion of textual supervision appears to slow optimization and
result in higher perplexity, suggesting potential modality
interference.

5.3. Turn-taking Event Distribution

Following the experimental setting in dGSLM (Nguyen
et al., 2023), we evaluate the dialogue systems with turn-

taking capabilities using corpus-level statistics (Ardila et al.,
2019) and testing on the Fisher dataset (Cieri et al., 2004).
We evaluate the linguistic quality and turn-taking dynam-
ics of generated dialogues using various models, as shown
in Table 2. The detailed evaluation settings are in the Ap-
pendix C.2. LSLM (Ma et al., 2024) integrates speaker chan-
nels at the embedding layer and only predicts the speech
tokens from the assistant channel, demonstrating a notable
reduction in the number of Inter-Pausal Units (IPUs) and
gaps, indicating smoother transitions between speakers. The
dGSLM (Nguyen et al., 2023), particularly with the cross-
attention module, shows a significant decrease in the cumu-
lative duration of pauses and gaps, suggesting more fluid
and continuous dialogue. Comparatively, NTPP exhibits
balanced performance with moderate reductions in both
the number and duration of turn-taking events, highlighting
their potential for generating natural and coherent dialogues.
These findings underscore the importance of model archi-
tecture in optimizing dialogue flow.

5.4. Interruptions & Reflective Pause

We further develop a comprehensive evaluation framework
comprising 400 diverse conversational scenarios specifically
designed to systematically capture natural dialogue dynam-
ics, with an emphasis on pauses and interruptions. These
scenarios are carefully crafted using GPT-4 to reflect the
complexity and nuance of human interactions. We then
use ChatTTS(cha, 2024) to synthesize high-quality speech
from the generated text, effectively mimicking the acoustic
characteristics of real-world conversations. As shown in
Figure 6, NTPP demonstrates closer alignment with human
reference judgments, which are meticulously established
through manual annotation by human evaluators, in both
speaking-up and interruption scenarios when acting as a
listener. For instance, informing its response strategy, NTPP
employs Voice Activity Detection (VAD) and considers a
silence state to have been reached after 200ms of contin-
uous non-speech is detected, facilitating its decisions on
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when to speak or acknowledge a pause. This suggests that
NTPP more effectively captures the subtleties of human
conversational behavior compared to other models.

=N Human Ref
W Cascaded

Moshi
80 = NTPP.

Alignment with Judge Label

When listener decides to When speaker continue ‘When listener interrupts ‘When listener does not
speak up interrupt
Figure 6. NTPP, when acting as a listener, shows closer alignment
with Human Reference judgments in both speaking up and inter-

rupting scenarios.

5.5. Human Evaluation

We follow the evaluation protocol from (Veluri et al., 2024)
and conduct a human study involving 25 annotators with
native-level English proficiency. Adopting the Mean Opin-
ion Score (MOS) framework, we use a 5-point Likert scale
to evaluate the Naturalness (N-MOS) of turn-taking and the
Meaningfulness (M-MOS) of the generated dialogue con-
tent. Table 3 presents a comparison of NTPP with various
baselines in terms of both naturalness and meaningfulness.
We also include performance comparisons on the out-of-
distribution Candor test set (Reece et al., 2023) to assess
generalization.

5.6. Inference Latency

In multi-turn interactions, latency is a crucial metric for
assessing the performance of speech interaction models,
as it captures the time between receiving the end of input
speech and the start of output speech, directly impacting user
experience. As shown in Figure 7, our NTPP consistently
achieves lower inference latency than Moshi, especially as
the number of turn-taking rounds increases. We attribute this
advantage to NTPP’s efficient memory usage: it maintains
a single KV Cache, while Moshi requires two separate KV
Caches for the two separate transformers. This difference
becomes increasingly significant as conversational context
grows longer.

5.7. Speaker Independence

To assess the speaker-independence of various models, we
conduct a speaker-swapped evaluation. All models are first
trained on the dual-channel Fisher dataset (Cieri et al., 2004)
using the canonical speaker order. We reverse the input
speaker sequence without any additional fine-tuning or adap-
tation. This setup allows us to test whether a model’s per-

-®- Moshi

@
S
3

Latency (ms)
»
8

200

150

# of turn-taking

Figure 7. Our method (blue) demonstrates lower latency growth
compared to Moshi’s linear degradation(red), maintaining response
times below perceptual thresholds (220 ms) across all rounds.

formance remains stable when the roles of the two speakers
are exchanged—an essential indicator of robustness and
generalization in dialogue turn-taking modeling. We eval-
uate this on both the training and test sets. As shown in
Table 4, both dGSLM and NTPP exhibit minimal variation
in key turn-taking metrics under speaker-swapped condi-
tions—nearly zero variation on the training set and consis-
tently low variation on the test set—demonstrating strong
speaker-independent behavior. Moshi shows substantial de-
viations in metrics such as the number and duration of IPUs,
pauses, gaps, and overlaps. These findings suggest that
Moshi relies on speaker-conditioned generation (due to its
modeling of conditional distributions), resulting in degraded
performance when the input speaker order is reversed.

225 NTPP withot the firt stage (NTPP wio-1) e va

NTPP without the second stage (NTPP wio-2) RVQ
200 Full Two-Stage NTPP (NTPP) 16

Perplexity

N 3

o B
Training loss
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Figure 8. Comparative performance analysis. (a) Ablation study of
NTPP model training stages, illustrating perplexity versus training
steps for the full two-stage model and variants lacking either stage
one or stage two. For better visualization, we trim the stage one
training steps to be the same as stage two. (b) Comparison of VQ
and RVQ model training loss as a function of training steps.

5.8. Ablation Studies

We further investigate the importance of two-stage train-
ing and the use of an RVQ tokenizer in this section. As
shown in Figure 8 (a), our two-stage training strategy con-
sistently achieves lower perplexity compared to the one-
stage approach, which omits pretraining on single-channel
audio. This suggests that pretraining on single-channel au-
dio provides a strong foundation, significantly improving
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Table 3. Human evaluation results across different SLMs. Meaningfulness (Meaning.) and Naturalness (Nat.) scores (ranging from 1 to
5) represent mean estimates and their standard errors (shown in parentheses), reported both overall and separately for the Fisher and

CANDOR datasets.
Model Overall Fisher CANDOR
Meaning. Nat. T Meaning. 1 Nat. T Meaning. 1 Nat. 1

dGSLM 1.38 (0.10) 3.85(0.12) 1.82(0.09) 4.10(0.13) 1.51(0.12) 2.85(0.18)
SyncLLM  3.85(0.06) 4.10(0.05) 4.10(0.04) 4.33(0.08) 3.85(0.09) 3.91(0.08)
Moshi 3.90(0.07) 3.95(0.06) 3.20(0.10) 3.90(0.08) 3.95(0.08) 3.95(0.08)
NTPP 3.950.04) 4.15(0.06) 4.10(0.06) 4.42(0.06) 4.05(0.04) 4.05(0.10)
GT 490 (0.01) 4.95(0.02) 4.90(0.03) 4.90(0.04) 4.90(0.02) 4.95(0.02)

Table 4. Linguistic quality and turn-taking metrics under speaker-swapped inference. Reported values denote the absolute difference
between deviation metrics AM (e.g., AIPU) under the original and swapped speaker orders, computed as |A Morigina — A Mewapped|-
Lower values indicate higher robustness to speaker order permutation.

Split Model Number of Occurrences / min Cumulated Duration / min
|AIPU| |APause| |AGap| |AOverlap| |AIPU| |APause] |AGap| |AOverlap|
dGSLM 0.05 0.14 0.04 0.06 0.09 0.15 0.11 0.09
Train  Moshi 0.43 0.32 0.29 0.29 0.30 0.56 0.55 0.58
NTPP 0.03 0.07 0.07 0.05 0.06 0.18 0.14 0.06
dGSLM 0.20 0.15 0.18 0.21 0.39 0.32 0.41 0.32
Test Moshi 0.43 0.38 0.37 0.39 0.57 0.62 0.84 0.68
NTPP 0.18 0.14 0.19 0.20 0.35 0.38 0.45 0.24

performance on subsequent dual-channel speech learning.
As expected, omitting the second-stage NTPP training on
dual-channel speech also leads to performance degradation.
Figure 8 (b) compares training loss between VQ and RVQ
tokenizers, with RVQ yielding consistently lower loss, high-
lighting the importance of developing extended solutions
tailored to this tokenizer.

6. Limitations and Future Works

One major limitation is the limited availability of large-
scale dual-channel speech data. Unlike single-channel au-
dio, which can be sourced from the vast amount of open-
source data available online, dual-channel speech data re-
quires either additional channel separation operations on
single-channel audio or meticulous collection from real-
world human conversations. We hope our work will inspire
the community to gather large-scale dual-channel or even
multi-channel spoken dialogue datasets. In the future, we
plan to explore synthetic data strategies for generating high-
quality dual-channel speech data.

7. Conclusion

In this work, we introduce a novel spoken dialogue gener-
ative model based on the NTPP paradigm. To effectively
capture the dynamics of human conversations, we design

a decoder-only dual-channel transformer that models the
joint distribution of two speaker channels. Our approach
includes both VQ-tokenizer and RVQ-tokenizer versions,
significantly enhancing the real-time conversational capabil-
ities of diverse SLMs. Through extensive evaluations across
multiple benchmarks, we demonstrate the effectiveness and
superiority of our method in generating natural and coherent
spoken dialogues, paving the way for more advanced and
interactive speech-based Al systems.

Impact Statement

This paper aims to advance the field of SLMs. By enhancing
SLMs through our approach, we enable more natural and
seamless spoken interactions with human users, benefiting
various domains such as voice-based personal assistants,
customer service chatbots, and online education with voice
interactions. However, a potential negative societal con-
sequence is the risk of misuse in telecom fraud, as our
approach improves the naturalness of Al-generated conver-
sations. To mitigate this risk, further advancements in Al
safety techniques and fraud detection systems are necessary.
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A. Other Related Works

Autoregressive Generative Models. The autoregressive generative modeling has achieved remarkable success in natural
language processing, giving rise to a variety of powerful LLMs (Sutskever et al., 2014; OpenAl, 2024; 2023; Patel et al.,
2023). Inspired by these LLMs, numerous studies have examined the application of autoregressive modeling in other
domains, such as images (van den Oord et al., 2017; Esser et al., 2021; Li et al., 2024; Tian et al., 2024; Lee et al., 2022;
Chang et al., 2022), graphs (You et al., 2018), videos (Weissenborn et al., 2020), molecules (Shi et al., 2020; Schwaller et al.,
2019) and protein sequences (Madani et al., 2023; Lin et al., 2022). The fundamental concept of autoregressive modeling
focuses on iteratively generating the entire segment from the intermediate portion, which is particularly well-suited for the
audio generation.

Multi-modal LLMs. Multimodal Large Language Models (MM-LLMs) strive to incorporate knowledge from diverse
modalities. A key category of MM-LLMs concentrates on developing connectors (Li et al., 2022; 2023; Liu et al., 2023b;
Alayrac et al., 2022) that identify knowledge alignment across various modalities. An alternative strategy (Team, 2024; Zhou
et al., 2024; Xie et al., 2024) merges all modalities into a cohesive sequence of tokens and utilizes LLMs to sequentially
generate them using modified attention masks. These methods (Wu et al., 2024; Su et al., 2023; Fu et al., 2024) even
integrate audio as an input modality, and by simply combining text and audio through MM-LLM techniques, they can address
one-direction conditional generation tasks such as speech-to-text translation (e.g., ASR and spoken language understanding)
(Radford et al., 2023; Zhang et al., 2023b; Deshmukh et al., 2023; Arora et al., 2023; Tang et al., 2024; Chu et al., 2024;
Zhou et al., 2023; Baevski et al., 2020; Gao et al., 2023) and text-to-speech translation (e.g., TTS) (Elizalde et al., 2023; Liu
et al., 2023a; Huang et al., 2023; Nachmani et al., 2023; Yang et al., 2023; Kreuk et al., 2023; Borsos et al., 2023; Copet
et al., 2023; Chen et al., 2024; Anastassiou et al., 2024; Jiang et al., 2023b; Kong et al., 2021; Shen et al., 2024; Casanova
et al., 2022; Siuzdak, 2024; Yang et al., 2024; Kharitonov et al., 2023; Le et al., 2023). However, these methods are limited
to multi-turn (or even single-turn) QA tasks (where the model produces an answer only after the question is completed, as
signaled by the voice-activity-detection (VAD) module, e.g. special tokens, button pressing and hard tunr-taking interval
threshold.) and thereby struggle with real-time voice interaction tasks, which is the primary focus of our work.

B. Streaming Conditional Inference

In order to simulate a real-time user-assistant commu- Streaming Inference with conditional user input
nication scenario, our speech LMs improved by NTPP Streaming Input
should be proficient in conducting conditional inference . H—’.—"—’
a a a a a

with streaming user voice input. In this inference set-
ting, one speaker’s voice input is provided as the user, ki k3 kg kg i__l_fg___,‘
and the model is assigned the task of inferring the other vi vy vy Vi ivE
audio channel. This creates a situation that resembles a kKX kb ki K
constrained generation problem. If the inference process vb v? v? \/1

rictly foll he training pr hen the model shoul A 2 (ap) 2 (5
strictly follows the training process, then the model should @ @ 52 @ q¢ s

predict 8% immediately after receiving the speaker’s voice
input s¢ at time ¢t. However, due to the VQ-VAE tokeniza-
tion mechanism, it’s not feasible to receive just a single Figure 9. The figure illustrates the chunk-wise streaming inference
speech token from the speaker channel during the stream-  Process. Within each chunk, (s1, 53, 55, s, s5) represents the pro-
ing inference. This is because the VQ-VAE requires a vided speal.<er sequence. Their correspondi.ng keys ?md values
complete continuous speech signal input with a specific ¢ ?t,f’r‘f'f o tge KV-cache, NTPP sequentially predl(?ts tOken?
time length. Therefore, we need to determine when the (81, 8, 83, 81, 55) based on generated query vectors, which are di-
) rected to the Key-Value (KV) cache through attention computations.
mgd.el should s.tart genefratmg spoken responses u.pon re- Once a chunk is filled, the inference proceeds to the next chunk.
ceiving streaming user input speech tokens. Specifically,
the inference process follows the chunk-wise style, con-
taining a predetermined A number of tokens. As long as the number of user input tokens reaches A (a chunk of speaker input
is given), our model begins to generate predictions until the number of predicted tokens also reaches A (a chunk is filled).
This procedure is repeated until the end of user voice inputs (e.g., the conclusion of the voice-assistant service). Here we
omit the RVQ-verision inference mechanism since the only difference is the inclusion of additional depth tokens (if A = 5
in the VQ-based inference, then A = 5D in the RVQ-based inference).
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C. More Implementation Details and Hyper-parameter Settings
C.1. Hyper-parameter Settings

Our model is trained on 16 A100 GPUs, utilizing a cosine annealing learning rate scheduler with a minimum learning rate
of 4e-6 and a maximum learning rate of 4e-4. Each training epoch consists of 40,000 steps, with batch size 64 for each step.
During fine-tuning, we use learn rate from 4e-6 to Se-5.

C.2. Dialogue turn-taking statistics evaluation

Turn A
[ pru [P ] ru [P JIPU|
....‘...................A.|||.||..|||'........||||.|||..|..l|........|||...‘.A,.,....A,.,......A,.,.
L[ F st Ib b el ||
[y [P [IPU ]
N . ) ——
Turn B Turn B

Figure 10. INlustration of turn-taking events: IPU (Interpausal Unit), Turn (for speaker A and Speaker B, resp), P.(within-speaker Pause),
Gap and Overlap.

Our model generates two audio channels at the same time, allowing us to use basic Voice Activity Detection (VAD) tools on
the output to gather turn-taking metrics. According to the settings in (Nguyen et al., 2023), an Inter-Pausal Unit (IPU) is a
continuous speech segment within one speaker’s channel, bordered by VAD-detected silences longer than 200ms on both
ends. Silence is defined as the lack of voice signals on either channel, while overlap refers to segments where voice signals
are detected on both channels. Silences can be further divided into gaps (between IPUs of different speakers) and pauses
(within the same speaker’s IPUs). Consecutive IPUs by the same speaker, separated by a pause, are merged into a single
turn. Our analysis will focus on measuring the duration distribution of IPUs, gaps, pauses, and overlaps in both the training
corpus and the dialogues generated by our various models.

C.3. Reflective pause audio dataset

Prompt for reflective pause

“Hmm..., this question is a bit complicated, I need to think about it.”

“Let me recall, uh..., yes, we went to the park that day.”

“You know, that..., oh, yes, it’s the new restaurant.”

“I remember he mentioned it, um..., it seems to be last Friday.”

“This matter, um..., I think we need to discuss it again.”

“Let me think about it, uh..., yes, that’s it.”

“I’m not sure, um..., maybe I need to confirm it again.”

“This question, um..., I think we can solve it this way.”

“Let me think about it again, uh..., yes, I remember it.”

“The one you mentioned, um..., I seem to have some impression.”

“We need to deal with the budget issue of this project. Um..., this problem is a bit complicated, I need to think about it.”
“Do you remember the last time we met? Let me recall, uh..., yes, we went to the park that day.”
“Have you heard about the new restaurant? You know, that..., oh, yes, that new restaurant.”

“When did he tell you the news? I remember he mentioned it, uh..., it seems to be last Friday.”

“Do you have any suggestions about this plan? This matter, uh..., I think we need to discuss it again.”
“Can you give me an example? Let me think about it, uh..., yes, that’s it.”

“Are you sure this data is correct? I’'m not sure, uh..., I may need to confirm it again.”

“How should we deal with this emergency? This problem, uh..., I think we can solve it this way.”
“Can you explain this concept again? Let me think about it again, uh..., yes, I remember it.”

“Do you know what he is talking about? The one you said, uh..., I seem to have some impression.”
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Prompt for GPT score

Content (1-5 points):

1 point: The response is largely irrelevant, incorrect, or fails to address the user’s query. It may be off-topic or provide incorrect
information.

2 points: The response is somewhat relevant but lacks accuracy or completeness. It may only partially answer the user’s question or
include extraneous information.

3 points: The response is relevant and mostly accurate, but it may lack conciseness or include unnecessary details that don’t contribute
to the main point.

4 points: The response is relevant, accurate, and concise, providing a clear answer to the user’s question without unnecessary
elaboration.

5 points: The response is exceptionally relevant, accurate, and to the point. It directly addresses the user’s query in a highly effective
and efficient manner, providing exactly the information needed.

Style (1-5 points):

1 point: The response is poorly suited for speech interaction, possibly including structured elements like lists or being overly complex,
disjointed, or difficult to understand.

2 points: The response is somewhat suitable but may be too long, too short, or awkwardly phrased, making it less effective in a speech
interaction context.

3 points: The response is generally suitable for speech interaction, but it may have minor issues with length, clarity, or fluency that
detract slightly from the overall effectiveness.

4 points: The response is well-suited for speech interaction, with appropriate length, clear language, and a natural flow. It is easy to
understand when spoken aloud.

5 points: The response is perfectly suited for speech interaction. It is the ideal length, highly clear, and flows naturally, making it easy
to follow and understand when spoken.

Below are the transcription of user’s instruction and models’ response:
### [Instruction]: {instruction}
### [Response]: {response}

After evaluating, please output the scores in JSON format: {“content”: content score, “style”: style score}. You don’t need to provide
any explanations.

\ J

D. Case study

Scenario: A user engages in a conversation with Parrot, describing an
object and asking the model to identify it.

User: Please listen to my description of an object below, and say its
name when you have guessed it. The description is: it has four legs,
a flat surface, and is often used for dining or working...

Parrot: I guess it might be a table.

Figure 11. Case study of NTPP interrupt human speaking correctly and timely.

To intuitively understand the differences in responses from our models, we provide an example in Figure 11. In this scenario,
NTPP interrupts the user at the precise moment it has gathered enough information to make an accurate prediction. This
capability is a significant departure from current models that would typically wait for the user to finish speaking before
responding. The ability to interject appropriately not only demonstrates the model’s advanced comprehension skills but also
enhances the fluidity and naturalness of the interaction.
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