Training-Time Explainability for Multilingual Hate
Speech Detection: Aligning Model Reasoning with
Human Rationales

M.D.M Qureshif* Sannaan Khant
Technological University Dublin National University of Sciences and Technology
D221246960@mytudublin.ie mkhan.msse24sines@student.nust.edu.pk
M. Atif Qureshi Wael Rashwann
Technological University Dublin Maynooth University
atif.qureshi@tudublin.ie wael.rashwan@mu.ie
Abstract

Online hate against Muslim communities often appears in culturally coded, mul-
tilingual forms that evade conventional Al moderation. Such systems, though
accurate, remain opaque and risk bias, over-censorship, or under-moderation, par-
ticularly when detached from sociocultural context. We propose a training-time
explainability framework that aligns model reasoning with human-annotated ratio-
nales, improving both classification performance and interpretability. Our approach
is evaluated on HateXplain (English) and BullySent (Hinglish), reflecting the
prevalence of anti-Muslim hate across both languages. Using LIME, Integrated
Gradients, GradxInput, and attention, we assess accuracy, explanation quality,
and cross-method agreement. Results show that gradient- and attention-based
regularization improve F-scores, enhance plausibility and faithfulness, and capture
culturally specific cues for detecting implicit anti-Muslim hate, offering a path
toward multilingual, culturally aware content moderation.

1 Introduction

Online hate against Muslim communities often appears in subtle, implicit, or culturally coded forms,
frequently expressed in multilingual or code-switched language such as Hinglish. These complexities
challenge moderation systems, risking both under-moderation, which allows harmful narratives to
persist, and over-moderation, which suppresses legitimate religious or cultural expression [} 2.
Given its prevalence in both English and South Asian online spaces, tackling such content is essential
for Muslim and Global digital safety and inclusivity.

While transformer-based systems achieve high accuracy, they remain opaque and risk reinforcing
biases [3l 4]], especially when divorced from sociocultural context. For Muslim communities, like
other underrepresented groups, these shortcomings can amplify harm and erode trust in AI moderation.
Explainable AI (XAI) offers transparency [S]], but post-hoc methods applied after training rarely
influence how models learn, limiting their ability to produce faithful, culturally aware explanations
[6} 7,18, 19].

We address this gap with a multilingual, training-time XAl regularization framework that aligns model
reasoning with human rationales. Using RoOBERTa and XLM-R classifiers, and four explanation
strategies - LIME [10], Integrated Gradients [[11], Grad xInput [12], and attention [13]]-we guide
models toward linguistically and culturally meaningful features. Our evaluation on HateXplain
(English) and BullySent (Hinglish) demonstrates cross-linguistic generalization for detecting implicit
anti-Muslim hate.
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Contributions: (1) a training-time XAI regularization framework aligning reasoning with human
rationales; (2) comparative evaluation of four integrated XAl methods; (3) extension to a multilin-
gual, code-switched setting; (4) analysis of plausibility, faithfulness, and cross-method agreement,
highlighting improved detection of implicit, culturally coded anti-Muslim hate; and (5) evidence that
gradient- and attention-based regularization offer the best balance of accuracy, explanation quality,
and efﬁciency

2 Methodology

2.1 Datasets and Pre-processing

We evaluate on two culturally and linguistically distinct datasets to test monolingual and multilingual
performance.

HateXplain [14] contains ~20k English social media posts (Twitter, Gab) labeled as Hate, Offensive,
or Normal, with multi-annotator token-level rationales. Following prior work, Hate and Offensive are
merged into a Detrimental Content class, including 15% posts explicitly targeting Muslims.
BullySent is a Hinglish (Hindi—English code-switched) cyberbullying dataset from Indian social
media, comprising ~6.5k posts. While it does not explicitly mark anti-Muslim hate, it labels religion-
based hate, serving as a relevant proxy for South Asian contexts where Hinglish is the dominant
medium of informal online discourse [[15]. For comparability, all labels are unified into overarching
categories: Detrimental (e.g., Hate, Offense, Bullying) vs. Non-Detrimental content.

2.2 Model Architectures

We employ two transformer encoders to match the linguistic characteristics of each dataset: ROBERTa-
base for HateXplain (English) and XLLM-RoBERTa-base for BullySent (Hinglish). Each encoder is
followed by a Dense ReLLU layer, a dropout of 0.3, and a sigmoid output. Models are optimized using
Adam with a learning rate of 2 x 107°

2.3 Training-Time Explanation-Based Regularization

Our training augments binary cross-entropy loss with an explanation alignment term, applied only
when the gold label is Detrimental Content.

The classification loss is:

Losspop = — Zyt log(yp) — (1= y:) log(1 — y,) 0]
1=0
where y; is the true label and y,, the predicted probability.

Let rat(i) and exp(i) denote normalized rationale and explanation scores for each term ¢ in the text
input. We aggregate explanation score at word level to ensure compatibility with human-annotated
rationales. The explanation loss is:

rat(i)
L t t 2
ossgxp(rat || exp) E ra (exp(i)) 2)
The total loss is:
Losscomp = Losspor + ALossgpxp(rat || exp) 3)

with A € {0.001, 0.005,0.01,0.05,0.1,0.5,1, 5,10} tuned by validation F1-score and early stopping.

Algorithm T] summarizes the process. We use the non-regularized model as our baseline for compari-
son.

2.4 XAI Methods

We compare four complementary explanation strategies, covering both model-agnostic and model-
specific paradigms:

e LIME [10]: Model-agnostic and perturbation-based; fits a sparse linear surrogate by mask-
ing tokens. We limit n_samples to 128 for efficiency.

?Code and Data at https:/github.com/DeedahwarMazhar/NeurIPS-MulsimsInML-TrainingTimeReg
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Algorithm 1: Training with Explanation-Based Regularization

Input: Training set D = {(x;, y:, 7at;) } =1, XAl method F, regularization weight A
Output: Trained model fo
for each epoch do

for each batch (z,y,rat) in D do
yp — fo(z); // Forward pass
Losspcr  BinaryCrossEntropy(y, yp)
if y == 1 then
exp < E(fo,x); // Generate explanation
if exp is token-level then
| exp « ConvertTokenToWord(exp) ; // Aggregate word scores
Lossgxp < KL(rat || exp) ; // Explanation loss
Losscomp <+ Losspcr + A - Lossgxp
0« 0—mn-VoLosscomp; // Backpropagation

if early stopping criterion met on validation set then

| break

* Integrated Gradients (IG) [[L1]: Integrates gradients from a zero embedding baseline to
the input over 15 steps, capturing non-linear dependencies.

* GradxInput (GXI) [12]: Multiplies token embeddings with their gradients to estimate
local feature sensitivity in one backward pass.

» Attention [13]]: Uses averaged final-layer attention weights across heads as token impor-
tance; not always faithful but internally consistent for regularization.

2.5 Post-Hoc Explanation Evaluation

We evaluate XAI methods by comparing post-hoc attributions to human-annotated rationales. Scores
are normalized to probability distributions over tokens, and subword attributions (IG, GXI, Attention)
are merged to word-level before alignment. Word scores are binarized into rationale masks using:

1. Top-K: highest K € {3,5,7,10,15,20, 25} tokens (LIME: K < 10).
2. Thresholding: tokens with scores > 6 € {0.001, 0.005, 0.01, 0.05,0.1,0.5}.

Human rationales are aggregated via the Union strategy.
We report:

* Plausibility: loU (overlap proportion) and Token-F1 (token-level precision—recall) vs.
human rationales.

* Faithfulness: Prediction Drop—confidence decrease when identified tokens are removed.

This token-level alignment captures fine-grained linguistic/contextual cues, and comparing Top-K vs.
thresholding highlights trade-offs between fixed- and variable-length rationales.

3 Results and Discussion

TableE]reports classification (Acc, F1), plausibility (IoU, Token-F1), and faithfulness (Prediction
Drop) for HateXplain (HX) and BullySent (BS).

Classification. Attention achieves the best overall F1 (HX: 0.84, BS: 0.85) and highest BS accuracy
(0.86). LIME and IG perform competitively on HX, while G x1 is efficient but slightly less accurate.
Plausibility. On HX, Attention leads in IoU/Token-F1 (0.38/0.60), with IG second. On BS, LIME
attains the best Top-K plausibility (IoU 0.27, Token-F1 0.45), suggesting perturbations capture
Hinglish cues better than attention or gradients.

Faithfulness. 1G yields the largest drops on both datasets (HX: 0.72/0.74; BS: 0.82), indicating
strong causal linkage. GxI performs well on BS, while LIME’s drops remain low. Gradient-based
methods transfer faithfulness more robustly across languages, while plausibility varies by dataset and
binarization strategy.



Perf. IoU Token-F1 Drop
Method Data Acc | F1 | Top-K | Thresh. | Top-K | Thresh. | Top-K | Thresh.
. HX [0.78 1082 | — — — — — —
No Regularizer BS g0 — — — — — —
LIME HX |0.80]0.84| 0.09 0.11 0.19 0.22 0.25 0.26
BS |0.85|0.84 | 0.27 0.11 0.45 0.34 0.41 0.45
Integrated Gradients HX [0.79|0.83 | 0.21 0.28 0.39 0.44 0.72 0.74
BS |0.84|0.84 | 0.14 0.12 0.23 0.22 0.41 0.82
GradxInput HX |[0.78 |0.82 | 0.21 0.19 0.38 0.35 0.63 0.35
BS |0.85]0.85| 0.07 0.06 0.16 0.12 0.68 0.54
Attention HX |0.80|0.84 | 0.33 0.38 0.58 0.60 0.64 0.60
BS [0.86|0.85| 0.11 0.12 0.21 0.17 0.30 0.30

Table 1: Combined classification and XAl performance. HX = HateXplain, BS = BullySent. Perf. =
Accuracy, F1. IoU and Token-F1 measure plausibility; Drop measures faithfulness. Best scores per
metric (HX and BS) are in bold.

Method Agreement Heatmap

Tera baap rangolinikal

B
Original Original | haitostan

Geto ho tum log Pakistan diya hal

Jab koi convert hota hai tou uski

89
ATTENTION ATTENTION | hai

e Mumbai me Tera baap rangolinikal ra tha beway?G me Dum nahi hota
1G hai 0 sart kyu kiya 89 me baway gin Maharashira me?Fir gand p Lat mara. o

gand p
fona chal kar etoho wm og Pkisan dya hana waha pona g marao |

(a) Method Agreement Heatmap (b) Qualitative comparison of token-level attributions from four XAI methods
for XAI methods with Kendall’s across two code-switched hate speech examples. While gradient-based meth-
Agreement Correlation (7). ods (Attention, GxI, IG) frequently assign salience to subword fragments,
LIME operates at the word level and often misses parts of compound slurs.
Figure 1: Kendall’s 7 agreement between XAI methods (left), showing higher correlation among
gradient-based approaches and divergence from LIME. Qualitative token-level attributions for two
representative code-switched hate speech examples (right) illustrate method-specific highlighting
patterns.

Inter-Method Agreement: We measure similarity via Kendall’s 7, suitable for comparing ordered
token attributions. Figure [Ta]shows highest alignment between Attention and GxI (= 0.45), with
moderate scores for Attention—-IG and G xI-IG, and near-zero or negative correlations for LIME due
to its word-level attributions.

Qualitative Comparison. Figure [Tb] visualizes token-level highlights for a representative post
with different XAI methods. Gradient-based approaches often mark subword units within com-
pounds, enabling finer-grained detection of culturally specific or offensive expressions. In contrast,
perturbation-based methods tend to operate at the whole-word level and can overlook embedded cues.

4 Conclusion

We present a training-time explainability framework that embeds human-aligned rationales into hate
speech classifiers, improving both plausibility and faithfulness across English and Hinglish datasets.
Results show that gradient- and attention-based regularization generalize well across languages,
capturing culturally specific cues often missed by perturbation-based methods, and offering a path
toward more accountable multilingual moderation.
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A Related Work

Al-based content moderation has evolved from keyword matching and simple classifiers [16] to
transformer-based models such as BERT [17] and multilingual encoders [18]]. While these improve
accuracy, they still struggle with sarcasm, implicit hate [19], and culturally coded language, often
producing opaque or biased decisions across linguistic and cultural boundaries [20]]. Human-in-the-
loop approaches [21]] highlight that moderation requires cultural and political context [3} 4], especially
for communities facing targeted hostility.

Explainable Al (XAI) offers interpretability via methods such as LIME [10], SHAP [22], attention
[[L3]], and counterfactuals [23] 124]. However, post-hoc explanations can be unfaithful [25} 26] and
often lack integration with domain knowledge, which is critical for detecting subtle, culturally specific
hate speech against marginalized groups.

Training-time XAl regularization, enabled by datasets like HateXplain [[14], aligns model explanations
with human rationales [27, 28| 29], but most work uses a single XAI method and monolingual data.
Few evaluate both plausibility and faithfulness [30} 31] or assess consistency across explanation
methods. This gap is pronounced in multilingual and code-switched contexts like Hinglish, where
implicit anti-Muslim hate is prevalent. Our work addresses this by integrating multiple XAI methods
into training, applying them to both English and Hinglish datasets, and jointly evaluating cultural
relevance, explanation quality, and cross-method agreement (Table 2)).

B Extended Methodology
B.1 Datasets

We evaluate on two datasets with token-level human rationales: HateXplain [[14] contains ~19k
social media posts from Twitter and Gab, annotated for Hate, Offensive, or Normal content, along
with rationales from multiple annotators. Following prior work, we merge Hate and Offensive into a
single Detrimental Content label.

BullySent is a Hinglish (Hindi-English code-switched) dataset of ~6.4k posts annotated for abusive
content, also with token-level rationales. Compared to HateXplain, BullySent contains greater lexical



Dataset | Detrimental Non: Total
Detrimental

HateXplain 11,415 7,814 19,299

BullySent | 3,451 2,985 6,436
Table 3: Dataset distribution across both corpora.

variation, frequent spelling inconsistencies, and transliteration noise, making rationale alignment
more challenging.

For evaluation, we aggregate annotator rationales using the Union strategy to ensure inclusive
coverage of all highlighted tokens.

B.2 Training Pipeline

Figure[2]outlines our training procedure. For HateXplain, we fine-tune a RoOBERTa encoder, while for
BullySent (Hinglish), we use XLM-R to better handle multilingual and code-switched text. Both mod-
els employ a binary classification head and are optimized with a composite loss combining standard
binary cross-entropy with an explanation-alignment term. For correctly predicted detrimental-content
examples, we generate token-level importance scores using a given XAl method, normalize them,
and align them with human rationales via KL divergence.

The regularization weight A controls the trade-off between accuracy and explanation alignment,
tuned separately for each dataset. The optimal value was A = 5 for HateXplain and A = 0.05 for
BullySent, suggesting that in the multilingual, noisier BullySent setting, heavy regularization can
hurt performance, whereas HateXplain benefits from stronger alignment pressure.

This approach is applied consistently across all four XAI methods studied: Attention, Gradient x Input,
Integrated Gradients, and LIME.

C Extended Explainability Analysis Across Datasets

To assess the generality of our findings, we evaluate explanation plausibility and faithfulness on both
HateXplain and BullySent using the same four XAI methods (Attention, Gradient x Input, Integrated
Gradients, and LIME) and two rationale selection strategies (Top-K and Thresholding). For each
dataset, we plot metric trends over varying K and 7 values, with all curves using identical scales
to enable direct visual comparison. Figures |3| present all twelve plots (six per dataset), while the
following discussion synthesizes the results across datasets.

C.1 Intersection over Union

Across both datasets, Attention consistently achieves the highest IoU values under both selection
strategies, indicating strong alignment with human rationales. Integrated Gradients (IG) follows
closely, especially under thresholding, where it benefits from capturing non-linear token dependencies.
Gradient x Input lags in plausibility on both datasets, while LIME exhibits the lowest IoU scores,
particularly for higher K values. Notably, BullySent scores are generally lower than HateXplain
across methods, suggesting that shorter, noisier, and more code-switched inputs make exact token
overlap harder to achieve.

C.2 Token-F1

Token-level F1 patterns are remarkably consistent across datasets: attention explanations best match
individual human-annotated tokens, followed by IG. Thresholding continues to outperform Top-K
for most methods, reflecting that selecting tokens above a score threshold better preserves rationale
boundaries—especially beneficial for HateXplain’s longer texts. On BullySent, all methods show
reduced F1 scores relative to HateXplain, likely due to higher annotation sparsity and linguistic
variability, but the relative ranking of methods remains stable.

C.3 Prediction Drop

Prediction Drop trends reaffirm IG as the most faithful method in both datasets: masking its top-
ranked tokens produces the largest confidence decreases, indicating strong causal alignment with the
model’s decision process. Attention also yields substantial drops, though with more variability across
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K and 7. LIME maintains low prediction drop values across datasets, reinforcing critiques of its
faithfulness in high-dimensional, context-dependent NLP settings. Interestingly, BullySent exhibits
smaller overall drop values compared to HateXplain, which may be due to its shorter, more direct
statements where a few key tokens suffice for classification.
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K=10 due to sampling constraints.
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