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Flat electronic bands form when the kinetic en-
ergy of electrons is quenched, making them lo-
calised within a region. However, special geo-
metrical features of electronic wavefunctions in
certain crystals can create destructive interference
that leads to quasi-localised topological flat-band
states[1]. The geodesic distance between these
quasi-localised flat-band wavefunctions is intrinsi-
cally different from the same between trivial and
completely localised flat bands[2]. The Fubini-Study
metric ofwavefunctions, that calculates the geodesic
distance, manifests as a complex tensor commonly
called the Quantum Geometric Tensor (QGT)[3].
Therefore, calculating theQGTon thewavefunctions
can reveal existence of non-trivial delocalised flat
bands which can lead to many fascinating many-
body quantum phenomena like unconventional su-
perconductivity, ferromagnetism, Wigner crystalli-
sation, etc.
Over the last few years, a large number of at-

tempts were reported towards identifying flat band
materials. These studies were mostly inspired by
two distinct schools of thought regarding the delo-
calised flat bands. In the first approach, bipartite,
line-graph and split graph lattices are searched in
databases [4, 5, 6] since these lattices are known for
hosting flat bands with nontrivial topological invari-
ant. The other top-down approach starts the search
of both trivial andnontrivial flat bandmaterials from
band structures within the computational databases
and then attempts to sift the nontrivial flat bands
[7, 8, 9]. Although the second approach can poten-
tially identify flat bands which are not included in
the list of line-graph and split-graph lattices, there is
no straightforward approach to sift the delocalised
ones except QGT.
Calculation of QGT on DFT data from databases

has a few immediate challenges. QGT is a local met-
ric defined at a k point. Designing a global met-
ric for a lattice based on QGT is a nontrivial task.
Secondly, QGT requires calculation of derivatives of
wavefunctions on a dense k-grid in the reciprocal
cell[10], which is impractical for DFT calculations.
To mitigate these issues, we propose a metric de-
fined on the real space to find overlap between real
space wavefunction and identify destructive inter-
ference as a signature of nontrivial flat bands. It
can be calculated in a high-throughput way over a
structure graph, yielding a global measure of non-
trivial flat bands. The metric is readily usable on
spin-polarized and non-spin-polarized DFT calcula-

tions and show distinctive characteristics for trivial
and nontrivial flat bands.
In this workflow, we first apply an AI-assisted flat

band detection algorithm [7] to identify 33000 flat
band materials from the Materials Project database.
These materials contain both trivial and nontrivial
flat bands. The algorithm also identifies the ele-
mental sublattice responsible for the flat band. We
then create a structure graph from the supercell of
the sublattice structure. Next, we calculate the pro-
posedmetric on a discrete grid along the edges of the
graph. The connectivitywithin the supercell helps to
calculate nontrivial hopping pathways through flat
band states, which can propagate electrons with-
out contributing to kinetic energy. Furthermore, we
identify destructive interference as a signature of
topological flat bands to confirm the nontrivial na-
ture. Overall, we found only a few thousand nontriv-
ial flat band materials which can contribute to elec-
tronic transport from sifting almost 33000 flat band
candidates fromMaterials Project.

Table 1: Snapshot of performance of the triviality
metric in identifying delocalized flat bands

Materials
Project
ID

Formula
Sublattice
struc-
ture

Density
reten-
tion
score

Destructive
interfer-
ence

mp-
20536 CoSn Co-

Kagome 0.28 True

mp-614 NiO2 O 0.0 False

mp-1261 EuZn Eu-
Cubic 0.14 True

mp-1029 BaF2 F 0.01 False

Table 1 and Fig. 1 show snapshot of how the met-
ric scores for typical trivial and nontrivial flat-band
materials. For a trivial flat band candidate NiO2, the
connectivity among the flat band states makes dis-
continuous hopping pathways within a unit cell with
corresponding ’density retention score’ zero. On the
contrary, for CoSn, a topological flat-band material,
the hopping pathways traverse the unit cell with a
’density retention score’ 0.28. We believe that this
high-throughput metric can significantly extend the
list of interesting flat-band candidates known to us.
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Fig. 1: Graphs of flat band sublattices showing con-
nectivity among atoms in neighboring unit cells:
(a) case of oxygen sublattice in a trivial flat band
material NiO2 (b) case of Co sublattice in a non
trivial flat band material CoSn.
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