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ABSTRACT

Deep learning with noisy labels presents significant challenges. In this work,
we theoretically characterize the role of label noise in training neural networks
from a feature learning perspective. Specifically, we consider a signal-noise data
distribution, where each data point comprises a label-dependent signal and label-
independent noise, and rigorously analyze the training dynamics of a two-layer
convolutional neural network under this data setting, along with the presence of
label noise. Particularly, we identify two stages in which the dynamics exhibit
distinct patterns. In Stage I, the model perfectly fits all the clean samples (i.e.,
samples without label noise) while ignoring the noisy ones (i.e., samples with
noisy labels). In the first stage, the model learns the signal from the clean samples,
which generalizes well on unseen data. In Stage II, as the training loss converges,
the gradient in the direction of noise surpasses that of the signal, leading to over-
fitting on noisy samples. Eventually, the model memorizes the noise present in the
noisy samples, which degrades its generalization ability. In contrast, when training
without label noise, the dynamics do not exhibit this two-stage pattern. Furthermore,
our results provide theoretical supports for two widely used techniques for tackling
label noise: early stopping and sample selection. Experiments on both synthetic
and real-world datasets confirm our theoretical findings.

1 INTRODUCTION

One of the key challenges in deep learning lies in its susceptibility to label noise (Angluin & Laird,
1988). The success of deep learning stems from its exceptional ability to approximate arbitrary
functions (Hornik et al., 1989; Funahashi, 1989), yet this ability becomes problematic in the presence
of noisy labels. Over-parameterized neural networks, which have sufficient capacity to memorize
training data, tend to over-fit noisy labels, leading to poor generalization on unseen data. Although
many studies (Patrini et al., 2017; Ma et al., 2018; Yu et al., 2019; Tanaka et al., 2018; Han et al.,
2018; Liu et al., 2023b; Chen et al., 2023; Xia et al., 2024) have developed methods to mitigate
the effects of label noise in practice, our theoretical understanding of label noise remains limited.
Particularly, a crucial step towards advancing our understanding is to formulate a comprehensive
theory that explains the learning dynamics of neural networks in the presence of label noise.

Existing works (Li et al., 2020; Liu et al., 2023a) has attempted to theoretically analyze the effects
of label noise on the training dynamics of neural networks; however, many of these studies rely on
unrealistic assumptions. Li et al. (2020) assumed the lazy training regime, which constrains the
distance between model weights and their initialization. Similarly, Liu et al. (2023a) adopted an
infinitely-wide neural network, where the dynamics become linear and can be described by a static
kernel function. Exploring the training dynamics with label noise beyond these assumptions remains
an active area of research.

Recently, a new line of research (Allen-Zhu & Li, 2020; Frei et al., 2022; Cao et al., 2022; Kou
et al., 2023; Xu et al., 2024) have developed the feature learning theory to better understand the
training dynamics and generalization of neural networks under more realistic settings. The core idea
of the feature learning theory, which dates back to Rumelhart et al. (1986), is to assume a simplified
data distribution and analyze how neural networks learn useful features, or representations, of this
data during the training process. Unlike the lazy training regime, this theoretical framework allows
model weights to evolve over a larger distance, capturing a broader range of nonlinear behaviours
in the training process. While the feature learning theory has successfully modeled the complex
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dynamics of neural networks across various settings, few attempts have been made to characterize
their dynamics in the presence of label noise using this theory. Here, we pose the question:

How does label noise affect the training dynamics of neural networks?

In this work, we answer the above question by establishing a feature learning framework for training
neural networks with gradient descent in the presence of label noise, unveiling a two-stage behaviour
in the training dynamics. Similar to Cao et al. (2022); Kou et al. (2023), the feature learning framework
is based on a signal-noise data distribution, where each data point consists of a label-dependent signal
and a label-independent noise1. Specifically, we consider a binary classification dataset {(xi, ỹi)}ni=1,
where xi ∈ R2d is the i-th input and yi ∈ {−1, 1} is the corresponding ground-truth label. The input
are defined as x = [x(1),x(2)] = [yµ, ξ], with the fixed vector µ ∈ Rd representing the signal, and
the random vector ξ ∈ Rd ∼ N (0, σ2

ξId) representing the noise. Additionally, we introduce the
label noise in the sense that the observed label ỹ flips the true label y (i.e., ỹ = −y) with a certain
probability. We rigorously analyze the training dynamics of a two-layer convolutional neural network
under above setup, identifying a two-stage picture:

• Stage I. Initially, the model perfectly fits all the clean samples while ignoring the noisy ones2.
The model mainly learns the signal from clean samples, which generalizes well on unseen data.

• Stage II. Then, the training loss converges and the model over-fits to the noisy samples. The
model memorizes the noise features from noisy samples, degrading its generalization.

For comparison, we also show that when training without label noise, the model tends to fit all
training samples throughout the training process, and the test error remains well-bounded. See Table 1
for a summary. This two-stage picture is well-supported by existing empirical findings (Arpit et al.,
2017; Han et al., 2018), which show that neural networks tend to first learn simple patterns from
clean samples and then proceed to memorize the noisy ones, and further validated by our experiments
under both synthetic and real-world scenarios.

w/ label noise Stage I. fit all clean samples and ignore noisy ones; learn signal. Theorem 4.1
Stage II. over-fit noisy samples; learn noise; degrade generalization. Theorem 4.2

w/o label noise the loss converges; fit all clean samples; generalize well. Theorem 4.3

Table 1: Overview of the two-phase picture and corresponding theoretical results.

Subsequently, based on our theoretical analysis, we provide an explanation for the effectiveness of
two common techniques used to address the label noise problem, i.e., early stopping (Liu et al., 2020;
Bai et al., 2021) and sample selection (Han et al., 2018; 2020). i) For early stopping, we show that
stopping the training process at the end of the first stage ensures a low test error, even in the presence
of label noise. ii) For sample selection, we verify that the small-loss criterion3 (Han et al., 2018) can
provably identify the clean samples from noisy ones.

In summary, our work focuses on the role of label noise in the optimization process of neural networks.
We prove that the models inevitably learn the noise features from data when the label noise is present,
which leads to degraded generalization compared to noise-free training. Our results highlight the
importance of taking a feature-learning viewpoint in studying questions related to training dynamics.

2 RELATED WORK

Feature learning theory. Recent works (Allen-Zhu & Li, 2020; Frei et al., 2022; Allen-Zhu & Li,
2022; Cao et al., 2022; Kou et al., 2023; Zou et al., 2023; Xu et al., 2024) has developed the feature
learning theory to analyze the training dynamics and generalization of neural networks. The core idea
of the feature learning theory is to simplify the data setup and describe how neural network learns
useful features of this data during training. The feature learning theory has achieved great successes
in understanding a large range of architecture such as graph neural network (Huang et al., 2023),

1Both signal and noise are “features” in data.
2To clarify, “clean samples” refers to samples without noisy labels, while “noisy samples” refers to those

with noisy labels. The same terminology applies for the rest of this paper.
3The samples with small loss are more likely to be the ones which are correctly labeled, i.e., the clean

samples.
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convolutional neural network (Cao et al., 2022; Kou et al., 2023), vision transformer (Jelassi et al.,
2022; Li et al., 2023), as well as various training schemes including gradient descent with momentum
(Jelassi & Li, 2022), Adam (Zou et al., 2021), sharpness-aware minimization (Chen et al., 2024), and
Mixup (Zou et al., 2023; Chidambaram et al., 2023).

Theoretical advances on learning with label noise. Existing works (Liu et al., 2023a; Li et al., 2020;
Frei et al., 2021) have attempted to theoretically analyze the training dynamics of neural networks in
the presence of label noise. However, many of these studies rely on unrealistic assumptions. Li et al.
(2020); Liu et al. (2023a) assumed the lazy-training regime (Jacot et al., 2018; Chizat et al., 2019),
constraining the distance between model weights and their initialization, and thus cannot capture the
process of learning features of data (Rumelhart et al., 1986; Damian et al., 2022). On the other hand,
Frei et al. (2021) focused on the early dynamics of neural networks trained with SGD, which can
be largely explained by the behavior of a linear classifier (Kalimeris et al., 2019; Hu et al., 2020),
thereby overlooking the adverse effects of label noise on generalization in later training stages. In
comparison, our work characterizes the whole training process of neural networks with label noise
from a feature-learning perspective, unveiling a novel two-stage behaviour in the training dynamics.

Comparison with Kou et al. (2023); Meng et al. (2023); Xu et al. (2024). Despite not specifically
focusing on the label noise problem, these works analyze the feature learning process of neural
networks while incorporating label noise in their data setups. However, their results differ significantly
from ours. Meng et al. (2023); Xu et al. (2024) focused on specific XOR-type classifications tasks,
whereas our analysis considers a more standard setting. Moreover, Kou et al. (2023) considered a
setting where n · SNR2 = o(1), with SNR := ∥µ∥2/(σξ

√
d) representing the signal-to-noise ratio.

In contrast, our two-stage picture can only be derived when n · SNR2 = Θ(1).

3 PROBLEM SETUP

Notation. We use bold letters for vectors and matrices, and scalars otherwise. The Euclidean norm
of a vector and spectral norm of a matrix are denoted by ∥ · ∥2, and the Frobenius norm of a matrix
by ∥ · ∥F . We use y to represent the true label and ỹ to represent the observed label. For a logical
variable a, let 1(a) = 1 if a is true, otherwise 1(a) = 0. Denote Id as the d× d identity matrix and
[n] = {1, 2, . . . , n}.
Training set. Following Allen-Zhu & Li (2020); Cao et al. (2022); Kou et al. (2023); Xu et al. (2024);
Huang et al. (2023), we consider a binary-classification data distribution Dtr, where each data point
consists of a label-dependent signal and a label-independent noise. More precisely, let µ ∈ Rd be a
fixed vector representing the signal and let ξ ∈ Rd be a random vector sampled from the Gaussian
distribution N (0, σ2

ξId) representing the noise. Then each data point x ∈ R2d is defined as

x = [x(1),x(2)], where one of x(1),x(2) is yµ and the other is ξ,

where y ∈ {−1, 1} is the corresponding label, generated from the Rademacher distribution, i.e.,
P(y = 1) = P(y = −1) = 1/2. We sample the training set {xi, yi}ni=1 from Dtr. Let S1 := {i ∈
[n] : yi = 1} and S−1 := {i ∈ [n] : yi = −1}, we assume the training set is balanced without loss of
generality, i.e., |S1| = |S−1| = n/2.

Label noise. In this work, we introduce the label noise for each training sample, where the observed
label ỹ may differ from the ground-truth label y4. Two common label noise settings are: i) random
classification noise (Angluin & Laird, 1988), where labels are flipped with probability τ ; and ii)
class-conditional noise, where label flips depend on the class, with samples from some classes being
more likely to be mislabeled than others. Our theoretical analysis covers both settings. Specifically,
let τ+, τ− ∈ (0, 1/2)5 represent the label flipping probabilities for samples from the positive and
negative classes in the binary classification task, i.e., τ+ = P(ỹ = −1|y = 1) and τ− = P(ỹ =
1|y = −1), respectively. We consider both cases where τ+ = τ− (i.e., the random classification
noise) and τ+ ̸= τ− (i.e., the class-conditional noise). Additionally, we denote the clean sample set
as St := {i ∈ [n] : ỹi = yi} and noisy sample set as Sf := {i ∈ [n] : ỹi ̸= yi}

4Notice that in experiments, the ground-truth labels are inaccessible, and we can only evaluate models based
on the observed labels.

5The upper bound on τ+ and τ− ensures that the neural network can still learn the signal from data despite
the presence of label noise.
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Network. We consider a two-layer convolutional neural network with ReLU activation. Formally,
given the input data x, the output of the neural network is defined as f(W,x) = F+1(W+1,x)−
F−1(W−1,x), where F+1(W+1,x) and F−1(W+1,x) are given by

Fj(Wj ,x) =
1

m

m∑
r=1

(
σ
(
⟨wj,r, yµ⟩

)
+ σ

(
⟨wj,r, ξ⟩

))
, j = ±1.

Here, σ(·) is ReLU activation function, defined as σ(x) = max{0, x}. We initialize the entries of W
independently from a zero-mean Gaussian distribution with variance σ2

0 , i.e., w(0)
j,r ∼ N (0, σ2

0Id) for
all j = ±1, r ∈ [m]. Additionally, we adopt the common practice of fixing the second layer weights
to uniformly ±1 for simplifying analysis (Arora et al., 2019; Cao et al., 2022; Kou et al., 2023).

Objective. We employ the logistic loss ℓ(f, ỹ) = log
(
1+ exp(−f · ỹ)

)
for training neural networks.

Then the training loss, or the empirical risk, can be written as:

LS(W) =
1

n

n∑
i=1

ℓ (f(W,xi), ỹi) ,

To minimize this empirical risk, we use gradient descent (GD) with a constant learning rate η > 0,

w
(t+1)
j,r = w

(t)
j,r − η · ∇wj,r

LS(W
(t))

= w
(t)
j,r −

η

nm

n∑
i=1

ℓ
′(t)
i σ′(⟨w(t)

j,r, ξi⟩)jỹiξi −
η

nm

n∑
i=1

ℓ
′(t)
i σ′(⟨w(t)

j,r, yiµ⟩)jyiỹiµ, (1)

where we define the loss derivative as ℓ′(t)i := ℓ′(f(W(t),xi), ỹi) = − 1
1+exp(ỹif(W(t),xi))

.

Genaralization. We characterize the generalization abilities of models by evaluating the 0-1 error on
the unseen data distribution Dtest:

L0−1
D (W) = P(x,y)∼Dtest

(y · f(W,x) < 0)

The test distribution Dtest mainly follows the settings of Dtr; however, to simulate spurious features
in real-world scenarios, for any (x, y) ∈ Dtest, we define x = [yµ, ξ+ζ], where ξ ∼ Unif({ξi}ni=1)
and ζ ∼ N (0, σ2

ξI). Here, Unif({ξi}ni=1) denotes the uniform distribution over {ξi}ni=1. In real-
world scenarios, spurious features exist, which occur in both the training and test set but lack
causal relationships with the ground-truth label y, such as the “background” information in image
classification tasks (Sagawa et al., 2020; Zhou et al., 2021; Singla & Feizi, 2021; Izmailov et al.,
2022). Therefore, we consider label-independent noise ξ in the training set as spurious features and
randomly incorporate them into the data points from the test distribution.

Signal-noise decomposition. In our analysis, we utilize a proof technique termed signal-noise
decomposition, which has been widely adopted by (Li et al., 2019; Allen-Zhu & Li, 2020; 2022; Cao
et al., 2022; Kou et al., 2023). The signal-noise decomposition breaks down the weight w(t)

j,r into
signal and noise components. Formally, we express:

w
(t)
j,r = w

(0)
j,r + jγ

(t)
j,r∥µ∥

−2
2 µ+

n∑
i=1

ρ
(t)
j,r,i∥ξi∥

−2
2 ξi, (2)

where γ
(t)
j,r and ρ

(t)
j,r,i represent the signal and noise coefficients, respectively. The normalization

factors ∥µ∥−2
2 and ∥ξi∥−2

2 ensure that γ(t)
j,r ≈ ⟨w

(t)
j,r,µ⟩, and ρ

(t)
j,r,i ≈ ⟨w

(t)
j,r, ξi⟩. Naturally, γ(t)

j,r

characterizes the process of signal learning, while ρ
(t)
j,r,i captures the memorization of noise.

To facilitate a finer-grained analysis of the evolution of the noise coefficients, we introduce the
notations ρ

(t)
j,r,i := ρ

(t)
j,r,i1(ρ

(t)
j,r,i ≥ 0), ρ(t)

j,r,i
:= ρ

(t)
j,r,i1(ρ

(t)
j,r,i ≤ 0), following Cao et al. (2022).

Consequently, the weight decomposition can be further expressed as:

w
(t)
j,r = w

(0)
j,r + jγ

(t)
j,r∥µ∥

−2
2 µ+

n∑
i=1

ρ
(t)
j,r,i∥ξi∥

−2
2 ξi +

n∑
i=1

ρ(t)
j,r,i
∥ξi∥−2

2 ξi. (3)

Based on the gradient descent dynamics (1) and the signal-noise decomposition (3), we introduce the
Lemma 3.1, which outlines the iterative update rules for the signal and noise coefficients.
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Lemma 3.1. The coefficients γ(t)
j,r , ρ

(t)
j,r,i, ρ

(t)
j,r,i

in decomposition (3) satisfy γ(0)
j,r , ρ

(0)
j,r,i, ρ

(0)
j,r,i

= 0 and
admit the following iterative update rule:

γ
(t+1)
j,r = γ

(t)
j,r −

η

nm

n∑
i=1

ℓ
′(t)
i σ′(⟨w(t)

j,r, yiµ⟩)yiỹi∥µ∥
2
2,

ρ
(t+1)
j,r,i = ρ

(t)
j,r,i −

η

nm
ℓ
′(t)
i σ′(⟨w(t)

j,r, ξi⟩)∥ξi∥
2
21(ỹi = j),

ρ(t+1)
j,r,i

= ρ(t)
j,r,i

+
η

nm
ℓ
′(t)
i σ′(⟨w(t)

j,r, ξi⟩)∥ξi∥
2
21(ỹi = −j).

Lemma 3.1 converts gradient descent updates into the dynamics of signal and noise coefficients
γ
(t)
j,r , ρ(t)j,r,i, ρ

(t)
j,r,i

, enabling us to analyze the complex, non-convex optimization of neural networks.

Since ℓ
′(t)
i < 0 and the upper bounds τ+, τ− < 1/2 hold, the signal coefficient γ(t)

j,r ≥ 0 forms an
increasing sequence, even in the presence of noisy samples. Similarly, we can easily verify that
ρ
(t)
j,r,i ≥ 0 also increases over time, while ρ(t)

j,r,i
≤ 0 decreases but remains bounded below by a small

term. Therefore, it suffices to focus on the dynamics of ρ(t)j,r,i, which is critical for understanding
noise memorization in the training process.

4 MAIN RESULTS

In this section, we present our main result that a two-stage behaviour emerges in the feature learning
process of neural networks in the presence of label noise. For comparison, we also analyze the feature
learning process when training without label noise, emphasizing the stark contrasts with the two-stage
behavior identified with label noise. A summary of our results is shown in Table 1.

Before presenting our main results, we first state our main condition.

Additional notations. We denote SNR := ∥µ∥2/(σξ

√
d) to be the signal-to-noise ratio and T ∗ =

Θ̃(η−1ϵ−1nmσ−1
ξ d−1) to be the maximum iterations for any given ϵ > 0.

Condition 4.1. Suppose there exists a sufficiently large constant C such that the following holds.

1. The signal-to-noise ratio and label flipping probability satisfy n · SNR2 = Θ(1), τ+, τ− = Θ(1).

2. The data dimension d satisfies d ≥ Cmax
{
n2 log(nm/δ) log(T ∗)2, n∥µ∥2σ−1

ξ

√
log(n/δ)

}
.

3. The size of training sample n and model width m satisfy m ≥ C log(n/δ), n ≥ C log(m/δ).

4. The signal strength ∥µ∥2 satisfies ∥µ∥22 ≥ Cσ2
ξ log(n/δ).

5. The standard deviation σ0 of the Gaussian distribution for weights initialization satisfies σ0 ≤
C−1 min

{√
nσ−1

ξ d−1, ∥µ∥−1
2 log(m/δ)−1/2

}
.

6. The learning rate η satisfies η ≤ C−1 min
{
σ−2
ξ d−3/2n2m

√
log(n/δ), σ−2

ξ d−1n
}

.

Remarks on Condition 4.1. Condition 4.1 significantly differs from Kou et al. (2023, Condition 4.1.1)
regarding the condition on SNR and label flipping probability τ+, τ−, despite their similarities. Kou
et al. (2023) required d ≥ Cnσ−2

ξ ∥µ∥22 log(T ∗), which translates to n · SNR2 ≤ 1/(C log(T ∗)) =

o(1); however, we require a constant order, i.e., n · SNR2 = Θ(1). Furthermore, Kou et al. (2023)
required τ+, τ− ≤ 1/C for sufficiently large constant C.6 However, we require τ+, τ− to be lower-
bounded to emphasize the effects of label noise on the training dynamics. The other requirements
regarding the network width m, sample size n, signal norm ∥µ∥2, initialization standard deviation
σ0 and learning rate η are consistent with those in Kou et al. (2023), which are crucial to ensure the
training loss converges under gradient descent.

6They consider p = τ+ = τ−.
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4.1 FEATURE LEARNING PROCESS WITH LABEL NOISE

In this subsection, we analyze the feature learning process of neural networks in the presence of
label noise. We identify two stages where the learning dynamics exhibits distinct behaviours. This
two-stage behaviour only occurs when n · SNR2 = Θ(1) and τ+, τ− = Θ(1).

Stage I. Model fits clean data. Theorem 4.1 characterizes the learning outcome at the end of Stage I.

Theorem 4.1. Under Condition 4.1, there exists T1 = Θ
(
η−1nmσ−2

ξ d−1
)

such that ρ(T1)
ỹi,r,i

= Θ(1)

for all i ∈ [n], r ∈ [m] with ⟨w(0)
ỹi,r

, ξi⟩ ≥ 0 and γ
(T1)
j,r = Θ(1) for all j = ±1, r ∈ [m], and

1. γ
(T1)
j,r > ρ

(T1)
ỹi,r,i

for all j = ±1, r ∈ [m], i ∈ [n].

2. All clean samples i ∈ St satisfy that ỹif(W(T1),xi) ≥ 0.

3. All noisy samples i ∈ Sf satisfy that ỹif(W(T1),xi) ≤ 0.

Theorem 4.1 implies that at the end of Stage I, the signal coefficients are larger than the noise
coefficients, i.e., γ(T1)

j,r > ρ
(T1)
ỹi,r,i

, suggesting signal learning dominates the feature learning process
in Stage I. Theorem 4.1 also demonstrates that for all clean samples, the model makes correct
predictions, i.e., ∀i ∈ St, ỹif(W(T1),xi) ≥ 0, while for for all noisy samples, the model makes
incorrect predictions, i.e., ∀i ∈ Sf , ỹif(W(T1),xi) ≤ 0. This indicates that the model fits all the
clean samples while ignoring the noisy samples in Stage I.

Stage II. Loss converges and model fits noisy data. Theorem 4.2 formalize the learning behaviour
in Stage II as the training loss converges.
Theorem 4.2. Under Condition 4.1, for arbitrary ϵ > 0, there exists t∗ ∈ [T1, T

∗], such that training
loss converges, i.e., LS(W

(t∗)) ≤ ϵ and

1. All clean samples, i.e., i ∈ St, it holds that ỹif(W(t∗),xi) ≥ 0.

2. There exists a constant 0 < τ ′ ≤ τ++τ−
2 such that there are τ ′n noisy samples, i.e., i ∈ Sf that

satisfy 1
m

∑m
r=1 ρ

(t∗)
ỹi,r,i

> 1
m

∑m
r=1 γ

(t∗)
−ỹi,r

. and ỹif(W
(t∗),xi) ≥ 0.

3. Test error L0−1
D (W(t∗)) ≥ 0.5min{τ+, τ−}.

Theorem 4.2 states that in Stage II, as the training loss converges, for all clean samples, the model
continues to make correct predictions, consistent with Stage I; however, for some noisy samples,
the averaged noise coefficient across all neurons surpasses the averaged signal coefficient, i.e.,
1
m

∑m
r=1 ρ

(t∗)
ỹi,r,i

> 1
m

∑m
r=1 γ

(t∗)
−ỹi,r

. Consequently, for these noisy samples, the model’s predictions
align with the noisy observed labels ỹ. Theorem 4.2 further shows that if evaluating the model on the
test distribution introduced in Section 3, it results in a constant, non-vanishing test error, which is lower
bounded by the label flipping probability in the training set, i.e., L0−1

D (W(t∗)) ≥ 0.5min{τ+, τ−}.
We lastly remark that whether τ+, τ− is identical does not alter the feature learning dynamics.

Early stopping and sample selection. Our results naturally explains the effectiveness of two
common strategies frequently used in practice to address label noise, i.e., early stopping (Liu et al.,
2020; Bai et al., 2021) and sample selection (Han et al., 2018; 2020). Intuitively, early stopping aims
to stop training before the loss converges, preventing over-fitting to noisy samples. On the other hand,
sample selection leverages the small-loss criterion Han et al. (2018) to distinguish clean samples
from noisy ones, assuming that samples with smaller losses are more likely to be clean. Corollary 4.1
formally supports the effectiveness of these two strategies.
Corollary 4.1 (Early stopping and sample selection). Under the same conditions as in Theorem 4.1,
the test error satisfies L0−1

D (W(T1)) ≤ exp(−dn−1/C ′) for some constant C ′ > 0. In addition, for
all i ∈ St, ℓ(T1)

i ≤ log(2) and for all i ∈ Sf , ℓ(T1)
i ≥ log(2).

Corollary 4.1 implies that if training is stopped during Stage I, before the loss converges, the test
error can be upper bounded arbitrarily small under the condition that d = Ω̃(n2). Corollary 4.1 also
states that noisy samples tend to have higher loss values compared to clean samples, and there exists
a hard threshold log(2), which allows for a perfect separation of clean samples from noisy ones.
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4.2 FEATURE LEARNING PROCESS WITHOUT LABEL NOISE

In this subsection, we analyze the feature learning process of neural networks without label noise.

Loss converges and model fits all data. The analysis of feature learning when training without label
noise follows a similar two-stage framework as the analysis conducted with label noise. Theorem 4.3
formally characterizes the learning outcome without label noise.

Theorem 4.3. Under Condition 4.1 with τ+, τ− = 0, there exists T1 = Θ(η−1ϵ−1nmσ−2
ξ d−1) such

that (1) ρ(T1)
yi,r,i

= Θ(1) for all i ∈ [n] and r ∈ [m] such that ⟨w(0)
ỹi,r

, ξi⟩ ≥ 0, (2) γ(T1)
j,r = Θ(1) for

all j = ±1, r ∈ [m] and (3) yif(W(T1),xi) ≥ 0 for all i ∈ [n]. In addition, there exists a time
t∗ ∈ [T1, T

∗] such that training loss converges, i.e., LS(W
(t∗)) ≤ ϵ and

1. yif(W
(t∗),xi) ≥ 0 for all i ∈ [n],

2. Test error is bounded as L0−1
D (W(t∗)) ≤ exp

(
d
n −

n∥µ∥4
2

CDσ4
ξd

)
for some constant CD > 0.

Theorem 4.3 demonstrates that without label noise, all samples can be predicted correctly at the end of
both Stage I and Stage II, suggesting that the model fits all the samples throughout the training process.
Theorem 4.3 also implies that under the test distribution, the test error can be upper bounded by
exp( dn−

n∥µ∥4
2

CDσ4
ξd
). Thus, if n·SNR2 ≥ 2CD = Θ(1), it follows that L0−1

D (W(t∗)) ≤ exp(− n∥µ∥4

2CDσ4
ξd
),

which is small given the requirement on d (see Condition 4.1).

5 OVERVIEW OF PROOF STRATEGIES

In this section, we provide an overview of our proof techniques for our theoretical results in Section 4.

5.1 FEATURE LEARNING PROCESS WITH LABEL NOISE

The analysis of feature learning in the presence of label noise critically relies on Lemma 5.1, which
shows the difference in terms of model predictions between clean and noisy samples.

Lemma 5.1. Under Condition 4.1, there exists a sufficiently large constant C1 such that for all
t ∈ [0, T ∗], the following are satisfied:

• 1
m

∑m
r=1

(
γ
(t)
ỹi,r

+ ρ
(t)
ỹi,r,i

)
− 1/C1 ≤ ỹif(W

(t),xi) ≤ 1
m

∑m
r=1

(
γ
(t)
ỹi,r

+ ρ
(t)
ỹi,r,i

)
+ 1/C1 for

all clean samples, i.e., i ∈ St

• 1
m

∑m
r=1

(
ρ
(t)
ỹi,r,i

− γ
(t)
−ỹi,r

)
− 1/C1 ≤ ỹif(W

(t),xi) ≤ 1
m

∑m
r=1

(
ρ
(t)
ỹi,r,i

− γ
(t)
−ỹi,r

)
+ 1/C1

for all noisy samples, i.e., i ∈ Sf .

Lemma 5.1 suggests the for clean samples i ∈ St, the mode prediction ỹif(W
(t),xi) is determined

by 1
m

∑m
r=1

(
γ
(t)
ỹi,r

+ ρ
(t)
ỹi,r,i

)
, while for noisy samples i ∈ Sf , ỹif(W(t),xi) is characterized by

1
m

∑m
r=1

(
ρ
(t)
ỹi,r,i

− γ
(t)
−ỹi,r

)
.

Besides Lemma 5.1, we also need to bound the scale of coefficients throughout the training process.

Proposition 5.1. Under Condition 4.1, for any 0 ≤ t ≤ T ∗, we can bound

0 ≤ ρ
(t)
j,r,i, γ

(t)
j,r ≤ Θ(log(T ∗)),

0 ≥ ρ(t)
j,r,i
≥ −Õ(max{σ0∥µ∥2, σ0σξ

√
d, nd−1/2}).

Proposition 5.1 states that |ρ(t)
j,r,i
| is lower bounded by a small term based on Condition 4.1. In

addition, both ρ
(t)
j,r,i, γ

(t)
j,r are positive and cannot grow faster than a logarithmic order of T ∗. Notice

that although Kou et al. (2023) demonstrates a similar bound, their analysis is not applicable to our
case due to our condition that n · SNR2 = Θ(1). Particularly, a key technique in their analysis is
the automatic balance of updates, i.e., the loss derivatives ℓ′(t)i are balanced across all samples (Kou
et al., 2023, Key Technique 2). In our case, however, due to the constant order of n · SNR2, signal

7
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coefficients are on the same scale as noise coefficients. Consequently, the loss derivatives ℓ′(t)i are no
longer solely determined by 1

m

∑m
r=1 ρ

(t)
ỹi,r,i

as was the case in Kou et al. (2023).

To prove Proposition 5.1 as well as the main theorems in Table 1, we separately consider two stages.

In Stage I, before the maximum of the coefficients reaches a constant order, all loss derivatives can
be lower bounded by a constant, i.e., |ℓ′(t)i | ≥ Cℓ for all i ∈ [n]. This ensures the balance of loss
derivatives across all samples as |ℓ′(t)i | ≤ 1. Such a condition allows both both ρ

(t)
j,r,i, γ

(t)
j,r to increase

to a constant order, enabling the establishment of the bound in Proposition 5.1. Furthermore, by
applying Lemma 5.1, we can assert that ỹif(W(t),xi) ≥ 0 for all i ∈ St. On the other hand, as
long as n · SNR2 ≥ c′, for some constant C ′ > 0, we can demonstrate that signal learning slightly
surpasses noise memorization, concluding that ỹif(W(t),xi) ≤ 0 for noisy samples i ∈ Sf .

In Stage II, after the coefficients reach a constant order, the loss derivatives can no longer be lower-
bounded by a constant. To establish that Proposition 5.1 still holds in this stage, we first rewrite the
signal learning dynamics in Lemma 3.1 as follows:

γ
(t+1)
j,r = γ

(t)
j,r +

η

nm

(∑
i∈St

|ℓ′(t)i |1(⟨w
(t)
j,r, yiµ⟩ ≥ 0)−

∑
i∈Sf

|ℓ′(t)i |1(⟨w
(t)
j,r, yiµ⟩ ≥ 0)

)
∥µ∥22.

Recall that |ℓ′(t)i | = 1
1+exp(ỹif(W(t),xi))

. Based on Lemma 5.1, |ℓ′(t)i |1(i ∈ Sf ) can be larger than

|ℓ′(t)i |1(i ∈ St), which causes γ(t)
j,r to decrease. However, we show by contradiction that γ(t)

j,r ≤ 0

cannot occur. When γ
(t)
j,r decreases, the gap between |ℓ′(t)i |1(i ∈ St) and |ℓ′(t)i |1(i ∈ Sf ) diminishes,

allowing γ
(t)
j,r to eventually increase in subsequent iterations. Therefore, the upper bound for both

γ
(t)
j,r , ρ

(t)
j,r,i can be derived by showing that |ℓ′(t)i | converges at a rate of O(1/t) when either γ(t)

j,r or

ρ
(t)
j,r,i grows to a logarithmic order.

Additionally, we demonstrate that training loss converges at some iteration t∗ using a similar analysis
as in Cao et al. (2022); Kou et al. (2023). Upon convergence, because of the monotonicity of
ρ
(t)
ỹi,r,i

and positivity of γ(t)
j,r , we can show ỹif(W

t∗ ,xi) ≥ 0 for all i ∈ St. On the other hand,
we establish by contradiction that there must exist a constant fraction of noisy samples satisfying
ỹif(W

t∗ ,xi) ≥ 0. Because if not, we would have 1
m

∑m
r=1(ρ

(t∗)
ỹi,r,i
−γ(t∗)

−ỹi,r
) ≤ Cϵ for some constant

Cϵ > 0 over a constant fraction of samples. This suggests the training loss LS(W
(t∗)) can be lower

bounded by a strictly positive constant cl > 0, which leads to a contradiction.

Finally, to establish the test error, we show that, based on the test distribution Dtest introduced in
Section 3, there exits some sufficiently large constant C ′ that

P(yf(W(t∗),x) < 0)

≥ 1

n

n∑
i=1

P
( 1

m

m∑
r=1

σ(⟨w(t∗)
−y,r, ξi + ζ⟩)− 1

m

m∑
r=1

σ(⟨w(t∗)
y,r , ξi + ζ⟩) ≥ 1

m

m∑
r=1

γ(t∗)
y,r + 1/C ′

)
Next, we show that for any y = ±1, there exists some sufficiently large constant C2 that for any
i ∈ Sf ∩ Sy, ⟨w(t∗)

−y,r, ξi + ζ⟩ ≥ ρ
(t∗)
−y,r,i − 1/C2, ⟨w(t∗)

y,r , ξi + ζ⟩ ≤ 1/C2. Then, based on the scale

that 1
m

∑m
r=1(ρ

(t∗)
ỹi,r,i

− γ
(t∗)
−ỹi,r

) ≥ Cϵ, we can show P(yf(W(t∗),x) < 0) ≥ 0.5τ+ if y = 1 and
P(yf(W(t∗),x) < 0) ≥ 0.5τ− if y = −1 given that |Sf ∩ S1| = τyn/2.

5.2 FEATURE LEARNING PROCESS WITHOUT LABEL NOISE

The analysis of feature learning without label noise follows a similar two-stage framework as the
analysis with label noise. Our analysis without label noise relies on in Lemma 5.2, where we show
that under Condition 4.1, the loss derivatives are balanced across all samples, and both the noise
coefficients and signal coefficients are of the same order.
Lemma 5.2. Under Condition 4.1, for any 0 ≤ t ≤ T ∗, the following holds

1. 1
m

∑m
r=1(ρ

(s)
yi,r,i

+ γ
(s)
yi,r − ρ

(s)
yk,r,k

− γ
(s)
yk,r) ≤ κ for all i, k ∈ [n].

8
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CNN on Synthetic data w/ label noise CNN on Synthetic data w/o label noise

(a) (c)(b) (d)

Figure 1: Experimental validation under the synthetic setup, with label noise (a, b) and without
label noise (c, d). (a, c) The change in maxj,r γj,r (signal learning) and maxj,r ρj,r,i (noise
memorization) on noisy (i.e., when yi ̸= ỹi) and clean samples (i.e., when yi = ỹi) w.r.t the
training iteration t. (b, d) The change in overall training accuracy AccDtrain , as well as the accuracy
on clean AccDtrain, clean and noisy samples AccDtrain, noisy , w.r.t the training iteration t for models under
different settings. Note that there are no noisy samples when training without label noise; thus we
only plot noise memorization on clean samples and the overall training accuracy.

2. ℓ
′(s)
i /ℓ

′(s)
k ≤ C̃ℓ for all i, k ∈ [n].

Lemma 5.2 allows us to establish Proposition 5.1 for all training iterations. Initially, we can demon-
strate that both signal and noise coefficients reach a constant order during Stage I, as in Section 5.1.
In Stage II, we can show that the scales of the signal and noise coefficients remain on the same order,
i.e., γ(t)

j,r/
∑n

i=1 ρ
(t)
j,r,i = Θ(SNR2). Finally, by employing a similar test error analysis as in Kou et al.

(2023), we can upper bound the test error in terms of n · SNR2.

6 EXPERIMENTS

In this section, we provide empirical evidence on both synthetic and real-world datasets to support
our theoretical analysis in previous sections.

Validation under the synthetic setup. First, we conduct experiments under the synthetic setup to
verify our theories. Here, we generate the data exactly based on the distribution introduced in Section 3
Specifically, without loss of generality, the fixed signal vector is set to be µ = [yµ, 0, · · · , 0] ∈ Rd,
where µ = 20 and d = 2000, and the random noise vector ξ is sampled from N (0, Id). This setting
corresponds to n · SNR2 = 20. We generate n = 100 training samples with balanced class labels
and flip each sample’s label with a probability of 0.1. Then we train a two-layer CNN (as defined
in Section 3) on this synthetic data using gradient descent, with a total of T = 200 iterations and
a learning rate of η = 0.1. For comparison, we also train a baseline model under nearly identical
settings, but on the dataset without label flipping.

Experiments under this synthetic setup successfully validate our two-stage picture in the feature
learning process under the presence of label noise. Specifically, we demonstrate the signal learning
process in the two-layer CNN by showing how maxj,r γj,r changes during training. We also present
the noise memorization process by illustrating the evolution of maxj,r ρj,r,i. In Figure 1 (a), a clear
two-stage pattern emerges in the learning process for the model trained with label noise: i) in the
early stage (from initialization to around 25 iterations), the value of maxj,r γj,r is significantly larger
than that of maxj,r ρj,r,i, indicating that the signal learning initially dominates; ii) in the later stage
(after 25 iterations), the value of maxj,r ρj,r,i on noisy samples (i.e., when yi ̸= ỹi) increasingly
surpasses that of maxj,r γj,r, implying that the noise memorization process, particularly for the
noise in label-flipped samples, gradually takes over. In contrast, as shown in Figure 1 (c), when
training without label noise, maxj,r γj,r consistently exceeds maxj,r ρj,r,i throughout the training.
Additionally, we provide the classification accuracy for the training samples. In Figure 1 (b), for
training with label noise, the accuracy on noisy samples initially drops to 0 during the early stage and
then gradually increases. Conversely, in Figure 1 (c), when training without label noise, the training
accuracy remains consistently high once it reaches its maximum value. These results together support
our two-stage picture, thereby verifying our theoretical analysis.

Validation in the real-world scenario. Taking a step further, we also validate our theoretical analysis
in the real-world scenario. We perform experiments on the commonly used image classification
dataset CIFAR-10 (Krizhevsky et al., 2009), using standard network architecture VGG-11 (Simonyan
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Figure 2: Experimental validation in real-world scenarios. Two VGG-11 nets are trained on the
first two categories of CIFAR-10 under nearly identical settings, differing only in that one is trained
with label noise and the other without. (a) The accuracy curves for the two models. Here, AccDtrain

and AccDtest represent the accuracy on the entire training and test sets, respectively, while AccDtrain, clean

and AccDtrain, noisy specifically denote the accuracy on clean and noisy samples from the training set.
Since there are no noisy samples when training without label noise, we only plot the overall training
and test accuracy curves. (b) The interpretations of the model predictions using SHAP (Lundberg &
Lee, 2017). The top row displays the input images, the middle row presents the interpretations for
models trained without label noise, and the bottom row shows the interpretations for models trained
with label noise. Red regions indicate positive contributions to model predictions, while blue regions
denote negative contributions, with darker regions signifying greater contributions.

& Zisserman, 2015). Specifically, we train the VGG-11 network with stochastic gradient descent
on samples from the first two categories of CIFAR-10, where each sample’s label is flipped with a
probability of 0.2. Similar to the synthetic experiment, for comparison, we also train another VGG-11
net under the same settings but without label flipping.

Experiments in the real-world scenario further reinforce the applicability of our theory. First,
we provide the accuracy results on both training and test sets, denoted as AccDtrain and AccDtest ,
respectively. In Figure 2(a), when training with label noise, the accuracy on noisy samples follows
a similar pattern to the synthetic experiments — an initial drop followed by a gradual increase to
1 — while the test set accuracy remains consistently lower than when training without label noise.
However, accuracy results alone are insufficient to demonstrate that the model memorizes the noise
from the label-flipped samples by the end of training. Furthermore, we visualize the interpretation
of each model prediction using SHAP (Lundberg & Lee, 2017), which provides insights into the
contribution of each input variable to the model prediction. In Figure 2(b), the interpretations for
models trained with label noise, the interpretations appear messy with no clear pattern observed;
yet, for models trained without label noise, the interpretations are more consistent, focusing on
generalizable features such as the “wing" for the “airplane" class and the overall “outline" for the
“automobile" class. These findings align with our theoretical results, confirming the model’s two-stage
behavior under noisy conditions.

7 CONCLUSION AND LIMITATIONS

In conclusion, our work rigorously characterized the role of label noise in the feature learning process
of neural networks, identifying two stages in the learning dynamics. In Stage I, the model perfectly
fits all the clean samples while ignoring the noisy ones, effectively learning the signal from the data
and achieving good generalization. In Stage II, as the loss converges, the model inevitably over-fits
to the noisy samples, learning noise from data and resulting in poor generalization. This two-stage
behaviour firmly explains the effectiveness of early stopping and sample selection. Since the model
performs well at the end of Stage I, a natural future direction is to develop methods for accurately
identifying the point at which Stage I concludes.

Limitations. We note that our current empirical validations mainly focus on image classification
tasks, though aligning with most literature on label noise. We also note that our theoretical analysis
still relies on several assumptions, such as the simplified data and model setups.
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A COMPARISON OF CONDITIONS TO (KOU ET AL., 2023)

This section compares the Condition 4.1 to conditions required in (Kou et al., 2023). We present the
comparisons in Table 2. As observed in Table 2, the differences in the conditions are regarding label
noise ratio τ , SNR scale n · SNR2 and dimensionality.

Label noise (Kou et al., 2023) τ ≤ 1/C

Our work τ = Θ(1)

SNR (Kou et al., 2023) n · SNR2 ≤ 1/(C log(T ∗))

Our work n · SNR2 = Θ(1)

Dimension (Kou et al., 2023) d ≥ Cmax{nσ−2
ξ ∥µ∥22 log(T ∗), n2 log(nm/δ)(log(T ∗))2}

Our work d ≥ Cmax{nσ−1
ξ ∥µ∥2

√
log(n/δ), n2 log(nm/δ)(log(T ∗))2}

Sample size (Kou et al., 2023) n ≥ C log(m/δ)

Our work n ≥ C log(m/δ)

Network width (Kou et al., 2023) m ≥ C log(n/δ)

Our work m ≥ C log(n/δ)

Signal norm (Kou et al., 2023) ∥µ∥22 ≥ Cσ2
ξ log(n/δ)

Our work ∥µ∥22 ≥ Cσ2
ξ log(n/δ)

Learning rate (Kou et al., 2023) η ≤ C−1 min
{
σ−2
ξ d−3/2n2m

√
log(n/δ), σ−2

ξ d−1n
}

Our work η ≤ C−1 min
{
σ−2
ξ d−3/2n2m

√
log(n/δ), σ−2

ξ d−1n
}

Initialization (Kou et al., 2023) σ0 ≤ C−1 min
{√

nσ−1
ξ d−1, ∥µ∥−1

2 log(m/δ)−1/2
}

Our work σ0 ≤ C−1 min
{√

nσ−1
ξ d−1, ∥µ∥−1

2 log(m/δ)−1/2
}

Table 2: Comparisons of required conditions. T ∗ = η−1poly(ϵ−1, d, n,m) is the maximum iterations
considered. Comparing to (Kou et al., 2023), the only differences in the conditions are regarding the
label noise scale τ , SNR and dimension d.

B COMPARISON OF TECHNICAL QUANTITIES TO (KOU ET AL., 2023)

Among the various differences in conditions compared to (Kou et al., 2023), the most critical
distinction lies in the scale of the SNR. Because we aim to characterize the two-stage behaviors
induced by label noise, we require the SNR to satisfy n · SNR2 = Θ(1). This enables the signal
learning to dominate the noise learning in the first stage while noise learning dominates signal
learning in the second stage. Such a distinct two-stage dynamics cannot be captured by (Kou et al.,
2023) due to n · SNR2 = o(1).

More specifically, in the following, we explicitly compares the key differences in the analysis
techniques compared to (Kou et al., 2023):

• Non-Time-invariant coefficients: One of the key techniques (Key Technique 1 in (Kou et al.,
2023)) is the derivation of time-invariant order of the coefficient ratio: γ

(t)
j,r/

∑n
i=1 ρ

(t)
j,r,i =

Θ(SNR2), which is critical for their generalization analysis. However, in our case, due to the
setting of constant order n · SNR2, the noisy samples exhibit different behaviors as the clean
samples (which is the main goal we wish to show), such time-invariance may not hold for all
iterations.

• Non-balancing of the updates: Another key technique employed in (Kou et al., 2023) is
the automatic balancing of coefficient updates, which requires to show ℓ

′(t)
i /ℓ

′(t)
k ≤ C for all

i, k ∈ [n]. That is, the loss derivatives across all samples are approximately balanced, which is
critical for their convergence analysis. Because in our case n · SNR2, the loss derivatives of
noisy samples may be significantly larger than that of clean samples, we cannot guarantee the
balance of updates across all samples.
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Without the above two results in our case, the convergence and generalization analysis becomes
challenging. To address the challenges, we require to develop novel techniques via refined analysis
on clean and noisy samples, which cannot be addressed in the prior works.

To better comprehend the differences to the analysis of (Kou et al., 2023), we present the following
tables that compares the different quantities at each training stage. These differences require non-
trivial analysis.

First Stage Second Stage

Monotonicity of signal
(Kou et al., 2023) Monotonic increase

Our work Monotonic increase No monotonicity

Signal-noise magnitude
(Kou et al., 2023) Noise dominates

Our work Signal dominates Noise dominates

Determining factors of
ỹif(W

(t),xi)

(Kou et al., 2023) 1
m

∑m
r=1 ρ

(t)
ỹi,r,i

± o(1)

Our work

{
1
m

∑m
r=1(γ

(t)
ỹi,r

+ ρ
(t)
ỹi,r,i

)± o(1), for i ∈ St
1
m

∑m
r=1(ρ

(t)
ỹi,r,i

− γ
(t)
−ỹi,r

)± o(1), for i ∈ Sf

Prediction
(Kou et al., 2023) ỹif(W

(t),xi) ≥ 0,∀i ∈ [n]

Our work
{
ỹif(W

(t),xi) ≥ 0, i ∈ St
ỹif(W

(t),xi) ≤ 0, i ∈ Sf
ỹif(W

(t),xi) ≥ 0,∀i ∈ [n]

Test error L0−1
D (W(T1))

(Kou et al., 2023)

{
o(1), if n∥µ∥42 > C − 1σ4

ξd

Ω(1), if n∥µ∥42 ≤ C3σ
4
ξd

Our work o(1) Ω(1)

Table 3: Comparisons of key quantities in the analysis at each stage.

C PRELIMINARY LEMMAS

This section introduces a few lemmas that are critical to bound the parameters at initialization.
Lemma C.1 (Cao et al. (2022); Kou et al. (2023)). Suppose d = Ω(log(6n/δ)). Then with probability
at least 1− δ,

σ2
ξd/2 ≤ ∥ξi∥22 ≤ 3σ2

ξd/2,

|⟨ξi, ξi′⟩| ≤ 2σ2
ξ

√
d log(6n2/δ),

|⟨ξi,µ⟩| ≤ ∥µ∥2σξ

√
2 log(6n/δ).

Lemma C.2 (Cao et al. (2022); Kou et al. (2023)). Suppose that d = Ω(log(nm/δ)), m =
Ω(log(1/δ)). Then with probability at least 1− δ,

σ2
0d/2 ≤ ∥w0

j,r∥22 ≤ 3σ2
0d/2

|⟨w(0)
j,r ,µ⟩| ≤

√
2 log(12m/δ) · σ0∥µ∥2,

|⟨w(0)
j,r , ξi⟩| ≤ 2

√
log(12mn/δ) · σ0σξ

√
d.

Lemma C.3 (Kou et al. (2023)). Let S(t)i := {r ∈ [m] : ⟨w(t)
ỹi,r

, ξi⟩ > 0} and S(t)j,r := {i ∈ [n] : j =

ỹi, ⟨w(t)
j,r, ξi⟩ > 0}. Then for any δ > 0, and m ≥ 50 log(4n/δ), n ≥ 32 log(8m/δ), we have with

probability at least 1− δ,

|S(0)i | ≥ 0.4m, ∀i ∈ [n]

|S(0)j,r | ≥ n/8, ∀j = ±1, r ∈ [m].

D ANALYSIS WITH LABEL NOISE

Without loss of generality, for the subsequent analysis, we assume |S1 ∩ St| = (1−τ+)n
2 , |S1 ∩ Sf | =

τ+n
2 , |S−1 ∩ St| = (1−τ−)n

2 , |S−1 ∩ Sf | = τ−n
2 .

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

D.1 COEFFICIENTS DECOMPOSITION ITERATION

Proof of Lemma 3.1. By iterating the gradient descent update, we can show

w
(t)
j,r = w

(0)
j,r −

η

nm

t−1∑
s=0

n∑
i=1

ℓ
′(s)
i σ′(⟨w(s)

j,r , ξi⟩)jỹiξi −
η

nm

t−1∑
s=0

n∑
i=1

ℓ
′(s)
i σ′(⟨w(s)

j,r , yiµ⟩)jyiỹiµ

Because ξi,µ are linearly independent almost surely for all i ∈ [n]. Then from the definition:

w
(t)
j,r = w

(0)
j,r + jγ

(t)
j,r∥µ∥

−2
2 µ+

n∑
i=1

ρ
(t)
j,r,i∥ξi∥

−2
2 ξi

there exists a unique decomposition as

γ
(t)
j,r = − η

nm

t−1∑
s=0

n∑
i=1

ℓ
′(s)
i σ′(⟨w(s)

j,r , yiµ⟩)yiỹi∥µ∥
2
2

ρ
(t)
j,r,i = −

η

mn

t−1∑
s=0

ℓ
′(s)
i σ′(⟨w(s)

j,r , ξi⟩)jỹi∥ξi∥
2
2.

By definition of ρ(t)j,r,i, ρ
(t)
j,r,i

, and the fact that ℓ′i ≤ 0,

ρ
(t)
j,r,i = −

η

nm

t−1∑
s=0

ℓ
′(s)
i σ′(⟨w(s)

j,r , ξi⟩)∥ξi∥
2
21(ỹi = j)

ρ(t)
j,r,i

=
η

nm

t−1∑
s=0

ℓ
′(s)
i σ′(⟨w(s)

j,r , ξi⟩)∥ξi∥
2
21(ỹi = −j)

Then the iterative updates of the coefficients follow directly.

D.2 SCALE OF COEFFICIENTS

Here we start to provide a global bound for the decomposition coefficients. We show for a sufficiently
large number of iterations T ∗ = Θ̃(η−1ϵ−1nmd−1σ−2

ξ ), the scale of the coefficients can be upper
bounded up to some logarithmic factors.

We consider the following definition:

β = 2max
i,j,r
{|⟨w(0)

j,r ,µ⟩|, |⟨w
(0)
j,r , ξi⟩|}, SNR =

∥µ∥
σξ

√
d
, α = Ct log(T

∗)

for some constant Ct > 0 to be determined later. Then by Lemma C.2, we can bound as β ≤
σ0 max

{√
2 log(12m/δ)∥µ∥2, 2

√
log(12mn/δ)σξ

√
d}.

We next provide the main proposition that bounds the scale of coefficients.

Proposition D.1 (Restatement of Proposition 5.1). Under Condition 4.1, for any 0 ≤ t ≤ T ∗

0 ≤ ρ
(t)
j,r,i ≤ α, (4)

0 ≥ ρ(t)
j,r,i
≥ −β − 10

√
log(6n2/δ)

d
nα ≥ −α, (5)

0 ≤ γ
(t)
j,r ≤ Cγα (6)

for some constant Cγ > 0.

We aim to prove Proposition D.1 using induction. This requires several intermediate lemmas through
the induction process.
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Lemma D.1. Under Condition 4.1, suppose (4), (5), (6) hold at iteration t. Then for all r ∈ [m],
j ∈ {±1}, i ∈ [n],

|⟨w(t)
j,r −w

(0)
j,r ,µ⟩ − j · γ(t)

j,r | ≤ SNR

√
8 log(6n/δ)

d
nα,

|⟨w(t)
j,r −w

(0)
j,r , ξi⟩ − ρ

(t)
j,r,i| ≤ 5

√
log(6n2/δ)

d
nα, ỹi = j

|⟨w(t)
j,r −w

(0)
j,r , ξi⟩ − ρ(t)

j,r,i
| ≤ 5

√
log(6n2/δ)

d
nα, ỹi = −j

Proof of Lemma D.1. From signal-noise decomposition (3),

|⟨w(t)
j,r −w

(0)
j,r ,µ⟩ − j · γ(t)

j,r | =
∣∣∣ n∑
i=1

ρ
(t)
j,r,i · ∥ξi∥

−2
2 · ⟨ξi,µ⟩+

n∑
i=1

ρ(t)
j,r,i
· ∥ξi∥−2

2 · ⟨ξi,µ⟩
∣∣∣

≤
n∑

i=1

(
|ρ(t)j,r,i|+ |ρ

(t)
j,r,i
|
)
∥ξi∥−2

2 · |⟨ξi,µ⟩|

≤ SNR

√
8 log(6n/δ)

d

n∑
i=1

(
|ρ(t)j,r,i|+ |ρ

(t)
j,r,i
|
)

≤ SNR

√
8 log(6n/δ)

d
nα

where the second inequality is due to Lemma C.1 and the last inequality is by (4), (5). The second
inequality follows similarly.

Then, for ỹi = j, we have ρ(t)
j,r,i

= 0, ∀t ≥ 0 and hence

|⟨w(t)
j,r −w

(0)
j,r , ξi⟩ − ρ

(t)
j,r,i|

=
∣∣∣j · γ(t)

j,r · ∥µ∥
−2
2 ⟨µ, ξi⟩+

∑
i′ ̸=i

ρ
(t)
j,r,i′ · ∥ξi′∥

−2
2 · ⟨ξi, ξi′⟩+

∑
i′ ̸=i

ρ(t)
j,r,i′
· ∥ξi′∥−2

2 · ⟨ξi, ξi′⟩
∣∣∣

≤ ∥µ∥−2
2 · |⟨µ, ξi⟩| · |γ

(t)
j,r |+

n∑
i′ ̸=i

(
|ρ(t)j,r,i′ |+ |ρ

(t)
j,r,i′
|
)
∥ξi′∥−2

2 · |⟨ξi′ , ξi⟩|

≤ SNR

√
2 log(6n/δ)

d
Cγnα+ 4

√
log(6n2/δ)

d
nα

≤ (2CγSNR + 4)

√
log(6n2/δ)

d
nα

≤ 5

√
log(6n2/δ)

d
nα

where we use Lemma C.1 and (6) in the second inequality. In the third inequality, we use
2 log(6n/δ) ≤ 4 log(6n2/δ). In the fourth inequality, we note that the condition on SNR ensures
that SNR = Θ(1/

√
n).

For ỹi ̸= j, the proof follow exactly the same strategy as for ỹi = j and hence is omitted.

Lemma D.2. Under Condition 4.1 and suppose (4), (5), (6) hold at time t, then there exists a
sufficiently large constant C1 > 0 such that

1

m

m∑
r=1

(
γ
(t)
ỹi,r

+ ρ
(t)
ỹi,r,i

)
− 1/C1 ≤ ỹif(W

(t),xi) ≤
1

m

m∑
r=1

(
γ
(t)
ỹi,r

+ ρ
(t)
ỹi,r,i

)
+ 1/C1 when i ∈ St

1

m

m∑
r=1

(
ρ
(t)
ỹi,r,i

− γ
(t)
−ỹi,r

)
− 1/C1 ≤ ỹif(W

(t),xi) ≤
1

m

m∑
r=1

(
ρ
(t)
ỹi,r,i

− γ
(t)
−ỹi,r

)
+ 1/C1 when i ∈ Sf
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Proof of Lemma D.2. We first see

ỹif(W
(t),xi) =

1

m

∑
j,r

ỹi · j ·
(
σ(⟨w(t)

j,r, yiµ⟩) + σ(⟨w(t)
j,r, ξi⟩)

)
=

1

m

m∑
r=1

(
σ(⟨w(t)

ỹi,r
, yiµ⟩) + σ(⟨w(t)

ỹi,r
, ξi⟩)

)
− 1

m

m∑
r=1

(
σ(⟨w(t)

−ỹi,r
, yiµ⟩) + σ(⟨w(t)

−ỹi,r
, ξi⟩)

)
.

Recall from the gradient descent update and Lemma D.1,

|⟨w(t)
j,r,µ⟩ − ⟨w

(0)
j,r ,µ⟩ − j · γ(t)

j,r | = SNR

√
8 log(6n/δ)

d
nα

Then it can be verified that when ỹi = yi,

⟨w(t)
ỹi,r

, yiµ⟩ ≤ |⟨w(0)
ỹi,r

,µ⟩|+ γ
(t)
ỹi,r

+ SNR

√
8 log(6n/δ)

d
nα

⟨w(t)
ỹi,r

,−yiµ⟩ ≤ |⟨w(0)
ỹi,r

,µ⟩| − γ
(t)
ỹi,r

+ SNR

√
8 log(6n/δ)

d
nα

≤ |⟨w(0)
ỹi,r

,µ⟩|+ SNR

√
8 log(6n/δ)

d
nα

⟨w(t)
ỹi,r

, ξi⟩ ≤ |⟨w(0)
ỹi,r

, ξi⟩|+ ρ
(t)
ỹi,r,i

+ 5

√
log(6n2/δ)

d
nα

⟨w(t)
−ỹi,r

,−yiµ⟩ ≥ γ
(t)
−ỹi,r

− |w(0)
−ỹi,r

,µ| − SNR

√
8 log(6n/δ)

d
nα

Using these inequalities, we can upper bound when ỹi = yi, i.e., i ∈ St,

ỹif(W
(t),xi) ≤

1

m

m∑
r=1

(
σ(⟨w(t)

ỹi,r
, yiµ⟩) + σ(⟨w(t)

ỹi,r
, ξi⟩)

)
≤ 1

m

m∑
r=1

(
γ
(t)
ỹi,r

+ ρ
(t)
ỹi,r,i

)
+ 2β + Õ(nα/

√
d)

≤ 1

m

m∑
r=1

(
γ
(t)
ỹi,r

+ ρ
(t)
ỹi,r,i

)
+ 1/C1

where we use Lemma D.1 and the Condition 4.1 where we choose a sufficiently large C1.

Similarly, we can lower bound

ỹif(W
(t),xi) ≥

1

m

m∑
r=1

(
γ
(t)
ỹi,r

+ ρ
(t)
ỹi,r,i

)
− 1/C1

On the other hand, when ỹi ̸= yi, it can be shown that

⟨w(t)
ỹi,r

, yiµ⟩ ≤ |⟨w(0)
ỹi,r

,µ⟩| − γ
(t)
ỹi,r

+ SNR

√
8 log(6n/δ)

d
nα ≤ |⟨w(0)

ỹi,r
,µ⟩|+ SNR

√
8 log(6n/δ)

d
nα

⟨w(t)
−ỹi,r

, yiµ⟩ ≤ |⟨w(0)
−ỹi,r

,µ⟩|+ γ
(t)
−ỹi,r

+ SNR

√
8 log(6n/δ)

d
nα

⟨w(t)
−ỹi,r

, yiµ⟩ ≥ γ
(t)
−ỹi,r

− |⟨w(0)
−ỹi,r

,µ⟩| − SNR

√
8 log(6n/δ)

d
nα

⟨w(t)
ỹi,r

, ξi⟩ ≤ ρ
(t)
ỹi,r,i

+ |⟨w(0)
ỹi,r

, ξi⟩|+ 5

√
log(6n2/δ)

d
nα

where we notice γ
(t)
j,r ≥ 0.
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Then we can upper bound when ỹi ̸= yi as

ỹif(W
(t),xi) ≤

1

m

m∑
r=1

(
σ(⟨w(t)

ỹi,r
, yiµ⟩) + σ(⟨w(t)

ỹi,r
, ξi⟩)

)
− 1

m

m∑
r=1

σ(⟨w(t)
−ỹi,r

, yiµ⟩)

≤ β + SNR

√
8 log(6n/δ)

d
Cρn+

1

m

m∑
r=1

ρ
(t)
ỹi,r,i

+ 5

√
log(6n2/δ)

d
Cρn

− 1

m

m∑
r=1

γ
(t)
−ỹi,r

+
1

m

m∑
r=1

|⟨w(0)
−ỹi,r

, yiµ⟩|+ SNR

√
8 log(6n/δ)

d
Cρn

≤ 1

m

m∑
r=1

(
ρ
(t)
ỹi,r,i

− γ
(t)
−ỹi,r

)
+ 1/C1

where the second inequality uses Lemma D.1 and last inequality is by the Condition 4.1.

Similarly, we can lower bound ỹif(W
(t),xi) as

ỹif(W
(t),xi) ≥

1

m

m∑
r=1

σ(⟨w(t)
ỹi,r

, ξi⟩)−
1

m

m∑
r=1

(
σ(⟨w(t)

−ỹi,r
, yiµ⟩) + σ(⟨w(t)

−ỹi,r
, ξi⟩)

)
≥ 1

m

m∑
r=1

(
ρ
(t)
ỹi,r,i

− γ
(t)
ỹi,r

)
− 1/C1

where we use Lemma D.1.

Lemma D.3. Under Condition 4.1 and suppose (4), (5), (6) hold at time t. If maxj,r,i{γ(t)
j,r , ρ

(t)
j,r,i} =

O(1), we have ỹif(W
(t),xi) = O(1) and ℓ

′(t)
i = Ω(1) for all i ∈ [n].

Proof of Lemma D.3. The proof trivially from Lemma D.2 and the definition of loss. Specifically,
we denote the upper bound as C ′′. For i ∈ St, by Lemma D.2,

|ℓ′(t)i | =
1

1 + exp(ỹif(W(t),xi))
≥ 1

1 + exp
(

1
m

∑m
r=1

(
γ
(t)
ỹi,r

+ ρ
(t)
ỹi,r,i

)
+ 1/C1

)
≥ 1

1 + exp(2C ′′ + 1/C1)

For i ∈ Sf , by Lemma D.2,

|ℓ′(t)i | =
1

1 + exp(ỹif(W(t),xi))
≥ 1

1 + exp
(

1
m

∑m
r=1

(
− γ

(t)
−ỹi,r

+ ρ
(t)
ỹi,r,i

)
+ 1/C1

)
≥ 1

1 + exp(C ′′ + 1/C1)
>

1

1 + exp(2C ′′ + 1/C1)

where the second inequality is by γ
(t)
−ỹi,r

≥ 0. Thus for all i ∈ [n], we can show that |ℓ′(t)i | ≥
(1 + exp(2C ′′ + C−1

1 ))−1.

Recall S(s)i := {r ∈ [m] : ⟨w(s)
ỹi,r

, ξi⟩ > 0} and S(s)j,r := {i ∈ [n] : yi = j, ⟨w(s)
j,r , ξi⟩ > 0}.

The next lemma shows that in the first stage where the loss derivatives can be lower bounded, the
inner product between weights and noise is increasing.

Lemma D.4. Under Condition 4.1 and suppose for any t ≤ T ∗, (4), (5), (6) hold for all s ≤ t. Then
we can show

S(0)i ⊆ S(s)i , S(0)j,r ⊆ S
(s)
j,r .

for any s ≤ t.
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Proof of Lemma D.4. The proof is by induction where we separately consider two stages. First at
t = 0, it is trivial to verify that both claims hold. In the first stage where maxj,r,i{γ(t)

j,r , ρ
(t)
j,r,i} = O(1),

we can lower bound the loss derivatives by a constant according to Lemma D.3, i.e., |ℓ′(t)i | ≥ Cℓ for
all i ∈ [n]. Let T1 be the termination time of the first stage. Suppose there exists a time t̃ ≤ T1 such
that the claims hold for all s ≤ t̃− 1, we now prove it also holds at t̃.

By the gradient descent update, for any r ∈ S(0)i , we have r ∈ S(t̃−1)
i and thus

⟨w(t̃)
ỹi,r

, ξi⟩ = ⟨w(t̃−1)
ỹi,r

, ξi⟩ −
η

nm

n∑
i′=1

ℓ
′(t̃−1)
i′ · σ′(⟨w(t̃−1)

ỹi,r
, ξi′⟩) · ⟨ξi, ξi′⟩

− η

nm

n∑
i′=1

ℓ
′(t̃−1)
i′ · σ′(⟨w(t̃−1)

ỹi,r
, yi′µ⟩) · ⟨yi′µ, ξi⟩

= ⟨w(t̃−1)
ỹi,r

, ξi⟩−
η

nm
ℓ
′(t̃−1)
i ∥ξi∥22︸ ︷︷ ︸
A1

− η

nm

∑
i′ ̸=i

ℓ
′(t̃−1)
i′ σ′(⟨w(t̃−1)

ỹi,r
, ξi′⟩) · ⟨ξi, ξi′⟩︸ ︷︷ ︸

A2

− η

nm

n∑
i′=1

ℓ
′(t̃−1)
i′ · σ′(⟨w(t̃−1)

ỹi,r
, yi′µ⟩) · ⟨yi′µ, ξi⟩︸ ︷︷ ︸

A3

.

We can respectively bound each term as follows.

A1 ≥
η∥ξi∥22
nm

· min
i∈[n]
|ℓ′(t̃−1)
i | ≥

ησ2
ξdCℓ

2nm

where the last inequality is by Lemma C.1.

For A2, we can upper bound its magnitude as

|A2| ≤
η

m
· |⟨ξi, ξi′⟩|

≤ 2η

m
· σ2

ξ

√
d log(6n2/δ)

where the first inequality is by |ℓ′(t)i | ≤ 1 for all t and the second inequality is by Lemma C.1.

For A3, similarly, we can bound

|A3| ≤
η

m
· |⟨µ, ξi⟩| ≤

η∥µ∥2σξ

√
2 log(6n/δ)

m

where the second inequality is again by Lemma C.1. By requiring d ≥
max{32C−2

ℓ n2 log(6n2/δ), 4C−1
ℓ n∥µ∥2σ−1

ξ

√
2 log(6n/δ)}, we can show A1 ≥

max{|A2|/2, |A3|/2} and thus

⟨w(t̃)
ỹi,r

, ξi⟩ = ⟨w(t̃−1)
ỹi,r

, ξi⟩ ≥ ⟨w(t̃−1)
ỹi,r

, ξi⟩+A1 − |A2| − |A3| > ⟨w(t̃−1)
ỹi,r

, ξi⟩ > 0

for all r ∈ S(t̃−1)
i . Thus, r ∈ S(t̃)i and S(0)i ⊆ S(t̃−1)

i ⊆ S(t̃)i .

For the other claim, we follow a similar strategy as above. For i ∈ S(0)j,r , we have by induction

condition that i ∈ S(t̃−1)
j,r and thus for j = ỹi

⟨w(t̃)
j,r, ξi⟩ = ⟨w

(t̃−1)
j,r , ξi⟩ −

η

nm

n∑
i′=1

ℓ
′(t̃−1)
i′ · σ′(⟨w(t̃−1)

j,r , ξi′⟩) · ⟨ξi, ξi′⟩

− η

nm

n∑
i′=1

ℓ
′(t̃−1)
i′ · σ′(⟨w(t̃−1)

j,r , yi′µ⟩) · ⟨yi′µ, ξi⟩
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Following the same analysis, we can show ⟨w(t̃)
j,r, ξi⟩ ≥ ⟨w

(t̃−1)
j,r , ξi⟩ > 0 and thus i ∈ S(t̃)j,r and

S(0)j,r ⊆ S
(t̃−1)
j,r ⊆ S(t̃)j,r .

Now at the end of the first stage where ρ
(T1)
j,r,i = Ω(1) for all j = ỹi, r ∈ S(0)i . Then we continue the

proof by induction. Suppose there exists a time t̃ ≥ T1 such that for all T1 ≤ s ≤ t̃− 1, ρ(s)j,r,i ≥ Cρ

for some constant Cρ > 0. Then by the update of ρ(t)j,r,i, we can show for j = ỹi, r ∈ S(0)i ,

ρ
(t̃)
j,r,i = ρ

(t̃−1)
j,r,i −

η

nm
ℓ
′(t)
i σ′(⟨w(t)

j,r, ξi⟩)∥ξi∥
2
2 ≥ ρ

(t̃−1)
j,r,i ≥ Cρ

where we notice that −ℓ′(t)i ≥ 0. Then we can show from Lemma D.1

⟨w(t̃)
j,r, ξi⟩ ≥ ρ

(t̃)
j,r,i − |⟨w

(0)
j,r , ξi⟩| − 5

√
log(6n2/δ)

d
nα ≥ Cρ − 1/C ′ > 0

where we use the condition on d to be sufficiently large and choose C ′ > 1/Cρ. Thus we have for
r ∈ S(t̃)i and thus S(0)i ⊆ S(t̃−1)

i ⊆ S(t̃)i . For the other claim, we can use the same argument.

Next, we proceed to prove Proposition D.1.

Proof of Proposition D.1. We prove the claims by induction. It is clear that at t = 0, all the claims
are satisfied trivially given γ

(0)
j,r , ρ

(0)
j,r,i, ρ

(0)
j,r,i

= 0 for all j, r, i. Suppose there exists T̃ ≤ T ∗ such that

the results in Proposition D.1 hold for all time t ≤ T̃ − 1. Then we have Lemma D.1, D.2, Lemma
D.4 hold for all t ≤ T̃ − 1.

Now we show that the results in Proposition D.1 also hold for t = T̃ .

(1) We first show ρ(t)
j,r,i
≥ −β − 10

√
log(6n2/δ)

d nα. When ρ(T̃−1)
j,r,i

≤ −0.5β − 5
√

log(6n2/δ)
d nα, by

Lemma D.1, we have

⟨w(T̃−1)
j,r , ξi⟩ ≤ ρ(T̃−1)

j,r,i
+ |⟨w(0)

j,r , ξi⟩|+ 5

√
log(6n2/δ)

d
nα < 0

and this suggests

ρ(T̃ )
j,r,i

= ρ(T̃−1)
j,r,i

+
η

nm
ℓ
′(T̃−1)
i σ′(⟨w(T̃−1)

j,r , ξi⟩)∥ξi∥22

= ρ(T̃−1)
j,r,i

≥ −β − 10

√
log(6n2/δ)

d
nα

On the other hand, when ρ(T̃−1)
j,r,i

≥ −0.5β − 5
√

log(6n2/δ)
d nα,

ρ(T̃ )
j,r,i

= ρ(T̃−1)
j,r,i

+
η

nm
ℓ
′(T̃−1)
i σ′(⟨w(T̃−1)

j,r , ξi⟩)∥ξi∥22

≥ −0.5β − 5

√
log(6n2/δ)

d
Cρn−

3ησ2
ξd

2nm

≥ −0.5β − 10

√
log(6n2/δ)

d
Cρn

≥ −β − 10

√
log(6n2/δ)

d
Cρn

where we use Lemma C.1 in the first inequality. The second inequality is by the condition on η such

that 5
√

log(6n2/δ)
d Cρn ≥ 3ησ2

ξd/(2nm). This completes the induction for the result on ρ(t)
j,r,i

.
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(2) We next prove γ
(T̃ )
j,r ≥ 0. Towards this end, we separate the analysis in two stages. In the first

stage, the loss derivatives can be lower bounded by a constant, i.e., |ℓ′(t)i | ≥ Cℓ for all i ∈ [n]. Recall
the update rule for γ(t)

j,r is

γ
(T̃ )
j,r = γ

(T̃−1)
j,r − η

nm

n∑
i=1

ℓ
′(T̃−1)
i σ′(⟨w(T̃−1)

j,r , yiµ⟩)yiỹi∥µ∥22.

When ⟨w(T̃−1)
j,r ,µ⟩ ≥ 0, we can show

γ
(T̃ )
j,r = γ

(T̃−1)
j,r − η

nm

( ∑
i∈St∩S1

ℓ
′(T̃−1)
i −

∑
i∈Sf∩S1

ℓ
′(T̃−1)
i

)
∥µ∥22

≥ γ
(T̃−1)
j,r +

η

nm

(1− τ+
2

Cℓ −
τ+
2

)
∥µ∥22

≥ γ
(T̃−1)
j,r

≥ 0

where in the first inequality, we uses Cℓ ≤ |ℓ′(t)i | ≤ 1. The second inequality is by the choice
τ+ ≤ Cℓ

Cℓ+1 .

Similarly, when ⟨w(T̃−1)
j,r ,µ⟩ ≤ 0, we have

γ
(T̃ )
j,r = γ

(T̃−1)
j,r − η

nm

( ∑
i∈St∩S−1

ℓ
′(T̃−1)
i −

∑
i∈Sf∩S−1

ℓ
′(T̃−1)
i

)
∥µ∥22

≥ γ
(T̃−1)
j,r +

η

nm

(1− τ−
2

Cℓ −
τ−
2

)
∥µ∥22

≥ γ
(T̃−1)
j,r

≥ 0

where we choose τ− ≤ Cℓ

Cℓ+1 .

In the second stage, we prove the claim by contradiction. First, without loss of generality that
⟨w(t)

j,r,µ⟩ ≥ 0, and we write the update as

γ
(t+1)
j,r = γ

(t)
j,r −

η

nm

( ∑
i∈St∩S1

ℓ
′(t)
i −

∑
i∈Sf∩S1

ℓ
′(t)
i

)
∥µ∥22

= γ
(t)
j,r +

η

nm

( ∑
i∈St∩S1

1

1 + exp
(
ỹif(W(t),xi)

) − ∑
i∈Sf∩S1

1

1 + exp
(
ỹif(W(t),xi)

)
︸ ︷︷ ︸

A4

)
∥µ∥22

Suppose at an iteration t, A4 < 0, which leads to a decrease in the γ
(t)
j,r . Then by Lemma D.2

A4 ≥
∑

i∈St∩S1

1

1 + exp
(

1
m

∑m
r=1(ρ

(t)
ỹi,r,i

+ γ
(t)
ỹi,r

) + 1/C1

)
−

∑
i∈Sf∩S1

1

1 + exp
(

1
m

∑m
r=1(ρ

(t)
ỹi,r,i

− γ
(t)
−ỹi,r

)− 1/C1

)
Then we can see the gap between loss derivatives of St and Sf becomes progressively smaller such
that for a given τ+ (or τ− when ⟨w(t)

j,r,µ⟩ ≤ 0) which is sufficiently small, A4 > 0 and γ
(t)
j,r starts to

increase.

(3) Next we show upper bound for ρ(t)ỹi,r,i
. Recall the update rule for ρ(t)j,r,i is

ρ
(t+1)
ỹi,r,i

= ρ
(t)
ỹi,r,i

− η

nm
ℓ
′(t)
i σ′(⟨w(t)

j,r, ξi⟩)∥ξi∥
2
2
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Now suppose tr,i be the last time t < T ∗ such that ρ(t)ỹi,r,i
≤ 0.5α. Then

ρ
(T̃ )
ỹi,r,i

= ρ
(tr,i)
ỹi,r,i

− η

nm
ℓ
′(t)
i σ′(⟨w(tr,i)

ỹi,r
, ξi⟩)∥ξi∥22 −

η

nm

∑
tr,i<t<T̃

ℓ
′(t)
i σ′(⟨w(t)

ỹi,r
, ξi⟩)∥ξi∥22

≤ ρ
(tr,i)
ỹi,r,i

+
3ησ2

ξd

2nm
− η

nm

∑
tr,i<t<T̃

ℓ
′(t)
i σ′(⟨w(t)

ỹi,r
, ξi⟩)∥ξi∥22

≤ 0.5α+ 0.25α− η

nm

∑
tr,i<t<T̃

ℓ
′(t)
i σ′(⟨w(t)

ỹi,r
, ξi⟩)∥ξi∥22 (7)

where we apply Lemma C.1 for the first inequality and choose η ≤ C−1nσ−2
ξ d−1 for the last

inequality. Then we bound the last term for t ∈ (tr,i, T̃ ) as

−ℓ′(t)i =
1

1 + exp(ỹif(W(t),xi))
≤ exp(−ỹif(W(t),xi))

Next we consider two cases depending on whether i ∈ St or i ∈ Sf .

• When i ∈ St, we can bound by Lemma D.2

ỹif(W
(t),xi) ≥

1

m

m∑
r=1

(γ
(t)
ỹi,r

+ ρ
(t)
ỹi,r,i

)− 1/C1 ≥
1

m

m∑
r=1

ρ
(t)
ỹi,r,i

− 1/C1 ≥ 0.5α− 0.1.

where the second inequality is by γ
(t)
ỹi,r
≥ 0 and the last inequality is by choosing C1 ≥ 10.

Then this suggests

−ℓ′(t)i ≤ exp(−ỹif(W(t),xi)) ≤ 2 exp(−0.5α) ≤ 2/T ∗

where the last inequality is by choosing Ct ≥ 2.

• When i ∈ Sf , we can bound by Lemma D.2

ỹif(W
(t),xi) ≥

1

m

m∑
r=1

(ρ
(t)
ỹi,r,i

− γ
(t)
−ỹi,r

)− 1/C1 ≥
1

m

m∑
r=1

ρ
(t)
ỹi,r,i

− 1/C1 ≥ 0.5α− 0.1.

Here we only consider the case when 1
m

∑m
r=1 ρ

(t)
ỹi,r,i

> 1
m

∑m
r=1 γ

(t)
−ỹi,r

when deriving the

upper bound for 1
m

∑m
r=1 ρ

(t)
ỹi,r,i

because otherwise, the loss cannot converge to arbitrarily small

as we show later. To see this, we suppose 1
m

∑m
r=1 ρ

(T∗)
ỹi,r,i

≤ 1
m

∑m
r=1 γ

(T∗)
−ỹi,r

at termination time.

Then for such sample, ỹif(W(t),xi) ≤ 1
m

∑m
r=1(ρ

(T∗)
ỹi,r,i

− γ
(T∗)
−ỹi,r

) + 1/C1 ≤ 0.1 the loss can

be lower bounded as ℓ(T
∗)

i = log(1 + exp(−ỹif(W(T∗),xi))) ≥ log(1 + exp(−0.1)) ≥ 0.6.

Hence we let c′ := ( 1
m

∑m
r=1 ρ

(t)
ỹi,r,i

)/( 1
m

∑m
r=1 γ

(t)
−ỹi,r

) > 1. Then

ỹif(W
(t),xi) ≥

1

m

m∑
r=1

(1− 1/c′)ρ
(t)
ỹi,r,i

− 1/C1 ≥ (1− 1/c′)0.5α− 0.1.

Then we have

−ℓ′(t)i ≤ exp(−ỹif(W(t),xi)) ≤ 2 exp
(
− (1− 1/c′)0.5α

)
≤ 2/T ∗

where the last inequality is by choosing Ct sufficiently large.

In both cases, (7) can be further bounded as

ρ
(T̃ )
ỹi,r,i

≤ 0.75α+
3ησ2

ξdT
∗

2nm
· 2

T ∗ ≤ α

where the first inequality is by upper bound on the loss derivatives and the last inequality is by the
condition on Condition 4.1 where η ≤ C−1nσ−2

ξ d−1 ≤ nmσ−2
ξ d−1/3.
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(4) Finally for the upper bound on γ
(t)
j,r , we can verify that by the update of γ(t)

j,r

γ
(t+1)
j,r = γ

(t)
j,r −

η

nm

(∑
i∈St

ℓ
′(t)
i 1(⟨w(t)

j,r, yiµ⟩ ≥ 0)−
∑
i∈Sf

ℓ
′(t)
i 1(⟨w(t)

j,r, yiµ⟩ ≥ 0)
)
∥µ∥22

≤ γ
(t)
j,r +

η

nm

∑
i∈St

|ℓ′(t)i |∥µ∥
2
2

≤ γ
(t)
j,r +

η∥µ∥22
nm

∑
i∈St

1

1 + exp
(

1
m

∑m
r=1(ρ

(t)
ỹi,r,i

+ γ
(t)
ỹi,r

)− 1/C1

)
Suppose tj,r be the last time t < T ∗ such that γ(t)

j,r ≤ 0.5Cγα. Then

γ
(T̃ )
j,r ≤ γ

(tj,r)
j,r +

η(2− τ+ − τ−)∥µ∥22
2m

T ∗ 1

1 + exp(0.5CγCt log(T ∗)− 0.1)

≤ γ
(tj,r)
j,r +

η(2− τ+ − τ−)∥µ∥22
2m

T ∗ · 2 exp(−0.5CγCt log(T
∗))

≤ γ
(tj,r)
j,r +

η(2− τ+ − τ−)∥µ∥22
m

≤ Cγα

where we notice ρ
(t)
j,r,i ≥ 0 and we let C1 ≥ 10, Cγ ≥ 1. The last inequality follows from

Condition 4.1 where η ≤ C−1nσ−2
ξ d−1 ≤ 0.5(2− τ+ − τ−)

−1m∥µ∥−2
2 , where the last inequality

is by condition on ∥µ∥22 and d. Thus the proof is now complete.

D.3 FIRST STAGE

Next we consider first stage of the training dynamics. In this stage, before the coefficients γ(t)
j,r , ρ

(t)
j,r,i

reach a constant order, we can both lower and upper bound the loss derivatives by an absolute constant,
i.e., Cℓ ≤ |ℓ

′(t)
i | ≤ Cℓ. Here we suggests Cℓ = 0.49 and Cℓ = 0.51 is sufficient to show the desired

result.

Before we proceed to prove Theorem 4.1, we provide a tighter bound on ∥ξi∥22 and |S(0)i | compared
to Lemma C.1 and Lemma C.3 respectively.

Lemma D.5. With probability at least 1− δ, we can bound

σ2
ξd(1− Õ(1/

√
d)) ≤ ∥ξi∥22 ≤ σ2

ξd(1 + Õ(1/
√
d))

Proof. By Bernstein inequality, with probability at least 1 − δ/n, we have
∣∣∥ξi∥22 − σ2

pd
∣∣ =

O
(
σ2
p ·
√

d log (6n/δ)
)

. Then taking the union bound gives the desired result.

Lemma D.6. With probability at least 1− δ, we can bound
m

2

(
1− Õ(1/

√
m)
)
≤ |S(0)i | ≤

m

2

(
1 + Õ(1/

√
m)
)

Proof. Because P(⟨w(0)
ỹi,r

, ξi⟩ > 0) = 0.5, by Hoeffding inequality, with probability at least 1− δ/n,

we can bound | |S
(0)
i |
m − 1

2 | ≤
√

log(2n/δ)
2m . Then taking union bound gives the desired result.

Theorem D.1 (Restatement of Theorem 4.1). Under Condition 4.1, there exists T1 =
Θ
(
η−1nmσ−2

ξ d−1
)

such that

1. ρ
(T1)
ỹi,r,i

= Θ(1) for all i ∈ [n], r ∈ [m] such that ⟨w(0)
ỹi,r

,xi⟩ ≥ 0.

2. γ
(T1)
j,r = Θ(1) for all j = ±1, r ∈ [m].
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3. γ
(T1)
j,r > ρ

(T1)
ỹi,r,i

for all j = ±1, r ∈ [m], i ∈ [n].

4. All clean samples i ∈ St satisfy that ỹif(W(T1),xi) ≥ 0.

5. All noisy samples i ∈ Sf satisfy that ỹif(W(T1),xi) ≤ 0.

Proof of Theorem D.1. We first show the lower and upper bound for noise dynamics. For any i ∈ [n]

and r ∈ S(0)i , by Lemma D.4, we know that r ∈ S(t)i for all t ≤ T1. Hence, by the update of noise
coefficients,

ρ
(t)
ỹi,r,i

= ρ
(t−1)
ỹi,r,i

− η

nm
ℓ
′(t−1)
i ∥ξi∥22 ≥ ρ

(t−1)
ỹi,r,i

+ 0.99 ·
ηCℓσ

2
ξd

nm
= 0.99 ·

ηCℓσ
2
ξd

nm
t

where the first inequality is by Lemma D.5 where we choose d = Ω(log(n/δ)) sufficiently large and
the loss derivative lower bound in this stage. The second inequality is by iterating the first inequality
to t = 0 and by noticing ρ

(0)
ỹi,r,i

= 0.

For the upper bound, for i ∈ [n],

ρ
(t)
ỹi,r,i

= ρ
(t−1)
ỹi,r,i

+
η

nm
|ℓ′(t−1)
i |∥ξi∥22 ≤ ρ

(t−1)
ỹi,r,i

+ 1.01 ·
ησ2

ξd

nm
≤ 1.01 ·

ησ2
ξd

nm
t

where we use Lemma D.5 and |ℓ′(t)i | ≤ 1.

Next, we lower and upper bound the signal dynamics. Recall the update rule for γ(t)
j,r as

γ
(t)
j,r = γ

(t−1)
j,r − η

nm

n∑
i=1

ℓ
′(t)
i σ′(⟨w(t−1)

j,r , yiµ⟩)yiỹi∥µ∥22

= γ
(t−1)
j,r − η

nm

(∑
i∈St

ℓ
′(t)
i σ′(⟨w(t−1)

j,r , yiµ⟩)−
∑
i∈Sf

ℓ
′(t)
i σ′(⟨w(t−1)

j,r , yiµ⟩)
)
∥µ∥22

When ⟨w(t−1)
j,r ,µ⟩ ≥ 0,

γ
(t)
j,r = γ

(t−1)
j,r − η

nm

( ∑
i∈St∩S1

ℓ
′(t−1)
i −

∑
i∈Sf∩S1

ℓ
′(t−1)
i

)
∥µ∥22

≥ γ
(t−1)
j,r +

η

nm

( (1− τ+)nCℓ

2
− τ+n

2

)
∥µ∥22

≥ γ
(t−1)
j,r + 0.49 · η∥µ∥

2
2Cℓ

m

where the first inequality uses the lower bound and upper bound on loss derivatives, i.e., Cℓ ≤
|ℓ′(t)i | ≤ 1. The second inequality follows by letting τ+ ≤ 0.02Cℓ

1+Cℓ
.

Similarly, when ⟨w(t−1)
j,r ,µ⟩ < 0,

γ
(t)
j,r = γ

(t−1)
j,r − η

nm

( ∑
i∈St∩S−1

ℓ
′(t−1)
i −

∑
i∈Sf∩S−1

ℓ
′(t−1)
i

)
∥µ∥22

≥ γ
(t−1)
j,r +

η

nm

( (1− τ−)nCℓ

2
− τ−n

2

)
∥µ∥22

≥ γ
(t−1)
j,r + 0.49 · η∥µ∥

2
2Cℓ

m

where we let τ− ≤ 0.02Cℓ

1+Cℓ
. Combining both cases, we can iterate the inequality, which gives

γ
(t)
j,r ≥ γ

(0)
j,r +

η∥µ∥22Cℓ

4m
t = 0.49 · η∥µ∥

2
2Cℓ

m
t
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We first show the claim that ỹif(W(T1),xi) ≥ 0 for i ∈ St. By the update of signal and noise
coefficients, we have for all any i ∈ St, and r ∈ S(0)i , by , we have r ∈ S(t)i and thus for all t ≤ T1,

For the upper bound, we obtain from the signal dynamics that

γ
(t)
j,r = γ

(t−1)
j,r − η

nm

(∑
i∈St

ℓ
′(t)
i σ′(⟨w(t−1)

j,r , yiµ⟩)−
∑
i∈Sf

ℓ
′(t)
i σ′(⟨w(t−1)

j,r , yiµ⟩)
)
∥µ∥22

≤ γ
(t−1)
j,r +

η∥µ∥22
m

1− τ±
2

≤ γ
(t−1)
j,r +

η∥µ∥22
2m

≤ η∥µ∥22
2m

t

where we use the upper bound on loss derivative in the first inequality.

Now we verify the conditions such that the claims are satisfied. First, we set a termination time for
the first stage as T1, where

T1 = C2η
−1C−1

ℓ nmσ−2
ξ d−1

for some constant C2 > 0 to be chosen later. This suggests at the end of first stage, we have

• ρ
(T1)
ỹi,r,i

≥ 0.99 · C2, for all i ∈ [n] and r ∈ S(0)i

• ρ
(T1)
ỹi,r,i

≤ 1.01 · C2C
−1
ℓ for all i ∈ [n].

• γ
(T1)
j,r ≥ 0.49C2n · SNR2 for all j = ±1, r ∈ [m].

• γ
(T1)
j,r ≤ 0.5C2n · SNR2 for all j = ±1, r ∈ [m].

Then for all i ∈ St, we have by Lemma D.2,

ỹif(W
(t),xi) ≥

1

m

m∑
r=1

(
γ
(t)
ỹi,r

+ ρ
(t)
ỹi,r,i

)
− 1/C1 ≥ 0.49C2n · SNR2 + 0.99C2 − 1/C1 > 0

where the last inequality is by choosing C1 sufficiently large, e.g., C1 ≥ (0.99C2)
−1. This verifies

the first claim of Theorem 4.1.

Second, for all i ∈ Sf , we have by Lemma D.2,

ỹif(W
(t),xi) ≤

1

m

m∑
r=1

(
− γ

(t)
−ỹi,r

+ ρ
(t)
ỹi,r,i

)
+ 1/C1 ≤ −0.49C2n · SNR2 + 1.01C2C

−1
ℓ + 1/C1

< 0

where the last inequality is by the choice that C1 ≥ 1000 and

n · SNR2 ≥ 2.07C−1
ℓ + 0.002C−1

2 (8)

Under such condition, we also verify the third claim of Theorem D.1.

It remains to analyze the condition under which the loss derivative is lower bounded by Cℓ. In
particular, we require mini∈[n],t≤T1

|ℓ′(t)i | ≥ Cℓ, where

min
i∈[n],t≤T1

|ℓ′(t)i | = min
i∈St

|ℓ′(T1)
i | = 1

1 + exp(maxi∈St ỹif(W
(T1),xi))

≥ 1

1 + exp
(

1
m

∑m
r=1(γ

(T1)
ỹi∗ ,r

+ ρ
(T1)
ỹi∗ ,r,i∗

) + 1/C1

)
≥ 1

1 + exp
(
1.01C2C

−1
ℓ + 0.5C2n · SNR2 + 1/C1

)
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where we denote i∗ = argmaxi∈St
ỹif(W

(T1),xi) and apply Lemma D.2.

Thus to ensure mini∈[n],t≤T1
|ℓ′(t)i | ≥ Cℓ, we require 1.01C2C

−1
ℓ + 0.5C2n · SNR2 + 1/C1 ≤

log(C−1
ℓ − 1), which translates to

n · SNR2 ≤ 2 log(C−1
ℓ − 1)C−1

2 − 2.02C−1
ℓ − 0.002C−1

2 (9)

where we choose C1 ≥ 1000.

The final step is to show there exists a combination of C2, n · SNR2 and Cℓ such that conditions (8)
and (9) are satisfied. For this, we can fix Cℓ = 0.4 for example and thus

5.175 + 0.002C−1
2 ≤ n · SNR2 ≤ 0.34C−1

2 − 5.05

Then let C2 = 1/31, we have 5.237 ≤ n · SNR2 ≤ 5.49. Thus the proof is complete.

D.4 SECOND STAGE

The second stage aims to show convergence of the training dynamics. By the end of the first stage,
without loss of generality, we set C2 = 2.1 and we can see

• For all i ∈ [n], r ∈ S(0)i , we have ρ
(T1)
ỹi,r,i

≥ 2;

• For all j = ±1, r ∈ [m], we have γ
(t)
j,r = Ω(n · SNR2), where n · SNR2 = Θ(1).

• maxj,r,i |ρ(T1)
j,r,i
| ≤ 1/C for some sufficiently large constant C > 0.

In the second stage, we show that in order to achieve convergence in loss to arbitrary tolerance, noise
coefficients for noisy samples would first surpass signal coefficients by a large margin. To this end, we
first show convergence in the loss function. The proof mainly follows from the analysis of Kou et al.
(2023). Nevertheless, we again highlight a critical difference is that in our case, n · SNR2 = Θ(1).

First, we let w∗
j,r = w

(0)
j,r + 5 log(2/ϵ)

∑n
i=1

ξi

∥ξi∥2
2
1(ỹi = j).

Lemma D.7. Under Condition 4.1, we can show ∥W(T1) −W∗∥F ≤ Õ(m1/2n1/2σ−1
ξ d−1/2).

Proof of Lemma D.7. From the decomposition at T1, we can show

∥W(T1) −W∗∥F ≤ ∥W(T1) −W(0)∥F + ∥W∗ −W(0)∥F

≤ O(
√
m)max

j,r
γ
(T1)
j,r ∥µ∥

−1
2 +O(

√
m)max

j,r
∥

n∑
i=1

ρ
(T1)
j,r,i ·

ξi
∥ξi∥22

+

n∑
i=1

ρ(T1)
j,r,i
· ξi
∥ξi∥22

∥2

+O(m1/2n1/2 log(1/ϵ)σ−1
ξ d−1/2)

= O(m1/2n · SNR2∥µ∥−1
2 ) + Õ(m1/2n1/2σ−1

ξ d−1/2)

= Õ(m1/2n1/2σ−1
ξ d−1/2)

where the last inequality is by n · SNR2 = Θ(1).

Lemma D.8. Under Condition 4.1, we can show that for all T1 ≤ t ≤ T ∗,

ỹi⟨∇f(W(t)),W∗⟩ ≥ log(2/ϵ)

Proof of Lemma D.8. By the gradient decomposition, we can write

ỹi⟨∇f(W(t),xi),W
∗⟩

=
1

m

∑
j,r

σ′(⟨w(t)
j,r, yiµ⟩)⟨µ, j ·w

∗
j,r⟩+

1

m

∑
j,r

σ′(⟨w(t)
j,r, ξi⟩)⟨yiξi, j ·w

∗
j,r⟩

≥ 1

m

∑
j=ỹi,r

σ′(⟨w(t)
j,r, ξi⟩)5 log(2/ϵ)−

1

m

∑
j,r

∑
i′ ̸=i

σ′(⟨w(t)
j,r, ξi⟩)5 log(2/ϵ)Õ(d−1/2)
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− 1

m

∑
j,r

n∑
i′=1

σ′(⟨w(t)
j,r, yiµ⟩)5 log(2/ϵ)Õ(n−1∥µ∥−1

2 )− 1

m

∑
j,r

σ′(⟨w(t)
j,r, yiµ⟩)Õ (σ0∥µ∥2)

− 1

m

∑
j,r

σ′(⟨w(t)
j,r, ξi⟩)Õ

(
σ0σξ

√
d
)

≥ 2 log(2/ϵ)− log(2/ϵ)

= log(2/ϵ)

where in the first inequality, we use the expression of w∗
j,r and Lemma C.1. The second inequality is

by

1

m

∑
j=ỹi,r

σ′(⟨w(t)
j,r, ξi⟩)5 log(2/ϵ) ≥

1

m
|S(t)i |5 log(2/ϵ) ≥ 2 log(2/ϵ)

where we use Lemma D.4 and Lemma D.6 that |S(t)i | ≥ 0.4m. Further the other terms can be
bounded by arbitrarily small constant. This completes the proof.

Theorem D.2 (Restatement of Theorem 4.2). Under Condition 4.1, for arbitrary ϵ > 0, there exists
t∗ ∈ [T1, T

∗], where T ∗ = Θ̃(η−1ϵ−1nmσ−2
ξ d−1), such that

1. Training loss converges, i.e., LS(W
(t∗)) ≤ ϵ

2. All clean samples, i.e., i ∈ St, it holds that ỹif(W(t∗),xi) ≥ 0

3. There exists a constant 0 < τ ′ ≤ τ++τ−
2 such that there are τ ′n noisy samples, i.e., i ∈ Sf

satisfy ỹif(W
(t∗),xi) ≥ 0.

4. The test error L0−1
D (W(t∗)) ≥ 0.5min{τ+, τ−}.

Proof of Theorem D.2. (1) First, we prove that the loss converges to arbitrarily small tolerance.
Specifically, we use Lemma D.4 of Kou et al. (2023) to bound for all t ≤ T ∗, we have

∥∇LS(W
(t))∥2F = O(max{∥µ∥22, σ2

ξd})LS(W
(t)) (10)

Then we bound the difference in the distance to optimal solution as

∥W(t) −W∗∥2F − ∥W(t+1) −W∗∥2F
= 2η⟨∇LS(W

(t)),W(t) −W∗⟩ − η2∥∇LS(W
(t))∥2F

=
2η

n

n∑
i=1

ℓ
′(t)
i

[
ỹif(W

(t),xi)− ⟨∇f(W(t),xi),W
∗⟩
]
− η2∥∇LS(W

(t))∥2F

≥ 2η

n

n∑
i=1

ℓ
′(t)
i

[
ỹif(W

(t),xi)− log(2/ϵ)
]
− η2∥∇LS(W

(t))∥2F

≥ 2η

n

n∑
i=1

[
ℓ
(
f(W(t),xi), ỹi

)
− ϵ/2

]
− η2∥∇LS(W

(t))∥2F

≥ 2ηLS(W
(t))− ηϵ− η2O(max{∥µ∥22, σ2

ξd})LS(W
(t))

≥ ηLS(W
(t))− ηϵ

where the first inequality is due to Lemma D.8 and the second inequality is by convexity of
cross entropy function. The third inequality is by (10) and the last inequality is by choosing
η ≤ C−1 max{∥µ∥22, σ2

ξd}−1 to be sufficiently small.

Finally, we telescope the inequality from t = T1 to t = T ∗, which yields

1

T ∗ − T1 + 1

T∗∑
s=T1

LS(W
(s)) ≤ ∥W

(T1) −W∗∥2F
η(T ∗ − T1 + 1)

+ ϵ ≤ 2ϵ
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where the last inequality is due to the choice of T ∗ = T1 + ⌊η−1ϵ−1∥W(T1) −W∗∥2F ⌋ = T1 +

Õ(η−1ϵ−1mnd−1σ−2
ξ ).

This suggests there exists an iteration t∗ ∈ [T1, T
∗] where LS(W

(t∗)) ≤ 2ϵ for any ϵ < 0. By setting
ϵ← 2ϵ, we verify the first claim.

(2) For the second claim, it is easy to see by Lemma D.2, for all i ∈ St

ỹif(W
(t∗),xi) ≥

1

m

m∑
r=1

(
ρ
(t∗)
ỹi,r,i

+ γ
(t∗)
ỹi,r

)
− 1/C1 ≥ 0

where the second inequality is by γỹi,r ≥ 0 and ρ
(t∗)
ỹi,r,i

≥ ρ
(T1)
ỹi,r,i

= Ω(1) for i ∈ [n], r ∈ S(0)i .

(3) For the third claim, we prove by contradiction that there exists a sufficiently large gap Cϵ > 0

such that for noisy samples i ∈ Sf , there exists a constant fraction that satisfies 1
m

∑m
r=1

(
ρ
(t∗)
ỹi,r,i

−
γ
(t∗)
−ỹi,r

)
≥ Cϵ.

We prove this claim by contradiction. Suppose the claim does not hold. Then there must exist a
constant fraction of samples such that 1

m

∑m
r=1

(
ρ
(t∗)
ỹi,r,i

− γ
(t∗)
−ỹi,r

)
≤ Cϵ. Formally, We denote the set

of such samples as

I ′ :=

{
i ∈ Sf :

1

m

m∑
r=1

(
ρ
(t∗)
ỹi,r,i

− γ
(t∗)
−ỹi,r

)
≤ Cϵ

}
with |I ′| = τ ′n for some constant τ ′ > 0 that satisfies τ ′ ≤ τ++τ−

2 , i.e., upper bounded by the
number of noisy samples in the dataset. Then we have

LS(W
(t∗)) =

1

n

n∑
i=1

ℓ(f(W(t∗),xi), ỹi) ≥
1

n

∑
i∈I′

log(1 + exp(−ỹif(W(t∗),xi)))

≥ 1

n

∑
i∈I′

log

(
1 + exp

( 1

m

m∑
r=1

(
γ
(t∗)
−ỹi,r

− ρ
(t∗)
ỹi,r,i

)
− 1/C1

))
≥ τ ′ log(1 + exp(−Cϵ − 0.001)) > τ ′ log(2)

where we use Lemma D.2 in the second inequality. The third inequality is by the definition of I ′
and C1 ≥ 1000. Thus this raises a contradiction given that LS(W

(t∗)) ≤ 2ϵ for any ϵ > 0. This
suggests there exists a constant fraction of noisy samples satisfy 1

m

∑m
r=1

(
ρ
(t∗)
ỹi,r,i

− γ
(t∗)
−ỹi,r

)
≥ Cϵ.

This further indicates by Lemma D.2, for these samples

ỹif(W
(t∗),xi) ≥ Cϵ − 1/C1 > 0.

(4) For the test error, we first derive the probability P(yf(W(t∗),x) < 0) as

P(yf(W(T∗),x) < 0)

= P
( m∑

r=1

σ(⟨w(t∗)
−y,r, ξ + ζ⟩)−

m∑
r=1

σ(⟨w(t∗)
y,r , ξ + ζ⟩) ≥

m∑
r=1

σ(⟨w(t∗)
y,r , yµ⟩)−

m∑
r=1

σ(⟨w(t∗)
−y,r, yµ⟩)

)
≥ P

( 1

m

m∑
r=1

σ(⟨w(t∗)
−y,r, ξ + ζ⟩)− 1

m

m∑
r=1

σ(⟨w(t∗)
y,r , ξ + ζ⟩) ≥ 1

m

m∑
r=1

γ(t∗)
y,r + 1/C ′

)
=

1

n

n∑
i=1

P
( 1

m

m∑
r=1

σ(⟨w(t∗)
−y,r, ξi + ζ⟩)− 1

m

m∑
r=1

σ(⟨w(t∗)
y,r , ξi + ζ⟩) ≥ 1

m

m∑
r=1

γ(t∗)
y,r + 1/C ′

)
(11)

for some sufficiently large constant C ′ > 0 and the second equality is by uniform distribution of ξ.

Next, we consider the following two cases separately, i.e., (a) When y = 1 and (b) when y = −1.
When y = 1, (11) can be further bounded as

P(yf(W(t∗),x) < 0)
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≥ 0.5τ+P
( 1

m

m∑
r=1

σ(⟨w(t∗)
−1,r, ξi:i∈Sf∩S1

+ ζ⟩)− 1

m

m∑
r=1

σ(⟨w(t∗)
1,r , ξi:i∈Sf∩S1

+ ζ⟩) ≥ 1

m

m∑
r=1

γ
(t∗)
1,r + 1/C ′

)
where we use the sample size of |Sf ∩ S1| = τ+n

2 .

Now we analyze the the magnitude of each term. Based on the decomposition, we obtain for any
i ∈ Sf , j = ±1 and any r ∈ [m]

⟨w(t∗)
j,r , ξi + ζ⟩ =

〈
w

(0)
j,r − γ

(t∗)
j,r ∥µ∥

−2
2 µ+

n∑
i′=1

ρ
(t∗)
j,r,i∥ξi′∥

−2
2 ξi′ +

n∑
i′=1

ρ(t
∗)

j,r,i
∥ξi′∥−2

2 ξi′ , ξi + ζ

〉
= ρ

(t∗)
j,r,i + ρ(t

∗)
j,r,i

+ ⟨w(0)
j,r , ξi + ζ⟩ − ⟨γ(t∗)

j,r ∥µ∥
−2
2 µ, ξi + ζ⟩

+
∑
i′ ̸=i

ρ
(t∗)
j,r,i′
⟨ξi′ , ξi + ζ⟩
∥ξi′∥22

+
∑
i′ ̸=i

ρ(t
∗)

j,r,i′

⟨ξi′ , ξi + ζ⟩
∥ξi′∥22

Then we can bound particularly for i ∈ Sf ∩ S1, i.e., ỹi = −1

⟨w(t∗)
−1,r, ξi + ζ⟩ ≥ ρ

(t∗)
−1,r,i − Õ(σ0σξ

√
d)− Õ(∥µ∥−1

2 σξ)− Õ(nd−1/2)

≥ ρ
(t∗)
−1,r,i − 1/C3

where we use Lemma C.1, C.2 and the upper bound on ρ
(t∗)
j,r,i, γ

(t∗)
j,r = Õ(1) for the first inequality.

The second inequality is by Condition 4.1 on ∥µ∥2 and d for some sufficiently large constant C3.

In addition, we can similarly show

⟨w(t∗)
1,r , ξi + ζ⟩ ≤ ρ(t

∗)
1,r,i

+ Õ(σ0σξ

√
d) + Õ(∥µ∥−1

2 σξ) + Õ(nd−1/2) ≤ 1/C3

Then can show for any i ∈ Sf ∩ S1, i.e., ỹi = −1

1

m

m∑
r=1

σ(⟨w(t∗)
−1,r, ξi + ζ⟩)− 1

m

m∑
r=1

σ(⟨w(t∗)
1,r , ξi + ζ⟩) ≥ 1

m

m∑
r=1

ρ
(t∗)
−1,r,i − 2/C3

≥ 1

m

m∑
r=1

γ
(t∗)
1,r + Cϵ − 2/C3

>
1

m

m∑
r=1

γ
(t∗)
1,r + 1/C ′

where we choose C3, C
′ such that Cϵ − 2/C3 > 1/C ′. This suggests when y = 1, we have

P(yf(W(T∗),x) < 0) ≥ 0.5τ+

Similarly, we use the same argument to show when y = −1,

P(yf(W(T∗),x) < 0) ≥ 0.5τ−.

This completes the proof that P(yf(W(T∗),x) < 0) ≥ 0.5min{τ−, τ+}.

E ANALYSIS WITHOUT LABEL NOISE

For the case of no label noise, i.e., τ+, τ− = 0. We still require the same assumption as in Condi-
tion 4.1. We reiterate the assumption for completeness here.

Condition E.1. We let T ∗ = Θ̃(η−1ϵ−1nmσ−2
ξ d−1) to be the maximum number of iterations

considered. Suppose that there exists a sufficiently large constant C such that the following hold:

1. The signal-to-noise ratio is bounded by constants n · SNR2 = Θ(1).
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2. The dimension d is sufficiently large, d ≥ Cmax
{
n2 log(nm/δ) log(T ∗)2, n∥µ∥2σ−1

ξ

√
log(n/δ)

}
.

3. The standard deviation of the Gaussian initialization σ0 is chosen such that σ0 ≤
C−1 min

{√
nσ−1

ξ d−1, ∥µ∥−1
2 log(m/δ)−1/2

}
.

4. The size of training sample n and width m adhere to m ≥ C log(n/δ), n ≥ C log(m/δ).

5. The signal strength satisfies ∥µ∥22 ≥ Cσ2
ξ log(n/δ).

6. The learning rate η satisfies η ≤ C−1 min
{
σ−2
ξ d−3/2n2m

√
log(n/δ), σ−2

ξ d−1n
}

.

With the label noise, the coefficient update equations are given by

γ
(0)
j,r , ρ

(0)
j,r,i, ρ

(0)
j,r,i

= 0,

γ
(t+1)
j,r = γ

(t)
j,r −

η

nm

n∑
i=1

ℓ
′(t)
i σ′(⟨w(t)

j,r, yiµ⟩)∥µ∥
2
2,

ρ
(t+1)
j,r,i = ρ

(t)
j,r,i −

η

nm
ℓ
′(t)
i σ′(⟨w(t)

j,r, ξi⟩)∥ξi∥
2
21(yi = j),

ρ(t+1)
j,r,i

= ρ(t)
j,r,i

+
η

nm
ℓ
′(t)
i σ′(⟨w(t)

j,r, ξi⟩)∥ξi∥
2
21(yi = −j).

where we highlight that for all i ∈ [n], ỹi = yi.
Proposition E.1. Under Assumption 4.1 and the same definition as for the label noise case, for
0 ≤ t ≤ T ∗, we have

0 ≤ ρ
(t)
j,r,i ≤ α, (12)

0 ≥ ρ(t)
j,r,i
≥ −β − 10

√
log(6n2/δ)

d
nα ≥ −α, (13)

0 ≤ γ
(t)
j,r ≤ Cγα (14)

In order to prove such results, we use the same induction strategy as for the label noise case. We first
notice that if (12), (13), (14) hold at iteration t, then bounds in Lemma D.1 and Lemma D.2 hold at
iteration t. We include the results here for the purpose of completeness.
Lemma E.1. Under Condition E.1, suppose (12), (13), (14) hold at iteration t,

|⟨w(t)
j,r −w

(0)
j,r ,µ⟩ − j · γ(t)

j,r | ≤ SNR

√
8 log(6n/δ)

d
nα,

|⟨w(t)
j,r −w

(0)
j,r , ξi⟩ − ρ

(t)
j,r,i| ≤ 5

√
log(6n2/δ)

d
nα, yi = j

|⟨w(t)
j,r −w

(0)
j,r , ξi⟩ − ρ(t)

j,r,i
| ≤ 5

√
log(6n2/δ)

d
nα, yi = −j

for all r ∈ [m], j = ±1, i ∈ [n]. Further, there exists a sufficiently large constant C1 such that

1

m

m∑
r=1

(
γ(t)
yi,r + ρ

(t)
yi,r,i

)
− 1/C1 ≤ yif(W

(t),xi) ≤
1

m

m∑
r=1

(
γ(t)
yi,r + ρ

(t)
yi,r,i

)
+ 1/C1

for all i ∈ [n].

Proof of Lemma E.1. The proof follows directly from Lemma D.1 and Lemma D.2.

Next we prove a stronger lemma that only holds under the condition n · SNR2 = Θ(1) and without
the presence of label noise. Nevertheless, we remark that the following result holds under small SNR,
i.e., n · SNR2 = o(1) and has been proved in Kou et al. (2023).

First we require an lemma that allows to bound the loss derivative ratios.
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Lemma E.2 (Kou et al. (2023)). Let g(z) = −1/(1 + exp(z)), then for all z2 − c ≥ z1 ≥ −1, for
c ≥ 0, we have

exp(c)

4
≤ g(z1)

g(z2)
≤ exp(c)

Lemma E.3. Under Condition E.1, and for any given t ≤ T ∗, suppose (12), (13), (14) hold for all
iterations s ≤ t. Then we can prove for some constant κ ≥ 0

(1) 1
m

∑m
r=1(ρ

(s)
yi,r,i

+ γ
(s)
yi,r − ρ

(s)
yk,r,k

− γ
(s)
yk,r) ≤ κ for all i, k ∈ [n].

(2) ℓ
′(s)
i /ℓ

′(s)
k ≤ C̃ℓ for all i, k ∈ [n].

(3) S(0)i ⊆ S(s)i ,S(0)j,r ⊆ S
(s)
j,r , for all i ∈ [n] and j = ±1, r ∈ [m].

Proof of Lemma E.3. We prove the results by induction. It is clear at s = 0, claim (1), (3) are satisfied
trivially. Then for claim (2), we use Lemma E.2 to bound

ℓ
′(0)
i

ℓ
′(0)
k

≤ exp(ykf(W
(0),xk)− yif(W

(0),xi))

≤ exp
( 1

m

m∑
r=1

(
ρ
(0)
yk,r,k

+ γ(0)
yk,r

)
− 1

m

m∑
r=1

(
ρ
(0)
yi,r,i

+ γ(0)
yi,r

)
+ 2/C1

)
= exp(2/C1),

which shows a constant upper bound.

Next suppose at t = t̃, (1)-(3) hold for all s ≤ t̃ − 1, then we show they also hold at t̃. For (1),
according to the update rule of the coefficients,

1

m

m∑
r=1

(
ρ
(t̃)
yi,r,i

− ρ
(t̃)
yk,r,k

)
=

1

m

m∑
r=1

(
ρ
(t̃−1)
yi,r,i

− ρ
(t̃−1)
yk,r,k

)

− η

nm2

 ∑
r∈S(t̃−1)

i

ℓ
′(t̃−1)
i ∥ξi∥22 −

∑
r∈S(t̃−1)

k

ℓ
′(t̃−1)
k ∥ξk∥22

 (15)

1

m

m∑
r=1

(
γ(t̃)
yi,r − γ(t̃)

yk,r

)
=

1

m

m∑
r=1

(
γ(t̃−1)
yi,r − γ(t̃−1)

yk,r

)
− η∥µ∥22

nm2

m∑
r=1

(
n∑

i′=1

ℓ
′(t−1)
i′ 1(⟨w(t̃−1)

yi,r , yi′µ⟩)−
n∑

i′=1

ℓ
′(t−1)
i′ 1(⟨w(t̃−1)

yk,r
, yi′µ⟩)

)
︸ ︷︷ ︸

A5

(16)

We first analyze A5 depending on the following four cases.

• When ⟨w(t̃−1)
yi,r ,µ⟩ ≥ 0, ⟨w(t̃−1)

yk,r ,µ⟩ ≥ 0, we have A5 =
∑

i′∈S1
ℓ
′(t−1)
i′ −

∑
i′∈S1

ℓ
′(t−1)
i′ =

0.

• When ⟨w(t̃−1)
yi,r ,µ⟩ ≤ 0, ⟨w(t̃−1)

yk,r ,µ⟩ ≤ 0, we have A5 =
∑

i′∈S−1
ℓ
′(t−1)
i′ −∑

i′∈S−1
ℓ
′(t−1)
i′ = 0.

• When ⟨w(t̃−1)
yi,r ,µ⟩ ≥ 0, ⟨w(t̃−1)

yk,r ,µ⟩ ≤ 0, we have A5 =
∑

i′∈S1
ℓ
′(t−1)
i′ −

∑
i′∈S−1

ℓ
′(t−1)
i′ .

• When ⟨w(t̃−1)
yi,r ,µ⟩ ≤ 0, ⟨w(t̃−1)

yk,r ,µ⟩ ≥ 0, we have A5 =
∑

i′∈S−1
ℓ
′(t−1)
i′ −

∑
i′∈S1

ℓ
′(t−1)
i′ .

33



1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

Now we would like to bound the combination of (15) and (16).

When 1
m

∑m
r=1

(
ρ
(t̃−1)
yi,r,i

+ γ
(t̃−1)
yi,r − ρ

(t̃−1)
yk,r,k

− γ
(t̃−1)
yk,r

)
≤ 0.5κ, then (15) can be bounded as

1

m

m∑
r=1

(
ρ
(t̃)
yi,r,i

+ γ(t̃)
yi,r − ρ

(t̃)
yk,r,k

− γ(t̃)
yk,r

)

≤ 1

m

m∑
r=1

(
ρ
(t̃−1)
yi,r,i

+ γ(t̃−1)
yi,r − ρ

(t̃−1)
yk,r,k

− γ(t̃−1)
yk,r

)
− η

nm2

 ∑
r∈S(t̃−1)

i

ℓ
′(t̃−1)
i ∥ξi∥22 −

∑
r∈S(t̃−1)

k

ℓ
′(t̃−1)
k ∥ξk∥22


− η∥µ∥22

nm2

m∑
r=1

(
n∑

i′=1

ℓ
′(t−1)
i′ 1(⟨w(t̃−1)

yi,r , yi′µ⟩)−
n∑

i′=1

ℓ
′(t−1)
i′ 1(⟨w(t̃−1)

yk,r
, yi′µ⟩)

)

≤ 0.5κ− η

nm
|S(t̃−1)

i |ℓ′(t̃−1)
i ∥ξi∥22 −

η

nm

n∑
i′=1

ℓ
′(t̃)
i ∥µ∥

2
2

≤ 0.5κ+ 1.01
ησ2

ξd

n
+

η∥µ∥22
m

≤ κ

where the second inequality is by ℓ
′(t)
i ≤ 0 for all i, t. The third inequality is by |S(t̃−1)

i | ≤ m,
|ℓ′(t̃−1)
i | ≤ 1 and Lemma D.5. The last inequality us by Condition E.1 for sufficiently small stepsize

η.

When 1
m

∑m
r=1

(
ρ
(t̃−1)
yi,r,i

+ γ
(t̃−1)
yi,r − ρ

(t̃−1)
yk,r,k

− γ
(t̃−1)
yk,r

)
≥ 0.5κ, then by Lemma E.1,

yif(W
(t̃−1),xi)− ykf(W

(t̃−1),xk) ≥
1

m

m∑
r=1

(
γ(t̃−1)
yi,r + ρ

(t̃−1)
yi,r,i

− γ(t̃−1)
yk,r

− ρ
(t̃−1)
yk,r,k

)
− 2/C1

≥ 0.5κ− 2/C1

≥ 0.4κ

where we choose C1 ≥ 20/κ. Then by Lemma E.2

ℓ
′(t̃−1)
i

ℓ
′(t̃−1)
k

≤ exp(ykf(W
(t̃−1),xk)− yif(W

(t̃−1),xi)) ≤ exp(−0.4κ).

Then we can show

|S(t̃−1)
i | · |ℓ′(t̃−1)

i | · ∥ξi∥22
|S(t̃−1)

k | · |ℓ′(t̃−1)
k | · ∥ξk∥22

≤ 1.01 · exp(−0.4κ) (17)

where we use Lemma D.5 and D.6 by choosing sufficiently large d and m.

Then we obtain

1

m

m∑
r=1

(
ρ
(t̃)
yi,r,i

+ γ(t̃)
yi,r − ρ

(t̃)
yk,r,k

− γ(t̃)
yk,r

)
≤ 1

m

m∑
r=1

(
ρ
(t̃−1)
yi,r,i

+ γ(t̃−1)
yi,r − ρ

(t̃−1)
yk,r,k

− γ(t̃−1)
yk,r

)
− η

nm2

(
|S(t̃−1)

i |ℓ′(t̃−1)
i ∥ξi∥22 − |S

(t̃−1)
k |ℓ′(t̃−1)

k ∥ξk∥22
)

− η

nm

( ∑
i′∈S±1

ℓ
′(t̃−1)
i′ −

∑
i′∈S∓1

ℓ
′(t̃−1)
i′

)
∥µ∥22

≤ 1

m

m∑
r=1

(
ρ
(t̃−1)
yi,r,i

+ γ(t̃−1)
yi,r − ρ

(t̃−1)
yk,r,k

− γ(t̃−1)
yk,r

)
+

η

nm2

(
1.01 exp(−0.4κ)− 1

)
|S(t̃−1)

k ||ℓ′(t̃−1)
k | · ∥ξi∥22

+
η

2m
(C̃ℓ − 1) min

i∈[n]
|ℓ′(t̃−1)
i |∥µ∥22
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≤ 1

m

m∑
r=1

(
ρ
(t̃−1)
yi,r,i

+ γ(t̃−1)
yi,r − ρ

(t̃−1)
yk,r,k

− γ(t̃−1)
yk,r

)
+

η

nm

((
0.49 exp(−0.4κ)− 0.48

)
|ℓ′(t̃−1)
k |σ2

ξd

+ 0.5n(C̃ℓ − 1)C̃ℓ|ℓ′(t̃−1)
k |∥µ∥22

)
≤ 1

m

m∑
r=1

(
ρ
(t̃−1)
yi,r,i

+ γ(t̃−1)
yi,r − ρ

(t̃−1)
yk,r,k

− γ(t̃−1)
yk,r

)
≤ κ

where the second inequality is by applying (17) and also
∑

i′∈S±1
ℓ
′(t̃−1)
i′ −

∑
i′∈S∓1

ℓ
′(t̃−1)
i′ ≤

n
2 (maxi∈[n] |ℓ

′(t̃−1)
i | −mini∈[n] |ℓ

′(t̃−1)
i |) ≤ n

2 (C̃ℓ − 1)mini∈[n] |ℓ
′(t̃−1)
i |) by induction. The third

inequality is by κ ≥ 1 and Lemma D.5, Lemma D.6. The fourth inequality follows from the
conditions on n · SNR2 ≤ 2(0.48−0.49 exp(−0.4κ))

(C̃ℓ−1)C̃ℓ
= O(1). This verifies the claim (1) for t = t̃.

Now by Lemma E.2 and Lemma E.1, we can show

ℓ
′(t̃)
i

ℓ
′(t̃)
k

≤ exp(ykf(W
(t̃),xk)− yif(W

(t̃),xi))

≤ exp

(
1

m

m∑
r=1

(
ρ
(t̃)
yk,r,i

+ γ(t̃)
yk,r
− ρ

(t̃)
yi,r,k

− γ(t̃)
yi,r

)
+ 2/C1

)
≤ exp(κ+ 2/C1)

Hence for a given κ, we can take C̃ℓ = exp(κ+ 2/C1). This verifies that claim (2) is satisfied.

To verify the claim (3), we can show

⟨w(t̃)
ỹi,r

, ξi⟩ = ⟨w(t̃−1)
ỹi,r

, ξi⟩ −
η

nm

n∑
i′=1

ℓ
′(t̃−1)
i′ · σ′(⟨w(t̃−1)

ỹi,r
, ξi′⟩) · ⟨ξi, ξi′⟩

− η

nm

n∑
i′=1

ℓ
′(t̃−1)
i′ · σ′(⟨w(t̃−1)

ỹi,r
, yi′µ⟩) · ⟨yi′µ, ξi⟩

= ⟨w(t̃−1)
ỹi,r

, ξi⟩−
η

nm
ℓ
′(t̃−1)
i ∥ξi∥22︸ ︷︷ ︸
A6

− η

nm

∑
i′ ̸=i

ℓ
′(t̃−1)
i′ σ′(⟨w(t̃−1)

ỹi,r
, ξi′⟩) · ⟨ξi, ξi′⟩︸ ︷︷ ︸

A7

− η

nm

n∑
i′=1

ℓ
′(t̃−1)
i′ · σ′(⟨w(t̃−1)

ỹi,r
, yi′µ⟩) · ⟨yi′µ, ξi⟩︸ ︷︷ ︸

A8

.

We respectively bound the three terms as

A6 ≥ 0.99
σ2
ξdη

nm
|ℓ′(t̃−1)
i |,

where we use D.5. For A7, we can bound

|A7| ≤ 2nC̃ℓ|ℓ′(t̃−1)
i |σ2

ξ

√
d log(6n2/δ),

where we use Lemma C.1 and claim (2). Similarly,

|A8| ≤ nC̃ℓ|ℓ′(t̃−1)
i |∥µ∥2σξ

√
2 log(6n/δ)

where we use Lemma C.1 and claim (2). By the Condition E.1 where d ≥
Cmax{C̃2

ℓ n
2 log(6n2/δ), C̃ℓn∥µ∥2σ−1

ξ

√
2 log(6n/δ)} for sufficiently large C. This ensures

A6 ≥ |A7| + |A8|, which leads to ⟨w(t̃)
ỹi,r

, ξi⟩ ≥ ⟨w(t̃−1)
ỹi,r

, ξi⟩ > 0 and thus S(0)i ⊆ S(t̃−1)
i ⊆ S(t̃)i .

Similarly, we can use the same argument to prove S(0)j,r ⊆ S
(t̃−1)
j,r ⊆ S(t̃)j,r .
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Proof of Proposition E.1. We prove the results by induction. At t = 0, it is clear that the claims hold
trivially. Suppose there exists T̃ ≤ T ∗ such that the the claims hold for all t ≤ T̃ − 1. We aim to
show they also hold at t = T̃ . By Lemma E.3, we know for all t ≤ T̃ − 1, we have ℓ

′(t)
i /ℓ

′(t)
k ≤ C̃ℓ

for all i, k ∈ [n] and S(0)i ⊆ S(t)i , S(0)j,r ⊆ S
(t)
j,r .

First, we follow the same proof strategy to show 0 ≥ ρ(T̃ )
j,r,i
≥ −β − 10

√
log(6n2/δ)/d.

Next we show the upper bound for ρ(T̃ )
j,r,i. Let tr,i be the last time t < T ∗ such that ρ(t)j,r,i ≤ 0.5α.

Then

ρ
(T̃ )
yi,r,i

= ρ
(tr,i)
yi,r,i

− η

nm
ℓ
′(tr,i)
i 1(⟨w(tr,i)

yi,r , ξi⟩ ≥ 0)∥ξi∥22 −
∑

t∈(tr,i,T̃ )

η

nm
ℓ
′(t)
i 1(⟨w(t)

yi,r, ξi⟩ ≥ 0)∥ξi∥22

≤ 0.5α+ 1.01
ησ2

ξd

nm
+ 1.01

ησ2
ξd

nm

∑
t∈(tr,i,T̃ )

1

1 + exp( 1
m

∑m
r=1(ρ

(t)
yi,r,i

+ γ
(t)
yi,r)− 1/C1)

≤ 0.75α+ 2.02
ησ2

ξd

nm
≤ α

where the first inequality is by Lemma D.5, Lemma E.1 and |ℓ′(tr,i)i | ≤ 1. The second and third
inequality is by choosing η ≤ C−1nmσ−2

ξ d−1 for sufficiently large C.

Then we proceed to show upper bound for γ
(T̃ )
j,r . From the update rule, it is clear that γ(T̃ )

j,r ≥

γ
(T̃−1)
j,r ≥ 0. To prove the upper bound on γ

(T̃ )
j,r , we aim to show there exists i∗ ∈ [n] such that for all

t ≤ T ∗ that

γ
(t)
j,r

ρ
(t)
yi∗ ,r,i∗

≤ Cγn · SNR2.

where we take Cγ = 1.1C̃ℓ. We prove the claim by induction. We first lower bound ρ
(T̃ )
yi,r,i

. In

particular, we can lower bound for any i∗ ∈ [n], r ∈ S(0)i that

ρ
(T̃ )
yi∗ ,r,i∗

= ρ
(T̃−1)
yi∗ ,r,i∗

− η

nm
ℓ
′(T̃−1)
i∗ ∥ξi∗∥22 ≥ ρ

(T̃−1)
yi∗ ,r,i∗

+ 0.49
ησ2

ξd

nm
|ℓ′(T̃−1)
i∗ |,

where we use Lemma D.5 and Lemma E.1. Then for γ(T̃ )
j,r , we have

γ
(T̃ )
j,r = γ

(T̃−1)
j,r − η

nm

n∑
i=1

ℓ
′(T̃−1)
i σ′(⟨w(T̃−1)

j,r , yiµ⟩)∥µ∥22 ≤ γ
(T̃−1)
j,r +

η∥µ∥22C̃ℓ|ℓ′(T̃−1)
i∗ |

m

where we use the second claim of Lemma E.3.

Then at iteration t = 1, we can show

γ
(1)
j,r

ρ
(1)
yi∗ ,r,i∗

≤ n∥µ∥22C̃ℓ

0.49σ2
ξd
≤ 1.1C̃ℓn · SNR2 = Cγn · SNR2.

Now suppose for all t ≤ T̃ − 1, we have γ
(t)
j,r/ρ

(t)
yi∗ ,r,i∗

≤ Cγn · SNR2, then we

Then we can bound

γ
(T̃ )
j,r

ρ
(T̃ )
yi∗ ,r,i∗

≤ max

 γ
(T̃−1)
j,r

ρ
(T̃−1)
yi∗ ,r,i∗

,
n∥µ∥22C̃ℓ

0.49σ2
ξd

 ≤ Cγn · SNR2.

This shows γ(T̃ )
j,r ≤ Cγn · SNR2ρ

(T̃−1)
yi∗ ,r,i∗

≤ Cγα.
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E.1 FIRST STAGE

In the first stage, we can lower bound the loss derivatives by a constant Cℓ (by Lemma D.3) and we
show both ρ

(t)
yi,r,i

, r ∈ S(0)i and γ
(t)
j,r can grow to a constant order.

Theorem E.1. Under Condition E.1, there exists T1 = Θ(η−1nmσ−2
ξ d−1) such that

• ρ
(T1)
yi,r,i

= Θ(1) for all i ∈ [n] and r ∈ S(0)i .

• γ
(T1)
j,r = Θ(n · SNR2) = Θ(1) for all j = ±1, r ∈ [m].

• yif(W
(T1),xi) ≥ 0, for all i ∈ [n].

Proof. By the update rule of the coefficients, for r ∈ S(0)i ,

ρ
(t)
yi,r,i

= ρ
(t−1)
yi,r,i

− η

nm
ℓ
′(t−1)
i ∥ξi∥22 ≥ ρ

(t−1)
yi,r,i

+ 0.99
ηCℓσ

2
ξd

nm
≥ 0.99

ηCℓσ
2
ξd

nm
t,

where we use the lower bound on loss derivatives and Lemma D.5.

Then with
T1 = 2.1η−1nmC−1

ℓ σ−2
ξ d−1

we can show ρ
(t)
yi,r,i

≥ 2. Further we can obtain the upper bound as for all i ∈ [n], r ∈ [m], j = ±1

ρ
(t)
j,r,i = ρ

(t−1)
j,r,i −

η

nm
ℓ
′(t−1)
i ∥ξi∥22 ≤ ρ

(t−1)
j,r,i + 1.01

ησ2
ξd

nm
≤ 1.01

ησ2
ξd

nm
t

where we use the upper bound on loss derivatives and Lemma D.5. Under the definition of T1, for all
i, r, j, we upper bound ρ

(t)
j,r,i ≤ 3C−1

ℓ .

Next for lower and upper bound for γ(t)
j,r , we first recall the update as for any j = ±1, r ∈ [m],

γ
(t)
j,r = γ

(t)
j,r −

η

nm

n∑
i=1

ℓ
′(t−1)
i σ′(⟨w(t−1)

j,r , yiµ⟩)∥µ∥22.

When ⟨w(t−1)
j,r ,µ⟩ ≥ 0,

γ
(t)
j,r = γ

(t−1)
j,r +

η

nm

∑
i∈S1

|ℓ′(t−1)
i |∥µ∥22 ≥ γ

(t−1)
j,r +

ηCℓ∥µ∥22
2m

≥ ηCℓ∥µ∥22
2m

t

where we use the lower bound on |ℓ′(t−1)
i |. Similarly, when ⟨w(t−1)

j,r ,µ⟩ ≤ 0, we can obtain the same

lower bound as γ(t)
j,r ≥

ηCℓ∥µ∥2
2

2m .

Then at t = T1, we can bound for all j = ±1, r ∈ [m] as

γ
(t)
j,r ≥

n∥µ∥22
σ2
ξd

= n · SNR2 = Ω(1)

The upper bound follows from

γ
(t)
j,r ≤ γ

(t−1)
j,r +

η∥µ∥22
2m

≤ η∥µ∥22
2m

t

where we apply the upper bound on |γ(t−1)
j,r | ≤ 1. This verifies that at t = T1,

γ
(t)
j,r ≤ 1.1C−1

ℓ n · SNR2 = O(1),

which shows at t = T1, both ρ
(T1)
yi,r,i

, γ
(T1)
j,r = Θ(1).

For all samples, by Lemma E.1,

yif(W
(T1),xi) ≥

1

m

m∑
r=1

(
ρ
(T1)
yi,r,i

+ γ
(T1)
j,r

)
− 1/C1 ≥ 0,

where we let C1 to be sufficiently large.
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E.2 SECOND STAGE

In the second stage, we show the loss converges and under constant signal-to-noise ratio, we can show
the test error can be arbitrarily small at convergence, while for all T1 ≤ t ≤ T ∗, yif(W(t),xi) ≥ 0,
for all i ∈ [n].
Theorem E.2. Under Condition E.1, there exists a time t∗ ∈ [T1, T

∗] where T ∗ =

Θ̃(η−1ϵ−1nmσ−2
ξ d−1) such that

• Training loss converges, i.e., LS(W
(t∗)) ≤ ϵ.

• For all samples, i.e., i ∈ [n], it satisfies yif(W(t),xi) ≥ 0.

• Test error is small, i.e., L0−1
D (W(t∗)) ≤ exp

(
d
n −

n∥µ∥4
2

CDσ4
ξd

)
.

Proof of Theorem E.2. The proof of convergence is exactly the same as for the case with label noise,
and thus we omit it here. The second claim is also easy to verify given that both γ

(t)
j,r , ρ

(t)
yi,r,i

are
monotonically increasing. By Lemma E.1, we can obtain the desired result.

Now we prove the third claim regarding the test error. To this end, we first show for all T1 ≤ t ≤ T ∗

γ
(t)
j,r/

∑n
i=1 ρ

(t)
j,r,i = Θ(SNR2) for all j = ±1, r ∈ [m]. We prove such a claim by induction. It is

clear at t = T1, we have
∑n

i=1 ρ
(T1)
j,r,i = Θ(n) and γ

(T1)
j,r = Θ(n · SNR2) for all j = ±1, r ∈ [m].

Thus, we can verify the γ(T1)
j,r /

∑n
i=1 ρ

(T1)
j,r,i = Θ(SNR2). Now suppose for a given T̃ ∈ [T1, T

∗] such

that γ(t)
j,r/

∑n
i=1 ρ

(t)
j,r,i = Θ(SNR2) holds for all T1 ≤ t ≤ T̃ − 1. Then according tor the update,

n∑
i=1

ρ
(T̃ )
j,r,i =

n∑
i:yi=j

ρ
(T̃ )
j,r,i =

∑
i:yi=j

ρ
(T̃−1)
j,r,i − η

nm

∑
i∈S(T̃−1)

j,r

ℓ
′(T̃−1)
i ∥ξi∥22

≥
n∑

i=1

ρ
(T̃−1)
j,r,i + 0.12

ησ2
ξd

m
min
i∈[n]
|ℓ′(T̃−1)
i |

where the second inequality is by S(0)j,r ⊆ S
(T̃−1)
j,r and Lemma C.3, Lemma D.5. Similarly, we can

upper bound
n∑

i=1

ρ
(T̃ )
j,r,i ≤

n∑
i=1

ρ
(T̃−1)
j,r,i + 1.01

ησ2
ξd

m
max
i∈[n]
|ℓ′(T̃−1)
i |

where we Lemma D.5.

On the other hand, we can lower and upper bound

γ
(T̃ )
j,r ≥ γ

(T̃−1)
j,r +

η

2m
min
i∈Sn

|ℓ′(T̃−1)
i |∥µ∥22

γ
(T̃ )
j,r ≤ γ

(T̃−1)
j,r +

η

2m
max
i∈[n]
|ℓ′(T̃−1)
i |∥µ∥22

This suggests

γ
(T̃ )
j,r∑n

i=1 ρ
(T̃ )
j,r,i

≥ min

 γ
(T̃−1)
j,r∑n

i=1 ρ
(T̃−1)
j,r,i

,
mini∈[n] |ℓ

′(T̃−1)
i |∥µ∥22

2.02maxi∈[n] |ℓ
′(T̃−1)
i |σ2

ξd

 ≥ min

 γ
(T̃−1)
j,r∑n

i=1 ρ
(T̃−1)
j,r,i

,
SNR2

2.02C̃ℓ


= Ω(SNR2)

where we use maxi∈[n] |ℓ
′(T̃−1)
i | ≤ C̃ℓ mini∈[n] |ℓ

′(T̃−1)
i | by second claim of Lemma E.3. Similarly,

γ
(T̃ )
j,r∑n

i=1 ρ
(T̃ )
j,r,i

≤ max

 γ
(T̃−1)
j,r∑n

i=1 ρ
(T̃−1)
j,r,i

,
C̃ℓSNR2

0.24

 = O(SNR2).
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This verifies for all T1 ≤ t ≤ T ∗,

γ
(t)
j,r/

n∑
i=1

ρ
(t)
j,r,i = Θ(SNR2). (18)

Finally, we prove the test error can be upper bounded. We first write for a test sample (x, y) ∼ Dtest,

yf(W(t∗),x) =
1

m

m∑
r=1

(
σ(⟨w(t∗)

y,r , yµ⟩) + σ(⟨w(t∗)
y,r , ξ + ζ⟩)

)
− 1

m

m∑
r=1

(
σ(w

(t∗)
−y,r, yµ) + σ(⟨w(t∗)

−y,r, ξ + ζ⟩)
)
.

For ⟨w(t∗)
y,r , yµ⟩, we can bound

⟨w(t∗)
y,r , yµ⟩ = γ(t∗)

y,r + ⟨w(0)
y,r, yµ⟩+

n∑
i=1

⟨ξi, yµ⟩
∥ξi∥22

ρ
(t∗)
y,r,i +

n∑
i=1

⟨ξi, yµ⟩
∥ξi∥22

ρ(t
∗)

y,r,i

≥ γ(t∗)
y,r −

√
2 log(12m/δ)σ0∥µ∥2 − (∥µ∥2

√
2 log(6n/δ)σ−1

ξ d−1)Θ(SNR−2)γ(t∗)
y,r

≥ 0.99γ(t∗)
y,r

where we use Lemma C.1 and Lemma C.2 and (18) in the second inequality. The last inequality
follows from Condition E.1. With an similar argument, we can show

⟨w(t∗)
−y,r, yµ⟩ ≤ −0.99γ

(t∗)
−y,r.

Further, we let g(ζ) =
∑m

r=1 σ(⟨w
(t∗)
−y,r, ζ + ξ⟩) and by (Vershynin, 2018, Theorem 5.2.2), we have

for any a ≥ 0,

P
(
g(ζ)− Eg(ζ) > a

)
≤ exp(−ca2σ−2

ξ ∥g∥
−2
Lip)

where expectation is taken with respect to ζ ∼ N (0, σ2
ξI) and c > 0 is a constant. To compute the

Lipschitz constant, we compute

|g(ζ)− g(ζ′)| =

∣∣∣∣∣
m∑
r=1

σ(⟨w(t∗)
−y,r, ζ + ξ⟩)−

m∑
r=1

σ(⟨w(t∗)
−y,r, ζ

′ + ξ⟩)

∣∣∣∣∣
≤

m∑
r=1

∣∣∣σ(⟨w(t∗)
−y,r, ζ + ξ⟩)− σ(⟨w(t∗)

−y,r, ζ
′ + ξ⟩)

∣∣∣
≤

m∑
r=1

|⟨w(t∗)
−y,r, ζ − ζ′⟩| ≤

m∑
r=1

∥w(t∗)
−y,r∥2∥ζ − ζ′∥2

where the first inequality is by triangle inequality and the second is by the property of ReLU function.
This suggests ∥g∥Lip ≤

∑m
r=1 ∥w

(t∗)
−y,r∥2.

In addition, because conditioned on ξ, ⟨w(t∗)
−y,r, ζ + ξ⟩ ∼ N

(
⟨w(t∗)

−y,r, ξ⟩, ∥w
(t∗)
−y,r∥22σ2

ξ

)
.

Eg(ζ) =
m∑
r=1

Eσ(⟨w(t∗)
−y,r, ζ + ξ⟩)

=

m∑
r=1

(
⟨w(t∗)

−y,r, ξ⟩
(
1− Φ(−

⟨w(t∗)
−y,r, ξ⟩

∥w(t∗)
−y,r∥2σξ

)
)
+
∥w(t∗)

−y,r∥2σξ√
2π

exp(−
⟨w(t∗)

−y,r, ξ⟩2

2∥w(t∗)
−y,r∥22σ2

ξ

)

)

≤
m∑
r=1

(
ρ
(t∗)
−y,r,i∗ +

∥w(t∗)
−y,r∥2σξ√

2π

)
where the expectation is taken with respect to ζ and the last equality is due to Beauchamp
(2018) on expectation of truncated Gaussian. The first inequality is by taking ξ = ξi∗ where
i∗ = argmaxi∈[n],r ρ

(t∗)
−y,r,i and use Condition E.1 to remove the leading constant.
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Further, we require to bound ∥w(t∗)
−y,r∥2 by first bounding∥∥∥∥∥

n∑
i=1

ρ
(t∗)
j,r,i∥ξi∥

−2
2 · ξi

∥∥∥∥∥
2

2

=
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n∑
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ρ
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√
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ξd

3/2

(
(

n∑
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ρ
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2 −
n∑
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ρ
(t∗)2

j,r,i

)
= Θ(σ−2

ξ d−1)

n∑
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ρ
(t∗)2
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ξ d−3/2)(

n∑
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ρ
(t∗)
j,r,i)

2

≤ Θ(σ−2
ξ d−1n−1)(

n∑
i=1

ρ
(t∗)
j,r,i)

2

where the first inequality is by Lemma D.5 and Lemma C.1 and the last inequality is by the coefficient
orders at t∗. Thus, we can bound

∥w(t∗)
j,r ∥2 ≤ ∥w

(0)
j,r ∥2 + γ

(t∗)
j,r ∥µ∥

−1
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n∑
i=1
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n∑
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ρ
(t∗)
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where the first equality uses Lemma C.2 and (18). The second equality follows from
∑n

i=1 ρ
(t∗)
j,r,i =

Ω(n). The last inequality is by Condition E.1 where SNR2∥µ∥−1
2 /(σ−1

ξ d−1/2n−1/2) =
√
n·SNR =

Θ(1) and σ0

√
d/(σ−1
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∑n

i=1 ρ
(t∗)
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r=1 σ(⟨w
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= Θ(n · SNR2)

Suppose n · SNR2 ≥ C+ for C+ > 0 sufficiently large. Then we have
∑m

r=1 σ(⟨w
(t∗)
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We bound the test error as
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where we denote gi(ζ) =
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r=1 σ(⟨w
(t∗)
−y,r, ζ + ξi⟩). The third and fourth inequalities are by

(s− t)2 ≥ s2/2− t2.

F EARLY STOPPING

Proof of Proposition 4.1. The proof follows the same idea as for Theorem E.2, with the difference
that both

∑
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for all j = ±1 and i ∈ [n] (from the results of Theorem D.1). Then we can bound the test error
directly as
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n

n∑
i=1

exp

(
c

2π
− 0.5c

(∑m
r=1 σ(⟨w

(T1)
y,r , yµ⟩)−

∑m
r=1 ρ

(T1)
−y,r,i

σξ

∑m
r=1 ∥w

(T1)
y,r ∥2

)2)

≤ 1

n

n∑
i=1

exp

(
c

2π
− 0.5c

( 1

Θ(d−1/2n1/2)

)2)
= exp

(
c

2π
−Θ

( d
n

))
≤ exp(− d

nCe
)
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j,r,i ≤ Θ(n). The last inequality is by choosing a sufficiently large

constant Ce > 0.

G ADDITIONAL EXPERIMENTS
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Figure 3: Visualization of model predictions (via SHAP) for noisy samples across multiple epochs.
Red regions indicate positive contributions to model predictions, while blue regions denote negative
contributions, with darker regions signifying greater contributions. It is evident that in the first stage
(reflected by Epoch 1 and 41), model learns the generalizable features, such as the wings of “airplane”
class and contours of “automobile" class. However, in the second stage (reflected by Epoch 81 and
121), the model overfits to partial features where the pattern of prediction is no longer visible.

(a) µ = 20, τ = 0.1. (b) µ = 20, τ = 0.15. (c) µ = 20, τ = 0.2.

(d) µ = 20, τ = 0.25. (e) µ = 15, τ = 0.2. (f) µ = 25, τ = 0.2.

Figure 4: Experiments on synthetic data with varying problem settings, including varying signal
strength µ and label noise ratio τ . We shade the area before noise learning overtakes signal learning
of noisy samples in blue. This corresponds to the Stage I in our analysis, where early stopping is
beneficial. We shade the area where signal learning exceeds noise learning for noisy samples in
orange, which corresponds to Stage II in our analysis.
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(a) τ = 0.1. (b) τ = 0.15.

(c) τ = 0.2. (d) τ = 0.25.

Figure 5: Experiments on CIFAR-10 dataset with varying label noise ratio τ . Across different label
noise ratios, we observe a similar pattern that there exist an initial decrease in the training accuracy
on noisy samples before an increase to perfect classification. This validates our theoretical findings in
real-world settings under various label noise ratios.
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