
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

INDEPENDENCE TESTS FOR LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

We consider the following problem of model provenance: can a third party verify whether
two language models are trained independently or not given the weights of both models? We
propose a family of statistical tests for models of any architecture that yield exact p-values
with respect to the null hypothesis that the models are trained with independent randomness
(e.g., independent random initialization). These p-values are valid regardless of the compo-
sition of either model’s training data, and we obtain them by simulating independent copies
of each model and comparing various measures of similarity in the weights and activations of
the original two models to these independent copies. We evaluate the power of these tests on
pairs of 21 open-weight models (210 total pairs) and find they reliably identify all 69 pairs of
fine-tuned models. Notably, our tests remain effective even after substantial fine-tuning; we
accurately detect dependence between Llama 2 and Llemma, even though the latter was fine-
tuned on an 750B additional tokens (37.5% of the original Llama 2 training budget). Finally,
we identify transformations of model weights that break the effectiveness of our tests without
altering model outputs, and—motivated by the existence of these evasion attacks—we pro-
pose a mechanism for matching hidden activations between the MLP layers of two models
that is robust to these transformations. Though we no longer obtain exact p-values from this
mechanism, empirically we find it reliably distinguishes fine-tuned models and pruned mod-
els of different dimension and is even robust to completely retraining the MLP layers from
scratch.

1 INTRODUCTION

Figure 1: Left: we give examples of model pairs with the Llama architecture and test for independence without
knowledge of their origin. Right: we present the ground truth model lineage and highlight distinct cases.

Consider the ways in which two language models may be related (Figure 1): one might be a fine-tune of the
other, or they might share a common ancestor, or they may be fully independent. Without knowing the details of
either model’s training process, what can a third party infer about this relationship from just the weights of both
models? Answering this question would better enable independent third parties to track provenance of open-
weight models, which is especially important in light of intensifying concerns around intellectual property
(IP) protection (Mensch, 2024) and regulatory scrutiny (Anderljung et al., 2023) as both the capabilities and

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

development costs of these models continue to grow (e.g., (Dubey et al., 2024; Team, 2024; GLM et al., 2024;
Yang et al., 2024)).

In this paper, we focus specifically on the question of whether two models are independently trained versus not;
we do not distinguish whether one is a fine-tune of the other or if the two models share a common ancestor.
Casting the training of a language model as a randomized process (e.g., due to the initial model weights and
batch ordering) we formalize this question as a hypothesis testing problem where the null hypothesis is that the
weights of the two models are independent random variables. We seek a solution to this problem that admits
tight control over false positives while also reliably distinguishing dependent models regardless of 1) design
decisions such as the number of fine-tuning tokens or choice of optimizer and 2) the application of various
adversarial evasion attacks, including any transformation of model weights that does not affect model output.

In the non-adversarial setting, we propose a family of exact tests for model independence based on identifying
similarities between model weights and hidden activations. The main idea is that we can compute p-values by
simulating T identically distributed copies of each model and comparing the value of some test statistic (e.g.,
cosine similarity of model weights) on each of these resampled pairs with the original model pair, where higher
values of the test statistic indicate the two models are related. Crucially, we leverage symmetries in training
dynamics to simulate these copies without actually having to rerun the full training process, which would be
computationally prohibitive. In particular, because the output of a feedforward neural network is invariant to
permuting the indices of its hidden units and therefore training dynamics are (typically) permutation equivariant,
we can obtain an exact p-value by simply permuting the hidden units of each model and comparing the rank
of the test statistic on the original pair to the permuted pairs. Under the null hypothesis that the original two
models are independent, the permuted pairs will be exchangeable with the original pair and thus the normalized
rank will be uniformly distributed in {1/(T + 1), ..., 1}, yielding a valid p-value.

We evaluate various test statistics—the most effective of which is cosine similarity over weights and
activations—on 21 models of the Llama 2 architecture Touvron et al. (2023), including 12 fine-tunes of Llama
2 and nine independently trained models, obtaining negligibly small p-values for all 69 non-independent model
pairs. Notably, our tests retain high power over different fine-tuning methods (e.g., different optimizers) and on
models extensively fine-tuned for many tokens from the base model such as Llemma Azerbayev et al. (2024),
which was fine-tuned on an additional 750B tokens from Llama 2 (i.e., 37.5% of the Llama 2 training budget).
These test statistics apply in principle to any model pair for which there exists a pair of layers sharing a com-
mon architecture or even a pair of tensors sharing a common shape; thus, we are able to confirm that the leaked
Miqu 70B model from Mistral derives from Llama 2 70B and also identify which layers of Llama 3.1 8B are
incorporated into Llama 3.2 1B and 3B.

In the adversarial setting, our exact tests are ineffective since an adversary can easily evade them by randomly
permuting the hidden units of their model post-training. Moreover, our exact tests apply only to two models of
the same architecture; thus, slight changes to the architecture of either model also break these tests. Motivated by
these two shortcomings, we design a more robust test statistic that first aligns the hidden units of two models—
which may each have different activation types and hidden dimensions—and and then computes some measure
of similarity between the aligned models. Due to the alignment step, we can no longer obtain exact p-values
with non-trivial power using this test statistic; however, empirically we find we can still reliably distinguish
independent and non-independent model pairs. In particular, we find this test statistic empirically behaves like a
p-value in the sense that it is close to uniformly distributed in [0, 1] for independent model pairs (and no smaller
than 0.024 across all 141 such pairs we test); meanwhile, it is at most 2.2e-308 (the threshold for numerical
underflow for a 64-bit float) for all dependent pairs we test (including those for which we simulate an adversary
by retraining entire layers from scratch).

2 RELATED WORK

The work most closely related to ours is due to Zeng et al. (2024), who consider a similar problem; they develop
various tests to determine whether a model is a fine-tune of another by computing the cosine similarity of the
products of certain weight matrices in both models. Their focus is on robustness to simple adversaries: these
matrix products are invariant to certain kinds of transformations of model weights that preserve model output,
and thus their tests are robust to these same transformations. However, we show by construction in D.1 that there
exist other such transformations that break all of their tests. Additionally, unlike Zeng et al. (2024), in the non-
robust setting we obtain exact p-values from our tests. Jin et al. (2024a) propose crafting specific queries that
are likely to produce different responses among independently trained models; their method does not require
access to weights but is incapable of producing exact p-values.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

A separate line of work on model fingerprinting (Xu et al., 2024; Zhang et al., 2024; Jin et al., 2024b; Yang &
Wu, 2024) aims to plant a secret signal in the weights of a model so that anyone who knows the secret key can
detect the fingerprint from query access to the model (or derivatives thereof such as fine-tunes). For example, Xu
et al. (2024) propose fingerprinting a model by fine-tuning on some secret random string; fingerprint detection
then resolves to prompting a putative fingerprinted model with a prefix of the string. Unlike Xu et al. (2024), we
do not intervene on the training process of the models we test; however, we do require access to model weights.
The fingerprint of Xu et al. (2024) is only detectable with the secret key yet is easily removable by anyone who
knows the key; thus, their work does not enable third-party testing of model provenance as do our methods.

Another separate line of work on text watermarking aims to attribute model-generated text by planting a wa-
termark when sampling text from the model (Christ et al., 2023; Kirchenbauer et al., 2024; Kuditipudi et al.,
2024; Aaronson & Kirchner, 2023). Because it intervenes on sampling, text watermarking is inapplicable to
open-weight models, which are the focus of both model fingerprinting and our setting.

3 METHODS

3.1 PROBLEM FORMULATION AND TESTING FRAMEWORK

Let f : Θ×X → Y denote a model mapping parameters θ ∈ Θ and an input X ∈ X to an output f(X; θ) ∈ Y .
We represent a model training or fine-tuning process as a learning algorithm A : Θ → P(Θ), which takes in
an initial parameter θ0 ∈ Θ (e.g., either a random initialization or, in the case of fine-tuning, a base model)
and induces a distribution over final parameters. In the context of deep learning, some examples of sources of
randomness in a learning algorithm (aside from initialization) include the ordering of minibatches and the use
of dropout. Note that A subsumes the choice of training data; our methods make no assumptions on the training
data, so we encapsulate it along with other design decisions in the learning algorithm.

Given two models θ1 ∼ A1(θ
0
1) and θ2 ∼ A2(θ

0
2) with initial parameters θ01, θ

0
2 ∼ P for some joint distribution

P ∈ P(Θ×Θ), our goal is to test the null hypothesis

H0 : θ1 ⊥ θ2, (1)

where ⊥ denotes statistical independence, or the standard definition of independence of two random variables.
One example of a case where θ1 and θ2 might not be independent is if θ2 is fine-tuned from θ1, since in this
case we would have θ02 = θ1. Indeed, in practice we expect H0 to obtain whenever θ1 and θ2 had independent
random initializations, i.e., when θ01 ⊥ θ02 .

Algorithm 1: Test for computing p-values (PERMTEST)
Input: Model weights θ1, θ2
Parameters: test statistic ϕ; equivariant transformation class Π; sample size T
Output: p-value p̂ ∈ (0, 1]

1 for t ∈ 1, . . . , T do
2 πt ∼ Unif(Π);
3 ϕt ← ϕ(πt(θ1), θ2)

4 p̂← 1
T+1 (1 +

∑T
t=1 1{ϕt ≤ ϕ(θ1, θ2)});

5 return 1− p̂

We describe our testing framework for computing p-values against this null hypothesis in Algorithm 1
(PERMTEST), where we simulate T independent copies of a model by applying a collection of transformations to
the model weights. The validity of these p-values rests on these transformations satisfying certain assumptions
with respect to the learning algorithm and random initialization which produced the original model that we
capture in the following two definitions.
Definition 1. Let Π ⊂ Θ → Θ. A distribution P ∈ P(Θ) is Π-invariant if for θ ∼ P and any π ∈ Π, the
parameters θ and π(θ) are identically distributed.
Definition 2. Let Π ⊂ Θ → Θ. Consider any π ∈ Π and θ0 ∈ Θ, with θ̄ ∼ A(θ0), θ = π(θ̄) and θ′ ∼
A(π(θ0)). A learning algorithm A is Π-equivariant if and only if θ and θ′ are identically distributed.

In principle, if we know the learning algorithm A and initialization distribution P that produced θ1, i.e., θ1 ∼
A(θ01) for θ01 ∼ P , we could obtain an exact p-value with an arbitrary test statistic by repeating the training

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

process to obtain T independent copies of θ1 and comparing the test statistic with the original θ1 to these
independent copies; of course, this would be completely impractical in practice due to computational costs. The
main idea underlying PERMTEST is that if all we know is that A is Π-equivariant and P is a Π-invariant, then we
can simulate an identically distributed copy θ′1 of θ1 by letting θ′1 = π(θ1) for any π ∈ Π, which allows us to
efficiently compute an exact p-value without actually repeating the training process of θ1. In effect, Definitions 1
and 2 imply that π commutes with A: sampling θ′1 = π(θ1) for θ1 ∼ A(θ01) is equivalent to θ′1 ∼ A(π(θ01)).
We formalize this intuition in the following theorem and subsequently give a concrete toy example; importantly,
the result of the theorem holds (under the null hypothesis) without any assumptions on θ2, meaning that we can
have confidence in our test even if we do not trust the provider of θ2.
Theorem 1. Let ϕ : Θ × Θ → R be a test statistic and Π ⊂ Θ → Θ be finite. Let A be a Π-equivariant
learning algorithm and let P be a Π-invariant distribution. Let θ1, θ2 ∈ Θ be independent random variables,
with θ1 ∼ A(θ01) for θ01 ∼ P1. Then p̂ = PERMTEST(θ1, θ2) is uniformly distributed on { i

T+1}
T
i=1.

Proof. From our assumptions on A and P and the fact that {πt}Tt=1 are independently drawn, it follows that
the collection{πt(θ1)}Tt=1 comprises T independent copies of θ1. The independence of θ1 and θ2 thus implies
{(πt(θ1), θ2)}Tt=1 comprises T independent copies of (θ1, θ2), and so the claim follows by symmetry.

Standard initialization schemes for feedforward networks are symmetric over the hidden units of the network,
and so one example of a class of transformations with respect to which any such initialization is invariant is
the set of permutations over the hidden units of the network. Moreover, the gradient of the model’s output with
respect to the hidden units is permutation equivariant; thus, any learning algorithm whose update rule is itself a
permutation equivariant function of gradients (e.g., SGD, Adam, etc.) satisfies Definition 2 with respect to these
transformations. The following toy example makes these claims concrete by applying PERMTEST to a standard
two-layer MLP to obtain an exact p-value.

Example 1: Let θ = (W1,W2) ∈ Θ parameterize a two-layer m hidden unit MLP with f(x; θ) =
W2σ (W1X), for some element-wise activation function σ : R → R. Let (x, y) ∈ X × Y for X = Rd

and Y = R be a training example. Let P ∈ P(θ) be the standard isotropic Gaussian distribution over Θ
with variance σ2, and let A denote running standard gradient descent on the loss L(θ) = ℓ(f(X; θ), y) for
some arbitrary ℓ : Y × Y → R. Abusing notation, identify Π with the set of m × m permutation matrices
such that for π ∈ Π we have π(θ) = (πW1,W2π

T). Observe P is Π-invariant and also A is Π-equivariant
irrespective of ℓ: for any π ∈ Π we have π(∇θfθ(X)) = ∇π(θ)fπ(θ)(X), which implies ∇θL(θ) is Π-
equivariant. Let ϕ : Θ × Θ → R be the negative ℓ2 distance between the weights of the two models, i.e.,
ϕ(θ1, θ2) = −∥θ1 − θ2∥2. Then if θ1 ∼ A(θ01) for some θ01 ∼ P , for any random variable θ2 ∈ Θ the output
p̂ = PERMTEST(θ1, θ2) is a valid p-value. In particular, if θ1 and θ2 are independent then −∥θ1 − θ2∥2 will be
identically distributed as −∥π(θ1)− θ2∥2 for any π ∈ Π. If on the other hand θ2 is a fine-tune of θ1, we might
expect −∥π(θ1)− θ2∥2 ≪ −∥θ1 − θ2∥2. ♢

3.2 TEST STATISTICS

We have shown PERMTEST produces a valid p-value regardless of the test statistic ϕ we use. The sole objective
then in designing a test statistic is to achieve high statistical power: we would like p̂ = PERMTEST(θ1, θ2) to be
small when θ1 and θ2 are not independent. The test statistics we introduce in this section apply to any model pair
sharing the same architecture. In particular, the test statistics all share the following form based on Algorithm 2
(MATCH): for m,n ∈ N and M : Θ→ Rn×m, let

ϕM (θ1, θ2) := ρ(MATCH(M(θ1),M(θ2)), [1, ..., h]). (2)

Equation (2) is applicable to any model architecture Θ for which we can define a suitable matrix valued function
of model parameters. Taking various such functions M yields different test statistics. We focus our experiments
on Transformer models consisting of a series of L Transformer blocks that each contain an MLP module, and we
take M(θ) to be either the first-layer (i.e., up projection) weights or the hidden-layer activations of one of these
MLP modules. In particular, let U (ℓ)(θ) ∈ Rh×d denote the first layer up projection weights of the MLP module
in the ℓ-th block, where h is the hidden dimension and d is the input dimension, and let H(ℓ)(θ) ∈ Rh×(N ·n)

denote the hidden activations that obtain from passing N input sequences of length n, X ∈ RN×n×d to the
same MLP module (the test is valid for any X; we will specify later how we choose X in our experiments). The
two main test statistics we will employ in our experiments are ϕU(ℓ) and ϕH(ℓ) . In both these cases, the idea is

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

to match the hidden units between the ℓ-th MLP modules of the two models in a way that maximizes the cosine
similarity of the corresponding row pairs and then return the Spearman correlation of this matching with the
identity permutation. We describe matching in Algorithm 2, wherein cossim denotes cosine similarity function
and LAP denotes the algorithm of Ramshaw & Tarjan (2012) we use to solve the matching problem.

Both U (ℓ) and H(ℓ) are equivariant with respect to permuting the hidden units of the corresponding MLP
module, and so we can use PERMTEST to compute p-values from both ϕU(ℓ) and ϕH(ℓ) by taking Π to be the
set of permutations over the hidden units of the ℓ-th MLP, similar to Example 1. Doing so would require
recomputing these test statistics T times to obtain a p-value less than 1/T . Instead, observe that if θ1 ⊥ θ2 then
letting π = LAP(C) in MATCH is equivalent in distribution to sampling π ∼ Unif(Π). Thus, instead of running
PERMTEST itself, in our experiments we convert the output ρ̂ to a p-value p̂ using scipy.stats for the
Spearman correlation coefficient (where p̂ = 2P(T > ρ̂) for a t-distribution T with h− 2 degrees of freedom).
Doing so allows us to obtain an estimate of the exact p-value at a finer scale (as the null distribution of the
Spearman correlation coefficient is known) without incurring extra computational costs. We will still employ
PERMTEST in our experiments to compute p-values with other baselines from prior work (e.g., ℓ2 distance
between weights), since unlike ϕU(ℓ) and ϕH(ℓ) the null distribution of these statistics will vary depending on
the specific model pair we are testing.

Algorithm 2: Cosine similarity matching (MATCH)
Input: Matrices W1,W2 with h rows
Output: Correlation coefficient ρ̂ ∈ [−1, 1]

1 for i ∈ 1, . . . , h do
2 for j ∈ 1, . . . , h do
3 Ci,j ← cossim((W1)i, (W2)j);
4 π ← LAP(C);
5 return π

Finally, because ϕU(ℓ) and ϕH(ℓ) are both functions of only the ℓ-th block of the model and we can independently
permute the hidden units of the MLP in the ℓ-th block without affecting the inputs or outputs of the other blocks,
the p-values we obtain from ϕU(ℓ) and ϕH(ℓ) are independent across blocks and thus we can aggregate them
using Fisher’s method (Mosteller & Fisher (1948)) to obtain a more powerful test in Algorithm 3 (FISHER).

Algorithm 3: Aggregating p-values (FISHER)
Input: Model weights θ1, θ2
Parameters: test statistics {ϕ(i)}Li=1; transformation classes {Π(i)}Li=1; sample size T
Output: p-value p̂ ∈ (0, 1]

1 for i ∈ 1, . . . , L do
2 p̂(i) ← PERMTEST(θ1, θ2;ϕ

(i),Π(i), T)

3 ξ ←
∑L

i=1 log p̂
(i);

4 p̂← 1− P(χ2
2L < −2ξ);

5 return p̂

Theorem 2. Let i, j ∈ [L] with i ̸= j. Suppose for ℓ ∈ {i, j} that

1. M (ℓ) : Θ→ Rh×N is equivariant with respect to Π(ℓ), i.e., for any θ ∈ Θ and π(ℓ) ∈ Π(ℓ) we have

M(π(ℓ)(θ)) = π(ℓ)M(θ).

2. A is a Π(ℓ)-equivariant learning algorithm and P ∈ P(ΘLM) is a Π(ℓ)-invariant distribution.

Let θ1, θ2 ∈ Θ. If θ1 ⊥ θ2 for θ1 ∼ A(θ01) with θ01 ∼ P , then

MATCH(M (i)(θ1),M
(i)(θ2)) ⊥ MATCH(M (j)(θ1),M

(j)(θ2)).

Proof. Let θ′1 ∼ A(π
(i)
1 ◦ π

(j)
2 (θ01)) for π1, π2

i.i.d.∼ Unif(Π). Then θ′1 is an independent copy of θ1 since taking
the composition π

(i)
1 ◦ π

(j)
2 (θ1) yields an independent copy of θ1 for any π1, π2 ∈ Π. From θ1 ⊥ θ2, it follows

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

for ℓ ∈ {i, j} that MATCH(M (ℓ)(θ′1),M
(ℓ)(θ2)) is identically distributed to MATCH(M (ℓ)(θ1),M

(ℓ)(θ2)). The
result then follows from the fact MATCH is equivariant with respect to permuting the rows of its arguments: in
particular, for any π ∈ Π we have MATCH(πW1,W2) = πMATCH(W1,W2).

Recall ϕU(ℓ) and ϕH(ℓ) are functions of MATCH(M (ℓ)(θ1),M
(ℓ)(θ2)) respectively for M (ℓ) = U (ℓ) and M (ℓ) =

H(ℓ), both of which satisfy the assumptions of the theorem. Thus, the result of the theorem applies to both these
test statistics, and the independence of the p-values from these test statistics across blocks follows directly from
the independence of the statistics themselves.

3.3 ROBUSTNESS TO ADVERSARIAL MANIPULATION

It is easy to fool the tests we have proposed thus far by applying simple transformations to model parameters
that do not change model output: in particular, an adversary can fool ϕU(ℓ) and ϕH(ℓ) by randomly permuting the
hidden units of the corresponding MLP.1 Motivated by this shortcoming, we design a robust test that aligns the
hidden layer activations of a particular layer between the two models and evaluates the quality of the alignment.
Notably, we can compute the alignment between two layers with different numbers of hidden units; thus, unlike
the tests in Section 3.2, we can apply our robust test to any model pair regardless of whether the two models
share the same architecture. This statistic is also robust to the transformation described in Appendix D.1 that
breaks the invariants proposed by Zeng et al. (2024).

We first describe a test specific to architectures with Gated Linear Units (GLUs) (Dauphin et al., 2016)—a
category which includes the Llama model architecture among many other language models—and then describe
a general extension of this test to any architecture involving hidden activations. We evaluate both the GLU-
specific version and the more general extension in our experiments.

3.3.1 TESTING GLU MODELS

We first consider models of the following architecture (Definition 3).

Definition 3. (GLU MLP) Let G,U ∈ Rh×d and D ∈ Rd×h. Let σ : R → R be an element-wise activation
function. For X ∈ Rd =: Xmlp and θ = (G,U,D) ∈ Θh

mlp, let fmlp(X; θ) := D(σ(GX)⊙ (UX)).

Let θi = (Gi, Ui, Di) ∈ Θh
mlp for i ∈ {1, 2}, and for some X ∈ XN

mlp let Hup(θi) = UiX ∈ Rh×N×n be the
output of the up projection operation and let Hgate(θi) = GiX ∈ Rh×N×n be the output of the gate projection
operation. Then define the test statistic by

ϕMATCH(θ1, θ2) := ρ(MATCH(Hup(θ1), Hup(θ2)), MATCH(Hgate(θ1), Hgate(θ2))).

The main idea of ϕMATCH is that an adversary who permutes the output of the gate projection operation in some
block must also permute the output of the up projection operation in the same way to preserve model output
(due to the direct product operation); thus, high correlation between the best alignment of the two models’ gate
projection activations with that of the up projection activations suggests the two models may not be independent.

3.3.2 BEYOND GLU MODELS

So far we have given a test statistic ϕMATCH that we can compute for two GLU MLPs of the same width (i.e.,
number of hidden units). The MATCH algorithm works for two matrices with different column sizes, so we can
straightforwardly extend ϕMATCH to apply to pairs θ1 ∈ Θh1

mlp, θ2 ∈ Θh2

mlp with h1 ̸= h2. We can also extend
ϕMATCH to apply to models that call a GLU MLP as a sub-module. In particular, for θ ∈ Θh

mlp consider a model
of the form f(x; θ) = g({fmlp(hi(x); θ)}ni=1) for some hi : X → Xmlp for i ∈ [n] and g : Rn×d → Y .2 We
can apply ϕMATCH to such a model by obtaining activation matrices Hup(θ) and Hgate(θ) from passing multiple
inputs x ∈ X to the model f and concatenating over i ∈ [n]. In the case that a model has multiple GLU MLPs,
we also use FISHER to aggregate the statistics.

1If an adversary randomly permutes the hidden units of each MLP layer of their model, then when we run PERMTEST
with either ϕU(ℓ) or ϕH(ℓ) each of the resampled statistics {ϕt}Tt=1 will be identically distributed to the original statistic, in
which case the output will be uniform on [0, 1].

2This family of models includes the Llama 2 architecture, which broadcasts fmlp across the sequence dimension.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Figure 2: We enumerate the public Llama-7B models and delineate the sets of dependent model pairs by color.

Finally, in principle we can even apply ϕMATCH to models that do not involve GLU MLPs at all. To this
end, consider a model f(x) = g({f(hi(x))}ni=1). Though f itself does not involve a GLU MLP, we can
first learn parameters θ ∈ Θh

mlp to minimize the expected difference between f(X) and f(X; θ) over some
distribution on randomly sampled Gaussian inputs X ∈ RN×n×dembed and then apply ϕMATCH to these learned
parameters. Perhaps surprisingly, we show this test is effective in practice at distinguishing independent versus
non independent models. See Section 4.2 and Appendix H.3 for details.

4 EXPERIMENTAL RESULTS

4.1 NON-ADVERSARIAL SETTING

We now validate the effectiveness of our tests against public open-weight language models. We first consider 21
models trained with the Llama-7B architecture with public documentation on ground truth model independence,
which we highlight in Figure 2. For these models, with architecture ΘLM, have a GLU MLP component
described in Section 3.3.1 and Appendix A. For i ∈ {1, 2}, we define our statistics ϕU(ℓ) and ϕH(ℓ) as follows.
Let U (ℓ)

i ∈ Rh×d be the up projection matrix in the ℓ-th block of θℓ ∈ ΘLM, and

ϕU(ℓ)(θ1, θ2) := ρ(MATCH(U
(ℓ)
1 , U

(ℓ)
2), [1, ..., h]),

And, let H(ℓ)(θi) ∈ Rh×N×n be the input to the down projection operation, such that for X ∈ XN we have
H(ℓ)(θi):,j,k = σ(G

(ℓ)
i X

(ℓ−1)
θi

)⊙ (U
(ℓ)
i X

(ℓ−1)
θi

), and let ϕH(ℓ) be

ϕH(ℓ)(θ1, θ2) := ρ(MATCH(H
(ℓ)
θ1

, H
(ℓ)
θ2

), [1, ..., h]).

In addition to ϕU(ℓ) or ϕH(ℓ) , we employ two test statistics from prior work as baselines: Jensen-Shannon
divergence between next token output distributions (ϕJSD, Lin (2006)) and ℓ2 distance between weights (ϕℓ2 ,
from Xu et al. (2024)). Since the Jensen-Shannon divergence is (by definition) invariant to any transformation
of weights that does not affect model output, we cannot compute meaningful p-values using PERMTEST; instead,
in our experiments we report the raw value of the test statistic itself. As for ℓ2 distance, to be consistent with
prior work (Xu et al. (2024)), we define for θ1, θ2 ∈ ΘLM,

ϕℓ2(θ1, θ2) := −
L∑

i=1

ℓ2(θ
(ℓ)
1 , θ

(ℓ)
2)

where θ
(ℓ)
1 , θ

(ℓ)
2 are the ℓ-th layers of θ1, θ2, respectively (we assume their dimensions align). We take the

negation due to the design of PERMTEST, in which higher values of the test statistic indicate dependence. We
obtain p-values from ϕℓ2 by running PERMTEST with Π as the set of permutations over both the hidden units
of each MLP and the embedding dimension of the model (i.e., the inputs passed to the both the MLP and
self-attention layers in each block); we defer the precise definition of Π in this case to Appendix B.

The 21 models we evaluate include 6 base models (trained from scratch), so we have six disjoint sets of the
models based on Llama-2-7b-hf stemming from a diverse mix of industry labs and non-profits (Azerbayev
et al., 2024; Sudalairaj et al., 2024; Liu et al., 2023; Li et al., 2023). We consider any pair of models in the
same tree as dependent and all other pairs as independent. We include examples of further fine-tunes (e.g.,
llemma 7b) of fine-tunes (e.g., CodeLlama-7b-hf) among the models we test. We will mostly refer to
models using by their Huggingface identifiers, without the organization names for clarity.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

We evaluate four test statistics: ϕU(ℓ) (cosine similarity of weights), ϕH(ℓ) (cosine similarity of hidden acti-
vations), ϕℓ2 (ℓ2 distance), and ϕJSD (Jensen-Shannon Divergence). As we describe in Section 3.2, for ϕU(ℓ)

and ϕH(ℓ) we report aggregated p-values over all blocks using FISHER. We compute p-values for ϕℓ2 using
PERMTEST with T = 99, while for ϕJSD we simply report the raw values of the test statistic itself. We compute
ϕJSD using input sequences sampled from WikiText-103 (Merity et al., 2016; Xu et al., 2024) (consistent with
prior work), and we compute ϕH(ℓ) using inputs sequences of tokens sampled uniformly at random from the
vocabulary. We report results for a subset of these pairs involving base model Llama-2-7b-hf in Table 1
while deferring the rest and the full experimental setup details to Appendix C.

p-values
θ1 = Llama-2-7b-hf, θ2 = Independent? ϕJSD (log) ϕℓ2 ϕU(ℓ) ϕH(ℓ)

llama-7b-hf ✓ -11.10 0.98 0.60 0.25
vicuna-7b-v1.1 ✓ -10.40 0.63 0.16 0.64

Amber ✓ -10.69 0.75 0.36 0.88
open-llama-7b ✓ -8.38 0.26 0.36 0.71
vicuna-7b-v1.5 ✗ -10.87 0.01 ε ε
CodeLlama-7b-hf ✗ -10.62 0.01 ε ε

llemma-7b ✗ -10.24 0.01 ε ε
Orca-2-7b ✗ -10.34 0.01 ε ε

Table 1: Results of various test statistics with θ1 as Llama-2-7b-hf and θ2 ranging over the listed models.
The “independent” column is the ground truth. Here, ε = 2.2e-308 (numerical underflow for a 64-bit float).

Consistent with prior work Xu et al. (2024), we find that ϕJSD does not reliably distinguish indepen-
dent versus dependent model pairs. For example, CodeLlama-7b-hf exhibits a larger divergence with
Llama-2-7b-hf than the independently-trained models llama-7b-hf and Amber.

All other test statistics reliably distinguish independent versus dependent pairs; in particular, the p-values we
obtain using the other test statistics are negligible for all dependent pairs (for ϕℓ2 , because we run PERMTEST
with T = 99 for computational reasons, we cannot obtain a p-value less than 0.01.3). Notably, in contrast to
our findings, prior work (Xu et al., 2024) argued that the ℓ2 distance between model parameters is not a reliable
indicator of independence, in the sense that the ℓ2 distance between dependent pairs is sometimes larger than
that of independent pairs (similar to the case of ϕJSD); the key difference is that Xu et al. (2024) report the raw ℓ2
distance whereas we obtain p-values from the raw distances using PERMTEST. We hypothesize that PERMTEST
effectively standardizes the raw distances.

At the finetune level, consistent with our problem formulation, we treat any two finetunes of the same base
model as dependent (i.e. the last scenario in Figure 1). Table 5 in Appendix C.1 reports p-values between
vicuna-7b-v1.5 (a finetune of Llama-2-7b-hf) and other models, and consequently we find that the
p-values for all tests are low between vicuna-7b-v1.5 and other finetunes of Llama-2-7b-hf, even
though they are not direct fine-tunes of each other.

4.2 ADVERSARIAL SETTING

We evaluate the robust statistic ϕMATCH on the same model pairs, using input sequences sampled from WikiText-
103, except that we randomly permute and rotate the weight matrices of the second model (with the output pre-
served) to simulate an adversary, and report the results in Appendix C.2. We find that the distribution of ϕMATCH
on independent model pairs is close to uniform on [0, 1] (Figure 3), whereas across all non-independent model
pairs the statistic is at most ε. Unlike the non-adversarial setting, where the p-values are valid by construction,
the output of the robust test does not enjoy such theoretical guarantees; however, Figure 3 suggests that even in
the adversarial setting that we can treat ϕMATCH as a p-value.

4.2.1 MLP RETRAINING

Since these robust tests rely on the intermediate MLP activations, an adversary could attempt to retrain only the
MLP layers while fixing the rest of the model to fool these tests. We tried such MLP retraining by re-initializing
the gate, up, and down projection matrices and feeding random inputs x ∈ RN×n×dembed through the original
and new MLP blocks and minimizing MSE loss of the outputs (retraining one MLP at a time). To ensure low

3Though computing ϕ
(i)
ℓ2

over each MLP block and aggregating with FISHER yields p-values less than 1e-30 as well.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

(a) Plot of x ∈ [0, 1) vs. the fraction of ϕ(i)
MATCH

(across all MLP blocks) of independent model
pairs less than x.

(b) Plot of x ∈ [0, 1) vs. the fraction of ϕMATCH

(ϕ(i)
MATCH aggregated with FISHER across all MLP

blocks) of independent model pairs less than x.

Figure 3: We find that ϕMATCH empirically acts as a p-value, as both plots roughly follow the line y = x.

θ1 = Llama-2-70b-hf, θ2 = ϕU(ℓ)

miqu-1-70b-pytorch ε
Llama-3.1-70B 0.571

Palmyra-Fin-70B-32K 0.539

Table 2: Results of ϕU(ℓ) (aggregated with FISHER) with θ1 as meta-llama/Llama-2-70b-hf and θ2
ranging over the listed models.

loss, we double the width of the MLP layers and compute the cosine similarity matrices and matchings the same
way.

We individually retrain each of the 32 MLP layers (keeping other layers fixed) of vicuna-7b-v1.5 (a fine-
tune of Llama-2-7b-hf) for 10k gradient steps (until the loss curve plateus). (Additional hyperparameters
and a learning curve are in Appendix F.) For all 32 runs, we compare the robust statistic of the retrained model
with original Llama-2-7b-hf and find our tests are robust to MLP retraining. For example, retraining the
first MLP layer (with a final train loss of 0.0048), the value of the statistic ϕ

(1)
MATCH on the first MLP was less

than ε = 2.2e-308, indicating that the two models are not independent. We find the same is true for the other
MLP layers as well (i.e. ϕ(ℓ)

MATCH when evaluated on retrained layer ℓ), with full results in Table 8 of Appendix
F. Retraining the MLP layers could lead to a more expressive transformation of the model weights over simple
permutations or rotations, and yet ϕ(ℓ)

MATCH remains small on the retrained non-independent models suggesting
that the statistic is robust to retraining.

4.2.2 INDEPENDENT, IDENTICALLY DISTRIBUTED MODELS

We further evaluate the efficacy of our tests through ablations by training two near-identical models that only
differ on select sources of randomness. We train two OLMo (7B) architecture models (Groeneveld et al. (2024))
on the same Dolmo dataset (Soldaini et al. (2024)), but with independently chosen initialization and data order-
ing, so we have two models that are essentially as similar as two independent models can be. We evaluate the
statistics ϕU(ℓ) , ϕH(ℓ) , and ϕMATCH on the two models at four different training checkpoints, reported in Table
9 of Appendix G. We find that p-values for all statistics and checkpoints are broadly distributed, validating our
tests can support independence even on two similarly-trained but independent models.

4.3 VARYING MODEL ARCHITECTURES

We evaluate our tests on models with different architectures—including between model pairs with different
dimensions. First, we run ϕU(ℓ) on four 70B parameter models with the Llama 2-70B architecture shown in
Table 2, and in particular, we verify that Miqu-70B is not independent from Llama 2-70B.

We also validate our tests on the Mistral architecture—we compare the weights of StripedHyena-Nous-7B
(Poli et al. (2023)) with Mistral-7B-v0.1 and find non-independent parameters via ϕU(ℓ) . (We run ϕU(ℓ)

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Figure 4: Matched Transformer blocks between Llama3.1-8B and Llama3.2-3B using ϕMATCH, with arrows
indicating if ϕ(i,j)

MATCH < 1e-4.

on all parameters, not just the gate projection matrix of the MLPs; this allows us to identify similarity between
specific layers.) Values of ϕU(ℓ) among parameters of the embedding layer and first Transformer block are
shown in Table 10 in Appendix H.1. From the low p-values, some parameters, including the embedding layer
and self-attention matrices of the first block were likely shared between the two models.

We also run the test on encoder-only models, e.g. BERT models, and on smaller models, like the
3B-parameter Phi-3 models. In these different architectures, the tests still provide strong signal for
two non-independent models. Both ϕH(ℓ) and ϕMATCH return a statistic of ε on the fine-tuned pair
Phi-3.5-mini-instruct and NuExtract-v1.5. Similarly, ϕH(ℓ) on bert-base-uncased and
finetune tweets-gender-classifier-distilbert yields a p-value less than ε as well.

4.3.1 FINEGRAINED FORENSICS

The robust test can be run on a model pair of different architecture or dimension, as LAP can match a per-
mutation for matrices Hup(θ1) and Hup(θ2) of different dimension (and returns a permutation of the smaller
dimension). We run the robust test on all pairs of MLP blocks, i.e. computing

ϕ
(i,j)
MATCH := ρ(MATCH(H(i)

up (θ2), H
(j)
up (θ1)), MATCH(H

(i)
gate(θ2), H

(j)
gate(θ1))).

for all i ∈ {1, . . . , L1}, j ∈ {1, . . . , L2} of models θ1, θ2 The flexibility of ϕMATCH for varying dimension, and
running ϕMATCH on all pairs of MLP blocks, is significant because it prevents adversaries that may take only
certain layers, or even only certain activations, of a pre-trained model and inject other layers.

In particular, we were able to identify the specific Transformer blocks of Llama-3.1-8B whose weights were
likely used in initializing Llama-3.2-3B and Llama-3.2-1B, as Meta reported that the first two models
were pruned from the third (MetaAI (2024)). We use ϕMATCH on all pairs of MLP blocks, and report the matched
layers (identifying when ϕ

(i,j)
MATCH less than 1e-4) in Figure 4 and in Appendix H.2.

By comparing the aligned permutation returned from ϕMATCH, we can even identify which hidden units were
most likely shared between the blocks when MLP dimension is reduced from 14336 to 8192, for example (dur-
ing the pruning process), shown in Appendix H.2.1. We also run this pairwise layer matching on the ShearedL-
lama (Xia et al. (2024)) models, which were the Llama 2-7B models pruned down to 1.3B and 2.7B parameters
and find matching blocks, as well as on the pruned nvidia/Llama-3.1-Minitron-4B-Depth-Base
model (Muralidharan et al. (2024)) from Llama 3.1, which we report in Appendix H.2.

5 CONCLUSION AND FUTURE WORK

In this paper, we propose and analyze various methods for detecting model independence in open-weight lan-
guage models. Our robust method accurately predicts model relationships without training-time interventions
while allowing some robustness to adversarial attacks with strong results within the Llama model family. Our
methods demonstrate resilience to certain adversarial techniques, and we also investigate these methods across
diverse model architectures. We demonstrate how our techniques provide fine-grain information about how one
model may be derived from another and how they are robust to adversarial attacks. Yet, we do not exhaustively
disprove the existence of a successful adversarial attack, and note that our tests are susceptible to false nega-
tives. There is also an open question as to whether reliably differentiating between fine-tunes of the same base
model to reconstruct a complete “family tree” of model lineage is possible (e.g. infer Llemma is a direct fine-
tune of CodeLlama) (Yax et al., 2024). Furthermore, the fundamental question of whether robustness against
adversarial attacks is solvable with exact guarantees warrants further exploration.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Scott Aaronson and Hendrik Kirchner. Watermarking gpt outputs, 2023.

Markus Anderljung, Joslyn Barnhart, Anton Korinek, Jade Leung, Cullen O’Keefe, Jess Whittlestone, Shahar
Avin, Miles Brundage, Justin Bullock, Duncan Cass-Beggs, Ben Chang, Tantum Collins, Tim Fist, Gillian
Hadfield, Alan Hayes, Lewis Ho, Sara Hooker, Eric Horvitz, Noam Kolt, Jonas Schuett, Yonadav Shavit,
Divya Siddarth, Robert Trager, and Kevin Wolf. Frontier ai regulation: Managing emerging risks to public
safety, 2023. URL https://arxiv.org/abs/2307.03718.

Zhangir Azerbayev, Hailey Schoelkopf, Keiran Paster, Marco Dos Santos, Stephen McAleer, Albert Q. Jiang,
Jia Deng, Stella Biderman, and Sean Welleck. Llemma: An open language model for mathematics, 2024.
URL https://arxiv.org/abs/2310.10631.

Miranda Christ, Sam Gunn, and Or Zamir. Undetectable watermarks for language models, 2023. URL https:
//arxiv.org/abs/2306.09194.

Yann Dauphin, Angela Fan, Michael Auli, and David Grangier. Language modeling with gated convolutional
networks. In International Conference on Machine Learning, 2016.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, Anirudh Goyal, Anthony Hartshorn, Aobo Yang,
Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur Hinsvark, Arun Rao, Aston Zhang, Aurelien
Rodriguez, Austen Gregerson, Ava Spataru, Baptiste Roziere, Bethany Biron, Binh Tang, Bobbie Chern,
Charlotte Caucheteux, Chaya Nayak, Chloe Bi, Chris Marra, Chris McConnell, Christian Keller, Christophe
Touret, Chunyang Wu, Corinne Wong, Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel
Song, Danielle Pintz, Danny Livshits, David Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego Garcia-
Olano, Diego Perino, Dieuwke Hupkes, Egor Lakomkin, Ehab AlBadawy, Elina Lobanova, Emily Dinan,
Eric Michael Smith, Filip Radenovic, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis An-
derson, Graeme Nail, Gregoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Korevaar,
Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan Misra, Ivan Evtimov,
Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Mahadeokar, Jeet Shah, Jelmer van der
Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie
Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jongsoo Park, Joseph Rocca, Joshua Johnstun, Joshua Saxe, Jun-
teng Jia, Kalyan Vasuden Alwala, Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone,
Khalid El-Arini, Krithika Iyer, Kshitiz Malik, Kuenley Chiu, Kunal Bhalla, Lauren Rantala-Yeary, Laurens
van der Maaten, Lawrence Chen, Liang Tan, Liz Jenkins, Louis Martin, Lovish Madaan, Lubo Malo, Lukas
Blecher, Lukas Landzaat, Luke de Oliveira, Madeline Muzzi, Mahesh Pasupuleti, Mannat Singh, Manohar
Paluri, Marcin Kardas, Mathew Oldham, Mathieu Rita, Maya Pavlova, Melanie Kambadur, Mike Lewis, Min
Si, Mitesh Kumar Singh, Mona Hassan, Naman Goyal, Narjes Torabi, Nikolay Bashlykov, Nikolay Bogoy-
chev, Niladri Chatterji, Olivier Duchenne, Onur Çelebi, Patrick Alrassy, Pengchuan Zhang, Pengwei Li, Petar
Vasic, Peter Weng, Prajjwal Bhargava, Pratik Dubal, Praveen Krishnan, Punit Singh Koura, Puxin Xu, Qing
He, Qingxiao Dong, Ragavan Srinivasan, Raj Ganapathy, Ramon Calderer, Ricardo Silveira Cabral, Robert
Stojnic, Roberta Raileanu, Rohit Girdhar, Rohit Patel, Romain Sauvestre, Ronnie Polidoro, Roshan Sum-
baly, Ross Taylor, Ruan Silva, Rui Hou, Rui Wang, Saghar Hosseini, Sahana Chennabasappa, Sanjay Singh,
Sean Bell, Seohyun Sonia Kim, Sergey Edunov, Shaoliang Nie, Sharan Narang, Sharath Raparthy, Sheng
Shen, Shengye Wan, Shruti Bhosale, Shun Zhang, Simon Vandenhende, Soumya Batra, Spencer Whitman,
Sten Sootla, Stephane Collot, Suchin Gururangan, Sydney Borodinsky, Tamar Herman, Tara Fowler, Tarek
Sheasha, Thomas Georgiou, Thomas Scialom, Tobias Speckbacher, Todor Mihaylov, Tong Xiao, Ujjwal
Karn, Vedanuj Goswami, Vibhor Gupta, Vignesh Ramanathan, Viktor Kerkez, Vincent Gonguet, Virginie Do,
Vish Vogeti, Vladan Petrovic, Weiwei Chu, Wenhan Xiong, Wenyin Fu, Whitney Meers, Xavier Martinet,
Xiaodong Wang, Xiaoqing Ellen Tan, Xinfeng Xie, Xuchao Jia, Xuewei Wang, Yaelle Goldschlag, Yashesh
Gaur, Yasmine Babaei, Yi Wen, Yiwen Song, Yuchen Zhang, Yue Li, Yuning Mao, Zacharie Delpierre Coud-
ert, Zheng Yan, Zhengxing Chen, Zoe Papakipos, Aaditya Singh, Aaron Grattafiori, Abha Jain, Adam Kelsey,
Adam Shajnfeld, Adithya Gangidi, Adolfo Victoria, Ahuva Goldstand, Ajay Menon, Ajay Sharma, Alex Boe-
senberg, Alex Vaughan, Alexei Baevski, Allie Feinstein, Amanda Kallet, Amit Sangani, Anam Yunus, Andrei
Lupu, Andres Alvarado, Andrew Caples, Andrew Gu, Andrew Ho, Andrew Poulton, Andrew Ryan, Ankit
Ramchandani, Annie Franco, Aparajita Saraf, Arkabandhu Chowdhury, Ashley Gabriel, Ashwin Bharambe,
Assaf Eisenman, Azadeh Yazdan, Beau James, Ben Maurer, Benjamin Leonhardi, Bernie Huang, Beth Loyd,
Beto De Paola, Bhargavi Paranjape, Bing Liu, Bo Wu, Boyu Ni, Braden Hancock, Bram Wasti, Brandon

11

https://arxiv.org/abs/2307.03718
https://arxiv.org/abs/2310.10631
https://arxiv.org/abs/2306.09194
https://arxiv.org/abs/2306.09194

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Spence, Brani Stojkovic, Brian Gamido, Britt Montalvo, Carl Parker, Carly Burton, Catalina Mejia, Chang-
han Wang, Changkyu Kim, Chao Zhou, Chester Hu, Ching-Hsiang Chu, Chris Cai, Chris Tindal, Christoph
Feichtenhofer, Damon Civin, Dana Beaty, Daniel Kreymer, Daniel Li, Danny Wyatt, David Adkins, David
Xu, Davide Testuggine, Delia David, Devi Parikh, Diana Liskovich, Didem Foss, Dingkang Wang, Duc Le,
Dustin Holland, Edward Dowling, Eissa Jamil, Elaine Montgomery, Eleonora Presani, Emily Hahn, Emily
Wood, Erik Brinkman, Esteban Arcaute, Evan Dunbar, Evan Smothers, Fei Sun, Felix Kreuk, Feng Tian,
Firat Ozgenel, Francesco Caggioni, Francisco Guzmán, Frank Kanayet, Frank Seide, Gabriela Medina Flo-
rez, Gabriella Schwarz, Gada Badeer, Georgia Swee, Gil Halpern, Govind Thattai, Grant Herman, Grigory
Sizov, Guangyi, Zhang, Guna Lakshminarayanan, Hamid Shojanazeri, Han Zou, Hannah Wang, Hanwen
Zha, Haroun Habeeb, Harrison Rudolph, Helen Suk, Henry Aspegren, Hunter Goldman, Igor Molybog, Igor
Tufanov, Irina-Elena Veliche, Itai Gat, Jake Weissman, James Geboski, James Kohli, Japhet Asher, Jean-
Baptiste Gaya, Jeff Marcus, Jeff Tang, Jennifer Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy Teboul,
Jessica Zhong, Jian Jin, Jingyi Yang, Joe Cummings, Jon Carvill, Jon Shepard, Jonathan McPhie, Jonathan
Torres, Josh Ginsburg, Junjie Wang, Kai Wu, Kam Hou U, Karan Saxena, Karthik Prasad, Kartikay Khan-
delwal, Katayoun Zand, Kathy Matosich, Kaushik Veeraraghavan, Kelly Michelena, Keqian Li, Kun Huang,
Kunal Chawla, Kushal Lakhotia, Kyle Huang, Lailin Chen, Lakshya Garg, Lavender A, Leandro Silva, Lee
Bell, Lei Zhang, Liangpeng Guo, Licheng Yu, Liron Moshkovich, Luca Wehrstedt, Madian Khabsa, Manav
Avalani, Manish Bhatt, Maria Tsimpoukelli, Martynas Mankus, Matan Hasson, Matthew Lennie, Matthias
Reso, Maxim Groshev, Maxim Naumov, Maya Lathi, Meghan Keneally, Michael L. Seltzer, Michal Valko,
Michelle Restrepo, Mihir Patel, Mik Vyatskov, Mikayel Samvelyan, Mike Clark, Mike Macey, Mike Wang,
Miquel Jubert Hermoso, Mo Metanat, Mohammad Rastegari, Munish Bansal, Nandhini Santhanam, Natascha
Parks, Natasha White, Navyata Bawa, Nayan Singhal, Nick Egebo, Nicolas Usunier, Nikolay Pavlovich
Laptev, Ning Dong, Ning Zhang, Norman Cheng, Oleg Chernoguz, Olivia Hart, Omkar Salpekar, Ozlem
Kalinli, Parkin Kent, Parth Parekh, Paul Saab, Pavan Balaji, Pedro Rittner, Philip Bontrager, Pierre Roux,
Piotr Dollar, Polina Zvyagina, Prashant Ratanchandani, Pritish Yuvraj, Qian Liang, Rachad Alao, Rachel
Rodriguez, Rafi Ayub, Raghotham Murthy, Raghu Nayani, Rahul Mitra, Raymond Li, Rebekkah Hogan,
Robin Battey, Rocky Wang, Rohan Maheswari, Russ Howes, Ruty Rinott, Sai Jayesh Bondu, Samyak Datta,
Sara Chugh, Sara Hunt, Sargun Dhillon, Sasha Sidorov, Satadru Pan, Saurabh Verma, Seiji Yamamoto,
Sharadh Ramaswamy, Shaun Lindsay, Shaun Lindsay, Sheng Feng, Shenghao Lin, Shengxin Cindy Zha,
Shiva Shankar, Shuqiang Zhang, Shuqiang Zhang, Sinong Wang, Sneha Agarwal, Soji Sajuyigbe, Soumith
Chintala, Stephanie Max, Stephen Chen, Steve Kehoe, Steve Satterfield, Sudarshan Govindaprasad, Sumit
Gupta, Sungmin Cho, Sunny Virk, Suraj Subramanian, Sy Choudhury, Sydney Goldman, Tal Remez, Tamar
Glaser, Tamara Best, Thilo Kohler, Thomas Robinson, Tianhe Li, Tianjun Zhang, Tim Matthews, Timo-
thy Chou, Tzook Shaked, Varun Vontimitta, Victoria Ajayi, Victoria Montanez, Vijai Mohan, Vinay Satish
Kumar, Vishal Mangla, Vlad Ionescu, Vlad Poenaru, Vlad Tiberiu Mihailescu, Vladimir Ivanov, Wei Li,
Wenchen Wang, Wenwen Jiang, Wes Bouaziz, Will Constable, Xiaocheng Tang, Xiaofang Wang, Xiaojian
Wu, Xiaolan Wang, Xide Xia, Xilun Wu, Xinbo Gao, Yanjun Chen, Ye Hu, Ye Jia, Ye Qi, Yenda Li, Yilin
Zhang, Ying Zhang, Yossi Adi, Youngjin Nam, Yu, Wang, Yuchen Hao, Yundi Qian, Yuzi He, Zach Rait,
Zachary DeVito, Zef Rosnbrick, Zhaoduo Wen, Zhenyu Yang, and Zhiwei Zhao. The llama 3 herd of models,
2024. URL https://arxiv.org/abs/2407.21783.

Team GLM, :, Aohan Zeng, Bin Xu, Bowen Wang, Chenhui Zhang, Da Yin, Dan Zhang, Diego Rojas, Guanyu
Feng, Hanlin Zhao, Hanyu Lai, Hao Yu, Hongning Wang, Jiadai Sun, Jiajie Zhang, Jiale Cheng, Jiayi Gui, Jie
Tang, Jing Zhang, Jingyu Sun, Juanzi Li, Lei Zhao, Lindong Wu, Lucen Zhong, Mingdao Liu, Minlie Huang,
Peng Zhang, Qinkai Zheng, Rui Lu, Shuaiqi Duan, Shudan Zhang, Shulin Cao, Shuxun Yang, Weng Lam
Tam, Wenyi Zhao, Xiao Liu, Xiao Xia, Xiaohan Zhang, Xiaotao Gu, Xin Lv, Xinghan Liu, Xinyi Liu, Xinyue
Yang, Xixuan Song, Xunkai Zhang, Yifan An, Yifan Xu, Yilin Niu, Yuantao Yang, Yueyan Li, Yushi Bai,
Yuxiao Dong, Zehan Qi, Zhaoyu Wang, Zhen Yang, Zhengxiao Du, Zhenyu Hou, and Zihan Wang. Chatglm:
A family of large language models from glm-130b to glm-4 all tools, 2024. URL https://arxiv.org/
abs/2406.12793.

Dirk Groeneveld, Iz Beltagy, Pete Walsh, Akshita Bhagia, Rodney Kinney, Oyvind Tafjord, Ananya Harsh
Jha, Hamish Ivison, Ian Magnusson, Yizhong Wang, Shane Arora, David Atkinson, Russell Authur, Khy-
athi Raghavi Chandu, Arman Cohan, Jennifer Dumas, Yanai Elazar, Yuling Gu, Jack Hessel, Tushar Khot,
William Merrill, Jacob Morrison, Niklas Muennighoff, Aakanksha Naik, Crystal Nam, Matthew E. Peters,
Valentina Pyatkin, Abhilasha Ravichander, Dustin Schwenk, Saurabh Shah, Will Smith, Emma Strubell, Nis-
hant Subramani, Mitchell Wortsman, Pradeep Dasigi, Nathan Lambert, Kyle Richardson, Luke Zettlemoyer,
Jesse Dodge, Kyle Lo, Luca Soldaini, Noah A. Smith, and Hannaneh Hajishirzi. Olmo: Accelerating the
science of language models, 2024. URL https://arxiv.org/abs/2402.00838.

12

https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2406.12793
https://arxiv.org/abs/2406.12793
https://arxiv.org/abs/2402.00838

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Heng Jin, Chaoyu Zhang, Shanghao Shi, Wenjing Lou, and Y. Thomas Hou. Proflingo: A fingerprinting-based
intellectual property protection scheme for large language models, 2024a. URL https://arxiv.org/
abs/2405.02466.

Heng Jin, Chaoyu Zhang, Shanghao Shi, Wenjing Lou, and Y. Thomas Hou. Proflingo: A fingerprinting-based
intellectual property protection scheme for large language models. In 2024 IEEE Conference on Communi-
cations and Network Security (CNS), pp. 1–9, 2024b. doi: 10.1109/CNS62487.2024.10735575.

John Kirchenbauer, Jonas Geiping, Yuxin Wen, Jonathan Katz, Ian Miers, and Tom Goldstein. A watermark for
large language models, 2024. URL https://arxiv.org/abs/2301.10226.

Rohith Kuditipudi, John Thickstun, Tatsunori Hashimoto, and Percy Liang. Robust distortion-free watermarks
for language models, 2024. URL https://arxiv.org/abs/2307.15593.

Guohao Li, Hasan Abed Al Kader Hammoud, Hani Itani, Dmitrii Khizbullin, and Bernard Ghanem. Camel:
Communicative agents for ”mind” exploration of large language model society, 2023. URL https://
arxiv.org/abs/2303.17760.

J. Lin. Divergence measures based on the shannon entropy. IEEE Trans. Inf. Theor., 37(1):145–151, September
2006. ISSN 0018-9448. doi: 10.1109/18.61115. URL https://doi.org/10.1109/18.61115.

Zhengzhong Liu, Aurick Qiao, Willie Neiswanger, Hongyi Wang, Bowen Tan, Tianhua Tao, Junbo Li, Yuqi
Wang, Suqi Sun, Omkar Pangarkar, Richard Fan, Yi Gu, Victor Miller, Yonghao Zhuang, Guowei He, Haonan
Li, Fajri Koto, Liping Tang, Nikhil Ranjan, Zhiqiang Shen, Xuguang Ren, Roberto Iriondo, Cun Mu, Zhiting
Hu, Mark Schulze, Preslav Nakov, Tim Baldwin, and Eric P. Xing. Llm360: Towards fully transparent
open-source llms, 2023.

Arthur Mensch. Mistral ceo confirms miqu model leak, August 2024. URL https://x.com/
arthurmensch/status/1752737462663684344. Accessed: 2024-08-15.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture models, 2016.
URL https://arxiv.org/abs/1609.07843.

MetaAI. Llama 3.2: Revolutionizing edge ai and vision with open, customizable models, 2024. URL https:
//ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/.

Frederick Mosteller and R. A. Fisher. Questions and answers. The American Statistician, 2(5):30–31, 1948.
ISSN 00031305. URL http://www.jstor.org/stable/2681650.

Saurav Muralidharan, Sharath Turuvekere Sreenivas, Raviraj Joshi, Marcin Chochowski, Mostofa Patwary,
Mohammad Shoeybi, Bryan Catanzaro, Jan Kautz, and Pavlo Molchanov. Compact language models via
pruning and knowledge distillation, 2024. URL https://arxiv.org/abs/2407.14679.

Michael Poli, Jue Wang, Stefano Massaroli, Jeffrey Quesnelle, Ryan Carlow, Eric Nguyen, and Armin Thomas.
StripedHyena: Moving Beyond Transformers with Hybrid Signal Processing Models, 12 2023. URL
https://github.com/togethercomputer/stripedhyena.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language models are
unsupervised multitask learners. 2019.

Lyle Ramshaw and Robert Endre Tarjan. On minimum-cost assignments in unbalanced bipartite graphs. 2012.
URL https://api.semanticscholar.org/CorpusID:6964149.

Luca Soldaini, Rodney Kinney, Akshita Bhagia, Dustin Schwenk, David Atkinson, Russell Authur, Ben Bo-
gin, Khyathi Chandu, Jennifer Dumas, Yanai Elazar, Valentin Hofmann, Ananya Harsh Jha, Sachin Kumar,
Li Lucy, Xinxi Lyu, Nathan Lambert, Ian Magnusson, Jacob Morrison, Niklas Muennighoff, Aakanksha
Naik, Crystal Nam, Matthew E. Peters, Abhilasha Ravichander, Kyle Richardson, Zejiang Shen, Emma
Strubell, Nishant Subramani, Oyvind Tafjord, Pete Walsh, Luke Zettlemoyer, Noah A. Smith, Hannaneh
Hajishirzi, Iz Beltagy, Dirk Groeneveld, Jesse Dodge, and Kyle Lo. Dolma: an open corpus of three trillion
tokens for language model pretraining research, 2024. URL https://arxiv.org/abs/2402.00159.

Shivchander Sudalairaj, Abhishek Bhandwaldar, Aldo Pareja, Kai Xu, David D. Cox, and Akash Srivastava.
Lab: Large-scale alignment for chatbots, 2024. URL https://arxiv.org/abs/2403.01081.

13

https://arxiv.org/abs/2405.02466
https://arxiv.org/abs/2405.02466
https://arxiv.org/abs/2301.10226
https://arxiv.org/abs/2307.15593
https://arxiv.org/abs/2303.17760
https://arxiv.org/abs/2303.17760
https://doi.org/10.1109/18.61115
https://x.com/arthurmensch/status/1752737462663684344
https://x.com/arthurmensch/status/1752737462663684344
https://arxiv.org/abs/1609.07843
https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/
https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/
http://www.jstor.org/stable/2681650
https://arxiv.org/abs/2407.14679
https://github.com/togethercomputer/stripedhyena
https://api.semanticscholar.org/CorpusID:6964149
https://arxiv.org/abs/2402.00159
https://arxiv.org/abs/2403.01081

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

The Mosaic Research Team. Introducing dbrx: A new state-of-the-art open llm, 2024. URL https://www.
databricks.com/blog/introducing-dbrx-new-state-art-open-llm.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bash-
lykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton Fer-
rer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein,
Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiao-
qing Ellen Tan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan
Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic,
Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models, 2023. URL
https://arxiv.org/abs/2307.09288.

Mengzhou Xia, Tianyu Gao, Zhiyuan Zeng, and Danqi Chen. Sheared llama: Accelerating language model
pre-training via structured pruning, 2024. URL https://arxiv.org/abs/2310.06694.

Jiashu Xu, Fei Wang, Mingyu Derek Ma, Pang Wei Koh, Chaowei Xiao, and Muhao Chen. Instructional
fingerprinting of large language models, 2024. URL https://arxiv.org/abs/2401.12255.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan
Li, Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jialong Tang, Jialin Wang, Jian
Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jianxin Yang, Jin Xu, Jingren Zhou, Jinze Bai, Jinzheng
He, Junyang Lin, Kai Dang, Keming Lu, Keqin Chen, Kexin Yang, Mei Li, Mingfeng Xue, Na Ni, Pei
Zhang, Peng Wang, Ru Peng, Rui Men, Ruize Gao, Runji Lin, Shijie Wang, Shuai Bai, Sinan Tan, Tian-
hang Zhu, Tianhao Li, Tianyu Liu, Wenbin Ge, Xiaodong Deng, Xiaohuan Zhou, Xingzhang Ren, Xinyu
Zhang, Xipin Wei, Xuancheng Ren, Xuejing Liu, Yang Fan, Yang Yao, Yichang Zhang, Yu Wan, Yunfei Chu,
Yuqiong Liu, Zeyu Cui, Zhenru Zhang, Zhifang Guo, and Zhihao Fan. Qwen2 technical report, 2024. URL
https://arxiv.org/abs/2407.10671.

Zhiguang Yang and Hanzhou Wu. A fingerprint for large language models, 2024. URL https://arxiv.
org/abs/2407.01235.

Nicolas Yax, Pierre-Yves Oudeyer, and Stefano Palminteri. Phylolm : Inferring the phylogeny of large lan-
guage models and predicting their performances in benchmarks, 2024. URL https://arxiv.org/
abs/2404.04671.

Boyi Zeng, Chenghu Zhou, Xinbing Wang, and Zhouhan Lin. Human-readable fingerprint for large language
models, 2024. URL https://arxiv.org/abs/2312.04828.

Jie Zhang, Dongrui Liu, Chen Qian, Linfeng Zhang, Yong Liu, Yu Qiao, and Jing Shao. Reef: Representa-
tion encoding fingerprints for large language models, 2024. URL https://arxiv.org/abs/2410.
14273.

A TRANSFORMER ARCHITECTURE AND NOTATION

We consider models with the Llama Transformers architecture and define the notation henceforth, although this
can easily be extended to other Transformer architectures.

Following the definition of fmlp in 3, we can define an abstraction of the full Llama language model architecture
consisting of L Transformer blocks sandwiched between an input and output layer. For the sequel, we will abuse
notation in applying fmlp to multi-dimensional tensors by broadcasting along the last axis. We use d, n ∈ N to
respectively denote the model dimension and sequence length, where ΘLM = Θin × Θ×L

block × Θout with Θblock
denoting the parameter space of each Transformer block and Θin,Θout denoting the parameter spaces the input
and output layers. We decompose Θblock = Θattn × Θmlp and use frest : Θattn × Rn×d → Rn×d to denote all
remaining parts of the Transformer besides the MLP. The inputs to frest are the input and output of the MLP,
and the output of frest is fed directly to the MLP of the next layer. In particular, frest takes the input and output
to the MLP of layer i, and first performs the residual connection following the MLP of layer i, then the self-
attention and normalization components of layer i+ 1, and returns the input to the MLP of layer i+ 1. We use

14

https://www.databricks.com/blog/introducing-dbrx-new-state-art-open-llm
https://www.databricks.com/blog/introducing-dbrx-new-state-art-open-llm
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2310.06694
https://arxiv.org/abs/2401.12255
https://arxiv.org/abs/2407.10671
https://arxiv.org/abs/2407.01235
https://arxiv.org/abs/2407.01235
https://arxiv.org/abs/2404.04671
https://arxiv.org/abs/2404.04671
https://arxiv.org/abs/2312.04828
https://arxiv.org/abs/2410.14273
https://arxiv.org/abs/2410.14273

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Parameter name Notation
embedding E ∈ RV×demb

input layernorm γinput,i ∈ R1×demb

attention query matrix WQ,i ∈ Rdemb×demb

attention key matrix WK,i ∈ Rdemb×demb

attention value matrix WV,i ∈ Rdemb×demb

attention output matrix WO,i ∈ Rdemb×demb

post-attention layernorm γpost-attn, i ∈ R1×demb

MLP gate projection Gi ∈ Rdmlp×demb

MLP up projection Ui ∈ Rdmlp×demb

MLP down projection Di ∈ Rdemb×dmlp

final layernorm γfinal ∈ R1×demb

linear output O ∈ Rdemb×V

Table 3: Llama model architecture and dimensions.

fin : Θin×X → Rn×d and fout : Θ
(L)
block×Rn×d → Y to respectively denote the input and output layers, i.e. the

elements before the first MLP and after the last MLP. Putting everything together gives the following definition
of the model; we introduce the notation X

(i)
θ in the definition as a matter of convenience to track intermediate

activations.

Definition 4. (GLU Transformer model) Let θ = (θin, {θ(i)block}Li=1, θout) ∈ ΘLM and X ∈ X , with θ
(i)
block =

(θ
(i)
attn, θ

(i)
mlp). Then fLM(X; θ) = fout(X

(L)
θ ; θout) for X(0)

θ = fin(X; θin) and

X
(i)
θ = frest(X

(i−1)
θ , fmlp(X

(i−1)
θ)). (3)

For a Llama model, table 3 describes the shapes of the model weight matrices for i = 1, . . . , L, for V (vocab
size), demb (the hidden dimension), and dmlp (MLP hidden dimension). Following Definition 4, we have θin =

(E), θ
(i)
block = (θ

(i)
attn, θ

(i)
mlp) where θ

(i)
attn = (γinput,i,WQ,i,WK,i,WV,i,WO,i, γ

(i)
post-attn), θ

(i)
mlp = (Gi, Ui, Di), and

θout = (γfinal, L). We now describe a forward pass of the model.

We define the softmax function on a vector v = (v1, . . . , vn), softmax(v), as

softmax(v)i =
evi∑n

k=1 e
vk

.

On batched input X ∈ RN×n×m where each X(b) = [w1| . . . |wm] ∈ Rn×m with column vectors wi, we define
the softmax as

softmax(X(b)) = [softmax(w1)| . . . |softmax(wm)],

softmax(X) = [softmax(X(1))| . . . |softmax(X(N))].

For a forward pass of the model fLM(X; θ), consider an input sequence of tokens X ∈ {0, 1}N×V as one-hot
vectors where n is sequence length. Then

We feed the input through:

1. (fin) Embedding layer:

X
(0)
θ = fin(X; θin) = XE ∈ RN×demb

2. (fattn, fmlp, fpost) For each Transformer block i = 0, 1, . . . , L, through fattn, fmlp, and fpost:

(a) Input layernorm:

X
(i)
LN1

=
X

(i)
θ√

Var(X(i)
θ) + ε

⊙ γinput,i

(with variance over the last axis) for some offset ε (typically 1e-6).

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

(b) Causal multi-head self-attention: Split X(i)
LN1

on the first axis into nheads X(i)
LN1,j

, . . . , X
(i)
LN1,nheads.

On each head X
(i)
LN1,j

,

X
(i)
SA,j = self-attn(X(i)

LN1,j
) = softmax

(
X

(i)
LN1,j

WT
Q,i(X

(i)
LN1,j

WT
K,i)

T

√
demb

)
X

(i)
LN1,j

WT
V,iW

T
O,i

and concatenate X
(i)
SA,j along the first axis again as X(i)

SA .

(c) Dropout and residual connection: X(i)
DR1

= X
(i)
LN1

+ Dropout(X(i)
SA)

(d) Post-attention layernorm:

X
(i)
LN2

=
X

(i)
DR1√

Var(X(i)
DR1

) + ε
⊙ γpost-attn,i

(with variance over the last axis) for some offset ε. Then we have

fattn(X
(i−1)
θ ; θ

(i)
attn) = X

(i)
LN2

.

(e) Next, we feed through fmlp, the multi-layer perceptron:

fmlp(X
(i)
LN2

; θ
(i)
mlp) = XMLP

i = [σ(XLN2
i GT

i)⊙ (XLN2
i UT

i)]DT
i

for some activation σ (e.g., SiLU).
(f) Finally, we feed through fpost, dropout and the residual connection:

fpost(θ
(i)
mlp) = X

(i+1)
θ = XDR1

i + Dropout(XMLP
i)

3. (fout) Final layernorm on the output X(N+1)
θ from the final Transformer block:

X
(L)
LN =

X
(L)
θ√

Var(X(L)
θ) + ε

⊙ γfinal

(with variance over the last axis) for some offset ε. Then, linear output embedding and softmax map-
ping to output probabilities:

fout(X
(L)
θ) = softmax(X(L)

LN OT),

which defines the entire forward pass fLM(X; θ).

B MODEL PERMUTATION

We describe two sets of equivariant transformations Π on a Transformer model as described in Appendix A.
(Abusing notation), the first set, Πemb, consists of elements πemb where πemb ∈ Rdemb×demb is a permutation
matrix. The second set, Πmlp, consists of elements πmlp where πmlp ∈ Rdmlp×dmlp is a permutation matrix.

1. πemb(θ): Applying an embedding permutation πemb ∈ Rdemb×demb by left or right multiplying all relevant
matrices by ξembed (permuting rows or columns).

2. πmlp(θ): Applying MLP permutations πmlp,i ∈ Rdmlp×dmlp to MLP layers.

These permutations are applied such that the outputs of the original model θ and the permuted model Π(θ)
remain aligned. We describe the details in Table 4.

C ADDITIONAL EXPERIMENTAL RESULTS ON LLAMA MODELS

C.1 NON-ADVERSARIAL SETTING

First, we report statistics on various model pairs involving the base model Llama-2-7b-hf in Table 1
and various pairs involving vicuna-7b-v1.5 in Table 5. Note vicuna-7b-v1.5 is itself a finetune

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Parameter name θ πemb(θ) πmlp(θ)
embedding E Eπemb E

input layernorm γinput,i γinput,iπemb γinput,i
attention query matrix WQ,i WQ,iπemb WQ,i

attention key matrix WK,i WK,iπemb WK,i

attention value matrix WV,i WV,iπemb WV,i

attention output matrix WO,i πT
embWO,i WO,i

post-attention layernorm γpost-attn, i γpost-attn, iπemb γpost-attn, i
MLP gate projection Gi Giπemb πmlp,iGi

MLP up projection Ui Uiπemb πmlp,iUi

MLP down projection Di πT
embDi Diπ

T
mlp,i

final layernorm γfinal γfinalπemb γfinal
linear output O πT

embO O

Table 4: Transformations πemb and πmlp applied to a Llama-architecture model.

p-values
θ1 = vicuna-7b-v1.5, θ2 = Independent? ϕJSD (log) ϕℓ2 ϕU(ℓ) ϕH(ℓ)

llama-7b-hf ✓ -10.39 0.40 0.29 0.59
vicuna-7b-v1.1 ✓ -10.41 0.63 0.12 0.29

Amber ✓ -10.17 0.75 0.18 0.31
Llama-2-7b-hf ✗ -10.87 0.01 ε ε
CodeLlama-7b-hf ✗ -10.10 0.01 ε ε

llemma-7b ✗ -9.87 0.01 ε ε

Table 5: Results of various test statistics with θ1 as lmsys/vicuna-7b-v1.5 and θ2 ranging over the listed
models. Once again, ε = 2.2e-308.

of Llama-2-7b-hf. Consistent with our problem formulation (Section 3.1), we treat any finetune of
Llama-2-7b-hf as dependent with vicuna-7b-v1.5, even in cases where neither model is a finetune
of the other (i.e., the last scenario in

Next, we report p-values from the statistics ϕℓ2 , ϕU(ℓ) , and ϕH(ℓ) on all 210 model pairs (from 21 Llama 2-
architecture models) in Figures 5, 6, and 7, where the model names are colored by base model (ground truth).
For all statistics, the p-values on independent model pairs are uniformly distributed, while they are all significant
at 0.01 (smaller for ϕU(ℓ) and ϕH(ℓ)) for fine-tuned model pairs.

C.2 ADVERSARIAL SETTING

We report values of ϕMATCH on all model pairs in Figure 8. The statistic is low (< ε = 10−308) for all
non-independent model pairs, and uniformly distributed for independent model pairs, empirically acting as a
p-value.

D ROBUST PROBLEM FORMULATION ADDENDUM

An adversary could apply a particular rotation scheme by multiplying weight matrices by an orthogonal rotation
matrix U that will also preserve outputs. We describe such a transformation which breaks the invariants pro-
posed by Zeng et al. (2024) by manipulating layernorms. While this list may not be exhaustive, the following
six transformations (with the first two described previously) “camouflage” the language model while preserving
outputs:

T1. Permuting the rows of the embedding matrix (and subsequent matrices due to residual connections) by
a permutation ξemb ∈ Rdemb×demb

T2. Permuting the MLP matrices (N different permutations for each Transformer block) by permutations
ξ1, . . . , ξN ∈ Rdmlp×dmlp

T3. Rotating the embedding matrix (and subsequent matrices due to residual connections) by an orthogonal
rotation matrix Remb ∈ Rdemb×demb

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Figure 5: Results of p-values from ϕℓ2 on all model pairs.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Figure 6: Results of p-values from ϕU(ℓ) on all model pairs, where ε = 2.2e-308.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Figure 7: Results of p-values from ϕH(ℓ) on all model pairs, where ε = 2.2e-308.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Figure 8: Results of values of ϕMATCH on all model pairs, where ε = 2.2e-308.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Parameter name θ Rot(θ) = θ′

embedding E ERemb
input layernorm γinput, i γ′

input, i
attention query matrix WQ,i Ri WQ,i diag(γinput, i) Remb diag(1

γ′
input, i

)

attention key matrix WK,i Ri WK,i diag(γinput, i) Remb diag(1
γ′

input, i
)

attention value matrix WV,i WV,i diag(γinput, i) Remb diag(1
γ′

input, i
)

attention output matrix WO,i RT
emb WO,i

post-attention layernorm γpost-attn, i γ′
post-attn, i

MLP gate projection Gi Gi diag(γpost-attn,i) Remb diag(1
γ′

post-attn,i
)

MLP up projection Ui ciUi diag(γpost-attn,i) Remb diag(1
γ′

post-attn,i
)

MLP down projection Di
1
ci

RT
emb Di

final layernorm γfinal γ′
final

linear output O O diag(γfinal) Remb diag(1
γ′

final
)

Table 6: Output-preserving rotation applied to a Llama-architecture model.

T4. Rotating the query and key attention matrices (N different rotations for each Transformer block) by
orthogonal rotation matrices R1, . . . , RN ∈ Rdemb×demb

T5. Replacing all layernorms (input, post-attention, final) with vectors in R1×demb with non-zero elements

T6. Scaling the MLP matrices by a constant non-zero factor

Consider a model θ of Llama architecture (Appendix A). Consider orthogonal matrices Remb, R1, . . . R32 as
described, as well as new layernorms γ′

input,1, . . . , γ
′
input,32, γ

′
post-attn,1, . . . , γ

′
post-attn,32 in R1×demb with non-zero

elements. Finally, consider non-zero constants c1, . . . , c32, which we use to transform the layernorms. We
apply the rotation with these parameters to θ, to get a new “rotated” model, Rot(θ). We generalize the set of
transformations above as applying Rot(θ) to a model θ”.

We transform all the original matrices of θ as in Table 6 (for i = 1, . . . , 32). Note that the transformations T1
and T2 are elements of Πemb and Πmlp and the remaining transformations T3 to T6 are described in Table 6.

Theorem 3. For any input sequence X ∈ {0, 1}n×V , the outputs of models θ and Rot(θ) = θ′ are aligned, i.e.
fLM(X; θ) = fLM(X; θ′).

Proof. First, note that an element-wise product of two one-dimensional vectors is equivalent to multiplying by
the diagonal matrix of the second vector, i.e. for v, γ ∈ R1×m,

v ∗ γ = vdiag(γ).

We use this in our layernorm calculations.

Let the output from the unrotated embedding layer be y = fin(X,E) = EX (for X ∈ {0, 1}n×V). Then
the output from the rotated embedding layer is y′ = fin(X,E′) = (ERemb)(x) = yRemb. Now consider
Transformer block i with input y and the rotated Transformer block with input yRemb. y is passed into the input
layernorm, which returns

z = LNi(y) =
y√

Var(y) + ε
⊙ γinput,i =

y√
Var(y) + ε

diag(γinput,i).

The rotated input layernorm on y′ returns

z′ = LN ′
i(y

′) =
y′√

Var(y′) + ε
⊙ γ′

input,i =
yRemb√

Var(yRemb) + ε
⊙ γ′

input,i

=
y√

Var(y) + ε
Rembdiag(γ′

input,i) = z diag(
1

γinput,i
)Rembdiag(γ′

input,i),

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

which follows from Remb being orthogonal. Then we have the output from the unrotated self-attention is

w = softmax

(
zWT

Q,i(zW
T
K,i)

T√
dkey

)
zWT

V,iW
T
O,i,

and the output from the rotated self-attention with input z′ is

softmax

z′(RiWQ,idiag(γinput, i)Rembdiag(1
γ′

input, i
))T (z′(RiWK,idiag(γinput, i)Rembdiag(1

γ′
input, i

))T)T√
dkey


z′(WV,idiag(γinput, i)Rembdiag(

1

γ′
input, i

))T (RT
embWO,i)

T

= softmax

z′diag(1
γ′

input, i
)RT

embdiag(γinput, i)W
T
Q,iR

T
i (z

′diag(1
γ′

input, i
)RT

embdiag(γinput, i)W
T
K,iR

T
i)

T√
dkey


z′diag(

1

γ′
input, i

)RT
embdiag(γinput, i)W

T
V,iW

T
O,iRemb

= softmax

z′diag(1
γ′

input, i
)RT

embdiag(γinput, i)W
T
Q,iWK,idiag(γinput, i)Rembdiag(1

γ′
input, i

)(z′)T√
dkey

 zWT
V,iW

T
O,iRemb

= softmax

(
zWQ,iW

T
K,iz

T√
dkey

)
zWT

V,iW
T
O,iRemb

= wRemb = w′.

Then y and y′ respectively from before the layernorm are added as residual connections as v = y + w and
v′ = y′ + w′ = vRemb. v is passed into the post-attention layernorm, which returns

u = LNi(v) =
v√

Var(v) + ε
⊙ γpost-attn,i =

v√
Var(v) + ε

diag(γpost-attn,i).

Similar to the input layernorm, the rotated post-attention layernorm on v′ returns

u′ = LN ′
i(v

′) =
v′√

Var(v′) + ε
⊙ γ′

post-attn,i =
vRemb√

Var(vRemb) + ε
⊙ γ′

post-attn,i

=
v√

Var(v) + ε
Rembdiag(γ′

post-attn,i) = u diag(
1

γpost-attn,i
)Rembdiag(γ′

post-attn,i).

Then the output from the unrotated MLP layer on u is

t = [σ(uGT
i)⊙ (uUT

i)]DT
i

and the output from the rotated MLP on u′ is

t′ = [σ(u′(Gidiag(γpost-attn,i)Rembdiag(
1

γ′
post-attn,i

))T ⊙ (u′(ciUidiag(γpost-attn,i)Rembdiag(
1

γ′
post-attn,i

))T)](
1

ci
RT

embDi)
T

= [σ(u diag(
1

γpost-attn,i
)Rembdiag(γ′

post-attn,i)diag(
1

γ′
post-attn,i

)RT
embdiag(γpost-attn,i)G

T
i)⊙

(ciu diag(
1

γpost-attn,i
)Rembdiag(γ′

post-attn,i)diag(
1

γ′
post-attn,i

)RT
embdiag(γpost-attn,i))U

T
i]

1

ci
DT

i Remb

= [ciσ(uG
T
i)⊙ (uUT

i)]
1

ci
DT

i Remb = tRemb.

Then the output from the self-attention is added as a residual connection, and the final output from the unrotated
Transformer block is s = t+ v, and the output from the rotated Transformer block is s′ = t′ + v′ = sRemb.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Suppose a is the output after all Transformer layers in θ and a′ is the output after all Transformer layers in θ′.
Then the outputs after the final layernorms are

b =
v√

Var(a) + ε
diag(γfinal)

b′ = b diag(
1

γfinal
)Rembdiag(γ′

final),

and the logits from the linear output layer are

bOT = b diag(
1

γfinal
)Rembdiag(γ′

final)diag(γfinal)R
T
embdiag(

1

γ′
final

)OT

= b′(O′)T ,

which are the same for both models.

We attempted to undo such a transformation that an adversary may apply by solving the least squares problem:
We solve for a rotation A that minimizes |AX − Y | where X is a weight matrix of the first model and Y is the
corresponding weight matrix of the second model. Although this will provide a potential rotation to undo this
transformation, we find that this solution will also find a matrix A that aligns two independent model pairs as
well. This makes undo-ing the rotation this way unreliable. The same holds for X and Y that are activations
over multiple inputs.

D.1 HUREF INVARIANTS

We also test and break the invariants from Zeng et al. (2024) with our transformation. We have that for rotated
M , M ′, and layer i, their first invariant is

Ma = E′(W ′
Q,i)

T ((W ′
K,i)

T)TE′T

M ′
a = (ERemb)

(
diag(

1

γ′
input,i

)RT
embdiag(γinput,i)W

T
Q,iR

T
i

)(
RiWK,idiag(γinput,i)Rembdiag(

1

γ′
input,i

)

)
(RT

embE)

= ERembdiag(
1

γ′
input,i

)RT
embdiag(γinput,i)W

T
Q,iWK,idiag(γinput,i)Rembdiag(

1

γ′
input,i

)RT
embE,

and in general Ma ̸= M ′
a unless the layernorm weights are equal constants. The other two invariants also do

not hold due to changing the layernorms. (Note that our notation for Transformers is different than theirs.)
Assuming in their invariant Mf that W1 and W2 are the gate and down projection matrices of an MLP (this is
not stated explicitly in the paper but can be inferred from experiments), the remaining invariants do not hold
either.

Empirically, we compute the invariants between Llama2-7b and independently trained models and between
Llama2-7b and rotated finetuned models (including Llama2-7b) in Table 7. We can see there is little distinction
between the independent vs. non-independent model pairs.

θ1 = Llama-2-7b-hf, θ2 = Independent? Ma Mb Mc ϕMATCH ϕU(ℓ) ϕH(ℓ) ϕJSD
vicuna-7b-v1.5 ✗ 1.0 0.9883 0.9922 < ε < ε < ε -10.874

Nous-Hermes-llama-2-7b ✗ 1.0 1.0 1.0 < ε < ε < ε -12.101
llama-7b-hf ✓ 0.0884 0.0250 0.0400 0.049 0.595 0.253 -11.102
AmberChat ✓ 0.1289 -0.0093 0.0198 0.941 0.460 0.279 -10.281

Openllama-v1 ✓ 0.1084 0.0076 0.0057 0.286 0.357 0.703 -8.381
Rotated Llama-2-7b-hf ✗ 0.0767 0.0908 0.1011 < ε 0.517 0.323 −∞

Rotated vicuna-7b-v1.5 ✗ 0.1553 0.0933 0.0977 < ε 0.688 0.857 -10.874
Rotated Nous-Hermes-llama-2-7b ✗ 0.0332 0.0718 0.1060 < ε 0.772 0.240 -12.101

Table 7: Results for the three invariants Ma,Mb,Mc from Zeng et al. (2024) between Llama-2-7b-hf and
independent and non-independent models.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

E ADDITIONAL ROBUST STATISTIC

We describe another statistic robust to the described transformations that does not yield results like p-values.

(Median of max of cosine similarity of hidden activations:) Consider two models θ1 and θ2 defined with
parameters as in 3 and their i-th MLP blocks, θ(i)1,mlp, θ(i)2,mlp. First we undo the random MLP permutation, by
feeding the same input token sequences X through the gate projection matrices of layer i. We have the activation
matrices (outputs from the gate projection operations) from the two models at layer i,

(H
(i)
θ1,gate):,j,k = U

(i)
1 fattn(X

(i−1)
θ1

; θ
(i)
pre,1)j,k

(H
(i)
θ2,gate):,j,k = U

(i)
2 fattn(X

(i−1)
θ2

; θ
(i)
pre,2)j,k

We find a permutation ξmatch using MATCH that best aligns H(i)
θℓ,gate and H

(i)
θℓ,gate:

ξmatch = MATCH(H
(i)
θ1,gate, H

(i)
θ2,gate)

and undo the MLP permutation (of the i-th MLP block) on θ2 by right-multiplying the i-th gate projection and
up projection matrices G(i)

2 and U
(i)
2 by ξmatch and right-multiplying the down projection D

(i)
2 by ξTmatch:

(G
(i)
j)′ = G

(i)
j ξmatch, (U

(i)
j)′ = U

(i)
j ξmatch, (D

(i)
j)′ = ξmatchD

(i)
j

for j = 1, 2. Next, we fix the i-th post-attention layernorms for both models to have weights of 1, by changing
for both M1 and M2:

(G
(i)
j)′′ = (G

(i)
j)′diag(γpost-attn,i), (U

(i)
j)′′ = (U

(i)
j)′diag(γpost-attn,i)

(γpost-attn,j)
′(i) = 1 ∈ R1×demb

Next, consider V ∈ Rn×1×dmlp , n random vectors of size (1, dmlp) with values sampled from N (0, 1). We use
V to sample “rotated” inputs to the MLP gate layers for models θ1 and θ2 as linear combinations of the rows:

X
(i)
1 = V (G

(i)
1)′′, X

(i)
2 = V (G

(i)
2)′′.

For this section, we assume matrix multiplications are batched. Then we have X1, X2 ∈ Rn×1×demb and squeeze
them to be in Rn×demb . Now, X1 and X2 will match the rotations of their respective models, and we compute
the cosine similarity of the activation matrices after feeding X1 and X2 through the gate projection layers of the
i-th MLP blocks of θ1 and θ2, respectively:

A = cossim(X1((G
(i)
1)′′)T , X2((G

(i)
2)′′)T)

Ajk =
(X1((G

(i)
1)′′)T)(j) · (X2((G

(i)
2)′′)T)(k)∥∥∥(X1((G

(i)
1)′′)T)(j)

∥∥∥ ∥∥∥(X2((G
(i)
2)′′)T)(k)

∥∥∥
(This will be invariant to an embedding permutation because the sampled inputs will match the embedding
permutation applied to the MLP matrices.)

We find a threshold between the values from independent model pairs vs. non-independent model pairs for
this statistic. For independent model pairs, we find the statistic is generally above 0.40 (often higher), and for
fine-tuned pairs it is closer to 0.20. The histogram in Figure 9 shows the distribution of the statistic computed
for the first MLP layer for independent (blue) vs. non-independent (green) model pairs.

F MLP RETRAINING EXPERIMENTS

We retrain each of the 32 MLP layers by feeding in random inputs through the original MLP (gate, up, and
down projection matrices.) We train for 10000 gradient steps using MSE loss and an Adam Optimizer with a
learning rate of 0.001 and batch size of 5000. A sample learning curve is in Figure 10.

The MLP retraining results for all 32 MLP layers of vicuna-7b-v1.5, compared with Llama-2-7b-hf
are in Table 8, showing that the statistic is robust to retraining of all layers.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Figure 9: Histogram of median-max for model pairs

Figure 10: Learning curve for MLP retraining.

G INDEPENDENT, IDENTICALLY DISTRIBUTED MODELS

As described in Section 4.2.2, we ensure the validity of our tests on independently initialized, but very similar
models. We randomly initialized a model with the OLMo (7B) architecture (Groeneveld et al., 2024) and

MLP Loss log10(ϕ
(i)
MATCH)

1 0.0048 −479
2 0.012 −485
3 0.0026 −614
4 0.0034 −580
5 0.0030 −523
6 0.0035 −513
7 0.0041 −533
8 0.0042 −464
9 0.0050 −439

10 0.0050 −377
11 0.0060 −365

MLP Loss log10(ϕ
(i)
MATCH)

12 0.0060 −342
13 0.0058 −330
14 0.0066 −323
15 0.0063 −414
16 0.0061 −394
17 0.0063 −445
18 0.0055 −515
19 0.0045 −571
20 0.0045 −512
21 0.0047 −595
22 0.0043 −555

MLP Loss log10(ϕ
(i)
MATCH)

23 0.0043 −593
24 0.0047 −542
25 0.0050 −497
26 0.0051 −534
27 0.0052 −482
28 0.0061 −477
29 0.0065 −433
30 0.0098 −361
31 2.313 −26.4
32 0.0114 −174

Table 8: ϕMATCH on individual blocks between Llama-2-7b-hf and vicuna-7b-v1.5 after retraining
MLP layers.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

train tokens ϕU(ℓ) ϕH(ℓ) ϕℓ2 ϕMATCH ϕJSD (log)
100M 0.641 0.119 0.07 0.809 -11.81

1B 0.789 0.483 0.06 0.443 -11.05
10B 0.707 0.277 0.93 0.343 -11.28
18B 0.819 0.141 0.64 0.027 -11.03

Table 9: Results for ϕU(ℓ) , ϕH(ℓ) , and ϕMATCH evaluated on training checkpoints between two independently-
trained OLMo models.

Parameter name Notation ϕU(ℓ)

embedding E 1.61e-16
attention query matrix W

(1)
Q 6.17e-190

attention key matrix W
(1)
K 1.47e-7

attention value matrix W
(1)
V 1.56e-114

attention query matrix W
(1)
Q 6.17e-190

attention output matrix W
(1)
O 0.010

MLP gate projection G(1) 0.517
MLP up projection U (1) 0.716

MLP down projection D(1) 6.03e-80

Table 10: ϕU(ℓ) on parameters from StripedHyena-Nous-7B and Mistral-7B-v0.1, some with low
p-values.

trained it on the Dolma dataset (Soldaini et al. (2024)) for up to 18B tokens. We trained a second model with
independently chosen initialization and data ordering. By only changing initialization and data ordering (i.e.
the two main sources of randomness), we have two models that are essentially as similar as two independent
models can be.

We keep checkpoints for both seeds after 100M, 1B, 10B, and 18B train tokens. We evaluate the statistics
ϕU(ℓ) , ϕH(ℓ) , and ϕMATCH on the two models at each training checkpoint, reported in Table 9. We highlight that
the p-values are broadly distributed, validating our tests can support independence even on two similarly-trained
but independent models. We find that all test statistics work well, and there is also little difference in the results
at different training checkpoints.

We emphasize that for these experiments, the models are independent as the seeds for parameter initialization
are manually set to be different. This is in contrast to the MLP retraining experiments, where the models were
not independent.

H ROBUST TEST STATISTIC EXPERIMENTAL RESULTS

H.1 STRIPED HYENA EXPERIMENTS

We report ϕU(ℓ) on specific parameters from StripedHyena-Nous-7B and Mistral-7B-v0.1 shown in
Table 10. We no longer only evaluate ϕU(ℓ) on MLP up projection matrices, so that we can investigate similarity
in other parameters as well. These p-values no longer satisfy the independence requirement of Theorem 2, so
we do not aggregate them with FISHER.

H.2 MODEL BLOCK MATCHING

As described in 4.4.2, we can run ϕMATCH on all pairs of Transformer blocks between two models (of different
architecture), as long as they share the GLU structure. In addition to the Llama 3 results, we report results
of matched blocks on the Sheared-LLaMa and Nvidia-Minitron models, which are both pruned from Llama
models.

In particular, we were able to identify the specific Transformer blocks of θ8B = Llama-3.1-8B whose
weights were likely used in initializing θ3B = Llama-3.2-3B and θ1B = Llama-3.2-1B, as
Meta reported that the Llama-3.2-3B and Llama-3.2-1B models were pruned from Llama-3.1-8B

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

(MetaAI (2024)). We use ϕMATCH on all pairs of MLP blocks, where (dθ8B , hθ8B , Nθ8B) =
(4096, 14336, 32),(dθ3B , hθ3B , Nθ3B) = (3072, 8192, 28), and (dθ1B , hθ1B , Nθ1B) = (2048, 8192, 16). We
match blocks when the statistic ϕ

(i,j)
MATCH from block i of model 1 and block j of model 2 is less than 1e-4,

reported in Tables 11 and 12 (with the same for the other matchings in this section).

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
j : ϕ

(i,j)
MATCH(θ8B , θ3B) < 1e− 4 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

i 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
j : ϕ

(i,j)
MATCH(θ8B , θ3B) < 1e− 4 16 17 18 19 20 21 22 23 24 25 26 27 28

Table 11: θ8B = Llama-3.1-8B blocks matched with θ3B = Llama-3.2-3B blocks using ϕMATCH

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
j : ϕ

(i,j)
MATCH(θ8B , θ1B) < 1e− 4 1 2 3 4 5 6 7 8 9

i 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
j : ϕ

(i,j)
MATCH(θ8B , θ1B) < 1e− 4 10 11 15 16

Table 12: θ8B = Llama-3.1-8B blocks matched with θ1B = Llama-3.2-1B blocks using ϕMATCH

Next, we have Sheared-LLaMa 2.7B, with 32 Transformer blocks, hidden dimension 2560 and MLP dimension
6912. All 32 blocks align with the 32 blocks of Llama 2 7B, although both hidden and MLP dimensions have
been reduced through pruning.

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
j : ϕ

(i,j)
MATCH(θ1, θ2) < 1e− 90 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

i 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
j : ϕ

(i,j)
MATCH(θ1, θ2) < 1e− 90 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Table 13: θ1 = Sheared-LLaMa 1.3B blocks matched with θ2 = Llama-2-7B blocks using ϕMATCH

Next, we have Sheared-LLaMa 1.3B, with 24 Transformer blocks, hidden dimension 2048 and MLP dimension
5504.

i 1 2 3 4 5 6 7 8 9 10 11 12
j : ϕ

(i,j)
MATCH(θ1, θ2) < 1e− 5 1 2 3 4 5 6 7 8 10 12 16

i 13 14 15 16 17 18 19 20 21 22 23 24
j : ϕ

(i,j)
MATCH(θ1, θ2) < 1e− 5 17 18 19 20 21 22 25 27 28 29 31 32

Table 14: θ1 = Sheared-LLaMa 1.3B blocks matched with θ2 = Llama-2-7B blocks using ϕMATCH

Finally, we compare Llama 3.1 8B with nvidia/Llama-3.1-Minitron-4B-Depth-Base, a pruned
model by reducing from 32 to 16 Transformer blocks and are able to identify the likely shared blocks.

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
j : ϕ

(i,j)
MATCH(θ1, θ2) < 1e− 90 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 32

Table 15: θ1 = nvidia/Llama-3.1-Minitron-4B-Depth-Base blocks matched with θ2 =
Llama-2-7B blocks using ϕMATCH

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Figure 11: Up projection activations aligned from first MLPs of Llama 3.1 8B and Llama 3.2 3B.

H.2.1 ACTIVATIONS MATCHING

By using ϕMATCH on two MLPs from two models, we can examine the permutation π returned from just the gate
or up projection matching, MATCH(H(ℓ)

θ1,up, H
(ℓ)
θ2,up from Section 3.3. This returns which rows of the activation

matrices are best aligned. For pruned models where dimensions are reduced, this can provide insight into how
activation rows were selected for the smaller MLPs.

The plot in Figure 11 shows the activation rows from the up projection matrix U (1) of the first MLP of Llama
3.2 3B (8192 total) (on the x-axis) matched with the rows from the up projection matrix of the first MLP of
Llama 3.1 8B (out of 14336 total) (on the y-axis). In particular, we can see that the activations are not simply
the first the first 8192 rows pruned from the 14336-dimensional MLP, rather they appear to be distributed across
all 14336 rows.

H.3 DISTILLING MODELS WITHOUT A GLU MLP

Finally, we show it is possible to extend the robust statistic ϕMATCH to models that do not have a GLU MLP as
well. In particular, we distill any other MLP or feedforward network with a GLU MLP. In principle, one could
replace any series of layers mapping inputs to activations with a GLU MLP from Definition 3. We reinitialize
the layers with a GLU MLP, G,U,D. Then with the same setup as the MLP retraining from Section 4.2.1, we
sample inputs and compute the outputs from the original model layers, and minimize MSE loss over the outputs.

We retrain the first MLP of both manupande21/GPT2 PMC and openai-community/gpt2, where the
former is a finetune of the latter (Radford et al. (2019)). These models use a standard 2-layer FFN (Example 1)
rather than a GLU MLP. After 10K training steps, we run ϕ

(1)
MATCH on the first MLP, which yields a p-value of

7.955e-83, showing that ϕMATCH may be extended to other architectures as well via distilling.

29

	Introduction
	Related Work
	Methods
	Problem formulation and testing framework
	[rgb]0.0, 0.5, 0.5Test Statistics
	Robustness to adversarial manipulation
	Testing GLU models
	Beyond GLU models

	Experimental Results
	Non-adversarial setting
	Adversarial setting
	MLP Retraining
	Independent, identically distributed models

	Varying model architectures
	Finegrained forensics

	Conclusion and Future Work
	Transformer Architecture and Notation
	Model Permutation
	Additional Experimental Results on Llama Models
	Non-Adversarial Setting
	Adversarial setting

	Robust Problem Formulation Addendum
	HuREF Invariants

	Additional Robust Statistic
	MLP Retraining Experiments
	Independent, Identically Distributed Models
	Robust Test Statistic Experimental Results
	Striped Hyena Experiments
	Model Block Matching
	Activations Matching

	Distilling Models without a GLU MLP

