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ABSTRACT

We consider the following problem of model provenance: can a third party verify whether
two language models are trained independently or not given the weights of both models? We
propose a family of statistical tests for models of any architecture that yield exact p-values
with respect to the null hypothesis that the models are trained with independent randomness
(e.g., independent random initialization). These p-values are valid regardless of the compo-
sition of either model’s training data, and we obtain them by simulating independent copies
of each model and comparing various measures of similarity in the weights and activations of
the original two models to these independent copies. We evaluate the power of these tests on
pairs of 21 open-weight models (210 total pairs) and find they reliably identify all 69 pairs of
fine-tuned models. Notably, our tests remain effective even after substantial fine-tuning; we
accurately detect dependence between Llama 2 and Llemma, even though the latter was fine-
tuned on an 750B additional tokens (37.5% of the original Llama 2 training budget). Finally,
we identify transformations of model weights that break the effectiveness of our tests without
altering model outputs, and—motivated by the existence of these evasion attacks—we pro-
pose a mechanism for matching hidden activations between the MLP layers of two models
that is robust to these transformations. Though we no longer obtain exact p-values from this
mechanism, empirically we find it reliably distinguishes fine-tuned models and pruned mod-
els of different dimension and is even robust to completely retraining the MLP layers from
scratch.

1 INTRODUCTION

Figure 1: Left: we give examples of model pairs with the Llama architecture and test for independence without
knowledge of their origin. Right: we present the ground truth model lineage and highlight distinct cases.

Consider the ways in which two language models may be related (Figure 1): one might be a fine-tune of the
other, or they might share a common ancestor, or they may be fully independent. Without knowing the details of
either model’s training process, what can a third party infer about this relationship from just the weights of both
models? Answering this question would better enable independent third parties to track provenance of open-
weight models, which is especially important in light of intensifying concerns around intellectual property
(IP) protection (Mensch, 2024) and regulatory scrutiny (Anderljung et al., 2023) as both the capabilities and
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development costs of these models continue to grow (e.g., (Dubey et al., 2024; Team, 2024; GLM et al., 2024;
Yang et al., 2024)).

In this paper, we focus specifically on the question of whether two models are independently trained versus not;
we do not distinguish whether one is a fine-tune of the other or if the two models share a common ancestor.
Casting the training of a language model as a randomized process (e.g., due to the initial model weights and
batch ordering) we formalize this question as a hypothesis testing problem where the null hypothesis is that the
weights of the two models are independent random variables. We seek a solution to this problem that admits
tight control over false positives while also reliably distinguishing dependent models regardless of 1) design
decisions such as the number of fine-tuning tokens or choice of optimizer and 2) the application of various
adversarial evasion attacks, including any transformation of model weights that does not affect model output.

In the non-adversarial setting, we propose a family of exact tests for model independence based on identifying
similarities between model weights and hidden activations. The main idea is that we can compute p-values by
simulating T identically distributed copies of each model and comparing the value of some test statistic (e.g.,
cosine similarity of model weights) on each of these resampled pairs with the original model pair, where higher
values of the test statistic indicate the two models are related. Crucially, we leverage symmetries in training
dynamics to simulate these copies without actually having to rerun the full training process, which would be
computationally prohibitive. In particular, because the output of a feedforward neural network is invariant to
permuting the indices of its hidden units and therefore training dynamics are (typically) permutation equivariant,
we can obtain an exact p-value by simply permuting the hidden units of each model and comparing the rank
of the test statistic on the original pair to the permuted pairs. Under the null hypothesis that the original two
models are independent, the permuted pairs will be exchangeable with the original pair and thus the normalized
rank will be uniformly distributed in {1/(T + 1), ..., 1}, yielding a valid p-value.

We evaluate various test statistics—the most effective of which is cosine similarity over weights and
activations—on 21 models of the Llama 2 architecture Touvron et al. (2023), including 12 fine-tunes of Llama
2 and nine independently trained models, obtaining negligibly small p-values for all 69 non-independent model
pairs. Notably, our tests retain high power over different fine-tuning methods (e.g., different optimizers) and on
models extensively fine-tuned for many tokens from the base model such as Llemma Azerbayev et al. (2024),
which was fine-tuned on an additional 750B tokens from Llama 2 (i.e., 37.5% of the Llama 2 training budget).
These test statistics apply in principle to any model pair for which there exists a pair of layers sharing a com-
mon architecture or even a pair of tensors sharing a common shape; thus, we are able to confirm that the leaked
Miqu 70B model from Mistral derives from Llama 2 70B and also identify which layers of Llama 3.1 8B are
incorporated into Llama 3.2 1B and 3B.

In the adversarial setting, our exact tests are ineffective since an adversary can easily evade them by randomly
permuting the hidden units of their model post-training. Moreover, our exact tests apply only to two models of
the same architecture; thus, slight changes to the architecture of either model also break these tests. Motivated by
these two shortcomings, we design a more robust test statistic that first aligns the hidden units of two models—
which may each have different activation types and hidden dimensions—and and then computes some measure
of similarity between the aligned models. Due to the alignment step, we can no longer obtain exact p-values
with non-trivial power using this test statistic; however, empirically we find we can still reliably distinguish
independent and non-independent model pairs. In particular, we find this test statistic empirically behaves like a
p-value in the sense that it is close to uniformly distributed in [0, 1] for independent model pairs (and no smaller
than 0.024 across all 141 such pairs we test); meanwhile, it is at most 2.2e-308 (the threshold for numerical
underflow for a 64-bit float) for all dependent pairs we test (including those for which we simulate an adversary
by retraining entire layers from scratch).

2 RELATED WORK

The work most closely related to ours is due to Zeng et al. (2024), who consider a similar problem; they develop
various tests to determine whether a model is a fine-tune of another by computing the cosine similarity of the
products of certain weight matrices in both models. Their focus is on robustness to simple adversaries: these
matrix products are invariant to certain kinds of transformations of model weights that preserve model output,
and thus their tests are robust to these same transformations. However, we show by construction in D.1 that there
exist other such transformations that break all of their tests. Additionally, unlike Zeng et al. (2024), in the non-
robust setting we obtain exact p-values from our tests. Jin et al. (2024a) propose crafting specific queries that
are likely to produce different responses among independently trained models; their method does not require
access to weights but is incapable of producing exact p-values.
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A separate line of work on model fingerprinting (Xu et al., 2024; Zhang et al., 2024; Jin et al., 2024b; Yang &
Wu, 2024) aims to plant a secret signal in the weights of a model so that anyone who knows the secret key can
detect the fingerprint from query access to the model (or derivatives thereof such as fine-tunes). For example, Xu
et al. (2024) propose fingerprinting a model by fine-tuning on some secret random string; fingerprint detection
then resolves to prompting a putative fingerprinted model with a prefix of the string. Unlike Xu et al. (2024), we
do not intervene on the training process of the models we test; however, we do require access to model weights.
The fingerprint of Xu et al. (2024) is only detectable with the secret key yet is easily removable by anyone who
knows the key; thus, their work does not enable third-party testing of model provenance as do our methods.

Another separate line of work on text watermarking aims to attribute model-generated text by planting a wa-
termark when sampling text from the model (Christ et al., 2023; Kirchenbauer et al., 2024; Kuditipudi et al.,
2024; Aaronson & Kirchner, 2023). Because it intervenes on sampling, text watermarking is inapplicable to
open-weight models, which are the focus of both model fingerprinting and our setting.

3 METHODS

3.1 PROBLEM FORMULATION AND TESTING FRAMEWORK

Let f : Θ×X → Y denote a model mapping parameters θ ∈ Θ and an input X ∈ X to an output f(X; θ) ∈ Y .
We represent a model training or fine-tuning process as a learning algorithm A : Θ → P(Θ), which takes in
an initial parameter θ0 ∈ Θ (e.g., either a random initialization or, in the case of fine-tuning, a base model)
and induces a distribution over final parameters. In the context of deep learning, some examples of sources of
randomness in a learning algorithm (aside from initialization) include the ordering of minibatches and the use
of dropout. Note that A subsumes the choice of training data; our methods make no assumptions on the training
data, so we encapsulate it along with other design decisions in the learning algorithm.

Given two models θ1 ∼ A1(θ
0
1) and θ2 ∼ A2(θ

0
2) with initial parameters θ01, θ

0
2 ∼ P for some joint distribution

P ∈ P(Θ×Θ), our goal is to test the null hypothesis

H0 : θ1 ⊥ θ2, (1)

where ⊥ denotes statistical independence, or the standard definition of independence of two random variables.
One example of a case where θ1 and θ2 might not be independent is if θ2 is fine-tuned from θ1, since in this
case we would have θ02 = θ1. Indeed, in practice we expect H0 to obtain whenever θ1 and θ2 had independent
random initializations, i.e., when θ01 ⊥ θ02 .

Algorithm 1: Test for computing p-values (PERMTEST)
Input: Model weights θ1, θ2
Parameters: test statistic ϕ; equivariant transformation class Π; sample size T
Output: p-value p̂ ∈ (0, 1]

1 for t ∈ 1, . . . , T do
2 πt ∼ Unif(Π);
3 ϕt ← ϕ(πt(θ1), θ2)

4 p̂← 1
T+1 (1 +

∑T
t=1 1{ϕt ≤ ϕ(θ1, θ2)});

5 return 1− p̂

We describe our testing framework for computing p-values against this null hypothesis in Algorithm 1
(PERMTEST), where we simulate T independent copies of a model by applying a collection of transformations to
the model weights. The validity of these p-values rests on these transformations satisfying certain assumptions
with respect to the learning algorithm and random initialization which produced the original model that we
capture in the following two definitions.
Definition 1. Let Π ⊂ Θ → Θ. A distribution P ∈ P(Θ) is Π-invariant if for θ ∼ P and any π ∈ Π, the
parameters θ and π(θ) are identically distributed.
Definition 2. Let Π ⊂ Θ → Θ. Consider any π ∈ Π and θ0 ∈ Θ, with θ̄ ∼ A(θ0), θ = π(θ̄) and θ′ ∼
A(π(θ0)). A learning algorithm A is Π-equivariant if and only if θ and θ′ are identically distributed.

In principle, if we know the learning algorithm A and initialization distribution P that produced θ1, i.e., θ1 ∼
A(θ01) for θ01 ∼ P , we could obtain an exact p-value with an arbitrary test statistic by repeating the training
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process to obtain T independent copies of θ1 and comparing the test statistic with the original θ1 to these
independent copies; of course, this would be completely impractical in practice due to computational costs. The
main idea underlying PERMTEST is that if all we know is that A is Π-equivariant and P is a Π-invariant, then we
can simulate an identically distributed copy θ′1 of θ1 by letting θ′1 = π(θ1) for any π ∈ Π, which allows us to
efficiently compute an exact p-value without actually repeating the training process of θ1. In effect, Definitions 1
and 2 imply that π commutes with A: sampling θ′1 = π(θ1) for θ1 ∼ A(θ01) is equivalent to θ′1 ∼ A(π(θ01)).
We formalize this intuition in the following theorem and subsequently give a concrete toy example; importantly,
the result of the theorem holds (under the null hypothesis) without any assumptions on θ2, meaning that we can
have confidence in our test even if we do not trust the provider of θ2.
Theorem 1. Let ϕ : Θ × Θ → R be a test statistic and Π ⊂ Θ → Θ be finite. Let A be a Π-equivariant
learning algorithm and let P be a Π-invariant distribution. Let θ1, θ2 ∈ Θ be independent random variables,
with θ1 ∼ A(θ01) for θ01 ∼ P1. Then p̂ = PERMTEST(θ1, θ2) is uniformly distributed on { i

T+1}
T
i=1.

Proof. From our assumptions on A and P and the fact that {πt}Tt=1 are independently drawn, it follows that
the collection{πt(θ1)}Tt=1 comprises T independent copies of θ1. The independence of θ1 and θ2 thus implies
{(πt(θ1), θ2)}Tt=1 comprises T independent copies of (θ1, θ2), and so the claim follows by symmetry.

Standard initialization schemes for feedforward networks are symmetric over the hidden units of the network,
and so one example of a class of transformations with respect to which any such initialization is invariant is
the set of permutations over the hidden units of the network. Moreover, the gradient of the model’s output with
respect to the hidden units is permutation equivariant; thus, any learning algorithm whose update rule is itself a
permutation equivariant function of gradients (e.g., SGD, Adam, etc.) satisfies Definition 2 with respect to these
transformations. The following toy example makes these claims concrete by applying PERMTEST to a standard
two-layer MLP to obtain an exact p-value.

Example 1: Let θ = (W1,W2) ∈ Θ parameterize a two-layer m hidden unit MLP with f(x; θ) =
W2σ (W1X), for some element-wise activation function σ : R → R. Let (x, y) ∈ X × Y for X = Rd

and Y = R be a training example. Let P ∈ P(θ) be the standard isotropic Gaussian distribution over Θ
with variance σ2, and let A denote running standard gradient descent on the loss L(θ) = ℓ(f(X; θ), y) for
some arbitrary ℓ : Y × Y → R. Abusing notation, identify Π with the set of m × m permutation matrices
such that for π ∈ Π we have π(θ) = (πW1,W2π

T ). Observe P is Π-invariant and also A is Π-equivariant
irrespective of ℓ: for any π ∈ Π we have π(∇θfθ(X)) = ∇π(θ)fπ(θ)(X), which implies ∇θL(θ) is Π-
equivariant. Let ϕ : Θ × Θ → R be the negative ℓ2 distance between the weights of the two models, i.e.,
ϕ(θ1, θ2) = −∥θ1 − θ2∥2. Then if θ1 ∼ A(θ01) for some θ01 ∼ P , for any random variable θ2 ∈ Θ the output
p̂ = PERMTEST(θ1, θ2) is a valid p-value. In particular, if θ1 and θ2 are independent then −∥θ1 − θ2∥2 will be
identically distributed as −∥π(θ1)− θ2∥2 for any π ∈ Π. If on the other hand θ2 is a fine-tune of θ1, we might
expect −∥π(θ1)− θ2∥2 ≪ −∥θ1 − θ2∥2. ♢

3.2 TEST STATISTICS

We have shown PERMTEST produces a valid p-value regardless of the test statistic ϕ we use. The sole objective
then in designing a test statistic is to achieve high statistical power: we would like p̂ = PERMTEST(θ1, θ2) to be
small when θ1 and θ2 are not independent. The test statistics we introduce in this section apply to any model pair
sharing the same architecture. In particular, the test statistics all share the following form based on Algorithm 2
(MATCH): for m,n ∈ N and M : Θ→ Rn×m, let

ϕM (θ1, θ2) := ρ(MATCH(M(θ1),M(θ2)), [1, ..., h]). (2)

Equation (2) is applicable to any model architecture Θ for which we can define a suitable matrix valued function
of model parameters. Taking various such functions M yields different test statistics. We focus our experiments
on Transformer models consisting of a series of L Transformer blocks that each contain an MLP module, and we
take M(θ) to be either the first-layer (i.e., up projection) weights or the hidden-layer activations of one of these
MLP modules. In particular, let U (ℓ)(θ) ∈ Rh×d denote the first layer up projection weights of the MLP module
in the ℓ-th block, where h is the hidden dimension and d is the input dimension, and let H(ℓ)(θ) ∈ Rh×(N ·n)

denote the hidden activations that obtain from passing N input sequences of length n, X ∈ RN×n×d to the
same MLP module (the test is valid for any X; we will specify later how we choose X in our experiments). The
two main test statistics we will employ in our experiments are ϕU(ℓ) and ϕH(ℓ) . In both these cases, the idea is
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to match the hidden units between the ℓ-th MLP modules of the two models in a way that maximizes the cosine
similarity of the corresponding row pairs and then return the Spearman correlation of this matching with the
identity permutation. We describe matching in Algorithm 2, wherein cossim denotes cosine similarity function
and LAP denotes the algorithm of Ramshaw & Tarjan (2012) we use to solve the matching problem.

Both U (ℓ) and H(ℓ) are equivariant with respect to permuting the hidden units of the corresponding MLP
module, and so we can use PERMTEST to compute p-values from both ϕU(ℓ) and ϕH(ℓ) by taking Π to be the
set of permutations over the hidden units of the ℓ-th MLP, similar to Example 1. Doing so would require
recomputing these test statistics T times to obtain a p-value less than 1/T . Instead, observe that if θ1 ⊥ θ2 then
letting π = LAP(C) in MATCH is equivalent in distribution to sampling π ∼ Unif(Π). Thus, instead of running
PERMTEST itself, in our experiments we convert the output ρ̂ to a p-value p̂ using scipy.stats for the
Spearman correlation coefficient (where p̂ = 2P(T > ρ̂) for a t-distribution T with h− 2 degrees of freedom).
Doing so allows us to obtain an estimate of the exact p-value at a finer scale (as the null distribution of the
Spearman correlation coefficient is known) without incurring extra computational costs. We will still employ
PERMTEST in our experiments to compute p-values with other baselines from prior work (e.g., ℓ2 distance
between weights), since unlike ϕU(ℓ) and ϕH(ℓ) the null distribution of these statistics will vary depending on
the specific model pair we are testing.

Algorithm 2: Cosine similarity matching (MATCH)
Input: Matrices W1,W2 with h rows
Output: Correlation coefficient ρ̂ ∈ [−1, 1]

1 for i ∈ 1, . . . , h do
2 for j ∈ 1, . . . , h do
3 Ci,j ← cossim((W1)i, (W2)j);
4 π ← LAP(C);
5 return π

Finally, because ϕU(ℓ) and ϕH(ℓ) are both functions of only the ℓ-th block of the model and we can independently
permute the hidden units of the MLP in the ℓ-th block without affecting the inputs or outputs of the other blocks,
the p-values we obtain from ϕU(ℓ) and ϕH(ℓ) are independent across blocks and thus we can aggregate them
using Fisher’s method (Mosteller & Fisher (1948)) to obtain a more powerful test in Algorithm 3 (FISHER).

Algorithm 3: Aggregating p-values (FISHER)
Input: Model weights θ1, θ2
Parameters: test statistics {ϕ(i)}Li=1; transformation classes {Π(i)}Li=1; sample size T
Output: p-value p̂ ∈ (0, 1]

1 for i ∈ 1, . . . , L do
2 p̂(i) ← PERMTEST(θ1, θ2;ϕ

(i),Π(i), T )

3 ξ ←
∑L

i=1 log p̂
(i);

4 p̂← 1− P(χ2
2L < −2ξ);

5 return p̂

Theorem 2. Let i, j ∈ [L] with i ̸= j. Suppose for ℓ ∈ {i, j} that

1. M (ℓ) : Θ→ Rh×N is equivariant with respect to Π(ℓ), i.e., for any θ ∈ Θ and π(ℓ) ∈ Π(ℓ) we have

M(π(ℓ)(θ)) = π(ℓ)M(θ).

2. A is a Π(ℓ)-equivariant learning algorithm and P ∈ P(ΘLM) is a Π(ℓ)-invariant distribution.

Let θ1, θ2 ∈ Θ. If θ1 ⊥ θ2 for θ1 ∼ A(θ01) with θ01 ∼ P , then

MATCH(M (i)(θ1),M
(i)(θ2)) ⊥ MATCH(M (j)(θ1),M

(j)(θ2)).

Proof. Let θ′1 ∼ A(π
(i)
1 ◦ π

(j)
2 (θ01)) for π1, π2

i.i.d.∼ Unif(Π). Then θ′1 is an independent copy of θ1 since taking
the composition π

(i)
1 ◦ π

(j)
2 (θ1) yields an independent copy of θ1 for any π1, π2 ∈ Π. From θ1 ⊥ θ2, it follows

5
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for ℓ ∈ {i, j} that MATCH(M (ℓ)(θ′1),M
(ℓ)(θ2)) is identically distributed to MATCH(M (ℓ)(θ1),M

(ℓ)(θ2)). The
result then follows from the fact MATCH is equivariant with respect to permuting the rows of its arguments: in
particular, for any π ∈ Π we have MATCH(πW1,W2) = πMATCH(W1,W2).

Recall ϕU(ℓ) and ϕH(ℓ) are functions of MATCH(M (ℓ)(θ1),M
(ℓ)(θ2)) respectively for M (ℓ) = U (ℓ) and M (ℓ) =

H(ℓ), both of which satisfy the assumptions of the theorem. Thus, the result of the theorem applies to both these
test statistics, and the independence of the p-values from these test statistics across blocks follows directly from
the independence of the statistics themselves.

3.3 ROBUSTNESS TO ADVERSARIAL MANIPULATION

It is easy to fool the tests we have proposed thus far by applying simple transformations to model parameters
that do not change model output: in particular, an adversary can fool ϕU(ℓ) and ϕH(ℓ) by randomly permuting the
hidden units of the corresponding MLP.1 Motivated by this shortcoming, we design a robust test that aligns the
hidden layer activations of a particular layer between the two models and evaluates the quality of the alignment.
Notably, we can compute the alignment between two layers with different numbers of hidden units; thus, unlike
the tests in Section 3.2, we can apply our robust test to any model pair regardless of whether the two models
share the same architecture. This statistic is also robust to the transformation described in Appendix D.1 that
breaks the invariants proposed by Zeng et al. (2024).

We first describe a test specific to architectures with Gated Linear Units (GLUs) (Dauphin et al., 2016)—a
category which includes the Llama model architecture among many other language models—and then describe
a general extension of this test to any architecture involving hidden activations. We evaluate both the GLU-
specific version and the more general extension in our experiments.

3.3.1 TESTING GLU MODELS

We first consider models of the following architecture (Definition 3).

Definition 3. (GLU MLP) Let G,U ∈ Rh×d and D ∈ Rd×h. Let σ : R → R be an element-wise activation
function. For X ∈ Rd =: Xmlp and θ = (G,U,D) ∈ Θh

mlp, let fmlp(X; θ) := D(σ(GX)⊙ (UX)).

Let θi = (Gi, Ui, Di) ∈ Θh
mlp for i ∈ {1, 2}, and for some X ∈ XN

mlp let Hup(θi) = UiX ∈ Rh×N×n be the
output of the up projection operation and let Hgate(θi) = GiX ∈ Rh×N×n be the output of the gate projection
operation. Then define the test statistic by

ϕMATCH(θ1, θ2) := ρ(MATCH(Hup(θ1), Hup(θ2)), MATCH(Hgate(θ1), Hgate(θ2))).

The main idea of ϕMATCH is that an adversary who permutes the output of the gate projection operation in some
block must also permute the output of the up projection operation in the same way to preserve model output
(due to the direct product operation); thus, high correlation between the best alignment of the two models’ gate
projection activations with that of the up projection activations suggests the two models may not be independent.

3.3.2 BEYOND GLU MODELS

So far we have given a test statistic ϕMATCH that we can compute for two GLU MLPs of the same width (i.e.,
number of hidden units). The MATCH algorithm works for two matrices with different column sizes, so we can
straightforwardly extend ϕMATCH to apply to pairs θ1 ∈ Θh1

mlp, θ2 ∈ Θh2

mlp with h1 ̸= h2. We can also extend
ϕMATCH to apply to models that call a GLU MLP as a sub-module. In particular, for θ ∈ Θh

mlp consider a model
of the form f(x; θ) = g({fmlp(hi(x); θ)}ni=1) for some hi : X → Xmlp for i ∈ [n] and g : Rn×d → Y .2 We
can apply ϕMATCH to such a model by obtaining activation matrices Hup(θ) and Hgate(θ) from passing multiple
inputs x ∈ X to the model f and concatenating over i ∈ [n]. In the case that a model has multiple GLU MLPs,
we also use FISHER to aggregate the statistics.

1If an adversary randomly permutes the hidden units of each MLP layer of their model, then when we run PERMTEST
with either ϕU(ℓ) or ϕH(ℓ) each of the resampled statistics {ϕt}Tt=1 will be identically distributed to the original statistic, in
which case the output will be uniform on [0, 1].

2This family of models includes the Llama 2 architecture, which broadcasts fmlp across the sequence dimension.
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Figure 2: We enumerate the public Llama-7B models and delineate the sets of dependent model pairs by color.

Finally, in principle we can even apply ϕMATCH to models that do not involve GLU MLPs at all. To this
end, consider a model f(x) = g({f(hi(x))}ni=1). Though f itself does not involve a GLU MLP, we can
first learn parameters θ ∈ Θh

mlp to minimize the expected difference between f(X) and f(X; θ) over some
distribution on randomly sampled Gaussian inputs X ∈ RN×n×dembed and then apply ϕMATCH to these learned
parameters. Perhaps surprisingly, we show this test is effective in practice at distinguishing independent versus
non independent models. See Section 4.2 and Appendix H.3 for details.

4 EXPERIMENTAL RESULTS

4.1 NON-ADVERSARIAL SETTING

We now validate the effectiveness of our tests against public open-weight language models. We first consider 21
models trained with the Llama-7B architecture with public documentation on ground truth model independence,
which we highlight in Figure 2. For these models, with architecture ΘLM, have a GLU MLP component
described in Section 3.3.1 and Appendix A. For i ∈ {1, 2}, we define our statistics ϕU(ℓ) and ϕH(ℓ) as follows.
Let U (ℓ)

i ∈ Rh×d be the up projection matrix in the ℓ-th block of θℓ ∈ ΘLM, and

ϕU(ℓ)(θ1, θ2) := ρ(MATCH(U
(ℓ)
1 , U

(ℓ)
2 ), [1, ..., h]),

And, let H(ℓ)(θi) ∈ Rh×N×n be the input to the down projection operation, such that for X ∈ XN we have
H(ℓ)(θi):,j,k = σ(G

(ℓ)
i X

(ℓ−1)
θi

)⊙ (U
(ℓ)
i X

(ℓ−1)
θi

), and let ϕH(ℓ) be

ϕH(ℓ)(θ1, θ2) := ρ(MATCH(H
(ℓ)
θ1

, H
(ℓ)
θ2

), [1, ..., h]).

In addition to ϕU(ℓ) or ϕH(ℓ) , we employ two test statistics from prior work as baselines: Jensen-Shannon
divergence between next token output distributions (ϕJSD, Lin (2006)) and ℓ2 distance between weights (ϕℓ2 ,
from Xu et al. (2024)). Since the Jensen-Shannon divergence is (by definition) invariant to any transformation
of weights that does not affect model output, we cannot compute meaningful p-values using PERMTEST; instead,
in our experiments we report the raw value of the test statistic itself. As for ℓ2 distance, to be consistent with
prior work (Xu et al. (2024)), we define for θ1, θ2 ∈ ΘLM,

ϕℓ2(θ1, θ2) := −
L∑

i=1

ℓ2(θ
(ℓ)
1 , θ

(ℓ)
2 )

where θ
(ℓ)
1 , θ

(ℓ)
2 are the ℓ-th layers of θ1, θ2, respectively (we assume their dimensions align). We take the

negation due to the design of PERMTEST, in which higher values of the test statistic indicate dependence. We
obtain p-values from ϕℓ2 by running PERMTEST with Π as the set of permutations over both the hidden units
of each MLP and the embedding dimension of the model (i.e., the inputs passed to the both the MLP and
self-attention layers in each block); we defer the precise definition of Π in this case to Appendix B.

The 21 models we evaluate include 6 base models (trained from scratch), so we have six disjoint sets of the
models based on Llama-2-7b-hf stemming from a diverse mix of industry labs and non-profits (Azerbayev
et al., 2024; Sudalairaj et al., 2024; Liu et al., 2023; Li et al., 2023). We consider any pair of models in the
same tree as dependent and all other pairs as independent. We include examples of further fine-tunes (e.g.,
llemma 7b) of fine-tunes (e.g., CodeLlama-7b-hf) among the models we test. We will mostly refer to
models using by their Huggingface identifiers, without the organization names for clarity.
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We evaluate four test statistics: ϕU(ℓ) (cosine similarity of weights), ϕH(ℓ) (cosine similarity of hidden acti-
vations), ϕℓ2 (ℓ2 distance), and ϕJSD (Jensen-Shannon Divergence). As we describe in Section 3.2, for ϕU(ℓ)

and ϕH(ℓ) we report aggregated p-values over all blocks using FISHER. We compute p-values for ϕℓ2 using
PERMTEST with T = 99, while for ϕJSD we simply report the raw values of the test statistic itself. We compute
ϕJSD using input sequences sampled from WikiText-103 (Merity et al., 2016; Xu et al., 2024) (consistent with
prior work), and we compute ϕH(ℓ) using inputs sequences of tokens sampled uniformly at random from the
vocabulary. We report results for a subset of these pairs involving base model Llama-2-7b-hf in Table 1
while deferring the rest and the full experimental setup details to Appendix C.

p-values
θ1 = Llama-2-7b-hf, θ2 = Independent? ϕJSD (log) ϕℓ2 ϕU(ℓ) ϕH(ℓ)

llama-7b-hf ✓ -11.10 0.98 0.60 0.25
vicuna-7b-v1.1 ✓ -10.40 0.63 0.16 0.64

Amber ✓ -10.69 0.75 0.36 0.88
open-llama-7b ✓ -8.38 0.26 0.36 0.71
vicuna-7b-v1.5 ✗ -10.87 0.01 ε ε
CodeLlama-7b-hf ✗ -10.62 0.01 ε ε

llemma-7b ✗ -10.24 0.01 ε ε
Orca-2-7b ✗ -10.34 0.01 ε ε

Table 1: Results of various test statistics with θ1 as Llama-2-7b-hf and θ2 ranging over the listed models.
The “independent” column is the ground truth. Here, ε = 2.2e-308 (numerical underflow for a 64-bit float).

Consistent with prior work Xu et al. (2024), we find that ϕJSD does not reliably distinguish indepen-
dent versus dependent model pairs. For example, CodeLlama-7b-hf exhibits a larger divergence with
Llama-2-7b-hf than the independently-trained models llama-7b-hf and Amber.

All other test statistics reliably distinguish independent versus dependent pairs; in particular, the p-values we
obtain using the other test statistics are negligible for all dependent pairs (for ϕℓ2 , because we run PERMTEST
with T = 99 for computational reasons, we cannot obtain a p-value less than 0.01.3). Notably, in contrast to
our findings, prior work (Xu et al., 2024) argued that the ℓ2 distance between model parameters is not a reliable
indicator of independence, in the sense that the ℓ2 distance between dependent pairs is sometimes larger than
that of independent pairs (similar to the case of ϕJSD); the key difference is that Xu et al. (2024) report the raw ℓ2
distance whereas we obtain p-values from the raw distances using PERMTEST. We hypothesize that PERMTEST
effectively standardizes the raw distances.

At the finetune level, consistent with our problem formulation, we treat any two finetunes of the same base
model as dependent (i.e. the last scenario in Figure 1). Table 5 in Appendix C.1 reports p-values between
vicuna-7b-v1.5 (a finetune of Llama-2-7b-hf) and other models, and consequently we find that the
p-values for all tests are low between vicuna-7b-v1.5 and other finetunes of Llama-2-7b-hf, even
though they are not direct fine-tunes of each other.

4.2 ADVERSARIAL SETTING

We evaluate the robust statistic ϕMATCH on the same model pairs, using input sequences sampled from WikiText-
103, except that we randomly permute and rotate the weight matrices of the second model (with the output pre-
served) to simulate an adversary, and report the results in Appendix C.2. We find that the distribution of ϕMATCH
on independent model pairs is close to uniform on [0, 1] (Figure 3), whereas across all non-independent model
pairs the statistic is at most ε. Unlike the non-adversarial setting, where the p-values are valid by construction,
the output of the robust test does not enjoy such theoretical guarantees; however, Figure 3 suggests that even in
the adversarial setting that we can treat ϕMATCH as a p-value.

4.2.1 MLP RETRAINING

Since these robust tests rely on the intermediate MLP activations, an adversary could attempt to retrain only the
MLP layers while fixing the rest of the model to fool these tests. We tried such MLP retraining by re-initializing
the gate, up, and down projection matrices and feeding random inputs x ∈ RN×n×dembed through the original
and new MLP blocks and minimizing MSE loss of the outputs (retraining one MLP at a time). To ensure low

3Though computing ϕ
(i)
ℓ2

over each MLP block and aggregating with FISHER yields p-values less than 1e-30 as well.
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(a) Plot of x ∈ [0, 1) vs. the fraction of ϕ(i)
MATCH

(across all MLP blocks) of independent model
pairs less than x.

(b) Plot of x ∈ [0, 1) vs. the fraction of ϕMATCH

(ϕ(i)
MATCH aggregated with FISHER across all MLP

blocks) of independent model pairs less than x.

Figure 3: We find that ϕMATCH empirically acts as a p-value, as both plots roughly follow the line y = x.

θ1 = Llama-2-70b-hf, θ2 = ϕU(ℓ)

miqu-1-70b-pytorch ε
Llama-3.1-70B 0.571

Palmyra-Fin-70B-32K 0.539

Table 2: Results of ϕU(ℓ) (aggregated with FISHER) with θ1 as meta-llama/Llama-2-70b-hf and θ2
ranging over the listed models.

loss, we double the width of the MLP layers and compute the cosine similarity matrices and matchings the same
way.

We individually retrain each of the 32 MLP layers (keeping other layers fixed) of vicuna-7b-v1.5 (a fine-
tune of Llama-2-7b-hf) for 10k gradient steps (until the loss curve plateus). (Additional hyperparameters
and a learning curve are in Appendix F.) For all 32 runs, we compare the robust statistic of the retrained model
with original Llama-2-7b-hf and find our tests are robust to MLP retraining. For example, retraining the
first MLP layer (with a final train loss of 0.0048), the value of the statistic ϕ

(1)
MATCH on the first MLP was less

than ε = 2.2e-308, indicating that the two models are not independent. We find the same is true for the other
MLP layers as well (i.e. ϕ(ℓ)

MATCH when evaluated on retrained layer ℓ), with full results in Table 8 of Appendix
F. Retraining the MLP layers could lead to a more expressive transformation of the model weights over simple
permutations or rotations, and yet ϕ(ℓ)

MATCH remains small on the retrained non-independent models suggesting
that the statistic is robust to retraining.

4.2.2 INDEPENDENT, IDENTICALLY DISTRIBUTED MODELS

We further evaluate the efficacy of our tests through ablations by training two near-identical models that only
differ on select sources of randomness. We train two OLMo (7B) architecture models (Groeneveld et al. (2024))
on the same Dolmo dataset (Soldaini et al. (2024)), but with independently chosen initialization and data order-
ing, so we have two models that are essentially as similar as two independent models can be. We evaluate the
statistics ϕU(ℓ) , ϕH(ℓ) , and ϕMATCH on the two models at four different training checkpoints, reported in Table
9 of Appendix G. We find that p-values for all statistics and checkpoints are broadly distributed, validating our
tests can support independence even on two similarly-trained but independent models.

4.3 VARYING MODEL ARCHITECTURES

We evaluate our tests on models with different architectures—including between model pairs with different
dimensions. First, we run ϕU(ℓ) on four 70B parameter models with the Llama 2-70B architecture shown in
Table 2, and in particular, we verify that Miqu-70B is not independent from Llama 2-70B.

We also validate our tests on the Mistral architecture—we compare the weights of StripedHyena-Nous-7B
(Poli et al. (2023)) with Mistral-7B-v0.1 and find non-independent parameters via ϕU(ℓ) . (We run ϕU(ℓ)

9
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Figure 4: Matched Transformer blocks between Llama3.1-8B and Llama3.2-3B using ϕMATCH, with arrows
indicating if ϕ(i,j)

MATCH < 1e-4.

on all parameters, not just the gate projection matrix of the MLPs; this allows us to identify similarity between
specific layers.) Values of ϕU(ℓ) among parameters of the embedding layer and first Transformer block are
shown in Table 10 in Appendix H.1. From the low p-values, some parameters, including the embedding layer
and self-attention matrices of the first block were likely shared between the two models.

We also run the test on encoder-only models, e.g. BERT models, and on smaller models, like the
3B-parameter Phi-3 models. In these different architectures, the tests still provide strong signal for
two non-independent models. Both ϕH(ℓ) and ϕMATCH return a statistic of ε on the fine-tuned pair
Phi-3.5-mini-instruct and NuExtract-v1.5. Similarly, ϕH(ℓ) on bert-base-uncased and
finetune tweets-gender-classifier-distilbert yields a p-value less than ε as well.

4.3.1 FINEGRAINED FORENSICS

The robust test can be run on a model pair of different architecture or dimension, as LAP can match a per-
mutation for matrices Hup(θ1) and Hup(θ2) of different dimension (and returns a permutation of the smaller
dimension). We run the robust test on all pairs of MLP blocks, i.e. computing

ϕ
(i,j)
MATCH := ρ(MATCH(H(i)

up (θ2), H
(j)
up (θ1)), MATCH(H

(i)
gate(θ2), H

(j)
gate(θ1))).

for all i ∈ {1, . . . , L1}, j ∈ {1, . . . , L2} of models θ1, θ2 The flexibility of ϕMATCH for varying dimension, and
running ϕMATCH on all pairs of MLP blocks, is significant because it prevents adversaries that may take only
certain layers, or even only certain activations, of a pre-trained model and inject other layers.

In particular, we were able to identify the specific Transformer blocks of Llama-3.1-8B whose weights were
likely used in initializing Llama-3.2-3B and Llama-3.2-1B, as Meta reported that the first two models
were pruned from the third (MetaAI (2024)). We use ϕMATCH on all pairs of MLP blocks, and report the matched
layers (identifying when ϕ

(i,j)
MATCH less than 1e-4) in Figure 4 and in Appendix H.2.

By comparing the aligned permutation returned from ϕMATCH, we can even identify which hidden units were
most likely shared between the blocks when MLP dimension is reduced from 14336 to 8192, for example (dur-
ing the pruning process), shown in Appendix H.2.1. We also run this pairwise layer matching on the ShearedL-
lama (Xia et al. (2024)) models, which were the Llama 2-7B models pruned down to 1.3B and 2.7B parameters
and find matching blocks, as well as on the pruned nvidia/Llama-3.1-Minitron-4B-Depth-Base
model (Muralidharan et al. (2024)) from Llama 3.1, which we report in Appendix H.2.

5 CONCLUSION AND FUTURE WORK

In this paper, we propose and analyze various methods for detecting model independence in open-weight lan-
guage models. Our robust method accurately predicts model relationships without training-time interventions
while allowing some robustness to adversarial attacks with strong results within the Llama model family. Our
methods demonstrate resilience to certain adversarial techniques, and we also investigate these methods across
diverse model architectures. We demonstrate how our techniques provide fine-grain information about how one
model may be derived from another and how they are robust to adversarial attacks. Yet, we do not exhaustively
disprove the existence of a successful adversarial attack, and note that our tests are susceptible to false nega-
tives. There is also an open question as to whether reliably differentiating between fine-tunes of the same base
model to reconstruct a complete “family tree” of model lineage is possible (e.g. infer Llemma is a direct fine-
tune of CodeLlama) (Yax et al., 2024). Furthermore, the fundamental question of whether robustness against
adversarial attacks is solvable with exact guarantees warrants further exploration.
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A TRANSFORMER ARCHITECTURE AND NOTATION

We consider models with the Llama Transformers architecture and define the notation henceforth, although this
can easily be extended to other Transformer architectures.

Following the definition of fmlp in 3, we can define an abstraction of the full Llama language model architecture
consisting of L Transformer blocks sandwiched between an input and output layer. For the sequel, we will abuse
notation in applying fmlp to multi-dimensional tensors by broadcasting along the last axis. We use d, n ∈ N to
respectively denote the model dimension and sequence length, where ΘLM = Θin × Θ×L

block × Θout with Θblock
denoting the parameter space of each Transformer block and Θin,Θout denoting the parameter spaces the input
and output layers. We decompose Θblock = Θattn × Θmlp and use frest : Θattn × Rn×d → Rn×d to denote all
remaining parts of the Transformer besides the MLP. The inputs to frest are the input and output of the MLP,
and the output of frest is fed directly to the MLP of the next layer. In particular, frest takes the input and output
to the MLP of layer i, and first performs the residual connection following the MLP of layer i, then the self-
attention and normalization components of layer i+ 1, and returns the input to the MLP of layer i+ 1. We use
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Parameter name Notation
embedding E ∈ RV×demb

input layernorm γinput,i ∈ R1×demb

attention query matrix WQ,i ∈ Rdemb×demb

attention key matrix WK,i ∈ Rdemb×demb

attention value matrix WV,i ∈ Rdemb×demb

attention output matrix WO,i ∈ Rdemb×demb

post-attention layernorm γpost-attn, i ∈ R1×demb

MLP gate projection Gi ∈ Rdmlp×demb

MLP up projection Ui ∈ Rdmlp×demb

MLP down projection Di ∈ Rdemb×dmlp

final layernorm γfinal ∈ R1×demb

linear output O ∈ Rdemb×V

Table 3: Llama model architecture and dimensions.

fin : Θin×X → Rn×d and fout : Θ
(L)
block×Rn×d → Y to respectively denote the input and output layers, i.e. the

elements before the first MLP and after the last MLP. Putting everything together gives the following definition
of the model; we introduce the notation X

(i)
θ in the definition as a matter of convenience to track intermediate

activations.

Definition 4. (GLU Transformer model) Let θ = (θin, {θ(i)block}Li=1, θout) ∈ ΘLM and X ∈ X , with θ
(i)
block =

(θ
(i)
attn, θ

(i)
mlp). Then fLM(X; θ) = fout(X

(L)
θ ; θout) for X(0)

θ = fin(X; θin) and

X
(i)
θ = frest(X

(i−1)
θ , fmlp(X

(i−1)
θ )). (3)

For a Llama model, table 3 describes the shapes of the model weight matrices for i = 1, . . . , L, for V (vocab
size), demb (the hidden dimension), and dmlp (MLP hidden dimension). Following Definition 4, we have θin =

(E), θ
(i)
block = (θ

(i)
attn, θ

(i)
mlp) where θ

(i)
attn = (γinput,i,WQ,i,WK,i,WV,i,WO,i, γ

(i)
post-attn), θ

(i)
mlp = (Gi, Ui, Di), and

θout = (γfinal, L). We now describe a forward pass of the model.

We define the softmax function on a vector v = (v1, . . . , vn), softmax(v), as

softmax(v)i =
evi∑n

k=1 e
vk

.

On batched input X ∈ RN×n×m where each X(b) = [w1| . . . |wm] ∈ Rn×m with column vectors wi, we define
the softmax as

softmax(X(b)) = [softmax(w1)| . . . |softmax(wm)],

softmax(X) = [softmax(X(1))| . . . |softmax(X(N))].

For a forward pass of the model fLM(X; θ), consider an input sequence of tokens X ∈ {0, 1}N×V as one-hot
vectors where n is sequence length. Then

We feed the input through:

1. (fin) Embedding layer:

X
(0)
θ = fin(X; θin) = XE ∈ RN×demb

2. (fattn, fmlp, fpost) For each Transformer block i = 0, 1, . . . , L, through fattn, fmlp, and fpost:

(a) Input layernorm:

X
(i)
LN1

=
X

(i)
θ√

Var(X(i)
θ ) + ε

⊙ γinput,i

(with variance over the last axis) for some offset ε (typically 1e-6).
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(b) Causal multi-head self-attention: Split X(i)
LN1

on the first axis into nheads X(i)
LN1,j

, . . . , X
(i)
LN1,nheads.

On each head X
(i)
LN1,j

,

X
(i)
SA,j = self-attn(X(i)

LN1,j
) = softmax

(
X

(i)
LN1,j

WT
Q,i(X

(i)
LN1,j

WT
K,i)

T

√
demb

)
X

(i)
LN1,j

WT
V,iW

T
O,i

and concatenate X
(i)
SA,j along the first axis again as X(i)

SA .

(c) Dropout and residual connection: X(i)
DR1

= X
(i)
LN1

+ Dropout(X(i)
SA )

(d) Post-attention layernorm:

X
(i)
LN2

=
X

(i)
DR1√

Var(X(i)
DR1

) + ε
⊙ γpost-attn,i

(with variance over the last axis) for some offset ε. Then we have

fattn(X
(i−1)
θ ; θ

(i)
attn) = X

(i)
LN2

.

(e) Next, we feed through fmlp, the multi-layer perceptron:

fmlp(X
(i)
LN2

; θ
(i)
mlp) = XMLP

i = [σ(XLN2
i GT

i )⊙ (XLN2
i UT

i )]DT
i

for some activation σ (e.g., SiLU).
(f) Finally, we feed through fpost, dropout and the residual connection:

fpost(θ
(i)
mlp) = X

(i+1)
θ = XDR1

i + Dropout(XMLP
i )

3. (fout) Final layernorm on the output X(N+1)
θ from the final Transformer block:

X
(L)
LN =

X
(L)
θ√

Var(X(L)
θ ) + ε

⊙ γfinal

(with variance over the last axis) for some offset ε. Then, linear output embedding and softmax map-
ping to output probabilities:

fout(X
(L)
θ ) = softmax(X(L)

LN OT ),

which defines the entire forward pass fLM(X; θ).

B MODEL PERMUTATION

We describe two sets of equivariant transformations Π on a Transformer model as described in Appendix A.
(Abusing notation), the first set, Πemb, consists of elements πemb where πemb ∈ Rdemb×demb is a permutation
matrix. The second set, Πmlp, consists of elements πmlp where πmlp ∈ Rdmlp×dmlp is a permutation matrix.

1. πemb(θ): Applying an embedding permutation πemb ∈ Rdemb×demb by left or right multiplying all relevant
matrices by ξembed (permuting rows or columns).

2. πmlp(θ): Applying MLP permutations πmlp,i ∈ Rdmlp×dmlp to MLP layers.

These permutations are applied such that the outputs of the original model θ and the permuted model Π(θ)
remain aligned. We describe the details in Table 4.

C ADDITIONAL EXPERIMENTAL RESULTS ON LLAMA MODELS

C.1 NON-ADVERSARIAL SETTING

First, we report statistics on various model pairs involving the base model Llama-2-7b-hf in Table 1
and various pairs involving vicuna-7b-v1.5 in Table 5. Note vicuna-7b-v1.5 is itself a finetune
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Parameter name θ πemb(θ) πmlp(θ)
embedding E Eπemb E

input layernorm γinput,i γinput,iπemb γinput,i
attention query matrix WQ,i WQ,iπemb WQ,i

attention key matrix WK,i WK,iπemb WK,i

attention value matrix WV,i WV,iπemb WV,i

attention output matrix WO,i πT
embWO,i WO,i

post-attention layernorm γpost-attn, i γpost-attn, iπemb γpost-attn, i
MLP gate projection Gi Giπemb πmlp,iGi

MLP up projection Ui Uiπemb πmlp,iUi

MLP down projection Di πT
embDi Diπ

T
mlp,i

final layernorm γfinal γfinalπemb γfinal
linear output O πT

embO O

Table 4: Transformations πemb and πmlp applied to a Llama-architecture model.

p-values
θ1 = vicuna-7b-v1.5, θ2 = Independent? ϕJSD (log) ϕℓ2 ϕU(ℓ) ϕH(ℓ)

llama-7b-hf ✓ -10.39 0.40 0.29 0.59
vicuna-7b-v1.1 ✓ -10.41 0.63 0.12 0.29

Amber ✓ -10.17 0.75 0.18 0.31
Llama-2-7b-hf ✗ -10.87 0.01 ε ε
CodeLlama-7b-hf ✗ -10.10 0.01 ε ε

llemma-7b ✗ -9.87 0.01 ε ε

Table 5: Results of various test statistics with θ1 as lmsys/vicuna-7b-v1.5 and θ2 ranging over the listed
models. Once again, ε = 2.2e-308.

of Llama-2-7b-hf. Consistent with our problem formulation (Section 3.1), we treat any finetune of
Llama-2-7b-hf as dependent with vicuna-7b-v1.5, even in cases where neither model is a finetune
of the other (i.e., the last scenario in

Next, we report p-values from the statistics ϕℓ2 , ϕU(ℓ) , and ϕH(ℓ) on all 210 model pairs (from 21 Llama 2-
architecture models) in Figures 5, 6, and 7, where the model names are colored by base model (ground truth).
For all statistics, the p-values on independent model pairs are uniformly distributed, while they are all significant
at 0.01 (smaller for ϕU(ℓ) and ϕH(ℓ) ) for fine-tuned model pairs.

C.2 ADVERSARIAL SETTING

We report values of ϕMATCH on all model pairs in Figure 8. The statistic is low (< ε = 10−308) for all
non-independent model pairs, and uniformly distributed for independent model pairs, empirically acting as a
p-value.

D ROBUST PROBLEM FORMULATION ADDENDUM

An adversary could apply a particular rotation scheme by multiplying weight matrices by an orthogonal rotation
matrix U that will also preserve outputs. We describe such a transformation which breaks the invariants pro-
posed by Zeng et al. (2024) by manipulating layernorms. While this list may not be exhaustive, the following
six transformations (with the first two described previously) “camouflage” the language model while preserving
outputs:

T1. Permuting the rows of the embedding matrix (and subsequent matrices due to residual connections) by
a permutation ξemb ∈ Rdemb×demb

T2. Permuting the MLP matrices (N different permutations for each Transformer block) by permutations
ξ1, . . . , ξN ∈ Rdmlp×dmlp

T3. Rotating the embedding matrix (and subsequent matrices due to residual connections) by an orthogonal
rotation matrix Remb ∈ Rdemb×demb
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Figure 5: Results of p-values from ϕℓ2 on all model pairs.
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Figure 6: Results of p-values from ϕU(ℓ) on all model pairs, where ε = 2.2e-308.
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Figure 7: Results of p-values from ϕH(ℓ) on all model pairs, where ε = 2.2e-308.
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Figure 8: Results of values of ϕMATCH on all model pairs, where ε = 2.2e-308.
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Parameter name θ Rot(θ) = θ′

embedding E ERemb
input layernorm γinput, i γ′

input, i
attention query matrix WQ,i Ri WQ,i diag(γinput, i) Remb diag( 1

γ′
input, i

)

attention key matrix WK,i Ri WK,i diag(γinput, i) Remb diag( 1
γ′

input, i
)

attention value matrix WV,i WV,i diag(γinput, i) Remb diag( 1
γ′

input, i
)

attention output matrix WO,i RT
emb WO,i

post-attention layernorm γpost-attn, i γ′
post-attn, i

MLP gate projection Gi Gi diag(γpost-attn,i) Remb diag( 1
γ′

post-attn,i
)

MLP up projection Ui ciUi diag(γpost-attn,i) Remb diag( 1
γ′

post-attn,i
)

MLP down projection Di
1
ci

RT
emb Di

final layernorm γfinal γ′
final

linear output O O diag(γfinal) Remb diag( 1
γ′

final
)

Table 6: Output-preserving rotation applied to a Llama-architecture model.

T4. Rotating the query and key attention matrices (N different rotations for each Transformer block) by
orthogonal rotation matrices R1, . . . , RN ∈ Rdemb×demb

T5. Replacing all layernorms (input, post-attention, final) with vectors in R1×demb with non-zero elements

T6. Scaling the MLP matrices by a constant non-zero factor

Consider a model θ of Llama architecture (Appendix A). Consider orthogonal matrices Remb, R1, . . . R32 as
described, as well as new layernorms γ′

input,1, . . . , γ
′
input,32, γ

′
post-attn,1, . . . , γ

′
post-attn,32 in R1×demb with non-zero

elements. Finally, consider non-zero constants c1, . . . , c32, which we use to transform the layernorms. We
apply the rotation with these parameters to θ, to get a new “rotated” model, Rot(θ). We generalize the set of
transformations above as applying Rot(θ) to a model θ”.

We transform all the original matrices of θ as in Table 6 (for i = 1, . . . , 32). Note that the transformations T1
and T2 are elements of Πemb and Πmlp and the remaining transformations T3 to T6 are described in Table 6.

Theorem 3. For any input sequence X ∈ {0, 1}n×V , the outputs of models θ and Rot(θ) = θ′ are aligned, i.e.
fLM(X; θ) = fLM(X; θ′).

Proof. First, note that an element-wise product of two one-dimensional vectors is equivalent to multiplying by
the diagonal matrix of the second vector, i.e. for v, γ ∈ R1×m,

v ∗ γ = vdiag(γ).

We use this in our layernorm calculations.

Let the output from the unrotated embedding layer be y = fin(X,E) = EX (for X ∈ {0, 1}n×V ). Then
the output from the rotated embedding layer is y′ = fin(X,E′) = (ERemb)(x) = yRemb. Now consider
Transformer block i with input y and the rotated Transformer block with input yRemb. y is passed into the input
layernorm, which returns

z = LNi(y) =
y√

Var(y) + ε
⊙ γinput,i =

y√
Var(y) + ε

diag(γinput,i).

The rotated input layernorm on y′ returns

z′ = LN ′
i(y

′) =
y′√

Var(y′) + ε
⊙ γ′

input,i =
yRemb√

Var(yRemb) + ε
⊙ γ′

input,i

=
y√

Var(y) + ε
Rembdiag(γ′

input,i) = z diag(
1

γinput,i
)Rembdiag(γ′

input,i),
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which follows from Remb being orthogonal. Then we have the output from the unrotated self-attention is

w = softmax

(
zWT

Q,i(zW
T
K,i)

T√
dkey

)
zWT

V,iW
T
O,i,

and the output from the rotated self-attention with input z′ is

softmax

z′(RiWQ,idiag(γinput, i)Rembdiag( 1
γ′

input, i
))T (z′(RiWK,idiag(γinput, i)Rembdiag( 1

γ′
input, i

))T )T√
dkey


z′(WV,idiag(γinput, i)Rembdiag(

1

γ′
input, i

))T (RT
embWO,i)

T

= softmax

z′diag( 1
γ′

input, i
)RT

embdiag(γinput, i)W
T
Q,iR

T
i (z

′diag( 1
γ′

input, i
)RT

embdiag(γinput, i)W
T
K,iR

T
i )

T√
dkey


z′diag(

1

γ′
input, i

)RT
embdiag(γinput, i)W

T
V,iW

T
O,iRemb

= softmax

z′diag( 1
γ′

input, i
)RT

embdiag(γinput, i)W
T
Q,iWK,idiag(γinput, i)Rembdiag( 1

γ′
input, i

)(z′)T√
dkey

 zWT
V,iW

T
O,iRemb

= softmax

(
zWQ,iW

T
K,iz

T√
dkey

)
zWT

V,iW
T
O,iRemb

= wRemb = w′.

Then y and y′ respectively from before the layernorm are added as residual connections as v = y + w and
v′ = y′ + w′ = vRemb. v is passed into the post-attention layernorm, which returns

u = LNi(v) =
v√

Var(v) + ε
⊙ γpost-attn,i =

v√
Var(v) + ε

diag(γpost-attn,i).

Similar to the input layernorm, the rotated post-attention layernorm on v′ returns

u′ = LN ′
i(v

′) =
v′√

Var(v′) + ε
⊙ γ′

post-attn,i =
vRemb√

Var(vRemb) + ε
⊙ γ′

post-attn,i

=
v√

Var(v) + ε
Rembdiag(γ′

post-attn,i) = u diag(
1

γpost-attn,i
)Rembdiag(γ′

post-attn,i).

Then the output from the unrotated MLP layer on u is

t = [σ(uGT
i )⊙ (uUT

i )]DT
i

and the output from the rotated MLP on u′ is

t′ = [σ(u′(Gidiag(γpost-attn,i)Rembdiag(
1

γ′
post-attn,i

))T ⊙ (u′(ciUidiag(γpost-attn,i)Rembdiag(
1

γ′
post-attn,i

))T )](
1

ci
RT

embDi)
T

= [σ(u diag(
1

γpost-attn,i
)Rembdiag(γ′

post-attn,i)diag(
1

γ′
post-attn,i

)RT
embdiag(γpost-attn,i)G

T
i )⊙

(ciu diag(
1

γpost-attn,i
)Rembdiag(γ′

post-attn,i)diag(
1

γ′
post-attn,i

)RT
embdiag(γpost-attn,i))U

T
i ]

1

ci
DT

i Remb

= [ciσ(uG
T
i )⊙ (uUT

i )]
1

ci
DT

i Remb = tRemb.

Then the output from the self-attention is added as a residual connection, and the final output from the unrotated
Transformer block is s = t+ v, and the output from the rotated Transformer block is s′ = t′ + v′ = sRemb.
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Suppose a is the output after all Transformer layers in θ and a′ is the output after all Transformer layers in θ′.
Then the outputs after the final layernorms are

b =
v√

Var(a) + ε
diag(γfinal)

b′ = b diag(
1

γfinal
)Rembdiag(γ′

final),

and the logits from the linear output layer are

bOT = b diag(
1

γfinal
)Rembdiag(γ′

final)diag(γfinal)R
T
embdiag(

1

γ′
final

)OT

= b′(O′)T ,

which are the same for both models.

We attempted to undo such a transformation that an adversary may apply by solving the least squares problem:
We solve for a rotation A that minimizes |AX − Y | where X is a weight matrix of the first model and Y is the
corresponding weight matrix of the second model. Although this will provide a potential rotation to undo this
transformation, we find that this solution will also find a matrix A that aligns two independent model pairs as
well. This makes undo-ing the rotation this way unreliable. The same holds for X and Y that are activations
over multiple inputs.

D.1 HUREF INVARIANTS

We also test and break the invariants from Zeng et al. (2024) with our transformation. We have that for rotated
M , M ′, and layer i, their first invariant is

Ma = E′(W ′
Q,i)

T ((W ′
K,i)

T )TE′T

M ′
a = (ERemb)

(
diag(

1

γ′
input,i

)RT
embdiag(γinput,i)W

T
Q,iR

T
i

)(
RiWK,idiag(γinput,i)Rembdiag(

1

γ′
input,i

)

)
(RT

embE)

= ERembdiag(
1

γ′
input,i

)RT
embdiag(γinput,i)W

T
Q,iWK,idiag(γinput,i)Rembdiag(

1

γ′
input,i

)RT
embE,

and in general Ma ̸= M ′
a unless the layernorm weights are equal constants. The other two invariants also do

not hold due to changing the layernorms. (Note that our notation for Transformers is different than theirs.)
Assuming in their invariant Mf that W1 and W2 are the gate and down projection matrices of an MLP (this is
not stated explicitly in the paper but can be inferred from experiments), the remaining invariants do not hold
either.

Empirically, we compute the invariants between Llama2-7b and independently trained models and between
Llama2-7b and rotated finetuned models (including Llama2-7b) in Table 7. We can see there is little distinction
between the independent vs. non-independent model pairs.

θ1 = Llama-2-7b-hf, θ2 = Independent? Ma Mb Mc ϕMATCH ϕU(ℓ) ϕH(ℓ) ϕJSD
vicuna-7b-v1.5 ✗ 1.0 0.9883 0.9922 < ε < ε < ε -10.874

Nous-Hermes-llama-2-7b ✗ 1.0 1.0 1.0 < ε < ε < ε -12.101
llama-7b-hf ✓ 0.0884 0.0250 0.0400 0.049 0.595 0.253 -11.102
AmberChat ✓ 0.1289 -0.0093 0.0198 0.941 0.460 0.279 -10.281

Openllama-v1 ✓ 0.1084 0.0076 0.0057 0.286 0.357 0.703 -8.381
Rotated Llama-2-7b-hf ✗ 0.0767 0.0908 0.1011 < ε 0.517 0.323 −∞

Rotated vicuna-7b-v1.5 ✗ 0.1553 0.0933 0.0977 < ε 0.688 0.857 -10.874
Rotated Nous-Hermes-llama-2-7b ✗ 0.0332 0.0718 0.1060 < ε 0.772 0.240 -12.101

Table 7: Results for the three invariants Ma,Mb,Mc from Zeng et al. (2024) between Llama-2-7b-hf and
independent and non-independent models.
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E ADDITIONAL ROBUST STATISTIC

We describe another statistic robust to the described transformations that does not yield results like p-values.

(Median of max of cosine similarity of hidden activations:) Consider two models θ1 and θ2 defined with
parameters as in 3 and their i-th MLP blocks, θ(i)1,mlp, θ(i)2,mlp. First we undo the random MLP permutation, by
feeding the same input token sequences X through the gate projection matrices of layer i. We have the activation
matrices (outputs from the gate projection operations) from the two models at layer i,

(H
(i)
θ1,gate):,j,k = U

(i)
1 fattn(X

(i−1)
θ1

; θ
(i)
pre,1)j,k

(H
(i)
θ2,gate):,j,k = U

(i)
2 fattn(X

(i−1)
θ2

; θ
(i)
pre,2)j,k

We find a permutation ξmatch using MATCH that best aligns H(i)
θℓ,gate and H

(i)
θℓ,gate:

ξmatch = MATCH(H
(i)
θ1,gate, H

(i)
θ2,gate)

and undo the MLP permutation (of the i-th MLP block) on θ2 by right-multiplying the i-th gate projection and
up projection matrices G(i)

2 and U
(i)
2 by ξmatch and right-multiplying the down projection D

(i)
2 by ξTmatch:

(G
(i)
j )′ = G

(i)
j ξmatch, (U

(i)
j )′ = U

(i)
j ξmatch, (D

(i)
j )′ = ξmatchD

(i)
j

for j = 1, 2. Next, we fix the i-th post-attention layernorms for both models to have weights of 1, by changing
for both M1 and M2:

(G
(i)
j )′′ = (G

(i)
j )′diag(γpost-attn,i), (U

(i)
j )′′ = (U

(i)
j )′diag(γpost-attn,i)

(γpost-attn,j)
′(i) = 1 ∈ R1×demb

Next, consider V ∈ Rn×1×dmlp , n random vectors of size (1, dmlp) with values sampled from N (0, 1). We use
V to sample “rotated” inputs to the MLP gate layers for models θ1 and θ2 as linear combinations of the rows:

X
(i)
1 = V (G

(i)
1 )′′, X

(i)
2 = V (G

(i)
2 )′′.

For this section, we assume matrix multiplications are batched. Then we have X1, X2 ∈ Rn×1×demb and squeeze
them to be in Rn×demb . Now, X1 and X2 will match the rotations of their respective models, and we compute
the cosine similarity of the activation matrices after feeding X1 and X2 through the gate projection layers of the
i-th MLP blocks of θ1 and θ2, respectively:

A = cossim(X1((G
(i)
1 )′′)T , X2((G

(i)
2 )′′)T )

Ajk =
(X1((G

(i)
1 )′′)T )(j) · (X2((G

(i)
2 )′′)T )(k)∥∥∥(X1((G

(i)
1 )′′)T )(j)

∥∥∥ ∥∥∥(X2((G
(i)
2 )′′)T )(k)

∥∥∥
(This will be invariant to an embedding permutation because the sampled inputs will match the embedding
permutation applied to the MLP matrices.)

We find a threshold between the values from independent model pairs vs. non-independent model pairs for
this statistic. For independent model pairs, we find the statistic is generally above 0.40 (often higher), and for
fine-tuned pairs it is closer to 0.20. The histogram in Figure 9 shows the distribution of the statistic computed
for the first MLP layer for independent (blue) vs. non-independent (green) model pairs.

F MLP RETRAINING EXPERIMENTS

We retrain each of the 32 MLP layers by feeding in random inputs through the original MLP (gate, up, and
down projection matrices.) We train for 10000 gradient steps using MSE loss and an Adam Optimizer with a
learning rate of 0.001 and batch size of 5000. A sample learning curve is in Figure 10.

The MLP retraining results for all 32 MLP layers of vicuna-7b-v1.5, compared with Llama-2-7b-hf
are in Table 8, showing that the statistic is robust to retraining of all layers.
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Figure 9: Histogram of median-max for model pairs

Figure 10: Learning curve for MLP retraining.

G INDEPENDENT, IDENTICALLY DISTRIBUTED MODELS

As described in Section 4.2.2, we ensure the validity of our tests on independently initialized, but very similar
models. We randomly initialized a model with the OLMo (7B) architecture (Groeneveld et al., 2024) and

MLP Loss log10(ϕ
(i)
MATCH)

1 0.0048 −479
2 0.012 −485
3 0.0026 −614
4 0.0034 −580
5 0.0030 −523
6 0.0035 −513
7 0.0041 −533
8 0.0042 −464
9 0.0050 −439

10 0.0050 −377
11 0.0060 −365

MLP Loss log10(ϕ
(i)
MATCH)

12 0.0060 −342
13 0.0058 −330
14 0.0066 −323
15 0.0063 −414
16 0.0061 −394
17 0.0063 −445
18 0.0055 −515
19 0.0045 −571
20 0.0045 −512
21 0.0047 −595
22 0.0043 −555

MLP Loss log10(ϕ
(i)
MATCH)

23 0.0043 −593
24 0.0047 −542
25 0.0050 −497
26 0.0051 −534
27 0.0052 −482
28 0.0061 −477
29 0.0065 −433
30 0.0098 −361
31 2.313 −26.4
32 0.0114 −174

Table 8: ϕMATCH on individual blocks between Llama-2-7b-hf and vicuna-7b-v1.5 after retraining
MLP layers.
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# train tokens ϕU(ℓ) ϕH(ℓ) ϕℓ2 ϕMATCH ϕJSD (log)
100M 0.641 0.119 0.07 0.809 -11.81

1B 0.789 0.483 0.06 0.443 -11.05
10B 0.707 0.277 0.93 0.343 -11.28
18B 0.819 0.141 0.64 0.027 -11.03

Table 9: Results for ϕU(ℓ) , ϕH(ℓ) , and ϕMATCH evaluated on training checkpoints between two independently-
trained OLMo models.

Parameter name Notation ϕU(ℓ)

embedding E 1.61e-16
attention query matrix W

(1)
Q 6.17e-190

attention key matrix W
(1)
K 1.47e-7

attention value matrix W
(1)
V 1.56e-114

attention query matrix W
(1)
Q 6.17e-190

attention output matrix W
(1)
O 0.010

MLP gate projection G(1) 0.517
MLP up projection U (1) 0.716

MLP down projection D(1) 6.03e-80

Table 10: ϕU(ℓ) on parameters from StripedHyena-Nous-7B and Mistral-7B-v0.1, some with low
p-values.

trained it on the Dolma dataset (Soldaini et al. (2024)) for up to 18B tokens. We trained a second model with
independently chosen initialization and data ordering. By only changing initialization and data ordering (i.e.
the two main sources of randomness), we have two models that are essentially as similar as two independent
models can be.

We keep checkpoints for both seeds after 100M, 1B, 10B, and 18B train tokens. We evaluate the statistics
ϕU(ℓ) , ϕH(ℓ) , and ϕMATCH on the two models at each training checkpoint, reported in Table 9. We highlight that
the p-values are broadly distributed, validating our tests can support independence even on two similarly-trained
but independent models. We find that all test statistics work well, and there is also little difference in the results
at different training checkpoints.

We emphasize that for these experiments, the models are independent as the seeds for parameter initialization
are manually set to be different. This is in contrast to the MLP retraining experiments, where the models were
not independent.

H ROBUST TEST STATISTIC EXPERIMENTAL RESULTS

H.1 STRIPED HYENA EXPERIMENTS

We report ϕU(ℓ) on specific parameters from StripedHyena-Nous-7B and Mistral-7B-v0.1 shown in
Table 10. We no longer only evaluate ϕU(ℓ) on MLP up projection matrices, so that we can investigate similarity
in other parameters as well. These p-values no longer satisfy the independence requirement of Theorem 2, so
we do not aggregate them with FISHER.

H.2 MODEL BLOCK MATCHING

As described in 4.4.2, we can run ϕMATCH on all pairs of Transformer blocks between two models (of different
architecture), as long as they share the GLU structure. In addition to the Llama 3 results, we report results
of matched blocks on the Sheared-LLaMa and Nvidia-Minitron models, which are both pruned from Llama
models.

In particular, we were able to identify the specific Transformer blocks of θ8B = Llama-3.1-8B whose
weights were likely used in initializing θ3B = Llama-3.2-3B and θ1B = Llama-3.2-1B, as
Meta reported that the Llama-3.2-3B and Llama-3.2-1B models were pruned from Llama-3.1-8B
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(MetaAI (2024)). We use ϕMATCH on all pairs of MLP blocks, where (dθ8B , hθ8B , Nθ8B ) =
(4096, 14336, 32),(dθ3B , hθ3B , Nθ3B ) = (3072, 8192, 28), and (dθ1B , hθ1B , Nθ1B ) = (2048, 8192, 16). We
match blocks when the statistic ϕ

(i,j)
MATCH from block i of model 1 and block j of model 2 is less than 1e-4,

reported in Tables 11 and 12 (with the same for the other matchings in this section).

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
j : ϕ

(i,j)
MATCH(θ8B , θ3B) < 1e− 4 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

i 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
j : ϕ

(i,j)
MATCH(θ8B , θ3B) < 1e− 4 16 17 18 19 20 21 22 23 24 25 26 27 28

Table 11: θ8B = Llama-3.1-8B blocks matched with θ3B = Llama-3.2-3B blocks using ϕMATCH

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
j : ϕ

(i,j)
MATCH(θ8B , θ1B) < 1e− 4 1 2 3 4 5 6 7 8 9

i 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
j : ϕ

(i,j)
MATCH(θ8B , θ1B) < 1e− 4 10 11 15 16

Table 12: θ8B = Llama-3.1-8B blocks matched with θ1B = Llama-3.2-1B blocks using ϕMATCH

Next, we have Sheared-LLaMa 2.7B, with 32 Transformer blocks, hidden dimension 2560 and MLP dimension
6912. All 32 blocks align with the 32 blocks of Llama 2 7B, although both hidden and MLP dimensions have
been reduced through pruning.

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
j : ϕ

(i,j)
MATCH(θ1, θ2) < 1e− 90 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

i 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
j : ϕ

(i,j)
MATCH(θ1, θ2) < 1e− 90 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Table 13: θ1 = Sheared-LLaMa 1.3B blocks matched with θ2 = Llama-2-7B blocks using ϕMATCH

Next, we have Sheared-LLaMa 1.3B, with 24 Transformer blocks, hidden dimension 2048 and MLP dimension
5504.

i 1 2 3 4 5 6 7 8 9 10 11 12
j : ϕ

(i,j)
MATCH(θ1, θ2) < 1e− 5 1 2 3 4 5 6 7 8 10 12 16

i 13 14 15 16 17 18 19 20 21 22 23 24
j : ϕ

(i,j)
MATCH(θ1, θ2) < 1e− 5 17 18 19 20 21 22 25 27 28 29 31 32

Table 14: θ1 = Sheared-LLaMa 1.3B blocks matched with θ2 = Llama-2-7B blocks using ϕMATCH

Finally, we compare Llama 3.1 8B with nvidia/Llama-3.1-Minitron-4B-Depth-Base, a pruned
model by reducing from 32 to 16 Transformer blocks and are able to identify the likely shared blocks.

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
j : ϕ

(i,j)
MATCH(θ1, θ2) < 1e− 90 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 32

Table 15: θ1 = nvidia/Llama-3.1-Minitron-4B-Depth-Base blocks matched with θ2 =
Llama-2-7B blocks using ϕMATCH
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Figure 11: Up projection activations aligned from first MLPs of Llama 3.1 8B and Llama 3.2 3B.

H.2.1 ACTIVATIONS MATCHING

By using ϕMATCH on two MLPs from two models, we can examine the permutation π returned from just the gate
or up projection matching, MATCH(H(ℓ)

θ1,up, H
(ℓ)
θ2,up from Section 3.3. This returns which rows of the activation

matrices are best aligned. For pruned models where dimensions are reduced, this can provide insight into how
activation rows were selected for the smaller MLPs.

The plot in Figure 11 shows the activation rows from the up projection matrix U (1) of the first MLP of Llama
3.2 3B (8192 total) (on the x-axis) matched with the rows from the up projection matrix of the first MLP of
Llama 3.1 8B (out of 14336 total) (on the y-axis). In particular, we can see that the activations are not simply
the first the first 8192 rows pruned from the 14336-dimensional MLP, rather they appear to be distributed across
all 14336 rows.

H.3 DISTILLING MODELS WITHOUT A GLU MLP

Finally, we show it is possible to extend the robust statistic ϕMATCH to models that do not have a GLU MLP as
well. In particular, we distill any other MLP or feedforward network with a GLU MLP. In principle, one could
replace any series of layers mapping inputs to activations with a GLU MLP from Definition 3. We reinitialize
the layers with a GLU MLP, G,U,D. Then with the same setup as the MLP retraining from Section 4.2.1, we
sample inputs and compute the outputs from the original model layers, and minimize MSE loss over the outputs.

We retrain the first MLP of both manupande21/GPT2 PMC and openai-community/gpt2, where the
former is a finetune of the latter (Radford et al. (2019)). These models use a standard 2-layer FFN (Example 1)
rather than a GLU MLP. After 10K training steps, we run ϕ

(1)
MATCH on the first MLP, which yields a p-value of

7.955e-83, showing that ϕMATCH may be extended to other architectures as well via distilling.
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