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Abstract

Learning from label proportions (LLP) is a generalization of supervised learning in
which the training data is available as sets or bags of feature-vectors (instances)
along with the average instance-label of each bag. The goal is to train a good
instance classifier. While most previous works on LLP have focused on training
models on such training data, computational learnability of LLP was only recently
explored by [25, 26] who showed worst case intractability of properly learning
linear threshold functions (LTFs) from label proportions. However, their work did
not rule out efficient algorithms for this problem on natural distributions.
In this work we show that it is indeed possible to efficiently learn LTFs using
LTFs when given access to random bags of some label proportion in which feature-
vectors are, conditioned on their labels, independently sampled from a Gaussian
distribution N(µ,Σ). Our work shows that a certain matrix – formed using co-
variances of the differences of feature-vectors sampled from the bags with and
without replacement – necessarily has its principal component, after a transfor-
mation, in the direction of the normal vector of the LTF. Our algorithm estimates
the means and covariance matrices using subgaussian concentration bounds which
we show can be applied to efficiently sample bags for approximating the normal
direction. Using this in conjunction with novel generalization error bounds in the
bag setting, we show that a low error hypothesis LTF can be identified. For some
special cases of the N(0, I) distribution we provide a simpler mean estimation
based algorithm. We include an experimental evaluation of our learning algorithms
along with a comparison with those of [25, 26] and random LTFs, demonstrating
the effectiveness of our techniques.

1 Introduction

In learning from label proportions (LLP), the training data is aggregated into sets or bags of feature-
vectors (instances). For each bag we are given its constituent feature-vectors along with only the sum
or average of their labels The goal is a to obtain a good instance-level classifier – one that minimizes
the classification error on a test set of instances or bags. In this work we study the LLP learnability
over Gaussian distributions of linear threshold functions (LTFs), also called linear classifiers or
halfspaces, given by f(x) = pos

(
rTx + c

)
where pos(a) := 1 if a > 0 and 0 otherwise.

The probably approximately correct (PAC) model of [29] states that a concept class C of {0, 1}-
valued functions can be learnt by a hypothesis class H if there is an algorithm to efficiently obtain,
using iid samples from a distribution on (x, f(x)), a hypothesis h ∈ H of arbitrarily high accuracy
on that distribution, for any unknown f ∈ C. If H = C we say that C is properly learnable, for
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e.g. LTFs are known to be properly learnable using linear programming ([3]). This notion can be
extended to the LLP setting – which for brevity we call PAC-LLP – as follows: distribution D is
over bags and their label proportions (B, σ(B, f)) where B = {x1, . . . ,xq} is a bag of feature
vectors and σ(B, f) = Avg{f(x) | x ∈ B}. A bag (B, σ(B, f)) is said to be satisfied by h iff
σ(B, h) = σ(B, f), and the accuracy of h is the fraction of bags satisfied by it.

With the above notion of PAC-LLP, [25] studied the learnability of LTFs and rather disturbingly
showed that for any constant ε > 0 it is NP-hard to PAC-LLP learn an LTF using an LTF which
satisfies (1/2 + ε)-fraction of the bags when all bags are of size at most 2, which was subsequently
strengthened to a (4/9 + ε)-factor hardness by [26] who also proved (1/q + ε)-factor hardness when
the bag size is at most q, for any q ≥ 3. This is in contrast to the supervised learning (i.e, with
unit-sized bags) in which an LTF can be efficiently learnt by an LTF using linear programming. On
the algorithmic side, [25] gave a semi-definite programming (SDP) based algorithm to find an LTF
satisfying (2/5)-fraction of bags of size ≤ 2, which was extended by [26] to a fairly involved SDP
yielding (1/12)-approximation for bags of size ≤ 3, while no non-trivial algorithms for bags of size
> 3 are known. These results show that PAC-LLP learning LTFs using LTFs is intractable on hard
bag distributions, and even the non-trivial algorithms for bag sizes ≤ 3 are via complicated convex
programming techniques. A natural question therefore, is whether the problem is tractable on natural
distributions that may arise out of real world scenarios.

We answer the above question in the affirmative when the feature-vectors are distributed according
to some (unknown) Gaussian distribution D = N(µ,Σ) in d-dimensions. Gaussian distributions
are ubiquitous in machine learning and in many applications the input data distribution is modeled
as multivariate Gaussians, and several previous works [8, 30] have studied learnability in Gaussian
distributions. An unkown target LTF is given by f(x) := pos

(
rT∗x + c∗

)
where ‖r∗‖2 = 1. Let Da

be the distribution of x← D conditioned on f(x) = a, for a ∈ {0, 1}. Using this we formalize the
notion of a distribution O on bags of size q and average label k/q: a random bag B sampled from
O consists of k iid samples from D1 and (q − k) iid samples from D0. The case of k ∈ {0, q} is
uninteresting as all instances in such bags are either labeled 0 or 1 and traditional PAC-learning for
LTFs can be employed directly. Unlike [25, 26] our objective is to directly maximize the instance-level
level accuracy on D. With this setup we informally describe our main result.

Our PAC-LLP LTF Learner (Informal): Assuming mild conditions on Σ,µ and c∗, for any
q, k ∈ Z+ s.t. 1 ≤ k ≤ q− 1 and ε, δ > 0, there is an algorithm that samples at most m bags from O
and runs in time O(t+m) and with probability 1− δ produces an LTF h s.t.
PrD[f(x) 6= h(x)] ≤ ε if k 6= q/2, and
PrD[f(x) 6= h(x)] ≤ ε or Pr[f(x) 6= (1− h(x))] ≤ ε if k = q/2,
where t,m are fixed polynomials in d, q, (1/ε), log(1/δ). We also obtain a more efficient algorithm
when k 6= q/2, µ = 0, c∗ = 0 and Σ = I. The ambiguity in the case of k = q/2 is inherent since
bags of label proportion 1/2 consistent with an LTF f(x) are also consistent with (1− f(x)).
Remark 1.1 (Mixtures of (q, k)). The training data could consist of bags of different sizes and
label proportions, however typically the the maximum size of bags is bounded by (say) Q, and in a
large enough sample we would have at least (1/Q2)-fraction of bags of a particular size and label
proportion and we can apply our PAC-LLP LTF Learner above to that subsample.

1.1 Related Work

The LLP problem is motivated by many real applications where labels are available not for each
feature-vector but only as the average labels of bags of feature-vectors. This may occur because of
privacy and legal ([24, 33])) reasons, supervision cost ([5]) or lack of labeling instrumentation ([10]).
Previous works ([9, 15, 20, 24]) on LLP have applied techniques such as such as clustering, and
linear classifiers and MCMC. Specifically for LLP, assuming class conditional independence of bags,
[23] gave an algorithm to learn an exponential generative model, which was further generalized by
[22]. On the other hand, the work of [34] proposed a novel proportional SVM based algorithms
which optimized the SVM loss over instance-labels which were constrained by bag-level loss w.r.t
the given label-proportions. Subsequently, approaches based on deep neural nets for large-scale and
multi-class data ([18, 11, 19, 21]), as well as bag pre-processing techniques ([28, 27]) have been
developed. Recently, [4, 6] have proposed model training methods for either random or curated bags.

The LLP framework (as an analogue of PAC learning) was first formalized in the work of [35]. They
bounded the generalization error of a trained classifier when taking the (bag, label-proportion)-pairs
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as instances sampled iid from some distribution. Their loss function was different – a weaker notion
than the strict bag satisfaction predicate of [25, 26]. A single-bag variant – class ratio estimation
– of LLP was studied by [13] in which learning LTFs has a simple algorithm (see Appendix G).
Nevertheless, the study of computational learning in the LLP framework has been fairly limited, apart
from the works of [25, 26] whose results of learning LTFs in the LLP setting have been described
earlier in this section.

In the fully supervised setting [3] showed that LTFs can be learnt using LTFs via linear programming
without any distributional assumptions. Adversarial label noise makes the problem NP-hard to
approximate beyond the trivial (1/2)-factor even using constant degree polynomial thresholds as
hypothesis ([12, 14, 2]). However, under distributional assumptions a series of results ([16, 17, 1, 7])
have given efficient algorithms to learn adversarially noisy LTFs.

Next, Sec. 1.2 mathematically defines our problem statement. Sec. 1.3 states the main results of
this paper. Sec. 1.4 provides an overview of our techniques. Sec. 2 mentions some preliminary
results which are used in our proofs. Sec. 3 defines and analyses a subroutine which we use in all our
algorithms. Sec. 4 provides a complete proof for one of our main results. Sec 5 gives brief proof
sketches of our other results. Sec. 6 mentions some experiments which support of our results.

1.2 Problem Definition

Definition 1.2 (Bag Oracle). Given distribution D over Rd and a target concept f : R→ {0, 1}, the
bag oracle for size q and label proportion k/q (1 ≤ k ≤ q− 1), denoted by Ex(f,D, q, k), generates
a bag {x(i)}qi=1 such that x(i) is independently sampled from (i) Df,1 for i = {1, . . . , k}, and (ii)
Df,0 for i = {k + 1, . . . , q}, where Df,a is x← D conditioned on f(x) = a, for a ∈ {0, 1}.

1.3 Our results

We first state our result (proved in Appendix A) for the case of standard d-dimensional Gaussian
distribution N(0, I), homogeneous target LTF and unbalanced bags.
Theorem 1.3. For q > 2 and k ∈ {1, . . . , q − 1} s.t. k 6= q/2 and LTF f(x) := pos(rT∗x), there is
an algorithm that samples m iid bags from Ex(f,N(0, I), q, k) and runs in O(m) time to produce a
hypothesis h(x) := pos(r̂Tx) s.t. w.p. at least 1− δ over the sampling, PrD[f(x) 6= h(x)] ≤ ε, for
any ε, δ > 0, when m ≥ O

(
(d/ε2) log(d/δ)

)
.

The above algorithm is based on estimating the mean of the bag vectors, which unfortunately does
not work when k = q/2 or for a general covariance matrix Σ. We instead use a covariance estimation
based approach – albeit with a worse running time – for our next result which is proved in Sec. 4.
λmin and λmax denote the minimum and maximum eigenvalues of the covariance matrix Σ.
Theorem 1.4. For q > 2, k ∈ {1, . . . , q− 1}, f(x) := pos(rT∗x), and positive definite Σ there is an
algorithm that samples m iid bags from Ex(f,N(0,Σ), q, k) and runs in poly(m) time to produce a
hypothesis h(x) := pos(r̂Tx) s.t. w.p. at least 1− δ over the sampling

• if k 6= q/2, PrD[f(x) 6= h(x)] ≤ ε, and
• if k = q/2, min{PrD[f(x) 6= h(x)],PrD[f(x) 6= h̃(x)]} ≤ ε, where h̃(x) := pos(−r̂Tx)

for any ε, δ > 0, when m ≥ O((d/ε4) log(d/δ)(λmax/λmin)6q8).

Our general result stated below (proved in Appendix C), extends our algorithmic methods to the case
of non-centered Gaussian space and non-homogeneous LTFs.
Theorem 1.5. For q > 2, k ∈ {1, . . . , q − 1}, f(x) := pos(rT∗x + c∗), and positive definite Σ
there is an algorithm that samples m iid bags from Ex(f,N(µ,Σ), q, k) and runs in poly(m) time
to produce a hypothesis h(x) := pos(r̂Tx + ĉ) s.t. w.p. at least 1− δ over the sampling

• if k 6= q/2, PrD[f(x) 6= h(x)] ≤ ε, and

• if k = q/2, min
{

PrD[f(x) 6= h(x)],PrD[f(x) 6= h̃(x)]
}
≤ ε, h̃(x) := pos(−r̂Tx− ĉ)

for any ε, δ > 0, when m ≥ O
(

(d/ε4) O(`2)
(Φ(`)(1−Φ(`)))2 log(d/δ)

(
λmax
λmin

)4 (√
λmax+‖µ‖2√

λmin

)4

q8

)
where

Φ(.) is the standard Gaussian cdf and ` = − c∗+rT∗µ

‖Σ1/2r∗‖2
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The value of r̂ output by our algorithms is a close estimate of r∗ (or possibly −r∗ in the case of
balanced bags). Note that our algorithms do not require knowledge of µ or Σ, and only the derived
parameters in Thms. 1.4 and 1.5 are used for the sample complexity bounds. They are based on
the certain properties of the empirical mean-vectors and covariance matrices formed by sampling
vectors or pairs of vectors from random bags of the bag oracle. An empirical mean based approach
has been previously developed by [23] in the LLP setting to estimate the parameters of an exponential
generative model, when bag distributions satisfy the so-called class conditioned independencei.e.,
given its label, the feature-vector distribution is same for all the bags. These techniques were extended
by [22] to linear classifiers with loss functions satisfying certain smoothness conditions. While the
bag oracle in our setup satisfies such conditioned independence, we aim to minimize the instance
classification error on which the techniques of [23, 22] are not applicable.
For the case when q = 1 (ordinary classification), the sample complexity is O(d/ε log(d/δ)) as
one can solve a linear program to obtain an LTF and then use uniform convergence to bound the
generalization error. The sample complexity expressions in Theorems 1.3, 1.4 and 1.5 have the
same dependence on d and δ. However, they have higher powers of 1/ε. They also include other
parameters like the bag size (q), condition number of Σ (λmax/λmin) and the normalized distance of
mean of the Gaussian to the LTF (l). The origins and significance of these discrepancies are discussed
in Sec. 1.4.

1.4 Our Techniques

Theorem 1.3: Case N(0, I), f(x) = pos(rT∗x), k 6= q/2. Assume that k > q/2. A randomly
sampled bag with label proportion k/q has k vectors iid sampled from the positive side of the
separating hyperplane passing through origin, and (q−k) iid sampled from its negative side. It is easy
to see that the expected sum of the vectors vanishes in all directions orthogonal to the normal vector
r∗, and in the direction of r∗ it has a constant magnitude. The case of k < q/2 is analogous with
the direction of the expectation opposite to r∗. Sampling a sufficient number of bags and a random
vector from each of them, and taking their normalized expectation (negating if k < q/2) yields the a
close estimate r̂ of r∗, which in turn implies low classification error. The sample complexity is the
same as that for mean estimation bag-vectors (see Section 3) and thus the power of 1/ε is 2.

This simple approach however does not work when r = q/2, in which case the expectation vanishes
completely, or for general Gaussian distributions which (even if centered) could be skewed in arbitrary
directions. We present our variance based method to handle these cases.

Theorem 1.4: Case N(0,Σ), f(x) = pos(rT∗x). To convey the main idea of our approach, consider
two different ways of sampling two feature-vectors from a random bag of the oracle. The first way is
to sample two feature-vectors Z1,Z2 independently and u.a.r from a random bag. In this case, the
probability that they have different labels (given by f ) is 2k(q − k)/q2. The second way is to sample
a random pair Z̃1, Z̃2 of feature-vectors i.e., without replacement. In this case, the probability of
different labels is 2k(q − k)/(q(q − 1)) which is strictly greater than 2k(q − k)/q2. Since the labels
are given by thresholding in the direction of r∗, this suggests that the variance of (Z̃1 − Z̃2) w.r.t.
that of (Z1 − Z2) is maximized in the direction of r∗. Indeed, let ΣD := Var[Z̃1 − Z̃2] be the pair
covariance matrix and let ΣB := Var [Z1] = (1/2)Var [Z1 − Z2] be the bag covariance matrix. Then
we show that ±r∗ = argmaxrρ(r) where ρ(r) := rTΣDr

rTΣBr
. A simple transformation gives us that

±r∗ = Σ
−1/2
B PrincipalEigenVector(Σ

−1/2
B ΣDΣ

−1/2
B ) (1)

This suggests the following algorithm: sample enough bags to construct the corresponding empirical
estimates Σ̂D and Σ̂B and then compute the empirical proxy of the RHS of (1). We show that using
close enough empirical estimates w.h.p the algorithm computes a vector r̂ s.t. one of ±r̂ is close to
r∗, and via a geometric stability argument this implies that one of ±r̂ yields an LTF that has small
instance-level classification error.

At this point, if k = q/2, there is no way to identify the correct solution from ±r̂, since a balanced
bag, if consistent with an LTF, is also consistent with its complement. On the other hand, if k 6= q/2
we can obtain the correct solution as follows. It is easy to show that since f is homogeneous and the
instance distribution is a centered Gaussian, the measure of {x | f(x) = a} is 1/2 for a = {0, 1}.
Thus, one of h(x) := pos(r̂Tx), h̃(x) = pos(−r̂Tx) will have a high bag satisfaction accuracy.
Thus, a large enough sample of bags can be used to identify one of h, h̃ having a high bag satisfaction
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accuracy. Lastly, we use a novel generalization error bound (see below) to show that the identified
LTF also has a high instance classification accuracy.

The algorithm incurs a sample complexity of O
(
(qλmax/(ελmin))4

)
to estimate ΣD and ΣB accu-

rately so that the distance between r̂ (or −r̂) and r∗ is sufficiently bounded. (see Lemmas 3.1 and
4.1). In fact, the distance is required to be O

(
(ε/q)

√
λmin/λmax

)
to translate the geometric bound

into an ε-misclassification error bound, thereby incurring a further factor of O
(
q4(λmax/λmin)2

)
in the sample complexity (see Lemma 2.3). The higher powers in the dependencies are mainly due
to the second moment estimates which degrade with larger values of (λmax/λmin). Note that the
sample complexity explicitly depends on the bag size q (and not just the label proportion k/q). This is
because the probability of of sampling (without replacement from a bag) a pair of differently labeled
feature-vectors is 2(k/q)(1− k/q)/(1− 1/q). Keeping k/q the same, this probability decreases with
increasing bag size, thereby increasing the sample complexity for larger bags.

Theorem 1.5: Case N(µ,Σ), f(x) = pos(rT∗x + c∗). We show that (1) also holds in this case, and
therefore we use a similar approach of empirically estimating the pair and bag covariance matrices
solving (1) works in principle. However, there are complications, in particular the presence of
µ and c∗ degrades the error bounds in the analysis, thus increasing the sample complexity of the
algorithm. This is because the measures of {x | f(x) = a} for a = {0, 1} could be highly skewed
if ‖µ‖2 and/or |c∗| is large. Moreover, the spectral algorithm only gives a solution ±r̂ for r∗. An
additional step is required to obtain an estimate of c∗. This we accomplish using the following
procedure which, given a sample of s bags and any r outputs a ĉ which has the following property:
if s∗ = maxc{no. of bags satisfied by pos(rTx + c)}, then ĉ will satisfy at least s∗ − 1 bags. This
is done by ordering the values rTx of the vectors x within each bag in decreasing order, and then
constructing set of the kth values of each bag. Out of these s values, the one which taken as c in
pos(rTx + c) satisfies the most bags, is chosen to be ĉ.

Due to the non-homogeneity of the Gaussian distribution and the LTF f , the application of Lemma
2.3 instead incurs an O

(
q4((
√
λmax + ‖µ‖2)/

√
λmin)4

)
factor in the sample complexity, while a

factor of O(`2) is towards the estimation of ΣB and ΣD. Note that ` is the distance from µ to the
hyperplane of f normalized by the stretch induced by Σ, and thus a larger value of ` implies a lower
density near the hyperplane leading to an increased sample complexity. Lastly, a further blowup by
1/(Φ(`)(1− Φ(`)))2 comes from bounding the sample error from geometric bound between r̂ and
r∗, and is required for a sufficiently accurate approximation of c∗.

Generalization Error Bounds. We prove (Thm. 2.2) bounds on the generalization of the error of a
hypothesis LTF h in satisfying sampled bags to its distributional instance-level error. Using this, we
are able to distinguish (for k 6= q/2) between the two possible solutions our principal component
algorithm yields – the one which satisfies more of the sampled bags has w.h.p. low instance-level error.
For proving these bounds, the first step is to use a bag-level generalization error bound shown by [26]
using the techniques of [35]. Next, we show that low distributional bag satisfaction error by h implies
low instance level error. This involves a fairly combinatorial analysis of two independent binomial
random variables formed from the incorrectly classified labels within a random bag. Essentially,
unless h closely aligns with f at the instance level, with significant probability there will be an
imbalance in these two random variables leading to h not satisfying the bag.

Subgaussian concentration bounds. The standard estimation bounds for Gaussians are not directly
applicable in our case, since the random vector sampled from a random bag is biased according to its
label given by f , and is therefore not a Gaussian vector. To obtain sample complexity bounds linear
in log(1/δ) we use subgaussian concentration bounds for mean and covariance estimation ([32, 31]).
For this, we show O(`) bound on the expectation and subgaussian norm of the thresholded Gaussian
given by {g ∼ N(0, 1) | g > `} for some ` > 0. The random vectors of interest to us are (in a
transformed space) distributed as a combination of thresholded Gaussians in one of the coordinates,
and N(0, 1) in the rest. We show that they satisfy the O(`) bound on their subgaussian norm and
admit the corresponding subgaussian Hoeffding (for empirical mean) and empirical covariance
concentration bounds. Based on this, in Sec. 3 we abstract out the procedure used in our learning
algorithms for obtaining the relevant mean and covariance estimates.

Experiments. We include in Sec. 6 an experimental evaluation of our learning algorithms along
with a comparison of with those of [25, 26] and random LTFs, demonstrating the effectiveness of our
techniques.
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2 Preliminaries

We begin with some useful linear algebraic notions. Let λmax(A) and λmin(A) denote the max-
imum and minimum eigenvalue of a real symmetric matrix A. The operator norm ‖A‖2 :=
max‖x‖2=1 ‖Ax‖2 for such matrices is given by λmax(A).

We shall restrict our attention to symmetric positive definite (p.d.) matrices A which satisfy xTAx >
0 for all non-zero vectors x, implying that λmin(A) > 0 and A−1 exists and is symmetric p.d. as
well. Further, for such matrices A, A1/2 is well defined to be the unique symmetric p.d. matrix
B satisfying BB = A. The eigenvalues of A1/2 are the square-roots of those of A. We have the
following lemma which is proved in Appendix B.6.

Lemma 2.1. Let A and B be symmetric p.d. matrices such that ‖A−B‖ ≤ ε1‖A‖2. Let r1, r2 ∈ Rd

be two unit vectors such that ‖r1 − r2‖2 ≤ ε2. Then,
∥∥∥ Ar1
‖Ar1‖2 −

Br2
‖Br2‖2

∥∥∥
2
≤ 4λmax(A)

λmin(A) (ε2 + ε1)

when λmax(A)
λmin(A) (ε2 + ε1) ≤ 1

2 .

Bag Oracle and related statistics. Let O := Ex(f,D, q, k) be any bag oracle with k ∈ {1, . . . , q −
1} for an LTF f(x) := rT∗x + c∗ in d-dimensions, and let M be a collection of m bags sampled iid
from the oracle. Define for any hypothesis LTF h,

BagErroracle(h, f,D, q, k) := Pr
B←O

[Avg{h(x) | x ∈ B} 6= k/q] , and, (2)

BagErrsample(h,M) := |{B ∈M | Avg{h(x) | x ∈ B} 6= k/q}| /m. (3)

We define the following statistical quantities related to O. Let X be a random feature-vector sampled
uniformly from a random bag sampled from O. Let,

µB := E[X] and, ΣB := E
[
(X− µB) (X− µB)

T
]

= Var[X]. (4)

Now, let Z = X1 − X2 where (X1,X2) are a random pair of feature-vectors sampled (without
replacement) from a random bag sampled from O. Clearly E[Z] = 0. Define

ΣD := E
[
ZZT

]
= Var[Z]. (5)

Generalization and stability bounds. We prove in Appendix D.1 the following generalization
bound from bag classification error to instance classification error.

Theorem 2.2. For any ε < 1/4q if BagErrsample(h,M) ≤ ε then,
(i) if k 6= q/2, PrD[f(x) 6= h(x)] ≤ 4ε, and
(ii) if k = q/2, PrD[f(x) 6= h(x)] ≤ 4ε or Pr[f(x) 6= (1− h(x))] ≤ 4ε,
w.p. 1− δ, when m ≥ C0d (log q + log(1/δ)) /ε2, for any δ > 0 and absolute constant C0 > 0.

In some cases we directly obtain geometric bounds on the hypothesis classifier and the following
lemma (proved in Appendix D.2) allows us to straightaway bound the classification error.

Lemma 2.3. Suppose ‖r − r̂‖2 ≤ ε1 for unit vectors r, r̂. Then,
Pr
[
pos

(
rTX + c

)
6= pos

(
r̂TX + c

)]
≤ ε where ε = ε1(c0

√
λmax/λmin + c1‖µ‖2/

√
λmin)

for some absolute constants c0, c1 > 0 and λmax ,λmin are the maximum and minimum eigenvalues of
Σ respectively.

3 Bag distribution statistics estimation

We provide the following estimator for µB ,ΣB and ΣD defined in (4) and (5). We have the following
lemma – which follows from the subgaussian distribution based mean and covariance concentration
bounds shown for thresholded Gaussians (see Appendix E) – whose proof is given in Appendix E.3.

Lemma 3.1. If m ≥ O
(
(d/ε2)O(`2) log(d/δ)

)
where ` is as given in Lemma E.13 then Algorithm

1 returns µ̂B , Σ̂B , Σ̂D such that ‖µ̂B − µB‖2 ≤ ε
√
λmax/2, ‖Σ̂B −ΣB‖2 ≤ ελmax, and ‖Σ̂D −

ΣD‖2 ≤ ελmax, w.p. at least 1− δ, for any ε, δ > 0. Here λmax is the maximum eigenvalue of Σ.

6



Algorithm 1 MeanCovsEstimator.
Input: Ex(f,D = N(µ,Σ), q, k),m, where f = pos

(
rTX + c

)
.

1. Sample m bags from Ex(f,D, q, k). Let {Bi}mi=1 be the sampled bags.
2. V := {xi |xi u.a.r. ← Bi, i ∈ {1, . . . ,m}}.
3. µ̂B =

∑
x∈V x/m|.

4. Σ̂B = Σx∈V (x− µB)(x− µB)T/m.
5. Sample m bags from Ex(f,D, q, k). Let {B̃i}mi=1 be the sampled bags.
6. Ṽ := {xi = xi − x̃i | (xi, x̃i) u.a.r. without replacement from B̃i, i ∈ {1, . . . ,m}}.
7. Σ̂D = Σz∈Ṽ zzT/m.
8. Return: µ̂B , Σ̂B , Σ̂D.

4 Proof of Theorem 1.4

For the setting of Theorem 1.4, we provide Algorithm 2. It uses as a subroutine a polynomial
time procedure PrincipalEigenVector for the principal eigen-vector of a symmetric matrix, and first
computes two LTFs given by a normal vector and its negation, returning the one that has lower error
on a sampled collection of bags.

Algorithm 2 PAC Learner for no-offset LTFs over N(0,Σ)

Input: O = Ex(f,D = N(0,Σ), q, k),m, s, where f(x) = pos
(
rT∗x

)
, ‖r∗‖2 = 1.

1. Compute Σ̂B , Σ̂D using MeanCovsEstimator with m samples.
2. r = Σ̂

−1/2
B PrincipalEigenVector(Σ̂

−1/2
B Σ̂DΣ̂

−1/2
B ) if Σ̂

−1/2
B exists, else exit.

3. Let r̂ = r/‖r‖2. 4. If k = q/2 return: h = pos
(
r̂TX

)
, else

a. Let h̃ = pos
(
−r̂TX

)
.

b. Sample a collection M of s bags from O.
c. Return h∗ ∈ {h, h̃} which has lower BagErrsample(h

∗,M).

Lemma 4.1. For any ε, δ ∈ (0, 1), if m ≥ O((d/ε4) log(d/δ)(λmax/λmin)4q4), then r̂ computed in
Step 3 of Alg. 2 satisfies min{‖r̂− r∗‖2, ‖r̂ + r∗‖2} ≤ ε, w.p. 1− δ/2.

The above, whose proof is deferred to Sec. 4.1, is used in conjunction with the following lemma.

Lemma 4.2. Let k 6= q/2, ε, δ ∈ (0, 1) and suppose r̂ computed in Step 3 of Alg. 2 satisfies
min{‖r̂ − r∗‖2, ‖r̂ + r∗‖2} ≤ ε,. Then, with s ≥ O

(
d(log q + log(1/δ))/ε2

)
, h∗ in Step. 3.c

satisfies PrD [h∗(x) 6= f(x)] ≤ 16c0qε
√

λmax
λmin

w.p. 1− δ/2, where constant c0 > 0 is from Lem. 2.3.

With the above we complete the proof of Theorem 1.4 as follows.

Proof. (of Theorem 1.4) Let the parameters δ, ε be as given in the statement of the theorem.

For k = q/2, we use O(ε
√
λmin/λmax) for the error bound in Lemma 4.1 thereby taking m =

O((d/ε4) log(d/δ)(λmax/λmin)6q4) in Alg. 2, so that Lemma 4.1 along with Lemma 2.3 yields the
desired misclassification error bound of ε for one of h, h̃.

For k 6= q/2, we use O(ε
√
λmin/λmax/q) for the error bound in Lemma 4.1. Tak-

ing m = O((d/ε4) log(d/δ)(λmax/λmin)6q8) in Alg. 2 we obtain the following bound:
min{‖r̂ − r∗‖2, ‖r̂ + r∗‖2} ≤ ε

√
λmin/λmax/(16c0q) with probability 1 − δ/2. Using s ≥

O
(
d(log q + log(1/δ))q2 λmax

ε2λmin

)
, Lemma 4.2 yields the desired misclassification error bound of ε

on h∗ w.p. 1− δ.

Proof. (of Lemma 4.2) Applying Lemma 2.3 we obtain that at least one of h, h̃ has an instance
misclassification error of at most O(ε

√
λmax/λmin). WLOG assume that h satisfies this error bound

i.e., PrD[f(x) 6= h(x)] ≤ c0ε
√
λmax/λmin =: ε′. Since the separating hyperplane of the LTF f
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passes through the origin, and D = N(0,Σ) is centered, PrD[f(x) = 1] = PrD[f(x) = 0] = 1/2.
Thus,

Pr
D

[h(x) 6= f(x) | f(x) = 1],Pr
D

[[h(x) 6= f(x) | f(x) = 0] ≤ 2ε′.

Therefore, the probability that a random bag from the oracle contains a feature vector on which f
and h disagree is at most 2qε′. Applying the Chernoff bound (see Appendix B.1) we obtain that
with probability at least 1 − δ/6, BagErrsample(h,M) ≤ 4qε′. Therefore, in Step 3.c. h∗ satisfies
BagErrsample(h

∗,M) ≤ 4qε′

On the other hand, applying Theorem 2.2, except with probability δ/3, PrD[f(x) 6= h∗(x)] ≤
16qε′ = 16c0qε

√
λmax/λmin. Therefore, except with probability δ/2, the bound in Lemma 4.2

holds.

4.1 Proof of Lemma 4.1

We define and bound a few useful quantities depending on k, q, λmin and λmax using 1 ≤ k ≤ q − 1.

Definition 4.3. Define, (i) κ1 :=
(

2k
q − 1

)2
2
π so that 0 ≤ κ1 ≤ 2/π, (ii) κ2 := 1

q−1
k
q

(
1− k

q

)
16
π

so that 16
πq2 ≤ κ2 ≤ 4

π(q−1) , (iii) κ3 := κ2

1−κ1
so that 16

πq2 ≤ κ3 ≤ 4
(π−2)(q−1) , and (iv) θ :=

2λmax
λmin

(
1

2−max(0,2κ1−κ2) + 1
1−κ1

)
so that 3λmax

λmin
≤ θ ≤ 3λmax

(1−2/π)λmin
.

For the analysis we begin by showing in the following lemma that r̂ in the algorithms is indeed ±r∗
if the covariance estimates were the actual covariances.
Lemma 4.4. The ratio ρ(r) := rTΣDr/rTΣBr is maximized when r = ±r∗. Moreover,

ρ(r) = 2 +
γ(r)2κ2

1− γ(r)2κ1
where γ(r) :=

rTΣr∗√
rTΣr

√
rT∗Σr∗

and

rTΣBr = rTΣr(1− γ(r)2κ1), rTΣDr = rTΣr(2− γ(r)2(2κ1 − κ2))

Proof. Let Γ := Σ1/2, then X ∼ N(0,Σ)⇔ X = ΓZ where Z ∼ N(0, I). Further, pos
(
rTX

)
=

pos
(
uTZ

)
where u = Γr/‖Γr‖2. Using this, we can let XB = ΓZB as a random feature-vector

sampled uniformly from a random bag sampled from O. Also, let XD = ΓZD be the difference of
two random feature vectors sampled uniformly without replacement from a random bag sampled
from O. Observe that the ratio ρ(r) = Var[rTXD]/Var[rTXB ] = Var[uTZD]/Var[uTZB ].

Let u∗ := Γr∗/‖Γr∗‖2, and g∗ := uT
∗Z which is N(0, 1). For a ∈ {0, 1}, let Za be Z conditioned

on pos
(
uT
∗Z
)

= a. Let g∗a := uT
∗Za, a ∈ {0, 1}, be the half normal distributions satisfying

E[(g∗a)
2
] = 1 and E[g∗a] = (−1)1−a

√
2/π. With this setup, letting g∗B := uT

∗ZB and g∗D := uT
∗ZD

we obtain (using Lemma B.2 in Appendix B.2)

Var[g∗B ] = 1− κ1, Var[g∗D] = 2(1− κ1) + κ2

Now let ũ be a unit vector orthogonal to u∗. Let g̃ = ũTZ be N(0, 1). Also, let g̃a = ũTZa for
a ∈ {0, 1}. Since Za are given by conditioning Z only along u∗, g̃a ∼ N(0, 1) for a ∈ {0, 1}. In
particular, the component along ũ of ZB (call it g̃B) is N(0, 1) and that of ZD (call it g̃D) is the
difference of two iid N(0, 1) variables. Thus, Var[g̃B ] = 1 and Var[g̃D] = 2. Moreover, due to
orthogonality all these gaussian variables corresponding to ũ are independent of those corresponding
to u∗ defined earlier. Now let u = αu∗ + βũ, where β =

√
1− α2 be any unit vector. From the

above we have,

Var
[
uTZD

]
Var [uTZB ]

=
Var [αg∗D + βg̃D]

Var [αg∗B + βg̃B ]
=
α2 Var [g∗D] + β2 Var [g̃D]

α2 Var [g∗B ] + β2 Var [g̃B ]
=

2α2(1− κ1) + α2κ2 + 2β2

α2(1− κ1) + β2

= 2 +
α2κ2

1− α2κ1
(6)

where the last equality uses β =
√

1− α2. Letting u = Γr/‖Γr‖2 we obtain that α =
〈Γr,Γr∗〉
‖Γr‖2‖Γr∗‖2 = γ(r) completing the proof.
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Lemma 4.5. argmax
‖r‖2=1

ρ(r) = Σ
−1/2
B PrincipalEigenVector(Σ

−1/2
B ΣDΣ

−1/2
B )

Proof. This follows directly from its generalization in Appendix B.5.

We now complete the proof of Lemma 4.1 (with δ instead of δ/2 for convenience). By Lemma 3.1,
taking m ≥ O

(
(d/ε2

1) log(d/δ)
)

ensures that ‖EB‖2 ≤ ε1λmax and ‖ED‖2 ≤ ε1λmax w.p. at least

1−δ where EB = Σ̂B−ΣB and ED = Σ̂D−ΣD. We start by defining ˆρ(r) := rTΣ̂Dr

rTΣ̂Br
which is the

equivalent of ρ using the estimated matrices. Observe that it can be written as ρ̂(r) = rTΣBr+rTEBr
rTΣDr+rTEDr

.
Using these we can obtain the following bound on ρ̂: for any r ∈ Rd, |ρ̂(r)− ρ(r)| ≤ θε1|ρ(r)| w.p.
at least 1− δ (*) as long as ε1 ≤ (1−κ1)

2
λmin
λmax

, which we shall ensure (see Appendix B.4).

For convenience we denote the normalized projection of any vector r as r̃ := Σ1/2r
‖Σ1/2r‖2

. Now let

r̃ ∈ Rd be a unit vector such that min{‖r̃− r̃∗‖2, ‖r̃+ r̃∗‖2} ≥ ε2. Hence, using the definitions from
Lemma 4.4, |γ(r)| ≤ 1− ε2

2/2 while γ(r∗) = 1 which implies ρ(r∗)− ρ(r) ≥ κ3ε
2
2/2. Note that

ρ(r) ≤ ρ(r∗) = 2 +κ3. Choosing ε1 <
κ3

4θ(2+κ3)ε
2
2, we obtain that ρ(r∗)(1− θε1) > ρ(r)(1 + θε1).

Using this along with the bound (*) we obtain that w.p. at least 1 − δ, ρ̂(r∗) > ρ̂(r) when ε2 >
0. Since our algorithm returns r̂ as the maximizer of ρ̂, w.p. at least 1 − δ we get min{‖r̃ −
r̃∗‖2, ‖r̃ + r̃∗‖2} ≤ ε2. Using Lemma 2.1, min{‖r̂− r∗‖2, ‖r̂ + r∗‖2} ≤ 4

√
λmax
λmin

ε2. Substituting

ε2 = ε
4

√
λmin
λmax

, ‖r − r∗‖2 ≤ ε w.p. at least 1 − δ. The conditions on ε1 are satisfied by taking it

to be ≤ O
(

κ3ε
2λmin

θ(2+κ3)λmax

)
, and thus we can take m ≥ O

(
(d/ε4) log(d/δ)

(
λmax
λmin

)2

θ2
(

2+κ3

κ3

)2
)

=

O

(
(d/ε4) log(d/δ)

(
λmax
λmin

)4

q4

)
, using Defn. 4.3. This completes the proof.

5 Proof Sketches for Theorems 1.3 and 1.5

Theorem 1.3: Case N(0, I), f(x) = pos(rT∗x), k 6= q/2. The algorithm (Algorithm 3) and the
proof is in Appendix A. We argue that a vector sampled uniformly at random from a bag is distributed
as ωX1 + (1 − ω)X0 where Xa ∼ N(0, I) conditioned on f(Xa) = a and ω is an independent
{0, 1}−Bernoulli r.v. s.t. p(ω = 1) = k/q. This along with the fact that uncorrelated Gaussians
are independent, allows us to show that the expectation is 0 in any direction orthogonal to r∗ and to
compute the expectation in the direction of r∗. We then use Lemma 3.1 to get the sample complexity
expression.

Theorem 1.5: Case N(µ,Σ), f(x) = pos(rT∗x + c∗). The algorithm (Algorithm 4) and the
detailed proof is given in Appendix C. We start by generalizing the high probability geometric
error bound in Lemma 4.1 to this case (Lemma C.1 proven in Appendix C.1) and appropriately
generalize κ1, κ2, κ3 and θ. The rest of the proof is similar to Section 4.1. An extra factor of O(`2)
is introduced to the sample complexity from Lemma 3.1. Next, assuming the geometric bound, we
give a high probability bound on the generalization error in Lemma C.2. In this analysis, we bound
the BagErrsample(h,M) where h(x) = pos(r̂Tx + c∗) with r̂ being the geometric estimate of r∗ and
M is a sample of bags. This introducing the dependencies on (

√
λmax + ‖µ‖2)/

√
λmin as well as on

Φ(`). Our subroutine to find ĉ ensures that h∗(x) = pos(r̂Tx + ĉ) satisfies BagErrsample(h
∗,M) ≥

BagErrsample(h,M). We then use Theorem 2.2 to bound the generalization error of h∗. Lemmas C.1
C.2 together imply Theorem 1.5.

6 Experimental Results

General Gaussian. We empirically evaluate our algorithmic technique on centered and general
Gaussian distributions for learning homogeneous LTFs. For homogeneous LTFs the general case
algorithm (Alg. 4 in Appendix C) boils down to Alg. 2 in Sec. 4. The experimental LLP datasets
are created using samples from both balanced as well as unbalanced bag oracles. In particular, for
dimension d ∈ {10, 50}, and each pair (q, k) ∈ {(2, 1), (3, 1), (10, 5), (10, 8), (50, 25), (50, 35)}
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and m = we create 25 datasets as follows: for each dataset (i) sample a random unit vector r∗ and
let f(x) := pos

(
r∗Tx

)
, (ii) sample µ and Σ randomly (see Appendix F for details), (iii) sample

m = 2000 training bags from Ex(f,N(µ,Σ), q, k), (iv) sample 1000 test instances (x, f(x)),
x← N(µ,Σ). We fix µ = 0 for the centered Gaussian case.

For comparison we include the random LTF algorithm in which we sample 100 random LTFs
and return the one that satisfies the most bags. In addition, we evaluate the Algorithm of [25] on
(q, k) = (2, 1), and the Algorithm of [26] on (q, k) = (3, 1). We measure the accuracy of each
method on the test set of each dataset. The algorithms of [25, 26] are considerably slower and we
use 200 training bags for them. The results for centered Gaussian are in Table 1a and for the general
Gaussian are in Table 1b. We observe that our algorithms perform significantly better in terms of
accuracy than the comparative methods in all the bag distribution settings. Further, our algorithms
have significantly lower error bounds (see Appendix F).

Notice in Tables 1a and 1b that the test accuracy for Algorithm 2 decreases with an increase in q and
d. This is consistent with the sample complexity expressions in Thm. 1.4 and Thm. 1.5. Also, notice
that the test accuracy for Algorithm 2 for general Gaussian (Table 1b) is usually lesser than the same
for centered Gaussian (Table 1a). This supports the theoretical result that the sample complexity
increases with the increase in l.

Appendix F has additional details and further experiments for the N(0, I) with homogeneous LTFs,
N(µ,Σ) with non-homogeneous LTFs as well as on noisy label distributions.

Table 1: Algorithm A2 vs. rand. LTF (R) vs SDP algorithms (S)

d q k A2 R S
10 2 1 98.12 78.26 88.40
10 3 1 98.27 77.16 67.31
10 10 5 97.9 78.66 -
10 10 8 97.87 77.64 -
10 50 25 97.87 76.67 -
10 50 35 97.9 77.17 -
50 2 1 95.64 61.25 57.83
50 3 1 95.21 61.15 58.69
50 10 5 95.59 55.06 -
50 10 8 94.34 63.17 -
50 50 25 95.16 55.76 -
50 50 35 94.74 61.02 -

(a) N(0,Σ) feature-vectors.

d q k A2 R S
10 2 1 98.18 78.32 90.10
10 3 1 97.92 75.14 70.80
10 10 5 97.86 70.41 -
10 10 8 97.4 69.86 -
10 50 25 97.57 70.48 -
10 50 35 97.6 62.86 -
50 2 1 94.99 58.68 61.12
50 3 1 95.6 59.8 62.39
50 10 5 95.27 57.43 -
50 10 8 94.44 61.82 -
50 50 25 94.97 53.98 -
50 50 35 94.33 56.97 -

(b) N(µ,Σ) feature-vectors.

7 Conclusion and Future work

Our work shows that LTFs can be efficiently properly learnt in the LLP setting from random bags
with given label proportion whose feature-vectors are sampled independently from a Gaussian space,
conditioned on their underlying labels. For the simple case of N(0, I) distribution and bags with
unbalanced labels we provide a mean estimation based algorithm. For the general scenarios we
develop a more sophisticated approach using the principal component of a matrix formed from
certain covariance matrices. To resolve the ambiguity between the obtained solutions we employ
novel generalization error bounds from bag satisfaction to instance classification. We also show that
subgaussian concentration bounds are applicable on the thresholded Gaussians, yielding efficient
sample complexity bounds. Our experimental results validate the performance guarantees of our
algorithmic techniques.

In future work, classes of distributions other than Gaussian could be similarly investigated. Classifiers
other than LTFs are also interesting to study in the LLP setting.
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A Proof of Theorem 1.3

For the setting of Theorem 1.3 we provide Algorithm 3.

Algorithm 3 PAC Learner for homogenous LTFs from unbalanced bags over N(0, I)

Input: Ex(f,D, q, k),m, where f(x) = pos
(
rT∗x

)
, ‖r∗‖2 = 1, k 6= q/2.

1. Compute µ̂B using MeanCovsEstimator with m samples.
2. If k > q/2 Return: µ̂B/‖µ̂B‖2 else Return: −µ̂B/‖µ̂B‖2

Define Xa ∼ N(0, I) conditioned on f(Xa) = a for a ∈ {0, 1}, and let XB denotes the random
feature-vector u.a.r sampled from a randomly sampled bag. By the definition of the bag oracle,
XB := ωX1 + (1 − ω)X0, where ω is an independent {0, 1}-Bernoulli r.v. s.t. p(ω = 1) = k/q.
Let g∗ := rT∗XB . g∗ ∼ N(0, 1) and let g∗a = rT∗Xa, a ∈ {0, 1}. Since r∗ is a unit vector, g∗a is a
half-gaussian and by direct integration we obtain E [g∗a] = (−1)1−a

√
2/π for a ∈ {0, 1}. Thus,

E[g∗] =
k

q
E[g∗1 ] +

(
1− k

q

)
E[g∗0 ] = η(q, k) :=

(
2k

q
− 1

)√
2

π
, 0 ≤ η(q, k) ≤ 1

On the other hand, let g⊥ = rTX s.t. rTr∗ = 0 and ‖r‖2 = 1, and let g⊥a = rTXa, a ∈ {0, 1}.
Since Xa (a ∈ {0, 1}) is given by conditioning a standard Gaussian vector only on the component
in the direction of r∗, its component along any direction orthogonal to r∗ is a one-dimensional
standard Gaussian. Therefore, g⊥a are iid N(0, 1) (a ∈ {0, 1}), and so is g⊥, implying E

[
g⊥
]

= 0.
Thus, the value of rTE [XB ] is (i) η(q, k) if r = r∗, and (ii) 0 if r ⊥ r∗. In other words, µB =
E [XB ] = η(q, k)r∗, and ‖µB‖2 = |η(q, k)|. Hence, if η(q, k) > 0 then r∗ = µB/‖µB‖2 else
r∗ = −µB/‖µB‖2
With m = O

(
η(q, k)2(d/ε2) log(d/δ)

)
= O

(
(d/ε2) log(d/δ)

)
, the following lemma along with

Lemma 2.3 completes the proof of Theorem 1.3.

Lemma A.1. Algorithm 3 returns a normal vector r̂ such that ‖r∗ − r̂‖2 ≤ ε w.p. at least 1 − δ
when m ≥ O

(
(d/ε2) log(d/δ)

)
for ε, δ > 0.

Proof. First, we can assume ε ≤ 2 since the distance between two unit vectors is at most 2 and
therefore the lemma is trivially true for ε > 2. By Lemma 3.1, taking m ≥= O

(
(d/ε2) log(d/δ)

)
=

O
(
η(q, k)2(d/ε2) log(d/δ)

)
ensures ‖µ̂B − µB‖2 ≤ ε|η(q, k)|/4 = ε‖µB‖2/4 w.p. 1− δ. There-

fore, by triangle inequality, |‖µ̂B‖2 − ‖µB‖2| ≤ ε‖µB‖2/4 ⇒ ‖µ̂B‖2/‖µB‖2 ∈ [1 − ε
4 , 1 + ε

4 ].
Now, r∗ = sign(η(q, k))µB/‖µB‖2 and the algorithm returns r̂ := sign(η(q, k))µ̂B/‖µ̂B‖2.

‖r̂− r∗‖2 =

∥∥∥∥ µ̂B
‖µ̂B‖2

− µB
‖µB‖2

∥∥∥∥
2

≤
∥∥µ̂B‖µB‖2 − µB‖µB‖2 + µB‖µB‖2 − µB‖µ̂B‖2

∥∥
2

‖µ̂B‖2‖µB‖2

≤
‖µ̂B − µB‖2‖µB‖2 + ‖µB‖2

∣∣‖µB‖2 − ‖µ̂B‖2∣∣
‖µ̂B‖2‖µB‖2

≤
ε
2‖µB‖2

‖µB‖2 − ε
4‖µB‖2

≤ 2ε

4− ε
≤ ε for ε ≤ 2.

B Useful Tools

B.1 Chernoff Bound

We state the well known Chernoff Bound.

Theorem B.1. Let X1, . . . , Xn be iid {0, 1}-valued random variables. Let S be their sum and
µ = E[S]. Then, for any δ > 0,

Pr [S ≥ (1 + δ)µ] ≤ exp(−δ2µ/(2 + δ)).
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B.2 Relationship between ΣB and ΣD

Lemma B.2. If ΣB ,ΣD are as defined in the preliminaries and Xa := X|f(X) = a, then

ΣD = 2ΣB +
2

q − 1

(
k

q

)(
1− k

q

)
(E[X1]− E[X0])(E[X1]− E[X0])T

Proof. Let XB be a random-feature vector sampled uniformly from a random bag sampled from O.
Hence, with probability k/q it is sampled from X1 and with a probability of 1− k/q it is sampled
from X0. Hence,

µB = E[XB ] =
k

q
E[X1] +

(
1− k

q

)
E[X0]

ΣB = E[XBXT
B ]− E[XB ]E[XB ]T where E[XXT ] =

k

q
E[X1X

T
1 ] +

(
1− k

q

)
E[X0X

T
0 ]

Let XD = X−X′ where (X,X′) are a random pair of feature-vectors sampled (without replacement)
from a random bag sampled from O. Hence, with probability

(
k
2

)
/
(
q
2

)
it is the difference of two

vectors sampled independently from X1, with probability
(
q−k

2

)
/
(
q
2

)
it is the difference of two vectors

sampled independently from X0, with probability k(q − k)/2
(
q
2

)
, it is the difference of one vector

sampled from X1 and another sampled independently from X0 and with probability k(q−k)/2
(
q
2

)
, it

is the difference of one vector sampled from X0 and another sampled independently from X1. Then,

ΣD = E[XDXT
D] =

1(
q
2

)[(k
2

)
E[(X1 −X′1)(X1 −X′1)T ] +

(
q − k

2

)
E[(X0 −X′0)(X0 −X′0)T ]

+
k(q − k)

2
E[(X1 −X′0)(X1 −X′0)T ] +

k(q − k)

2
E[(X0 −X′1)(X0 −X′1)T ]

]
Due to independence, we obtain for a ∈ {0, 1}

E[(Xa −X′a)(Xa −X′a)T ] = 2E[XaX
T
a ]− 2E[Xa]E[Xa]T

E[(Xa −X′1−a)(Xa −X′1−a)T ] = E[X1X
T
1 ] + E[X0X

T
0 ]− E[X1]E[X0]T − E[X0]E[X1]T

Hence,

ΣD =
1(
q
2

)[(2

(
k

2

)
+ k(q − k)

)
E[X1X

T
1 ] +

(
2

(
q − k

2

)
+ k(q − k)

)
E[X0X

T
0 ]

−
(
k(k − 1)E[X1]E[X1]T + (q − k)(q − k − 1)E[X0]E[X0]T

)
+
(
k(q − k)

(
E[X1]E[X0]T + E[X0]E[X1]T

)) ]
Simplifying ΣD − 2ΣB , we get

ΣD − 2ΣB =
2

q − 1

(
k

q

)(
1− k

q

)[
(E[X1]− E[X0])(E[X1]− E[X0])T

]

B.3 Bound on γ(r) when rTΣBr∗ = 0

Lemma B.3. If rTΣBr∗ = 0 then γ(r) ≤ 1 −
(
λmin
λmax

)2
1−max(0,κ1(q,k,`))
1−min(0,κ1(q,k,`)) . Further if ` = 0, then

|γ(r)| ≤ 1−
(
λmin
λmax

)2

(1− κ1(q, k)).

Proof. We begin by observing the for any r ∈ Rd, ‖Σ1/2r‖2 = 1, Var[rTZB ] = 1 − κ1(q, k, `).
Hence, λmin(ΣB) ≥ (1−max(0, κ1(q, k, `)))λmin and λmax(ΣB) ≤ (1−min(0, κ1(q, k, `)))λmax.
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Thus, by Cautchy-Schwartz inequality,

‖Σ1/2
B Σ−1/2‖2 ≤

√
1−min(0, κ1(q, k, `))

√
λmax

λmin

‖Σ1/2Σ
−1/2
B ‖2 ≤

1√
1−max(0, κ1(q, k, `))

√
λmax

λmin

Define r̃ = Σ1/2r
‖Σ1/2r‖2

for any r ∈ Rd. Observe that γ(r) = r̃T r̃∗. Now since rTΣBr∗ = 0, by

substitution (Σ
1/2
B Σ−1/2r̃)T (Σ

1/2
B Σ−1/2r̃∗) = 0. Thus, using Cautchy-Schwartz again

‖Σ1/2
B Σ−1/2r̃−Σ

1/2
B Σ−1/2r̃∗‖2 =

√
‖Σ1/2

B Σ−1/2r̃‖22 + ‖Σ1/2
B Σ−1/2r̃∗‖22

≥
√
‖r̃‖22 + ‖r̃∗‖22
‖Σ1/2Σ

−1/2
B ‖2

≥
√

2(1−max(0, κ1(q, k, `)))

√
λmin

λmax

Again using Cautchy-Schwartz,

‖r̃− r̃∗‖2 ≥
‖Σ1/2

B Σ−1/2r̃−Σ
1/2
B Σ−1/2r̃∗‖2

‖Σ1/2
B Σ−1/2‖2

≥ λmin

λmax

√
2(1−max(0, κ1(q, k, `)))

1−min(0, κ1(q, k, `))

Thus,

γ(r) = r̃T r̃∗ ≤ 1−
(
λmin

λmax

)2
1−max(0, κ1(q, k, `))

1−min(0, κ1(q, k, `))

If ` = 0, then κ1(q, k, 0) = κ1(q, k) ≥ 0. Hence,

γ(r) ≤ 1−
(
λmin

λmax

)2

(1− κ1(q, k))

B.4 Bounding error in ρ̂

Lemma B.4. If ‖EB‖2 ≤ ελmax and ‖ED‖2 ≤ ελmax whereEB = Σ̂B−Σ̂B andED = Σ̂D−Σ̂D

then,
|̂(ρ(r))− ρ(r)| ≤ |ρ(r)|θε

for θ as defined in Defn. 4.3 or Defn. C.3.

Proof. Let a(r) := rTΣDr, b(r) := rTΣBr, e(r) := rTEDr, f(r) := rTEBr. Using the bounds
on the spectral norms of EB and ED, we get that |e(r)| ≤ ελmax and |f(r)| ≤ ελmax. Also, using
variances in Lemma C.4, a(r) ≥ λmin(2−max(0, 2κ1−κ2)) ≥ 0 and b(r) ≥ λmin(1−max(0, κ1)) ≥
0. Hence, we can conclude that∣∣∣∣ e(r)

a(r)

∣∣∣∣ ≤ ελmax

λmin

(
1

2−max(0, 2κ1 − κ2)

)
and

∣∣∣∣f(r)

b(r)

∣∣∣∣ ≤ ελmax

λmin

(
1

1−max(0, κ1)

)
Observe that ρ̂(r)/ρ(r) = 1+e(r)/a(r)

1+b(r)/f(r) . Hence,

1− ελmax
λmin

(
1

2−max(0,2κ1−κ2)

)
1 + ελmax

λmin

(
1

1−max(0,κ1)

) ≤ ρ̂(r)

ρ(r)
≤

1 + ελmax
λmin

(
1

2−max(0,2κ1−κ2)

)
1− ελmax

λmin

(
1

1−max(0,κ1)

)
Now, whenever ε ≤ 1−max(0,κ1)

2
λmin
λmax

, 1− ελmax
λmin

(
1

1−max(0,κ1)

)
≥ 1/2 and,

1 + ελmax
λmin

(
1

1−max(0,κ1)

)
≤ 3/2. Thus, we obtain that∣∣∣∣ ρ̂(r)− ρ(r)

ρ(r)

∣∣∣∣ ≤ θε
where θ is as defined in Defn. C.3. If we substitute ` = 0, we get that κ1 ≥ 0 and we get θ as defined
in Defn. 4.3.
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B.5 Ratio maximisation as a PCA problem

Theorem B.5. If A and B are positive definite matrices, then for all r ∈ Rd

1. rTAr
rTBr

= r̃TB−1/2AB−1/2r̃, r̃ = B1/2r
‖B1/2r‖2

2. argmax
‖r‖2=1

rTAr
rTBr

= B−1/2r̃∗

‖B−1/2r̃∗‖2
where r̃∗ = argmax

‖r̃‖2=1

r̃TB−1/2AB−1/2r̃

Proof. The first statement comes from the substitution. Now, rTAr
rTBr

is homogeneoous in r. Let
a ' b⇒ a = kb, k ∈ R

argmax
‖r‖2=1

rTAr
rTBr

' argmax
r

rTAr

rTBr

' argmax
B−1/2r̃

r̃TB−1/2AB−1/2r̃

‖r̃‖22

' B−1/2argmax
r̃

r̃TB−1/2AB−1/2r̃

‖r̃‖22
' B−1/2argmax

‖r̃‖2=1

r̃TB−1/2AB−1/2r̃

Hence, argmax
‖r‖2=1

rTAr
rTBr

= B−1/2r̃∗

‖B−1/2r̃∗‖2
where r̃∗ = argmax

‖r̃‖2=1

r̃TB−1/2AB−1/2r̃

B.6 Proof of Lemma 2.1

Proof. Let r′1 = Ar1 and r′2 = Br2. As r1 and r2 are unit vectors, 1
‖A−1‖2 ≤ ‖r

′
1‖2 ≤ ‖A‖2.

‖r′1 − r′2‖2 = ‖Ar1 −Ar2 + Ar2 −Br2‖2
≤ ‖A‖2‖r1 − r2‖2 + ‖A−B‖2‖r2‖2
≤ ‖A‖2(ε2 + ε1)∥∥∥∥ r′1

‖r′1‖2
− r′2
‖r′2‖2

∥∥∥∥
2

=
‖‖r′2‖2r′1 − ‖r′1‖2r′2‖2

‖r′1‖2‖r′2‖2
=
‖‖r′2‖2r′1 − ‖r′1‖2r′1 + ‖r′1‖2r′1 − ‖r′1‖2r′2‖2

‖r′1‖2‖r′2‖2

≤ |‖r
′
2‖2 − ‖r′1‖2|‖r′1‖2 + ‖r′1‖2‖r′1 − r′2‖2

‖r′1‖2‖r′2‖2
≤ 2(‖A‖2(ε2 + ε1))

1
‖A−1‖2 − ‖A‖2(ε2 + ε1)

≤
2λmax(A)
λmin(A) (ε2 + ε1))

1− λmax(A)
λmin(A) (ε2 + ε1)

≤ 4
λmax(A)

λmin(A)
(ε2 + ε1) if

λmax(A)

λmin(A)
(ε2 + ε1) ≤ 1

2

C Proof of Theorem 1.5

For the setting of Theorem 1.5, we provide Algorithm 4. It uses as a subroutine a polynomial time
procedure PrincipalEigenVector for the principal eigen-vector of a symmetric matrix.
For notation, let Γ := Σ1/2, then by Lemma E.13, we can write our linear threshold function
pos(rT∗X + c∗) = pos(uT

∗Z − `) where Z ∼ N(0, I) where ` := − c∗+rT∗µ
‖Γr∗‖2 , u∗ := Γr∗/‖Γr∗‖2.

For any r ∈ Rd, define u := Γr/‖Γr‖2. Let φ and Φ be the standard gaussian pdf and cdf
respectively.

The following geometric bound is obtained by the algorithm.

Lemma C.1. For any ε, δ ∈ (0, 1), ifm ≥ O
(

(d/ε4)O(`2) log(d/δ)
(
λmax
λmin

)4

q4

)
, then r̂ computed

in Step 3 of Alg. 4 satisfies min{‖r̂− r∗‖2, ‖r̂ + r∗‖2} ≤ ε, w.p. 1− δ/2.
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Algorithm 4 PAC Learner for LTFs in over N(µ,Σ)

Input: O = Ex(f,D = N(µ,Σ), q, k),m, s, where f(x) = pos
(
rT∗x + c∗

)
, ‖r∗‖2 = 1.

1. Compute Σ̂B , Σ̂D using MeanCovsEstimator with m samples.
2. r = Σ̂

−1/2
B PrincipalEigenVector(Σ̂

−1/2
B Σ̂DΣ̂

−1/2
B ) if Σ̂

−1/2
B exists, else exit.

3. Let r̂ = r/‖r‖2.
4. If k = q/2

a. Sample a collection M of s bags from O.
b. For each bag Bj in M

i. Project each vector x
(i)
j in Bj on r̂.

ii. Order these projections in a descending order r̂Tx
(1)
j > ... > r̂Tx

(q)
j .

ii. Define hj = pos(r̂Tx + r̂Tx
(k)
j )

c. Return h∗ ∈ {h1, ..., hs} which has lower BagErrsample(h
∗,M).

5. else
a. Sample a collection M of s bags from O.
b. For each bag Bj in M

i. Project each vector x
(i)
j in Bj on r̂.

ii. Order these projections in a descending order r̂Tx
(1)
j > ... > r̂Tx

(q)
j .

ii. Define hj = pos(r̂Tx + r̂Tx
(k)
j )

c. For each bag Bj in M

i. Project each vector x
(i)
j in Bj on −r̂.

ii. Order these projections in a descending order −r̂Tx
(1)
j > ... > −r̂Tx

(q)
j .

ii. Define h̃j = pos(−r̂Tx− r̂Tx
(k)
j )

d. Return h∗ ∈ {h1, ..., hs, h̃1, ..., h̃s} which has lower BagErrsample(h
∗,M).

The above lemma, whose proof is deferred to Sec. C.1, is used in conjunction with the following
lemma.
Lemma C.2. Let ε, δ ∈ (0, 1) and suppose that r̂ computed in Step 3 of Alg. 4 satisfies if k 6= q/2
min{‖r̂− r∗‖2, ‖r̂ + r∗‖2} ≤ ε,. Then, with s ≥ O

(
d(log q + log(1/δ))/ε2

)
, h∗ computed in Step

4.c or Step 5.d satisfies

Pr
D

[h∗(x) 6= f(x)] ≤ 8qε

Φ(`)(1− Φ(`))

(
c0

√
λmax
λmin

+ c1
‖µ‖2√
λmin

)
and if k = q/2,

min(Pr
D

[h∗(x) 6= f(x)] ,Pr
D

[(1− h∗(x)) 6= f(x)]) ≤ 8qε

Φ(`)(1− Φ(`))

(
c0

√
λmax
λmin

+ c1
‖µ‖2√
λmin

)
w.p. 1− δ/2, where c0, c1 are the constants from Lemma 2.3.

With the above we complete the proof of Theorem 1.5 as follows.

Proof. (of Theorem 1.5) Let the parameters δ, ε be as given in the statement of the theorem. We
use O

(
ε (Φ(`)(1−Φ(`)))

√
λmin

q(
√
λmax+‖µ‖2)

)
for the error bound in Lemma C.1. We now take m to be of m =

O

(
(d/ε4) O(`2)

(Φ(`)(1−Φ(`)))2 log(d/δ)
(
λmax
λmin

)4 (√
λmax+‖µ‖2√

λmin

)4

q8

)
in Alg. 4 we obtain the following

bound: min{‖r̂ − r∗‖2, ‖r̂ + r∗‖2} ≤ ε (Φ(`)(1−Φ(`)))
√
λmin

q(c0
√
λmax+c1‖µ‖2)

with probability 1 − δ/2. Using s ≥

O
(
d(log(q) + log(1/δ)) q2(

√
λmax+‖µ‖2)2

ε2(Φ(`)(1−Φ(`))2λmin

)
, Lemma C.2 yields the desired misclassification error

bound of ε on h∗ w.p. 1− δ.

Proof. (of Lemma C.2) Define h(x) := pos(r̂TX + c∗) and h̃(x) := pos(−r̂TX + c∗). Applying
Lemma 2.3, we obtain that at least one of h, h̃ has an instance misclassification error of at most
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O(ε(
√
λmax/λmin + ‖µ‖2/λmin)). WLOG assume that h satisfies this error bound i.e., PrD[f(x) 6=

h(x)] ≤ ε(c0
√
λmax/λmin +c1‖µ‖2/

√
λmin) =: ε′. Note that, PrD[f(x) = 1] = Φ(`),PrD[f(x) =

0] = 1− Φ(`). Thus,

Pr
D

[h(x) 6= f(x) | f(x) = 1] ≤ ε′/Φ(`), Pr
D

[[h(x) 6= f(x) | f(x) = 0] ≤ ε′/(1− Φ(`)).

Therefore, taking a union bound we get that the probability that a random bag from the ora-
cle contains a feature vector on which f and h disagree is at most qε′/Φ(`)(1 − Φ(`)). Ap-
plying Chernoff bound (see Appendix B.1) we obtain that with probability at least 1 − δ/6,
BagErrsample(h,M) ≤ 2qε′/Φ(`)(1 − Φ(`)). Therefore, h satisfies BagErrsample(h

∗,M) ≤
2qε′/Φ(`)(1 − Φ(`)). Hence, there exists at least one hj(x) = pos(r̂Tx + r̂Tx

(k)
j ) will satisfy

BagErrsample(hj ,M) ≤ 2qε′/Φ(`)(1 − Φ(`)). Since, h∗(x) has the minimum sample bag error
among all hj(x), BagErrsample(h

∗,M) ≤ 2qε′/Φ(`)(1− Φ(`)).

On the other hand, applying Theorem 2.2, except with probability δ/3, PrD[f(x) 6=
h∗(x)] ≤ 8qε′/Φ(`)(1 − Φ(`)) = 8qε

Φ(`)(1−Φ(`)) (c0
√
λmax/λmin + c1‖µ‖2/

√
λmin) if k 6=

q/2 and min(PrD[f(x) 6= h∗(x)],PrD[f(x) 6= (1 − h∗(x))]) ≤ 8qε′/Φ(`)(1 − Φ(`)) =
8qε

Φ(`)(1−Φ(`)) (c0
√
λmax/λmin + c1‖µ‖2/

√
λmin) if k = q/2. Therefore, except with probability

δ/2, the bound in Lemma C.2 holds.

C.1 Proof of Lemma C.1

We use these to generalize a few quantities we had defined earlier. We obtain their bounds using E.2,

Definition C.3. Define:

κ1 :=

φ(`)
(
k
q − (1− Φ(`))

)
Φ(`)(1− Φ(`))

2

−
`φ(`)

(
k
q − (1− Φ(`))

)
Φ(`)(1− Φ(`))

, κ1 ≥ −`2/4

κ2 :=
2

q − 1

k

q

(
1− k

q

)(
φ(`)

Φ(`)(1− Φ(`))

)2

, κ2 ≥ 2`2/q2 when ` > 1

κ3 :=
κ2

(1− κ1)(1−max(0, κ1))
, κ3 ≥

2`2

q2(1 + `2/4)
when ` > 1

θ :=
2λmax

λmin

(
1

2−max(0, 2κ1 − κ2)
+

1

1−max(0, κ1)

)
,

3λmax

λmin
≤ θ ≤ 3λmax

(1−K2)λmin

Where Ki’s are some finite functions of K.

Similar to Lemma 4.4, we again show in the following lemma that r̂ in the algorithms is indeed ±r∗
if the covariance estimates were the actual covariances.

Lemma C.4. The ratio ρ(r) := rTΣDr/rTΣBr is maximized when r = ±r∗. Moreover,

ρ(r) = 2 +
γ(r)2κ2

1− γ(r)2κ1
where γ(r) :=

rTΣr∗√
rTΣr

√
rT∗Σr∗

and

rTΣBr = rTΣr(1− γ(r)2κ1), rTΣDr = rTΣr(2− γ(r)2(2κ1 − κ2))

Proof. Using the transformations to Z, we can let XB = ΓZB as a random feature-vector sampled
uniformly from a random bag sampled from O. Also, let XD = ΓZD be the difference of two
random feature vectors sampled uniformly without replacement from a random bag sampled from O.
Observe that the ratio ρ(r) = Var[rTXD]/Var[rTXB ] = Var[uTZD]/Var[uTZB ].

Let g∗ := uT
∗Z which is N(0, 1). For a ∈ {0, 1}, let Za be Z conditioned on pos

(
uT
∗Z− `

)
= a.

Let g∗a := uT
∗Za, a ∈ {0, 1}. g∗0 lower-tailed one-sided truncated normal distributions truncated

at ` and g∗1 upper-tailed one-sided truncated normal distributions truncated at `. Hence, E[g∗1 ] =
φ(`)/(1−Φ(`)), E[g∗0 ] = −φ(`)/Φ(`), E[g∗21 ] = 1 + `φ(`)/(1−Φ(`)), E[g∗20 ] = 1− `φ(`)/Φ(`).
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With this setup, letting g∗B := uT
∗ZB and g∗D := uT

∗ZD we obtain (using Lemma B.2 in Appendix
B.2)

Var[g∗B ] = 1− κ1, Var[g∗D] = 2(1− κ1) + κ2

Now let ũ be a unit vector orthogonal to u∗. Let g̃ = ũTZ be N(0, 1). Also, let g̃a = ũTZa for
a ∈ {0, 1}. Since Za are given by conditioning Z only along u∗, g̃a ∼ N(0, 1) for a ∈ {0, 1}. In
particular, the component along ũ of ZB (call it g̃B) is N(0, 1) and that of ZD (call it g̃D) is the
difference of two iid N(0, 1) variables. Thus, Var[g̃B ] = 1 and Var[g̃D] = 2. Moreover, due to
orthogonality all these gaussian variables corresponding to ũ are independent of those corresponding
to u∗ defined earlier.

Now let u = αu∗ + βũ, where β =
√

1− α2 be any unit vector. From the above we have,
Var

[
uTZD

]
Var [uTZB ]

=
Var [αg∗D + βg̃D]

Var [αg∗B + βg̃B ]
=

α2 Var [g∗D] + β2 Var [g̃D]

α2 Var [g∗B ] + β2 Var [g̃B ]

=
2α2(1− κ1) + α2κ2 + 2β2

α2(1− κ1) + β2

= 2 +
α2κ2

1− α2κ1
(7)

where the last equality uses β =
√

1− α2. Letting u = Γr/‖Γr‖2 we obtain that α =
〈Γr,Γr∗〉
‖Γr‖2‖Γr∗‖2 = γ(r) completing the proof.

Lemma 4.5 shows that ratio maximization can be treated as an eigenvalue decomposition problem of
the matrix Σ

−1/2
B ΣDΣ

−1/2
B . We now prove that the error in the estimate of r̂ given to us by the

algorithm is bounded if the error in the covariance estimates are bounded. The sample complexity of
computing these estimates gives the sample complexity of our algorithm.

We now complete the proof of Lemma C.1 (with δ instead of δ/2 for convenience). By Lemma 3.1,
taking m ≥ O

(
(d/ε2

1)O(`2) log(d/δ)
)

ensures that ‖EB‖2 ≤ ε1λmax and ‖ED‖2 ≤ ε1λmax w.p. at

least 1 − δ where EB = Σ̂B − ΣB and ED = Σ̂D − ΣD. We start by defining ˆρ(r) := rTΣ̂Dr

rTΣ̂Br

which is the equivalent of ρ using the estimated matrices. Observe that it can be written as
ρ̂(r) = rTΣBr+rTEBr

rTΣDr+rTEDr
. Using these we can obtain the following bound on ρ̂: for any r ∈ Rd,

|ρ̂(r)− ρ(r)| ≤ θε1|ρ(r)| w.p. at least 1− δ (*) as long as ε1 ≤ (1−max(0,κ1))
2

λmin
λmax

, which we shall
ensure (see Appendix B.4).

For convenience we denote the normalized projection of any vector r as r̃ := Σ1/2r
‖Σ1/2r‖2

. Now let

r̃ ∈ Rd be a unit vector such that min{‖r̃ − r̃∗‖2, ‖r̃ + r̃∗‖2} ≥ ε2. Hence, using the definitions
from Lemma C.4, |γ(r)| ≤ 1 − ε2

2/2 while γ(r∗) = 1 which implies ρ(r∗) − ρ(r) ≥ κ3ε
2
2/2.

Note that ρ(r) ≤ ρ(r∗) = 2 + κ3(1 − max(0, κ1)). Choosing ε1 < κ3

2θ(2+κ3(1−max(0,κ1))ε
2
2,

we obtain that ρ(r∗)(1 − θε1) > ρ(r)(1 + θε1). Using this along with the bound (*) we obtain
that w.p. at least 1 − δ, ρ̂(r∗) > ρ̂(r) when ε2 > 0. Since our algorithm returns r̂ as the max-
imizer of ρ̂, w.p. at least 1 − δ we get min{‖r̃ − r̃∗‖2, ‖r̃ + r̃∗‖2} ≤ ε2. Using Lemma 2.1,

min{‖r̂ − r∗‖2, ‖r̂ + r∗‖2} ≤ 4
√

λmax
λmin

ε2. Substituting ε2 = ε
4

√
λmin
λmax

, ‖r − r∗‖2 ≤ ε w.p. at

least 1 − δ. The conditions on ε1 are satisfied by taking it to be ≤ O
(

κ3ε
2λmin

θ(2+κ3(1−max(0,κ1))λmax

)
,

and thus we can take m ≥ O

(
(d/ε4)O(`2) log(d/δ)

(
λmax
λmin

)2

θ2
(

2+κ3(1−max(0,κ1)
κ3

)2
)

=

O

(
(d/ε4)O(`2) log(d/δ)

(
λmax
λmin

)4

q4

)
since 1/κ3 ≤ q2(1 + `2/4)/`2 whenever ` > 1(Defn. C.3).

This completes the proof of Lemma C.1.

D Generalization error Bounds

We show that if a hypothesis LTF h satisfies close to 1 fraction of sufficient number of bags sampled
from a bag oracle then with high probability h is a good approximator for the target LTF f (or its
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complement in the case of balanced bags). The first step is to prove a generalization bound from the
sample bag-level accuracy to the oracle bag-level accuracy.

Theorem D.1. Let O := Ex(f,D, q, k) be any bag oracle for an LTF f in d-dimensions, and let M
be a collection of m bags sampled iid from the oracle. Then, there is an absolute constant C0 ≤ 1000
s.t. w.p. at least 1− δ,

BagErroracle(h, f,D, q, k) ≤ BagErrsample(h,M) + ε (8)

when m ≥ C0d (log q + log(1/δ)) /ε2, for any δ, ε > 0.

Proof. The proof follows from the arguments similar to the ones used in Appendix M of [26]
to prove bag satisfaction generalization bounds. Consider a bag loss function of the form
`(φζ(h,B), (φζ(f,B)), where φζ(g,B) := ζ(yg,B) where yg,B is the vector of (g(x))x∈B , for
ζ : {0, 1}q → R. The result of [35] showed generalization error bounds when (i) ζ is 1-Lipschitz
w.r.t. to∞-norm, and (ii) ` is 1-Lipschitz in the first coordinate. We can thus apply their results using
the bound of (d+ 1) on the VC-dimension of LTFs in d-dimensions to show that the above bound on
m holds (with C0/8 instead of C0) for the generalization of the following bag error:

|γ(B, f, t)− γ(B, h, t)| ,

where

γ(B, g, t) :=

{
0 if

∑
x∈B g(x) ≤ t

1 otherwise.
(9)

for t ∈ {0, . . . , q−1}. We can bound our bag satisfaction error by the sum of the generalization errors
of |γ(B, f, k)− γ(B, h, k)|, and |γ(B, f, k − 1)− γ(B, h, k − 1)|, which can each be bounded by
ε/2 thus completing the proof.

Next we show that if the oracle-level bag accuracy of h is high then this translates to h is being
a low error instance-level approximator for the target LTF f (or its complement in the case of
balanced bags). With the setup as used in the previous theorem, let us define define the regions
Sa := {x s.t f(x) = a} for a ∈ {0, 1}, and Sab := {x s.t f(x) = a, h(x) = b}. Let µ be the
measure induced by D, µa and µab be the respectively conditional measures induced on Sa and
Sab. The oracle O for a random bag B, samples k points iid from (S1, µ1) and (q − k) points from
(S0, µ0).

we have the following theorem.

Theorem D.2. Suppose k ∈ {1, . . . , q}, and 0 < BagAccoracle(h, f,D, q, k) ≤ ε′ < 1/(4q), then

(i) PrD[f(x) 6= h(x)] ≤ ε if k 6= q/2, and
(ii) PrD[f(x) 6= h(x)] ≤ ε or Pr[f(x) 6= (1− h(x))] ≤ ε, if k = q/2,

where ε = 4ε′.

Before we prove the above them, we need the following lemma bounding the probability that two
independent binomial random variables take the same value. Let Binomial(n, p) be the sum of n iid
{0, 1} random variables each with expectation p.

Lemma D.3. Let u, v ∈ {1, . . . , q}, and X1 ∼ Binomial(u, p1) and X2 ∼ Binomial(v, p2) be
independent binomial distributions for some probabilities p1 and p2. Let p∗ = min{max{p1, (1−
p1)},max{p2, (1− p2)}}, then, Pr [X1 6= X2] ≥ 1−

√
p∗.

Proof. We first begin by bounding a binomial coefficient by the sum of its adjacent binomial
coefficients. Let n ≥ 1 and n > r > 0. We begin with the standard identity and proceed further:(

n

r

)
=

(
n− 1

r

)
+

(
n− 1

r − 1

)
≤ n

r + 1

(
n− 1

r

)
+

n

n− r + 1

(
n− 1

r − 1

)
(10)

=

(
n

r + 1

)
+

(
n

r − 1

)
(11)
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Moreover, it is trivially true that
(
n
0

)
≤
(
n
1

)
and

(
n
n

)
≤
(
n
n−1

)
, therefore (11) holds even for

r ∈ {0, n} whenever the binomial coefficients exist. Now, for some probability p define ν(p, n, r) :=(
n
r

)
pr(1− p)1−r which is pdf at r of Binomial(n, p). The above implies the following:

ν(p, n, r) ≤ p′ (ν(p, n, r − 1) + ν(p, n, r + 1)) (12)

where p′ = max{p/(1−p), (1−p)/p}. Using the fact that ν(p, n, r−1)+ν(p, n, r)+ν(p, n, r+1) ≤
1, we obtain that

(1/p′)ν(p, n, r) + ν(p, n, r) ≤ 1

⇒ ν(p, n, r) ≤ (p′/1 + p′) = max{p, 1− p} (13)

The above allows us to complete the proof of the lemma as follows.

Pr [X1 = X2]

=

min{u,v}∑
r=0

ν(p1, u, r)ν(p2, v, r)

≤

(
u∑
r=0

ν(p1, u, r)
2

) 1
2
(

v∑
r=0

ν(p2, v, r)
2

) 1
2

≤

(
max
r
{ν(p1, u, r)}

u∑
r=0

ν(p1, u, r)

) 1
2

·

(
max
r
{ν(p2, v, r)}

u∑
r=0

ν(p2, v, r)

) 1
2

≤ (max{p1, 1− p1})
1
2 (max{p2, 1− p2})

1
2

≤
√
p∗, (14)

where we use Cauchy-Schwarz for the first inequality.

Proof. (of Theorem D.2) We now consider three cases, for each one we shall prove points (i) and (ii)
of the theorem.

Case PrD[f(x) 6= h(x)] ≥ 1 − ε. This condition means that µ(S10) + µ(S01) ≥ 1 − ε, which
implies that at least one of µ1(S10), µ0(S01) is ≥ 1 − ε. Assume that µ0(S01) ≥ 1 − ε (the other
case is analogous).

Consider unbalanced bags i.e., k 6= q/2. Now in case that µ1(S10) ≥ 1− ε, all the points sampled
from S1 are sampled from S10 w.p. (1− kε) and those sampled from S0 are all sampled from S01

w.p. (1 − (q − k)ε). Therefore, with probability at least (1 − qε) all the points are sampled from
S10 ∪ S01. Since k 6= q/2 this implies that h does not satisfy the random bags with probability
at least (1 − qε) > ε′. If µ1(S10) ≤ ε, we can show with similar arguments that with probability
≥ (1 − qε) > ε′ no points are sampled from S10 and q − k points are sampled from S01 which
means (since k ≥ 1) that h does not satisfy the bag. Finally, let µ1(S10) ∈ (ε, 1− ε). In this case,
the number of points sampled from S10 is distributed as Binomial(k, µ1(S10)) and those sampled
from S01 is independently distributed as Binomial(k, µ0(S01)). If these two numbers are different
then h does not satisfy the bag. We can apply Lemma D.3 and using the bounds on µ1(S10), we get
that p∗ ≤ 1− ε. Therefore, the probability of h not satisfying a randomly sampled bag is at least

1−
√

1− ε ≥ (1− (1− ε))
1 +
√

1− ε
≥ ε/2 > ε′. (15)

For balanced bags, the case PrD[f(x) 6= h(x)] ≥ 1− ε implies that Pr[f(x) 6= (1− h(x))] ≤ ε, so
the condition (ii) of the theorem holds.

Case ε < PrD[f(x) 6= h(x)] < 1−ε. This case violates the conditions (i) and (ii). First observe that,
µ1(S10) and µ0(S01) both cannot be ≥ (1− ε) or ≤ ε, otherwise µ(S10) + µ(S01) is either ≥ 1− ε
or≤ ε violating the assumption of this case. For the subcase that µ1(S10) ≤ ε and µ0(S01) ≥ (1−ε),
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we can show using arguments similar to the previous case that w.p. ≥ (1− qε) no points are sampled
from S10 and q − k points are sampled from S01, and thus, h will not satisfy a random bag with
probability at least (1 − qε) > ε′. The subcase when µ1(S01) ≤ ε and µ0(S10) ≥ (1 − ε) is
analogous. Finally, we have the subcase that µ1(S10) or µ0(S01) both lie in the range (ε, 1−ε). Now,
the number of points sampled from S10 is distributed as Binomial(k, µ1(S10)) and those sampled
from S01 is independently distributed as Binomial(k, µ0(S01)). If these two numbers are different
then h does not satisfy the bag. We can apply Lemma D.3 and using the bounds on one of µ1(S10) or
µ0(S01), we get that p∗ ≤ 1− ε. Therefore, the probability of h not satisfying a randomly sampled
bag is at least 1−

√
1− ε ≥ ε/2 > ε′, using (15).

D.1 Proof of Theorem 2.2

The proof follows directly from Theorems D.1 and D.2.

D.2 Proof of Lemma 2.3

Proof. We have,

Pr[pos(rTX + c) 6= pos(r̂TX + c)] = Pr[pos(rTX̃ + ‖Γr‖2ζ) 6= pos(r̂TX̃ + ‖Γr̂‖2ζ̂)]

= Pr[pos(aTZ + ζ) 6= pos(âTZ + ζ̂)] (16)

where Γ = Σ1/2, a = Γr/‖Γr‖2 and â = Γr̂/‖Γr̂‖2 and Z = Γ−1X̃ ∼ N(0, I) and X̃+µ = X ∼
N(µ,Σ), ζ = (c+ rTµ)/‖Γr‖2 and ζ̂ = (c+ r̂Tµ)/‖Γr̂‖2. By Lemma 2.1, ‖a− â‖2 ≤ 4

√
λmax
λmin

ε.

Now, the RHS of (16) can be bounded as,

Pr[pos(aTZ + ζ) 6= pos(aTZ + ζ̂)] + Pr[pos(aTZ + ζ̂) 6= pos(âTZ + ζ̂)] (17)

Now, g := aTZ ∼ N(0, 1). Thus, the first term in the above is bounded by the probability that g lies
in a range of length |ζ − ζ̂| = ‖µ‖2‖r− r̂‖2/‖Γr‖2 ≤ ε‖µ‖2/

√
λmin. This probability is at most

ε‖µ‖2/
√

2πλmin.

For the second term, that is at most the probability that pos(aTZ) 6= pos(âTZ). Now ‖â− a‖2 ≤
4
√

λmax
λmin

ε⇒ ∠â,a ≤ π4
√

λmax
λmin

ε⇒ Pr[pos(aTZ) 6= pos(âTZ)] ≤ 2
√

λmax
λmin

ε. Hence,

Pr[pos(rTX + c) 6= pos(r̂TX + c)] ≤ ε

(
2

√
λmax

λmin
+
‖µ‖2√
2πλmin

)

E Subgaussian concentration with thresholded Gaussian random variables

Let Φ(.) be the standard Gaussian cdf i.e., Φ(t) := PrX∼N(0,1) [X ≥ t]. We also define Φ(t) :=
Pr [X > t] = 1− Φ(t). We begin by defining the subgaussian norm of a random variable.

Definition E.1. The subgaussian norm of a random variable X denoted by ‖X‖ψ2 and is defined as:
‖X‖ψ2 := inf{t > 0 : E

[
exp

(
X2/t2

)]
≤ 2}. Further, there is an absolute constant K0 such that

‖X‖ψ2
≤ K0K if X satisfies,

Pr [|X| ≥ t] ≤ 2exp
(
−t2/K2

)
, for all t ≥ 0. (18)

Let X ∼ N(0, 1). It is easy to see that E
[
exp(X2/22)

]
= (1/

√
2π)

∫∞
−∞ exp(−x2/4)dx =√

2(1/
√

2π)
∫∞
−∞ exp(−z2/2)dz =

√
2. Thus, X ∼ N(0, 1) is subgaussian with subgaussian norm

≤ 2. In the analysis of this section, we shall use the following proposition from [32].
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Proposition E.2 (Prop. 2.1.2 of [32]). Let X ∼ N(0, 1). Then, for any t > 0,(
1

t
− 1

t3

)
1√
2π

exp
(
−t2/2

)
≤ Φ(t) ≤ 1

t
√

2π
exp

(
−t2/2

)
.

In particular for t ≥ 1,

Φ(t) ≤ 1√
2π

exp
(
−t2/2

)
.

Using the above, and by symmetry it is easy to see that for t ≥ 1, Pr [|X| > t] ≤(√
2/π

)
exp

(
−t2/2

)
≤ 2 · exp

(
−t2/2

)
. On the other hand, 2 · exp

(
−t2/2

)
≥ 1 for 0 ≤ t < 1.

Thus,
Pr [|X| > t] ≤ 2 · exp

(
−t2/2

)
, ∀ t ≥ 0. (19)

Consider the normal distribution conditioned on a threshold defined by letting D` be the distribution
of {X ∼ N(0, 1) | X > `}. We shall show that X̃ ∼ D` is a subgaussian random variable. Let us
handle the (relatively) easy case of ` ≤ 0 first.

Lemma E.3. Let X̃ ∼ D` for some ` ≤ 0. Then, Pr
[
|X̃| > t

]
≤ 2 · exp

(
−t2/2

)
, for any t > 0.

Proof. LetE be the event that X̃ ≥ 0. Conditioned onE, X̃ is distributed as |X|whereX ∼ N(0, 1)
and (19) implies that

Pr
[
|X̃| > t | E

]
≤ 2 · exp

(
−t2/2

)
, ∀ t > 0.

On the other hand, conditioned onE, X̃ is sampled as−|Z| where {Z ∼ N(0, 1) | |Z| ≤ −` = |`|}.
Thus,

Pr
[
|X̃| > t | E

]
= Pr
Z∼N(0,1)

[|Z| > t | |Z| ≤ |`|] . (20)

Now, if t > |`| then Pr
[
|X̃| > t | E

]
= 0, otherwise if t ≤ ` the LHS of (20) is,

Pr
Z∼N(0,1)

[|Z| > t | |Z| ≤ |`|] = 1− Pr [|Z| ≤ t | |Z| ≤ |`|] = 1− Pr [|Z| ≤ t]
Pr [|Z| ≤ `]

≤ 1− Pr [|Z| ≤ t] = Pr [|Z| > t]

which is bounded by 2 · exp
(
−t2/2

)
and combining the probability bounds conditioned on E and E

we complete the proof.

The case of ` > 0 is proved below.

Lemma E.4. Let X̃ ∼ D` for some ` > 0. Then, Pr
[
|X̃| > t

]
≤ 2 · exp

(
−t2/K2

1

)
, for any t > 0,

where K1 = max{
√

20, |`|
√

10}.

Proof. Let us first explicitly define the pdf of X̃ as:

fD`
(x) =

{
0 if x ≤ `
fN(0,1)(x)/Φ(`) otherwise,

(21)

where fN(0,1) is the pdf of N(0, 1). We prove this in two cases.

Case ` ≤ 2. In this case, one can use the lower bound from Prop. E.2 to show that Φ(`) ≥ Φ(2) >
1/50 by explicit calculation. Thus, fD`

(x) ≤ 50fN(0,1)(x) for x > 0. We can now obtain the desired
bound as follows. Letting X ∼ N(0, 1), for any t > 0,

Pr
[∣∣∣X̃∣∣∣ > t

]
= Pr

[
X̃ > t

]
≤ 50 Pr [X > t] ≤ 50 Pr [|X| > t] ≤ 100exp

(
−t2/2

)
(22)
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using (19). Now, it is easy to check that for t ≥ 3,

exp
(
− t2

20

)
exp

(
− t22

) ≥ exp
(

9 ·
(

1

2
− 1

20

))
≥ exp(4) > 50

⇒ 2 · exp
(
− t

2

20

)
> 100 · exp

(
− t

2

2

)
(23)

On the other hand, for 0 ≤ t < 3, 2exp
(
−t2/20

)
> 1. Thus,

Pr
[∣∣∣X̃∣∣∣ > t

]
≤ 2 · exp

(
−t2/20

)
Case ` > 2. In this case using the easily verifiable facts that hold for ` > 2:

• (1/`− 1/`3) > 1/(2`) and

• exp
(
−3`2/2

)
≤ 1

2`
√

2π
,

Prop. E.2 yields

Φ(`) ≥
(

1

`
− 1

`3

)
1√
2π

exp
(
−`2/2

)
≥ 1

2`
√

2π
exp

(
−`2/2

)
≥ exp

(
−2`2

)
. (24)

Observe that Pr
[∣∣∣X̃∣∣∣ > t

]
= PrZ∼N(0,1) [Z > t | Z ≥ `]. If t < `, then this probability vanishes.

Otherwise t ≥ ` > 2, and from Prop. E.2, Pr[Z > t] ≤ exp(−t2/2) and therefore Pr
[∣∣∣X̃∣∣∣ > t

]
can

be bounded by

≤ Pr[Z > t]

Pr[Z ≥ `]
≤ 2Φ(`)−1exp

(
−t2/2

)
≤ 2exp

(
−t2/2 + 2`2

)
(25)

using (24). Now, if t2 = 5`2 + κ for some κ ≥ 0, then using ` > 2 we have

− t
2

2
+ 2`2 = −`

2 + κ

2
≤ −1− κ

5`2
= −5`2 + κ

5`2
≤ − t2

5`2
≤ − t2

10`2
. (26)

Therefore, 2exp
(
−t2/2 + 2`2

)
≤ 2exp

(
−t2/(10`2)

)
for t2 ≥ 5`2. On the other hand,

2exp
(
−t2/(10`2)

)
> 2e−1/2 > 1, when t2 < 5`2.

Thus, in this case the following holds for all t > 0:

Pr
[∣∣∣X̃∣∣∣ > t

]
≤ 2exp

(
−t2/(10`2)

)
(27)

completing the proof.

The above results also apply to "complements" of the thresholded Gaussians. In particular, let D` be
the distribution of {X ∼ N(0, 1) | X ≤ `⇔ −X ≥ −`} which is equivalently {−X ∼ N(0, 1) |
X ≥ −`} to which the above analysis can be directly be applied. This yields, that if X̃ ∼ D` then
for any t > 0,

Pr
[
|X̃| > t

]
≤ 2 · exp

(
−t2/2

)
, if ` ≥ 0, (28)

Pr
[
|X̃| > t

]
≤ 2 · exp

(
−t2/K2

1

)
, if ` < 0, (29)

where K1 = max{
√

20, |`|
√

10}.
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E.1 Bag mean and convariance estimation error bounds

In this section we shall be concerned with random variables X̃ which are sampled from D` with
probability p and from D` with probability (1− p). Let us denote this distribution by D̂(p, `). Using
Lemmas E.3, E.4 and (28), (29), we obtain the following lemma.

Lemma E.5. Let X̃ ∼ D̂(p, `) for some p ∈ (0, 1). Then for any t > 0,

Pr
[
|X̃| > t

]
≤ 2 · exp

(
−t2/K2

1

)
(30)

where K1 = max{
√

20, |`|
√

10}. In particular, ‖X̃‖ψ2 = O(|`|).

We however, shall also require similar bounds for the mean-zero version of such distributions. To
begin with we state an easy lemma bounding the mean of X̃ .

Lemma E.6. Let X̃ ∼ D̂(p, `) for some p ∈ (0, 1). Then,
∣∣∣E [X̃]∣∣∣ ≤ γ` = max{γ0, 2`}, where

γ0 > 0 is some constant.

Proof. Let us consider the case of ` > 0 (and ` ≤ 0 follows analogously). When ` < 2, it is easy to
see that desired expectation is O(1). Further, the expectation over D` is O(`) for any ` > 0, since it is
a convex combination of the expectation of a half gaussian which hasO(1) expectation, and a gaussian
truncated from below at 0 and above at `, which has O(`) expectation. To complete the argument
we need to bound the expectation over D`. Using (21) and (1/

√
2π)

∫∞
`
x exp(−x2/2) dx =

(1/
√

2π)exp(−`2/2), we obtain EX∼D`
[X] = (1/

√
2π)exp(−`2/2)Φ(`)−1 and the lower bound

from Prop. E.2 along with ` ≥ 2 yields an upper bound of 2` on the expectation.

With the setup as in Lemma E.5 define X̂ := X̃ − E
[
X̃
]
. Clearly, E

[
X̂
]

= 0. Further,∣∣∣X̂∣∣∣ > t⇒
∣∣∣X̃∣∣∣+

∣∣∣E [X̃]∣∣∣ > t⇒
∣∣∣X̃∣∣∣ > t− γ`.

Therefore,
Pr
[
|X̂| > t

]
≤ Pr

[
|X̃| > t− γ`

]
≤ 2 · exp

(
−(t− γ`)2/K2

1

)
(31)

Let K2 = max{2K1,
√

2γ`}. Now,

t ≥ 2γ` ⇒ |t| ≤ 2|t− γ`| ⇒
t2

4K2
1

≤ (t− γ`)2

K2
1

⇒ 2 · exp
(
−(t− γ`)2/K2

1

)
≤ 2 · exp

(
−t2/K2

2

)
(32)

On the other hand, when 0 ≤ t < 2γ`, t2/K2
2 ≥ 1/2, and thus

2 · exp
(
−t2/K2

2

)
≥ 2e−1/2 > 1.

Thus,
Pr
[
|X̂| > t

]
≤ 2 · exp

(
−t2/K2

2

)
(33)

for all t > 0, where K2 = O(|`|).

E.1.1 Concentration of mean estimate using Hoeffding’s Bound

Let us first state the Hoeffding’s concentration bound for subgaussian random variables.
Theorem E.7 (Theorem 2.6.2 of [32]). Let X1, . . . , XN be independent, mean-zero, sub-gaussian
random variables. Then, for every ε ≥ 0,

Pr

[∣∣∣∣∣
∑N
i=1Xi

N

∣∣∣∣∣ ≥ ε
]
≤ 2 · exp

(
−cε2N2∑N
i=1 ‖Xi‖2ψ2

)
, (34)

where c > 0 is some absolute constant.
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For the rest of this section we shall fix ` ∈ R and p ∈ (0, 1). Consider vector valued random variable
X = (X(1), . . . , X(d)) with independent coordinates where

• X(1) = X̃−E[X̃] where X̃ ∼ D̂(p, `). From the previous subsection, we have ‖X(1)‖ψ2
=

O(|`|).

• For i = 2, . . . , d, X(i) ∼ N(0, 1) and therefore ‖X(i)‖ψ2
= O(1).

Using the above bounds on the subgaussian norms, and applying Theorem E.7 to bound the error in
each coordinate by ε/

√
d and taking a union bound we obtain the following lemma.

Lemma E.8. Let X1, . . . ,XN be N iid samples of X. Then for every ε ≥ 0,

Pr

[∥∥∥∥∥
∑N
i=1 Xi

N

∥∥∥∥∥
2

≥ ε

]
≤ 2 · exp

(
−c0ε2N

dO(`2)

)
+ 2(d− 1) · exp

(
−c0ε2N/d

)
(35)

for some absolute constant c0 > 0. In particular, if N > O
(
(d/ε2)O(`2) log(d/δ)

)
,

Pr

[∥∥∥∥∥
∑N
i=1 Xi

N

∥∥∥∥∥
2

≥ ε

]
≤ δ,

for any δ > 0.

E.1.2 Concentration of covariance estimate

Consider the vector random variable X defined in the previous subsection. It is mean-zero and so by
Defn. 3.4.1 and Lemma 3.4.2 of [32],

supx∈Sd−1‖〈x,X〉‖ψ2
= O(`), (36)

using the bounds on the subgaussian norms of the coordinates of X given in the previous subsection.
Using this we can directly apply Proposition 2.1 of [31] to obtain the following lemma.

Lemma E.9. Let X1, . . . ,XN be N iid samples of X, then if N > O
(
(d/ε2)O(`2) log(1/δ)

)
,

Pr

[∥∥∥∥∥
∑N
i=1 XiX

T
i

N
− E

[
XXT

]∥∥∥∥∥
2

≥ ε

]
≤ δ, (37)

for any ε, δ > 0.

E.1.3 Mean and covariance estimate bounds for non-centered vector r.v.s

Distribution Dasymvec(p, `). We revisit the definition of X in Sec. E.1.1 and instead define distribution
Dasymvec(p, `) over Z = (Z(1), . . . , Z(d)) with independent coordinates by taking Z(1) = X̃ where
X̃ ∼ D̂(p, `) and for i = 2, . . . , d, Z(i) ∼ N(0, 1).

Clearly, X = Z− E[Z]. For convenience, we shall use the following notation:

µZ := E[Z] and, µ̂Z :=

∑N
i=1 Zi
N

, (38)

ΣZ := E[(Z− µZ)(Z− µZ)T] and, Σ̂Z :=

∑N
i=1(Zi − µ̂Z)(Zi − µ̂Z)T

N
, (39)

where Zi is an iid sample of Z and Xi = Zi − µZ , for i = 1, . . . , N . We have the following lemma.

Lemma E.10. For any ε, δ ∈ (0, 1), ifN > O
(
(d/ε2)O(`2) log(d/δ)

)
, then w.p. 1−δ the following

hold simultaneously,

‖µ̂Z − µZ‖2 ≤ ε/2, (40)

‖Σ̂Z −ΣZ‖2 ≤ ε (41)
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Proof. We begin by applying Lemmas E.8 and E.9 to X and the iid samples X1, . . . ,XN so that their
conditions hold with ε/2 and δ/2. Taking a union bound we get that the following simultaneously
hold with probability at least 1− δ:∥∥∥∥∥

∑N
i=1 Xi

N

∥∥∥∥∥
2

≤ ε/2, (42)∥∥∥∥∥
∑N
i=1 XiX

T
i

N
− E

[
XXT

]∥∥∥∥∥
2

≤ ε/2. (43)

By the definitions above, (42) directly implies (40).

Now, observe that ΣZ = E[XXT]. On the other hand, letting ζ := µ̂Z − µZ = (
∑N
i=1 Xi)/N we

simplify Σ̂Z as,∑N
i=1(Zi − µ̂Z)(Zi − µ̂Z)T

N
=

∑N
i=1(Xi − ζ)(Xi − ζ)T

N

=

∑N
i=1 XiX

T
i −Xiζ

T − ζXT
i + ζζT

N

=

∑N
i=1 XiX

T
i

N
− 2ζζT + ζζT

=

∑N
i=1 XiX

T
i

N
− ζζT (44)

Thus, the LHS of (41) is at most,∥∥∥∥∥
∑N
i=1 XiX

T
i

N
− E

[
XXT

]
− ζζT

∥∥∥∥∥
2

≤

∥∥∥∥∥
∑N
i=1 XiX

T
i

N
− E

[
XXT

]∥∥∥∥∥
2

+
∥∥ζζT∥∥

2

≤ ε/2 + ε2/4 ≤ ε, (45)
since we have shown that ‖ζ‖2 = ‖µ̂Z − µZ‖2 ≤ ε/2.

Finally, we prove a version of the above lemma under a symmteric psd transformation. Let A be a
psd matrix s.t. λmax is the maximum eigenvalue of A2 = AA i.e.,

√
λmax is the maximum eigenvalue

of A. Then, if we define Z̃ := AZ and Z̃i as iid samples of Z̃, i = 1, . . . , N and analogous to (38)
and (39), define µZ̃ , µ̂Z̃ , ΣZ̃ and Σ̂Z̃ , we have the following lemma which follows directly from
Lemma E.10 the

√
λmax upper bound on the operator norm of A.

Lemma E.11. For any ε, δ ∈ (0, 1), ifN > O
(
(d/ε2)O(`2) log(d/δ)

)
, then w.p. 1−δ the following

hold simultaneously,

‖µ̂Z̃ − µZ̃‖2 ≤ ε
√
λmax/2, (46)

‖Σ̂Z̃ −ΣZ̃‖2 ≤ ελmax (47)

E.2 Estimating Covariance of differences

First we begin this subsection with a simple observation. If X and Y are two random variables such
that ,

Pr [|X| > t] ,Pr [|Y | > t] ≤ 2 · exp
(
−t2/K2

1

)
, ∀t > 0, (48)

then X − Y is a random variable such that,
Pr [|X − Y | > t] ≤ Pr [|X| > t/2] + Pr [|Y | > t/2] ≤ 4 · exp

(
−t2/(2K1)2

)
.

It is easy to see that,
4 · exp

(
−t2/(2K1)2

)
≤ 2 · exp

(
−t2/(4K1)2

)
,

when t2 ≥ 8K2
1 . On the other hand, when t2 < 8K2

1 , 2 · exp
(
−t2/(4K1)2

)
> 1. Thus,

Pr [|X − Y | > t] ≤ 2 · exp
(
−t2/(4K1)2

)
(49)

In this subsection shall consider X̃ ∼ D(p, q, `) to be defined as follows, for some ` ∈ R, p, q ∈ [0, 1)

s.t. p+ q < 1. X̃ = U − V where:
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• with probability p, U ∼ D` and V ∼ D` independently,

• with probability q, U ∼ D` and V ∼ D` independently,

• with probability (1− p− q)/2, U ∼ D` and V ∼ D` independently,

• with probability (1− p− q)/2, U ∼ D` and V ∼ D` independently.

From the above it is clear that E[X̃] = 0. Further, from (49) and Lemmas E.3, E.4 and (28), (29),

Pr
[
|X̃| > t

]
≤ 2 · exp

(
−t2/K2

1

)
(50)

for t > 0, where K1 = max{4
√

20, 4|`|
√

10}. In particular, ‖X̃‖ψ2
= O(`).

Let us now define a distribution Ddiffvec(p, q, `) vector valued random variable with independent
coordinates X = (X(1), . . . , X(d)), where

• X(1) ∼ D(p, q, `), for some ` ∈ R, p, q ∈ [0, 1) s.t. p+ q < 1.

• X(j) is the difference of two iid N(0, 1) random variables, for j = 2, . . . , d. In particular,
the subgaussian norm of these coordinates is O(1).

From, the above it is clear that E[X] = 0, and by Defn. 3.4.1 and Lemma 3.4.2 of [32], (36) is
applicable to X as defined above. Thus, letting X̂ := AX, where A is as used in the previous
subsection we have,
Lemma E.12. For X defined above, the statement of Lemma E.9 is applicable, and (37) implies that
the following holds: ∥∥∥∥∥

∑N
i=1 X̂iX̂

T
i

N
− E

[
X̂X̂T

]∥∥∥∥∥
2

≤ ελmax (51)

with probability 1− δ.

E.3 Proof of Lemma 3.1

Our proof shall utilize the following normalization of LTFs in a Gaussian space.
Lemma E.13. Suppose f(X) = pos

(
rTX + c

)
, where ‖r‖2 > 0 and X ∼ N(µ,Σ) s.t. Σ is

positive definite. Let Γ := Σ1/2 be symmetric p.d., and U be any orthonormal transformation
satisfying UΓr/‖Γr‖2 = e1 where e1 is the vector with 1 in the first coordinate and 0 in the rest.
Then, letting Z ∼ N(0, I) so that X = ΓUTZ + µ,

f(X) = pos
(
rTX + c

)
= pos

(
eT

1 Z + `
)

(52)

where ` =
(
rTµ+ c

)
/‖Γr‖2.

Proof. We have X = X̂ + µ where X̂ ∼ N(0,Σ). Thus, X̂ = ΓUTZ ⇒ Z = UΓ−1X̂, using
UT = U−1. Now, f(X) can be written as

pos

(
rT(X̂ + µ) + c

‖Γr‖2

)
= pos

(
rTΓUTUΓ−1X̂ + rTµ+ c

‖Γr‖2

)

= pos

(
(UΓr)TZ

‖Γr‖2
+

rTµ+ c

‖Γr‖2

)
= pos

(
eT

1 Z +
rTµ+ c

‖Γr‖2

)
(53)

which completes the proof.

Proof. (of Lemma 3.1) Using the normalization in Lemma E.13, we can write X = AZ + µ where
A = Σ1/2UT such that X ∼ N(µ,Σ) ≡ Z ∼ N(0, I). From the condition in (52) we can write the
samples in Step 2 of Alg. 1 as xi = Azi +µ where zi are sampled from Dasymvec(k/q,−`) (see Sec.
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E.1.3) for ` as given in Lemma E.13. Note that the maximum eigenvalue of A2 is λmax which is the
maximum eigenvalue of Σ. Thus, one can apply Lemma E.11 to µ̂B and Σ̂B .

Further, the difference vectors sampled in Step 6 can be written as xi = Azi where zi are sampled
from Ddiffvec(p, p

′,−`) (see Sec. E.2) where p =
(
k
2

)
/
(
q
2

)
is the probability of sampling a pair of

1-labeled feature-vectors from a bag, and p′ =
(
q−k

2

)
/
(
q
2

)
is that of sampling a pair of 0-labeled

feature-vectors. Thus, one can apply Lemma E.12 to Σ̂D.

Using both the above applications with the error probability δ/2 and using union bound we complete
the proof.

F Experimental Details and Results

F.1 Implementation Details

The implementations of the algorithms in this paper (Algs. 2, 3, 4) and of the random LTF algorithm
are in python using numpy libraries. The code for the SDP algorithms of [25, 26] for bag sizes 2 and
3 is adapted from the publicly available codebase1. The experimental code was executed on a 16-core
CPU and 128 GB RAM machine running linux in a standard python environment.

F.2 Experimental Results

In the following d denotes the dimension of the feature-vectors, q the size of the bags, with k/q ∈
(0, 1) the bag label proportion, and m be the number of sampled bags in the training dataset. The
instance-level test set is of size 1000 in all the experiments, and the reported metric is the accuracy
over the test set.

Standard Gaussian without LTF offset. Here we primarily wish to evaluate the Algorithm 3 using
unbalanced bag oracles such that k 6= q/2. For d ∈ {10, 50}, (q, k) ∈ {(3, 1), (10, 8), (50, 35)} and
m ∈ {100, 500, 2000} we create 25 datasets. In each LLP dataset, we (i) sample a random unit vector
r∗ and let f(x) := pos

(
r∗Tx

)
, (ii) sample m training bags from Ex(f,N(0, I), q, k), (iii) sample

1000 test instances (x, f(x)), x ← N(0, I). We also evaluate the Algorithm 2 on these datasets.
For comparison we have the random LTF algorithm (R) in which we sample 100 random LTFs and
return the one that performs best on the training set. The results are reported in Table 5. We also
evaluate the SDP algorithm (S) in [26] for (q, k) = (3, 1) using m ∈ {50, 100, 200} (since the SDP
algorithms do not scale to larger number of bags) whose results are reported in Table 6.

Table 2 reports a concise set of comparative scores of Algorithms 2, 3 and random LTF (R) using
2000 bags and of the SDP algorithms (S) with 200 bags.

Centered and general Gaussian. Here we evaluate Algorithms 2 and 4, and we have both
balanced as well as unbalanced bag oracles. In particular, for d ∈ {10, 50}, (q, k) ∈
{(2, 1), (3, 1), (10, 5), (10, 8), (50, 25), (50, 35)} and m ∈ {100, 500, 2000} we create 25 datasets
similar to the previous case, except that for each dataset we first sample µ and Σ and use N(0,Σ) for
sampling feature-vectors in the centered Gaussian case and use N(µ,Σ) for sampling feature-vectors
in the general Gaussian case. We perform the following set of experiments in each case. For the cases
when bags are balanced, i.e. (q, k) ∈ {(2, 1), (10, 5), (50, 25)}, for each our Algorithms 2 and 4 we
evaluate their two possible solutions on the test data and report the better number.

• With LTF offset. We sample (r∗, c∗) and create a dataset using pos(rT∗x + c∗) as the
labeling function. Table 11 reports the test accuracy scores for Algorithm 4 and random
LTF (R) with m = {100, 500, 2000} for centered and general Gaussians. Table 12 reports
the corresponding scores for the SDP algorithm (S) [25, 26] with m = {50, 100, 200} and
(q, k) ∈ {(2, 1), (3, 1)}. Table 4 provides concise comparative scores with m = 2000 for
Algorithm 4 and random LTF and m = 200 for the SDP algorithm (S).

• Without LTF offset. We sample an r∗ and create a dataset using pos(rT∗x) as the labeling
function. Table 7 reports the test accuracy scores for Algorithm 2 and random LTF (R)

1https://github.com/google-research/google-research/tree/master/Algorithms_and_Hardness_
for_Learning_Linear_Thresholds_from_Label_Proportions (license included in the repository)
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for centered and general Gaussians. Table 12 reports the scores for the SDP algorithm
(S) [25, 26] on (q, k) ∈ {(2, 1), (3, 1)} with m = {50, 100, 200}. Table 3 provides concise
comparative scores with m = 2000 for Algorithm 4 and random LTF and m = 200 for the
SDP algorithm (S).
Noisy Labels. We also experiment in a model with label noise. Here, the label of any
instance can be independently flipped with some probability p, as a result the true bag label
sum k∗ has distribution over {0, . . . , q}. In this case the SDP algorithms are not applicable
and we omit them. Tables 9 and 10 give the test accuracy scores for Algorithm 2 and rand.
LTF (R) with label flip probability p = {0.1, 0.25, 0.5} for centered and general Gaussians.
Like the balanced case, here also we evaluate both the solutions of Algorithm 2 on the test
data and report the better number.

We observe that our algorithms perform significantly better in terms of accuracy than the comparative
methods in all the bag distribution settings. Further, our algorithms have much lower error bounds on
their accuracy scores. For the standard gaussian case, Algorithm 2 outperforms Algorithm 3 for larger
m, possibly since with larger number of bags Algorithm 2 (which has higher sample complexity) can
perform to its full potential. Conversely, we can observe that with larger bag sizes and dimensions,
Algorithm 3 outperforms Algorithm 2 for smaller m.

For the noisy cases, from Tables 9 and 10 we observe that while the test accuracy degrades with large
noise, it is fairly robust to small amounts of noise. This robustness is intuitive and we provide an
explanation for the same in Appendix H (Lemma H.2).

Table 2: Comparison of Algorithms A3, A2, rand. LTF (R) and SDP (S) on N(0, I) feature-vectors.
d q k A3 A2 R S

10 3 1 95.52 98.17 76.0 68.04
10 10 8 98.58 97.68 75.46 -
10 50 35 99.06 97.95 74.18 -
50 3 1 89.26 95.15 59.86 57.55
50 10 8 96.73 94.36 61.58 -
50 50 35 97.82 94.94 61.04 -

Table 3: Comparision of Algorithm A2, rand. LTF (R) and SDP algorithms (S) without offset

d q k A2 R S

10 2 1 98.12 78.26 88.40
10 3 1 98.27 77.16 67.31
10 10 5 97.9 78.66 -
10 10 8 97.87 77.64 -
10 50 25 97.87 76.67 -
10 50 35 97.9 77.17 -
50 2 1 95.64 61.25 57.83
50 3 1 95.21 61.15 58.69
50 10 5 95.59 55.06 -
50 10 8 94.34 63.17 -
50 50 25 95.16 55.76 -
50 50 35 94.74 61.02 -

(a) N(0,Σ) feature-vectors.

d q k A2 R S

10 2 1 98.18 78.32 90.10
10 3 1 97.92 75.14 70.80
10 10 5 97.86 70.41 -
10 10 8 97.4 69.86 -
10 50 25 97.57 70.48 -
10 50 35 97.6 62.86 -
50 2 1 94.99 58.68 61.12
50 3 1 95.6 59.8 62.39
50 10 5 95.27 57.43 -
50 10 8 94.44 61.82 -
50 50 25 94.97 53.98 -
50 50 35 94.33 56.97 -

(b) N(µ,Σ) feature-vectors.

30



Table 4: Comparision of Algorithm A4, rand. LTF (R) and SDP algorithms (S) with offset

d q k A4 R S

10 2 1 92.49 77.23 82.76
10 3 1 93.67 74.96 69.62
10 10 5 94.43 76.42 -
10 10 8 92.5 65.87 -
10 50 25 92.83 70.34 -
10 50 35 92.92 65.75 -
50 2 1 94.84 59.34 58.25
50 3 1 94.7 58.36 59.37
50 10 5 95.15 57.67 -
50 10 8 92.49 56.46 -
50 50 25 94.51 54.53 -
50 50 35 94.45 57.76 -

(a) N(0,Σ) feature-vectors.

d q k A4 R S

10 2 1 93.08 78.24 88.01
10 3 1 94.62 71.49 67.57
10 10 5 93.1 70.59 -
10 10 8 94.47 67.85 -
10 50 25 93.93 65.03 -
10 50 35 93.31 66.04 -
50 2 1 94.17 59.66 61.01
50 3 1 94.41 59.92 64.24
50 10 5 94.06 56.12 -
50 10 8 92.3 59.67 -
50 50 25 93.41 55.72 -
50 50 35 94.08 56.97 -

(b) N(µ,Σ) feature-vectors.

Table 5: Our algorithms A1 and A2 vs. rand. LTF (R) on N(0, I) feature-vectors.
d q k m A3 A2 R
10 3 1 100 82.37±0.13 90.2±0.07 73.46±0.68

10 3 1 500 91.2±0.03 96.34±0.01 73.26±0.34

10 3 1 2000 95.52±0.01 98.17±0.0 76.0±0.15

10 10 8 100 94.28±0.02 87.48±0.59 74.73±0.2

10 10 8 500 96.96±0.01 95.29±0.01 74.76±0.13

10 10 8 2000 98.58±0.0 97.68±0.0 75.46±0.12

10 50 35 100 95.79±0.01 89.99±0.07 73.34±0.5

10 50 35 500 98.26±0.0 95.63±0.03 72.83±0.22

10 50 35 2000 99.06±0.0 97.95±0.01 74.18±0.22

50 3 1 100 67.75±0.11 61.21±0.63 55.34±0.11

50 3 1 500 80.78±0.05 89.45±0.02 56.72±0.17

50 3 1 2000 89.26±0.02 95.15±0.01 59.86±0.09

50 10 8 100 85.7±0.02 60.4±0.53 56.26±0.12

50 10 8 500 94.09±0.01 86.84±0.04 60.37±0.11

50 10 8 2000 96.73±0.0 94.36±0.01 61.58±0.07

50 50 35 100 90.21±0.02 62.8±0.52 55.84±0.1

50 50 35 500 95.68±0.01 89.09±0.03 59.69±0.15

50 50 35 2000 97.82±0.0 94.94±0.01 61.04±0.14

Table 6: SDP Algorithm (S) on standard gaussian feature vectors
d m S

10 50 67.86±6.49

10 100 66.25±5.87

10 200 68.04±6.82

50 50 58.09±3.24

50 100 56.46±1.83

50 200 57.55±3.27
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Table 7: Our algorithms A2 vs. rand. LTF (R) without offset
d q k m A2 R
10 2 1 100 91.06±0.07 77.32±0.27

10 2 1 500 96.77±0.01 76.22±0.36

10 2 1 2000 98.12±0.01 78.26±0.12

10 3 1 100 91.2±0.1 74.25±0.34

10 3 1 500 96.2±0.01 76.12±0.29

10 3 1 2000 98.27±0.0 77.16±0.24

10 10 5 100 90.29±0.11 66.84±0.9

10 10 5 500 96.08±0.01 74.16±0.62

10 10 5 2000 97.9±0.01 78.66±0.17

10 10 8 100 89.18±0.2 74.49±0.33

10 10 8 500 95.57±0.02 77.34±0.19

10 10 8 2000 97.87±0.01 77.64±0.19

10 50 25 100 90.48±0.05 62.52±0.64

10 50 25 500 95.89±0.02 64.87±0.79

10 50 25 2000 97.87±0.0 76.67±0.19

10 50 35 100 89.69±0.06 70.79±0.23

10 50 35 500 95.87±0.01 76.09±0.07

10 50 35 2000 97.9±0.01 77.17±0.15

50 2 1 100 69.54±0.52 55.16±0.12

50 2 1 500 90.94±0.02 57.9±0.15

50 2 1 2000 95.64±0.0 61.25±0.15

50 3 1 100 66.99±0.38 54.6±0.12

50 3 1 500 90.63±0.02 59.2±0.17

50 3 1 2000 95.21±0.0 61.15±0.12

50 10 5 100 61.92±0.36 53.49±0.07

50 10 5 500 90.29±0.03 55.28±0.15

50 10 5 2000 95.59±0.0 55.06±0.17

50 10 8 100 60.66±0.35 56.92±0.08

50 10 8 500 87.01±0.03 61.72±0.09

50 10 8 2000 94.34±0.01 63.17±0.09

50 50 25 100 59.33±0.58 54.31±0.05

50 50 25 500 89.24±0.03 54.53±0.15

50 50 25 2000 95.16±0.01 55.76±0.18

50 50 35 100 60.68±0.55 56.61±0.15

50 50 35 500 88.63±0.03 57.73±0.08

50 50 35 2000 94.74±0.01 61.02±0.09

(a) Centered Gaussian

d q k m A2 R
10 2 1 100 91.25±0.19 74.75±0.46

10 2 1 500 96.26±0.02 76.86±0.23

10 2 1 2000 98.18±0.01 78.32±0.23

10 3 1 100 90.44±0.12 70.64±1.09

10 3 1 500 96.04±0.04 73.32±1.1

10 3 1 2000 97.92±0.01 75.14±0.47

10 10 5 100 89.36±0.23 66.08±0.98

10 10 5 500 95.48±0.02 69.46±0.99

10 10 5 2000 97.86±0.01 70.41±0.86

10 10 8 100 85.97±0.3 63.39±0.84

10 10 8 500 94.02±0.1 69.71±0.58

10 10 8 2000 97.4±0.01 69.86±0.8

10 50 25 100 87.92±0.28 60.65±0.6

10 50 25 500 95.5±0.03 61.73±0.8

10 50 25 2000 97.57±0.02 70.48±0.69

10 50 35 100 89.12±0.18 59.08±0.52

10 50 35 500 95.2±0.03 60.67±0.62

10 50 35 2000 97.6±0.01 62.86±0.75

50 2 1 100 69.08±0.46 55.44±0.21

50 2 1 500 89.46±0.12 57.35±0.32

50 2 1 2000 94.99±0.03 58.68±0.15

50 3 1 100 66.42±1.59 57.24±0.46

50 3 1 500 89.96±0.23 57.22±0.28

50 3 1 2000 95.6±0.05 59.8±0.84

50 10 5 100 65.76±1.07 54.71±0.13

50 10 5 500 90.2±0.14 56.57±0.25

50 10 5 2000 95.27±0.04 57.43±0.13

50 10 8 100 62.48±0.7 62.27±0.82

50 10 8 500 88.04±0.29 61.4±0.49

50 10 8 2000 94.44±0.06 61.82±0.54

50 50 25 100 65.07±0.81 54.78±0.14

50 50 25 500 87.72±0.28 55.22±0.22

50 50 25 2000 94.97±0.02 53.98±0.08

50 50 35 100 66.12±0.67 56.97±0.28

50 50 35 500 87.86±0.17 59.57±0.3

50 50 35 2000 94.33±0.03 56.97±0.32

(b) General Gaussian

Table 8: SDP Algorithm S without offset
d m q S
10 50 2 71.82±8.01

10 100 2 82.53±5.25

10 200 2 88.39±3.83

10 50 3 68.94±5.40

10 100 3 68.28±4.53

10 200 3 67.31±6.50

50 50 2 57.32±2.68

50 100 2 58.72±2.92

50 200 2 57.83±2.67

50 50 3 59.18±3.32

50 100 3 57.86±2.91

50 200 3 58.69±3.42

(a) Centered Gaussian

d m q S
10 50 2 77.44±6.71

10 100 2 84.31±5.43

10 200 2 90.10±4.24

10 50 3 72.08±6.72

10 100 3 71.58±8.39

10 200 3 70.80±7.67

50 50 2 59.58±3.97

50 100 2 59.95±3.24

50 200 2 61.12±4.38

50 50 3 63.90±7.61

50 100 3 62.69±6.89

50 200 3 62.39±7.83

(b) General Gaussian
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Table 9: Our algorithms A2 vs. rand. LTF (R) with label flip noise (mentioned in bracket) for
Centered Gaussians

d q k m A2(0.1) R(0.1) A2(0.25) R(0.25) A2(0.5) R(0.5)
10 2 1 100 81.96±0.4 72.17±0.86 66.9±0.77 63.44±0.85 57.69±0.35 57.4±0.23

10 2 1 500 93.08±0.03 77.86±0.22 76.36±1.19 65.99±0.53 57.2±0.37 59.24±0.56

10 2 1 2000 97.09±0.01 78.21±0.09 91.22±0.09 77.09±0.35 57.64±0.41 60.73±0.47

10 3 1 100 79.94±0.54 67.69±0.85 63.58±0.88 62.53±0.78 56.24±0.3 59.83±0.36

10 3 1 500 92.43±0.05 74.82±0.16 74.0±0.82 67.78±1.09 58.37±0.43 58.86±0.21

10 3 1 2000 96.53±0.01 76.22±0.16 88.51±0.13 73.74±0.6 58.68±0.39 59.6±0.55

10 10 5 100 75.87±0.98 59.41±0.57 62.86±0.65 60.47±0.63 57.69±0.38 56.38±0.32

10 10 5 500 91.97±0.07 69.36±1.07 74.61±0.9 63.14±0.49 57.7±0.28 61.17±0.56

10 10 5 2000 95.78±0.01 74.52±0.67 87.93±0.24 67.22±0.75 58.04±0.39 60.28±0.73

10 10 8 100 72.66±0.66 71.26±0.3 61.11±0.58 67.88±0.71 56.77±0.35 60.96±0.76

10 10 8 500 89.6±0.1 75.16±0.25 65.65±0.74 73.61±0.45 57.7±0.32 59.26±0.5

10 10 8 2000 94.98±0.02 76.48±0.14 78.16±0.78 76.39±0.22 57.78±0.51 57.48±0.3

10 50 25 100 76.86±0.98 60.43±0.54 63.2±0.92 61.48±0.6 56.06±0.27 59.76±0.42

10 50 25 500 91.4±0.09 65.14±0.95 72.86±1.11 61.6±0.35 57.98±0.28 57.18±0.28

10 50 25 2000 96.36±0.01 70.18±0.75 87.59±0.13 65.52±0.83 57.05±0.16 58.78±0.36

10 50 35 100 74.32±0.7 69.02±0.44 60.0±0.6 65.95±0.7 58.81±0.27 58.44±0.4

10 50 35 500 91.23±0.05 75.32±0.25 69.86±0.96 69.33±0.37 58.76±0.54 57.96±0.22

10 50 35 2000 95.39±0.01 75.46±0.13 84.6±0.23 75.25±0.26 56.95±0.28 59.66±0.53

50 2 1 100 58.14±0.36 55.05±0.15 54.43±0.12 54.15±0.11 54.57±0.15 54.78±0.09

50 2 1 500 82.97±0.07 57.46±0.27 59.14±0.36 54.14±0.06 53.73±0.08 53.72±0.09

50 2 1 2000 91.99±0.02 59.86±0.26 73.26±0.41 56.35±0.17 54.2±0.08 54.7±0.13

50 3 1 100 59.07±0.32 54.72±0.13 54.66±0.12 53.8±0.08 53.45±0.08 55.07±0.1

50 3 1 500 79.51±0.22 56.96±0.17 57.44±0.15 54.99±0.1 53.55±0.08 53.41±0.06

50 3 1 2000 90.66±0.01 60.26±0.17 66.04±0.58 56.88±0.13 54.28±0.1 54.69±0.14

50 10 5 100 56.3±0.29 54.32±0.07 54.77±0.12 53.9±0.12 53.92±0.11 54.68±0.13

50 10 5 500 75.21±0.62 54.48±0.06 57.21±0.26 54.14±0.12 53.68±0.08 52.5±0.04

50 10 5 2000 90.68±0.02 55.72±0.24 65.65±0.56 56.06±0.13 53.21±0.05 55.06±0.11

50 10 8 100 55.76±0.18 57.33±0.15 54.34±0.08 56.62±0.17 53.72±0.05 54.93±0.1

50 10 8 500 65.55±0.57 60.97±0.14 55.0±0.21 58.98±0.15 54.7±0.11 53.82±0.06

50 10 8 2000 87.17±0.04 62.39±0.11 60.28±0.26 61.82±0.14 54.76±0.17 53.41±0.05

50 50 25 100 54.6±0.06 54.16±0.11 55.45±0.17 55.12±0.12 53.1±0.04 53.91±0.07

50 50 25 500 77.1±0.22 53.81±0.07 56.34±0.26 54.44±0.09 53.4±0.05 53.8±0.09

50 50 25 2000 90.28±0.03 55.11±0.1 65.29±0.42 55.26±0.08 53.43±0.08 54.43±0.16

50 50 35 100 55.33±0.1 55.45±0.13 54.51±0.14 54.08±0.07 52.94±0.04 54.24±0.05

50 50 35 500 72.95±0.43 59.5±0.16 56.18±0.16 57.85±0.1 53.71±0.11 54.28±0.12

50 50 35 2000 89.07±0.02 60.11±0.16 62.83±0.59 57.27±0.11 54.51±0.13 53.99±0.1
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Table 10: Our algorithms A2 vs. rand. LTF (R) with label flip noise (mentioned in bracket) for
General Gaussians

d q k m A2(0.1) R(0.1) A2(0.25) R(0.25) A2(0.5) R(0.5)
10 2 1 100 86.68±0.46 68.35±0.96 65.88±0.83 60.62±0.66 59.48±0.48 58.82±0.37

10 2 1 500 93.34±0.09 77.69±0.48 82.68±0.79 67.5±0.93 60.55±0.57 61.5±0.71

10 2 1 2000 96.94±0.02 75.5±0.16 90.02±0.24 76.6±0.24 60.26±0.53 60.05±0.61

10 3 1 100 80.05±0.93 64.76±1.07 64.66±0.8 62.96±0.98 62.46±0.6 60.63±0.43

10 3 1 500 91.83±0.12 70.26±1.42 74.9±1.18 65.09±0.96 59.86±0.49 58.69±0.38

10 3 1 2000 96.12±0.03 73.05±0.97 88.23±0.11 63.38±0.71 60.22±0.51 60.06±0.39

10 10 5 100 79.69±1.2 65.48±0.77 63.53±0.78 63.28±0.85 64.81±0.75 59.51±0.64

10 10 5 500 91.9±0.11 71.2±1.0 71.65±1.33 61.41±0.62 62.1±0.85 61.56±0.45

10 10 5 2000 96.21±0.03 71.95±0.71 86.2±0.28 63.04±0.93 60.43±0.71 59.52±0.4

10 10 8 100 72.46±1.1 59.4±0.47 64.74±0.92 61.22±0.57 59.93±0.75 63.45±0.87

10 10 8 500 87.61±0.47 61.66±0.79 64.32±0.68 62.22±0.74 65.04±0.65 64.1±0.61

10 10 8 2000 94.53±0.07 63.79±0.83 77.46±1.37 61.28±0.58 61.05±0.75 64.82±0.87

10 50 25 100 80.2±0.85 60.49±0.5 62.72±0.93 59.3±0.62 58.45±0.49 59.32±0.48

10 50 25 500 91.96±0.22 61.28±0.57 72.0±1.05 58.47±0.64 59.89±0.9 58.85±0.31

10 50 25 2000 96.38±0.04 63.74±0.67 84.59±0.78 62.78±0.72 59.84±0.48 60.17±0.57

10 50 35 100 69.83±1.44 60.74±0.45 62.45±0.71 59.02±0.24 62.27±0.65 60.51±0.72

10 50 35 500 90.07±0.14 62.02±0.96 66.85±1.68 61.81±1.09 61.67±0.93 62.31±0.6

10 50 35 2000 95.24±0.03 62.2±1.02 81.07±0.65 61.24±0.5 61.13±0.7 60.29±0.49

50 2 1 100 61.4±0.99 57.38±0.25 57.99±0.35 55.72±0.12 56.0±0.22 54.19±0.09

50 2 1 500 82.7±0.37 56.61±0.15 60.44±0.73 56.8±0.14 56.3±0.32 54.22±0.08

50 2 1 2000 91.5±0.07 57.45±0.22 74.38±0.66 56.52±0.16 58.35±0.17 54.0±0.13

50 3 1 100 58.07±0.42 58.16±0.26 59.48±0.35 59.29±0.35 57.95±0.72 56.86±0.23

50 3 1 500 77.58±0.45 57.2±0.24 61.05±0.55 56.24±0.35 56.85±0.44 56.77±0.23

50 3 1 2000 89.25±0.14 55.3±0.18 71.13±0.66 56.78±0.3 56.98±0.3 55.62±0.22

50 10 5 100 59.26±0.5 54.08±0.1 57.16±0.31 54.97±0.08 56.82±0.36 55.3±0.16

50 10 5 500 75.83±0.65 55.05±0.13 59.42±0.5 54.61±0.09 59.04±0.72 54.56±0.07

50 10 5 2000 88.63±0.13 54.74±0.18 68.27±0.56 55.38±0.13 60.22±0.6 54.48±0.1

50 10 8 100 58.23±0.7 60.75±0.48 57.71±0.28 60.52±0.53 55.46±0.2 59.23±0.53

50 10 8 500 68.01±1.04 60.06±0.32 58.77±0.32 61.39±0.54 58.76±0.88 60.28±0.85

50 10 8 2000 85.53±0.17 61.66±0.42 62.99±1.22 61.56±0.67 57.54±0.44 59.17±0.54

50 50 25 100 59.24±0.5 54.38±0.08 59.94±0.56 53.92±0.08 57.92±0.48 54.84±0.14

50 50 25 500 80.22±0.81 54.26±0.1 57.32±0.4 53.97±0.12 55.14±0.22 55.18±0.2

50 50 25 2000 90.32±0.12 54.03±0.1 64.51±0.91 54.95±0.15 57.8±0.33 55.2±0.13

50 50 35 100 57.1±0.34 56.03±0.31 58.14±0.6 57.16±0.36 55.18±0.24 56.69±0.27

50 50 35 500 72.81±0.83 58.09±0.44 59.59±0.43 56.23±0.21 57.36±0.62 58.39±0.32

50 50 35 2000 88.48±0.18 55.86±0.39 61.99±0.6 57.32±0.22 57.42±0.4 58.0±0.31

34



Table 11: Our algorithms A4 vs. rand. LTF (R) with offset
d q k m A4 R
10 2 1 100 89.41±0.09 73.83±0.52

10 2 1 500 92.2±0.18 76.7±0.21

10 2 1 2000 92.49±0.26 77.23±0.17

10 3 1 100 89.15±0.09 71.78±0.77

10 3 1 500 92.5±0.09 72.66±0.42

10 3 1 2000 93.67±0.13 74.96±0.1

10 10 5 100 89.43±0.08 64.12±0.75

10 10 5 500 93.31±0.1 73.14±0.83

10 10 5 2000 94.43±0.14 76.42±0.29

10 10 8 100 85.16±0.31 64.0±0.88

10 10 8 500 90.73±0.11 68.29±0.58

10 10 8 2000 92.5±0.17 65.87±0.77

10 50 25 100 88.68±0.08 62.41±0.47

10 50 25 500 92.41±0.11 62.66±0.65

10 50 25 2000 92.83±0.15 70.34±0.75

10 50 35 100 87.0±0.23 62.8±0.64

10 50 35 500 92.26±0.14 65.4±0.75

10 50 35 2000 92.92±0.19 65.75±0.78

50 2 1 100 67.1±0.9 54.03±0.12

50 2 1 500 90.51±0.01 57.79±0.17

50 2 1 2000 94.84±0.02 59.34±0.19

50 3 1 100 59.98±0.46 55.47±0.07

50 3 1 500 89.64±0.04 55.86±0.18

50 3 1 2000 94.7±0.01 58.36±0.26

50 10 5 100 63.14±0.62 53.58±0.08

50 10 5 500 89.88±0.02 54.24±0.1

50 10 5 2000 95.15±0.01 57.67±0.22

50 10 8 100 55.52±0.19 58.26±0.2

50 10 8 500 84.76±0.06 57.08±0.16

50 10 8 2000 92.49±0.03 56.46±0.23

50 50 25 100 61.96±0.36 55.44±0.21

50 50 25 500 88.96±0.02 55.74±0.16

50 50 25 2000 94.51±0.01 54.53±0.1

50 50 35 100 61.06±0.28 56.4±0.19

50 50 35 500 88.32±0.04 56.7±0.14

50 50 35 2000 94.45±0.01 57.76±0.2

(a) Centered Gaussian

d q k m A4 R
10 2 1 100 88.36±0.24 74.23±0.39

10 2 1 500 92.22±0.38 77.04±0.3

10 2 1 2000 93.08±0.32 78.24±0.24

10 3 1 100 88.47±0.39 68.16±0.96

10 3 1 500 93.09±0.21 72.18±0.4

10 3 1 2000 94.62±0.16 71.49±0.3

10 10 5 100 82.44±1.08 64.65±0.86

10 10 5 500 90.75±0.41 68.96±0.72

10 10 5 2000 93.1±0.38 70.59±0.78

10 10 8 100 84.11±0.97 64.71±0.96

10 10 8 500 92.71±0.17 65.91±1.16

10 10 8 2000 94.47±0.26 67.85±1.05

10 50 25 100 86.78±0.72 60.89±0.57

10 50 25 500 91.64±0.25 63.56±0.75

10 50 25 2000 93.93±0.13 65.03±1.14

10 50 35 100 85.69±0.87 59.46±0.66

10 50 35 500 91.96±0.3 66.64±1.08

10 50 35 2000 93.31±0.33 66.04±0.8

50 2 1 100 70.05±0.96 55.58±0.23

50 2 1 500 90.16±0.04 58.88±0.31

50 2 1 2000 94.17±0.08 59.66±0.24

50 3 1 100 63.86±1.03 58.19±0.37

50 3 1 500 86.73±0.56 58.3±0.36

50 3 1 2000 94.41±0.1 59.92±0.42

50 10 5 100 64.76±1.18 54.76±0.13

50 10 5 500 86.8±0.51 55.0±0.14

50 10 5 2000 94.06±0.04 56.12±0.23

50 10 8 100 62.47±0.99 60.43±0.48

50 10 8 500 82.48±0.7 60.34±0.8

50 10 8 2000 92.3±0.09 59.67±0.57

50 50 25 100 59.94±1.25 54.34±0.17

50 50 25 500 88.3±0.23 54.11±0.14

50 50 25 2000 93.41±0.13 55.72±0.23

50 50 35 100 65.29±1.37 58.16±0.63

50 50 35 500 84.11±1.16 56.98±0.34

50 50 35 2000 94.08±0.07 56.97±0.4

(b) General Gaussian

Table 12: SDP Algorithm S with offset
d m q S
10 50 2 73.16±7.26

10 100 2 79.09±9.21

10 200 2 82.76±7.02

10 50 3 67.80±5.78

10 100 3 68.52±6.28

10 200 3 69.62±6.90

50 50 2 59.30±3.17

50 100 2 59.04±3.27

50 200 2 58.25±2.68

50 50 3 58.17±3.32

50 100 3 57.94±2.72

50 200 3 59.37±3.14

(a) Centered Gaussian

d m q S
10 50 2 75.96±5.05

10 100 2 80.76±6.47

10 200 2 88.01±5.08

10 50 3 69.84±6.78

10 100 3 66.95±5.62

10 200 3 67.57±6.12

50 50 2 61.41±3.51

50 100 2 59.87±4.60

50 200 2 61.01±3.17

50 50 3 63.88±6.37

50 100 3 62.62±5.61

50 200 3 64.24±6.64

(b) General Gaussian
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G Class ratio estimation for LTFs

The work of [13] studies the problem of matching the classifier label proportion using a single
sampled bag which they call class-ratio (CR) learning as distinct from LLP. Indeed, in LLP the
goal is to learn an accurate instance-level classifier from multiple sampled bags, whereas CR-
learning does not guarantee instance-level performance. Further, similar to Prop. 18 of [13],
CR learning LTFs over Gaussians is easy: for a bag B = {x(i)}ni=1 of iid Gaussian points, a
random unit vector r has distinct inner products {si := rTx(i)}ni=1 with probability 1. The LTFs
{pos

(
rTx− s

)
| s ∈ {−∞, s1, . . . , sn}} achieve all possible target label proportions {j/n}nj=0,

and one can then apply the generalization error bound in Thm. 4 of [13].

H Analysis of a Mixture of Label Sums

Definition H.1 (Mixed Bag Oracle). Given a set of bag oracles Ex(f,D, q, k) for k ∈ {0, . . . , q}
and p = (p0, . . . , pq) ∈ ∆q where ∆q is a q-simplex, a mixed bag oracle Ex(f,D, q,p) samples a
bag size k from Multinoulli(p) distribution2 and then samples a bag from Ex(f,D, q, k).

Let ΣD be the covariance matrix of difference of a pair of vectors sampled u.a.r without replacement
from Ex(f,D, q,p) and ΣB be the covariance matrix of vectors sampled u.a.r from Ex(f,D, q,p).
If ΣDk is the covariance matrix of difference of a pair of vectors sampled u.a.r without replacement
from Ex(f,D, q, k) and ΣBk be the covariance matrix of vectors sampled u.a.r from Ex(f,D, q, k)
then we have the following

ΣB =

q∑
k=0

p2
kΣBk ΣD =

q∑
k=0

p2
kΣDk (54)

Using the above, we prove the following geometric error bound which is analogous to Lemma 4.1.

Lemma H.2. For any ε, δ ∈ (0, 1), if m ≥ O

(
(d/ε4) log(d/δ)(λmax/λmin)4q4

(
1/
∑q−1
k=1 p

2
k

)2
)

,

then r̂ computed in Step 3 of Alg. 2 satisfies min{‖r̂− r∗‖2, ‖r̂ + r∗‖2} ≤ ε, w.p. 1− δ/2.

H.1 Proof of Lemma H.2

We define and bound the following useful quantities based on q, λmax, λmin and p.

Definition H.3. Define, (i) κ1(k) :=
(

2k
q − 1

)2
2
π so that 0 ≤ κ1(k) ≤ 2/π, (ii)

κ2(k) := 1
q−1

k
q

(
1− k

q

)
16
π so that 16

πq2 ≤ κ2(k) ≤ 4
π(q−1) whenever 1 ≤ k ≤

q − 1, (iii) κ3(p) :=
∑q

k=0 p
2
kκ2(k)∑q

k=0 p
2
k−

∑q
k=0 p

2
kκ1(k)

so that 16
∑q−1

k=1 p
2
k

πq2
∑q

k=0 p
2
k
≤ κ3(p), and (iv)

θ(p) := 2λmax
λmin

(
1

2
∑q

k=0 p
2
k−max(0,2

∑q
k=0 κ1(k)−

∑q
k=0 p

2
kκ2(k))

+ 1∑q
k=0 p

2
k−

∑q
k=0 p

2
kκ1(k)

)
so that

θ(p) ≤ 3λmax
(1−2/π)λmin(

∑q
k=0 p

2
k)

.

Lemma H.4. The ratio ρ(r) := rTΣDr/rTΣBr is maximized when r = ±r∗. Moreover,

ρ(r) = 2 +
γ(r)2

∑q
k=0 p

2
kκ2(k)∑q

k=0 p
2
k − γ(r)2

∑q
k=0 p

2
kκ1(k)

where γ(r) :=
rTΣr∗√

rTΣr
√

rT∗Σr∗
and

rTΣBr = rTΣr

(
q∑

k=0

p2
k − γ(r)2

q∑
k=0

p2
kκ1(k)

)
,

rTΣDr = rTΣr

(
2

q∑
k=0

p2
k − 2γ(r)2

q∑
k=0

p2
kκ1(k) + γ(r)2

q∑
k=0

p2
kκ2(k)

)
2Section 2.3.2 (p. 35) of ’Machine Learning: A Probabilistic Perspective’ (by K. Murphy)
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Proof. The proof follows directly from Lemma 4.4 which gives us the expression for ΣBk and ΣDk

and (54). Once the expression for ρ(r) is obtained, it is easy to see that since |γ(r)| ≤ 1, ρ(r)
maximizes when γ(r) = ±1 and thus when r = ±r∗.

Proof. (of Lemma H.2) By Lemma 3.1, taking m ≥ O
(
(d/ε2

1) log(d/δ)
)

ensures that ‖EB‖2 ≤
ε1λmax and ‖ED‖2 ≤ ε1λmax w.p. at least 1 − δ where EB = Σ̂B − ΣB and ED = Σ̂D − ΣD.
We start by defining ρ̂(r) := rTΣ̂Dr

rTΣ̂Br
which is the equivalent of ρ using the estimated matrices.

Observe that it can be written as ρ̂(r) = rTΣBr+rTEBr
rTΣDr+rTEDr

. Using these we can obtain the following
bound on ρ̂: for any r ∈ Rd, |ρ̂(r) − ρ(r)| ≤ θ(p)ε1|ρ(r)| w.p. at least 1 − δ (*) as long as

ε1 ≤
(
∑q

k=0 p
2
k−

∑q
k=0 p

2
kκ1(k))

2
λmin
λmax

, which we shall ensure. This is obtained as follows.
Define a(r) := rTΣDr, b(r) := rTΣBr, e(r) := rTEDr, f(r) := rTEBr. Thus, we get
that |e(r)| ≤ ε1λmax, |f(r)| ≤ ε1λmax, |a(r)| ≥ λmin

(∑q
k=0 p

2
k −

∑q
k=0 p

2
kκ1(k)

)
and |b(r)| ≥

λmin
(
2
∑q
k=0 p

2
k −max

(
0, 2

∑q
k=0 p

2
kκ1(k)−

∑q
k=0 p

2
kκ2(k)

))
. Notice that ρ̂(r)/ρ(r) = (1 +

e(r)/a(r))/(1 + f(r)/b(r)). Taking ε1 ≤
(
∑q

k=0 p
2
k−

∑q
k=0 p

2
kκ1(k))

2
λmin
λmax

allows us to claim that
|ρ̂(r)− ρ(r)| ≤ ε1θ(p)ρ(r).
For convenience we denote the normalized projection of any vector r as r̃ := Σ1/2r

‖Σ1/2r‖2
. Now let

r̃ ∈ Sd−1 be a vector such that min{‖r̃− r̃∗‖2, ‖r̃ + r̃∗‖2} ≥ ε2. Hence, using the definitions from
Lemma H.4, |γ(r)| ≤ 1 − ε2

2/2 while γ(r∗) = 1 which implies ρ(r∗) − ρ(r) ≥ κ3(p)ε2
2/2. Note

that ρ(r) ≤ ρ(r∗) = 2 + κ3(p). Choosing ε1 <
κ3(p)

4θ(2+κ3(p))ε
2
2, we obtain that ρ(r∗)(1− θ(p)ε1) >

ρ(r)(1+θ(p)ε1). Using this along with the bound (*) we obtain that w.p. at least 1−δ, ρ̂(r∗) > ρ̂(r)
when ε2 > 0. Since our algorithm returns r̂ as the maximizer of ρ̂, w.p. at least 1−δ we get min{‖r̃−
r̃∗‖2, ‖r̃ + r̃∗‖2} ≤ ε2. Using Lemma 2.1, min{‖r̂− r∗‖2, ‖r̂ + r∗‖2} ≤ 4

√
λmax
λmin

ε2. Substituting

ε2 = ε
4

√
λmin
λmax

, ‖r−r∗‖2 ≤ εw.p. at least 1−δ. The conditions on ε1 are satisfied by taking it to be≤

O
(

κ3(p)ε2λmin
θ(p)(2+κ3(p))λmax

)
, and thus we can take m ≥ O

(
(d/ε4) log(d/δ)

(
λmax
λmin

)2

θ(p)2
(

1
κ3(p)

)2
)
.

Taking m ≥ O

(
(d/ε4) log(d/δ)

(
λmax
λmin

)4

q4
(

1/
∑q−1
k=1 p

2
k

)2
)

satisfies this using bounds in Defn.

H.3. This completes the proof.

We observe that the sample complexity bound is worse for {p1, . . . , pq−1} which are not concentrated
i.e., the probability of the label sum is supported over many different values. This occurs for e.g. in
the noisy setting when the label flip noise is large (see Appendix F).
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