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AbstractÐSleep apnea (SA) is a type of sleep disorder char-
acterized by snoring and chronic sleeplessness, which can lead
to serious conditions such as high blood pressure, heart failure,
and cardiomyopathy (enlargement of the muscle tissue of the
heart). The electrocardiogram (ECG) plays a critical role in
identifying SA since it might reveal abnormal cardiac activity.
Recent research on ECG-based SA detection has focused on
feature engineering techniques that extract specific characteristics
from multiple-lead ECG signals and use them as classification
model inputs. In this study, a novel method of feature extraction
which based on the detection of S peaks is proposed to enhance
the detection of adjacent SA segments using a single-lead ECG.
In particular, ECG features collected from a single lead (V2) are
used to identify SA episodes. On the extracted features, a CNN
model is trained to detect SA. Experimental results demonstrate
that the proposed method detects SA from single-lead ECG data
is more accurate than existing state-of-the-art methods, with
91.13% classification accuracy, 92.58% sensitivity, and 88.75%
specificity. Moreover, the further usage of features associated with
the S peaks enhances the classification accuracy by 0.85%. Our
findings indicate that the proposed machine learning system has
the potential to be an effective method for detecting SA episodes.

I. INTRODUCTION

Sleep apnea (SA) is the most prevalent breathing problem

associated with sleep [1]. It causes people to repeatedly

stop and start breathing during sleep. There are various

types of sleep apnea, but obstructive sleep apnea is the most

prominent, which occurs when upper airway muscles relax

during sleep and obstruct the airway, preventing adequate

airflow [1]. Patients’ breathing may stop for 10 seconds or

longer before the reflexes kick in and then resume breathing.

Sleep apnea affects approximately 3% of normal-weight

adults, but over 20% of obese individuals, and in general,

men are more susceptible to sleep apnea than women [2].

Sleep apnea is frequently associated with heart disease

and metabolic disorders such as diabetes [3]. Several studies

have demonstrated a link between sleep apnea and health

issues such as type 2 diabetes, strokes, heart attacks, and

even a shorter lifespan [3]±[6]. It is essential to diagnose

and detect sleep apnea in order to avoid long-term health

repercussions. The questionnaire, which includes the STOP-

Bang Questionnaire [7], [8] and Berline Questionnaire [9], is

one method for screening patients at risk for SA syndrome.

The gold standard for diagnosing sleep-related breathing

disorders, however, is polysomnography Ð a method

for collecting physiologic parameters during sleep [10].

A polysomnogram (PSG) is a diagnostic test that uses

electroencephalogram (EEG), electrooculogram (EOG),

electromyogram (EMG), electrocardiogram (ECG), and pulse

oximetry, in addition to airflow and respiratory effort, to

identify the underlying reasons of sleep abnormalities [10].

However, this diagnostic procedure is time-consuming,

expensive, and inconvenient. Patients must be connected to at

least 22 electrodes for several nights in order to measure 11

channels of sleep signals in the laboratory using specialized

equipment [11]. This is a barrier for patients to independently

install and use the device at home. Moreover, to diagnose a

patient, physicians must spend considerable time monitoring

and interpreting that data. Consequently, the PSG-based

technique is costly, complicated, and cumbersome. That

trigger a need for a simple, affordable, and user-friendly

alternative.

ECG is a viable tool for diagnosing and detecting

sleep apnea, which has lately generated considerable

interest. While some study groups have demonstrated that

a patient’s cardiovascular activity changes during sleep

apnea, resulting in typical ECG readings [12], [13], other

studies have demonstrated a link between patients with SA

and other cardiovascular disorders [14]. Thus, the Apnea-

ECG database [15] was developed by PhysioNet to spot

abnormalities in patients’ ECG signals when they have SA.

Various research use ECG data to identify SA episodes, some

of which employ traditional machine learning techniques

based on feature engineering. [16]±[22] and others applying

deep learning techniques [17], [23] for their classification

tasks. In [24], Li et al. suggested a technique for detecting SA

using ECG data, which is based on a deep neural network and

a Hidden Markov model (HMM). The approach used a sparse

auto-encoder to learn features, which were then fed into two

types of classifiers (SVM and ANN). In the per-segment

SA detection, they achieve 84.5% classification accuracy.

In [22], a Sgolay filter was applied to extract the Heart Rate

Variability (HRV) and the ECG-Derived Respiration (EDR),

then they were used for the training procedure to achieve

82.2% accuracy. Shen et al. introduced a method that based

on a weighted-loss time-dependent (WLTD) classification

model and a multiscale dilation attention 1-D convolutional

neural network (MSDA-1DCNN) [18]. That study obtained
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89.4% accuracy, 89.8% sensitivity and 89.1% specificity. A

novel method for diagnosing SA using a pre-trained AlexNet

model is reported in [21], in which per-minute segments of a

single-lead ECG recording are decomposed using continuous

wavelet transform (CWT) and subsequently 2D scalogram

images are created. Following that, a CNN based on a

deep learning algorithm is used to improve classification

performance.

While recent studies have sought to utilize ECG signals

as direct input to deep learning models, research using hand-

crafted features offers the potential for development because of

its transparency and interpretability. However, recent research

targeted at identifying SA by feature engineering only con-

sider the position of the R peak in the ECG, neglecting the

remaining four peaks (P, Q, S, and T). In this work, we not

only identify the R peak, but also determine the position of

the S peak and demonstrate that using the S peak enhances

the model’s performance. To reduce noise and signal artifacts,

we first applied a Finite Impulse Response (FIR) band-pass

filter to the signal. Afterward, features are extracted based on

the detection of the R and S peaks. We employ the feature

extraction approach given by Wang et al. [25], in which an

ECG record is divided into 5 minute-long segments, then the

R peak is detected. In this work, the detection of S peak is

added, followed by cubic interpolation to generate 900 values

for each feature. The extracted features were used as input

to the SE-ResNext 50 model to classify ECG signals with

and without SA. Our model achieved 91.13% classification

accuracy, 92.58% sensitivity, and 88.75% specificity. It has

been demonstrated that using additional features extracted

from S peaks improves accuracy by 0.85% compared to using

only R-peak-related features, which may indicate anomalies in

the S peak morphology during SA.

The rest of this paper is structured as follows. Methods

for ECG signal preprocessing, feature extraction, and clas-

sification are introduced in section II. Section III describes

the dataset and experimental setups. In Section III and V we

report experimental results and summarize the key findings of

this work.

II. METHODS

Methods for preprocessing the ECG signal, extracting hand-

crafted features, and developing a classifier for ECG with

and without SA are described in this section. The proposed

system’s schematic is depicted in Fig. 1.

A. Pre-processing data

ECG signal is frequently contaminated by a variety of noise

sources, such as 50/60 Hz interference from power lines,

EMG signal from muscles, motion artefacts, and variations

in electrode-skin contact. Therefore, a band-pass filter with a

frequency range of 8 to 12 Hz was applied to remove noise

and artifacts while maintaining the ECG signal’s QRS complex

properties [26]. The signals before and after passing the band-

pass filter are shown in Fig. 2a and Fig. 2b, respectively.

Fig. 1: An overview of the proposed approach for detecting

sleep apnea.

B. Feature extraction

In order to detect ECG segments in patients with SA,

abnormal characteristics of the ECG signal are extracted and

fed into a machine learning classifier. As low QRS voltage

and a leftward shift of the electrical axis may be associated

with certain ECG abnormalities of SA patients [27], features

associated to the QRS complex of the ECG signal can be

utilized to detect SA episodes efficiently. Previous studies

have classified ECG signals with and without SA based on

characteristics associated to R peaks, which has limitations

as other peaks are neglected (P, Q, S, T). To the best of our

knowledge, this study is the first to recover features linked

to S peaks and then then feed them into a CNN model in

order to distinguish between SA and non-SA ECG. We use

the following features for the classification purpose:

• Amplitude of R peaks

• Amplitude of S peaks

• RR interval (duration between two consecutive R peaks)

• SS interval (duration between consecutive S peaks)

The distributions of R-peak-related features and S-peak-

related features are depicted in Fig. 3 and Fig. 4, respectively.

It seems that the RR and SS intervals of SA ECG are the

same as those of Non-SA ECG. It is noteworthy that R peaks

in SA ECG have significantly lower amplitude than those in
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(a)

(b)

Fig. 2: (a) The original signal of V2 lead ECG and (b) The

component falls within the 8 to 20 Hz frequency range of the

ECG signal.

Non-SA ECG. In contrast, S peaks in SA ECG have a higher

amplitude than those in non-SA. These analyses suggest that

these features can be used to distinguish between SA and Non-

SA.

To determine the positions of the R and S peaks, the

following steps are taken:

• R peaks detection: In order to determine the positions

of the R peaks and calculate the RR intervals, we first

used the Hamilton algorithm [28] to locate the R peaks.

The amplitude of the R peaks are then extracted, and

their positions are utilized to estimate the RR intervals. To

remove redundant R peaks due to false detection, a local

median filter proposed in [29] is applied. As the suspected

irregular RR intervals can be caused by either false R

peaks or missed R peaks, a lower bound and an upper

bound are defined based on the physiological range of RR

intervals in order to distinguish between these two types

of uninterpretable data points. For abnormal RR intervals

caused by false R peaks detection, the RR intervals in

a sliding window are compared to the lower bound and

(a)

(b)

Fig. 3: (a) The histogram of R peaks and (b) The histogram

of RR intervals.

rectified using either averaging or merging procedures.

For irregular RR intervals caused by a missed R wave

detection, the RR intervals in the current window are

divided into several equal values or averaged with the

neighboring window based on the specified criteria.

• S peaks detection: A method for detecting S peaks based

on the position of R peaks is proposed, in which, the

resulting S peak is the first negative peak (in the case of

a positive R peak). S peak detection algorithm is specified

in algorithm 1.

Fig. 5a and Fig. 5b display the location of the R and S peaks

found by the algorithm described above on the filtered signal

and the corresponding raw signal, respectively.

The effectiveness of the method for detecting R and S peaks

is evaluated by manually labeling the positions of R and S

peaks, followed by a comparison with the algorithm’s return

values. We randomly labeled 200 R peaks and 200 S peaks in

both classes (with and without SA); the accuracy and F1-score

of R and S peaks detection algorithms are reported in Table I.

All the statistics are performed on the PhysioNet Apnea±ECG

dataset.

Due to the disparity in units (amplitude in millivolts and
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(a)

(b)

Fig. 4: (a) The histogram of S peaks and (b) The histogram

of SS intervals.

Algorithm 1 Algorithm for determining the ECG S peaks

function FIND S PEAKS(data ecg, R peaks)
num peaks ← R peaks.shape[0]
S peaks ← list()
N ←length(num peaks)
for index← 0 to N do

i ← R peaks[index]
cnt ← i

if cnt+1 >= data ecg.shape[0] then
break

end if
while data ecg[cnt] > data ecg[cnt+1] do

cnt ← cnt+1
if cnt >= data ecg.shape[0] then

break
end if

end while
S peaks.append(cnt)

end for
return S peaks

end function

time interval in seconds), feature values are normalized to the

normal distribution before feeding them into the neural net-

work. Based on the findings on study [25], cubic interpolation

(a)

(b)

Fig. 5: Positions R and S peaks are detected on the original

signal (a) and on the filtered signal (b).

TABLE I: R and S peaks detection results for filtered signal.

#beats TP TN FP FN Acc F1-score

R peaks 200 196 0 0 4 98% 98.99%

S peaks 200 196 0 0 4 98% 98.99%

yielding 900 points of each feature every 5-minute segment is

utilized as an effective data augmentation technique.

C. Performance metrics

In this study, to evaluate the performance of the machine

learning classifier, we adopt the accuracy, sensitivity, speci-

ficity and F1-score as evaluation metrics.

• Sensitivity: Sensitivity of a class is defined as the ratio

of correctly classified samples to total number of samples

actually belonging to that class.

Sensitivity =
TP

TP + FN
(1)

• Specificity: Specificity is used to measure the proportion

of negatives that are correctly identified. It is defined as

the ratio of true negatives predicted to total number of
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samples which belong to negative class.

Specificity =
TN

TN + FP
(2)

• Accuracy: It is defined as the ratio of number of correctly

classified samples to that of total samples.

Accuracy =
TP + TN

TP + FN + TN + FP
(3)

• F1-score: It is the harmonic mean of the precision and

recall.

F1-score =
2TP

2TP + FP + FN
(4)

where TP: True Positive, TN: True Negative, FP: False

Positive, FN: False Negative.

III. EXPERIMENTS

A. Dataset

The PhysioNet Apnea±ECG dataset used to study SA was

made available by Philipps University [15]. The dataset con-

sists of 70 single-lead ECG records (35 recordings from the

public set and 35 from the withheld set). Each recording

ranges in length from just under 7 hours to over 10 hours

and consists of a digitized ECG signal and a set of apnea

annotations, which is derived by human experts on the basis

of simultaneously recorded respiration and related signals. The

ECG signal is separated into 1-minute segments and labeled;

a signal segment is identified as having SA if an apnea event

occurs during that minute. Table II provides details on the

number of 1-minute ECG signal segments identified with and

without SA in the training and test sets.

TABLE II: Number of 1-minute ECG signal segments labeled

with and without SA on training and test sets.

Training set Test set

SA 6,473 (38.74%) 6,490 (38.30%)

Non SA 10,236 (61.26%) 10,455 (61.79%)

Total 16,709 16,945

Previous research has demonstrated that adjacent segments

provide valuable information for SA detection [25], [30]. We

adopt the sampling method in [25], in which, each 1-minute

signal segment and the surrounding 2-minute signal are used

to form a 5-minute signal segment, which is then used for

preprocessing and classification.

B. Implementation details and training methodology

After being preprocessed, the extracted features will be

utilized to train the 1D CNN model. The NVIDIA GeForce

RTX 3080 Ti GPU, 31 GB of RAM, and Intel Core i9-10900X

processor operating at 3.70 GHz are used in all experiments.

With a mini-batch size of 256, we train a specific model

for 100 epochs, evaluating each model after every epoch.

The optimal model for each training procedure will be the

checkpoint with the highest F1-score. To assess the impact of

employing features associated with S peaks, we set up two

experiments as follows:

1) Only R peak amplitude and RR intervals, which are

features related to R peaks, are used.

2) Use a combination of features related to R and S peaks,

including amplitudes and intervals of R and S peaks.

The ECG signal classifier is constructed using the

SE-ResNext 50 [31] model as its backbone. The SE-

ResNext 50 [32] model is a variant of ResNet 50 with the

replacement of the identity connection with a Squeeze-and-

Excitation block. It enables feature recalibration, allowing the

network to learn how to use global information to selectively

emphasize informative characteristics and suppress less helpful

ones. This model has demonstrated its effectiveness with 1D

data and ECG signals in particular [33].

IV. RESULTS AND DISCUSSION

A. Model performance

As previously noted, in order to test the efficacy of using

S peak-related features, we conducted experiments with and

without these features. Table III shows the classification

results of the model employing solely R-related features

versus the model employing all types of features. Our

approach (RR intervals + R Amplitude) reports an accuracy

of 90.28%, a specificity of 90.44%, and a sensitivity of

90.00%. In terms of F1-score, we report an F1-score of 86.85

(for SA class) and 92.30 for non SA class. According to the

results, using features associated to the S peak enhances the

F1-score by up to 1.5% in the SA class and 0.54% in the

Non-SA class. That finding indicates that the characteristics

associated with the S peak may represent an alteration in the

ECG signal of individuals with SA and may contribute to the

capacity to classify SA and Non-SA.

B. Comparison to state-of-the-art

Table IV show the comparison between the proposed

method and current state-of-the-art approaches to SA detec-

tion. We show that our approach surpassed almost all of the

competitors, with the largest disparity in accuracy is up to

9.1%. These results indicate the robustness of the propose

method.

TABLE III: Experimental results using different features.

Results

Feature

combination
Classifier Acc (%) Spe (%) Sen (%) F1-score (%)

SA
Non

SA

RR intervals

R Amplitude

SE

ResNext

50
90.28 90.44 90.00 86.85 92.30

RR intervals

R Amplitude

SS intervals

S Amplitude

SE

ResNext

50
91.13 92.58 88.75 88.35 92.84
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TABLE IV: Comparison with state-of-the-art approaches.

Comparison

Study Classifer Accuracy Sensitivity Specificity

Li
et al. [24]

Decision
fusion

83.80% 88.90% 88.40%

AndrÂe Pinho
et. al. [22]

ANN 82.12% 88.41% 89.10%

Mahsa Bahrami
et. al. [25]

LeNet-5 87.6% 83.10% 90.30%

Shen
et. al. [18]

1DCNN
WLTD

89.40% 89.80% 89.10%

Mahsa Bahrami
et. al. [17]

ZFNet
GRU

88.13% 84.26% 92.27%

Singh
et. al. [21]

Scalogram 86.22% 90.00% 83.82%

Kaicheng Feng
et. al. [16]

FSSAE 85.10% 86.20% 84.40%

Ours [a]
SE-ResNext

50
90.28% 90.44% 90.00%

Ours [b]
SE-ResNext

50
91.13% 92.58% 88.75%

a: The model solely uses features relating to R peaks (RR intervals and R
amplitude).
b: The model uses additional S-peak-related features (RR intervals, R
amplitude, SS intervals and S amplitude).

V. CONCLUSIONS

In this study, we introduce a novel method for detecting

sleep apenea based on SS intervals and S amplitudes. Our

experimental results demonstrate that the proposed technique

is effective for SA detection, and its performance outper-

forms state-of-the-art works. Although showing a high-level

of performance, our approach has several disadvantages. For

example, the lack of access to SA patients’ ECG data and the

large volume of data are the primary limitations of this study.

Although proposed method has been tested with a number of

experimental setups, it should be evaluated on a larger dataset.

In the future, we expect to integrate a SA detection module

into a mobile application, which will alert patients suffering

from SA to wake them up. Additionally, we also consider muti-

model learning approaches [34], e.g. integrating demographic

data and clinical data [35] to boost model performance. An

example can be the image and encoded text (in the form

of a graph neural network or a knowledge graph) fusion for

better representation learning [36]±[39]. Not only that, we will

use the eXplainable method to indicate which segments are

at risk of disease and improve the accuracy of the model

[40]. Specifically, we will highlight which segments of the

ECG signal are suspect in the ECG signal obtained using an

eXplainable. As a result, this application may save the patient’s

life by restoring normal breathing and consciousness without

complex setups.
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