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ABSTRACT

Graph Neural Networks (GNNs) have recently emerged as popular methods for
learning representations of non-euclidean data often encountered in diverse areas
ranging from chemistry and biology to social and financial networks. More re-
cently, research has focused specifically on learning on temporal graphs, wherein
the nodes and edges of a graph, and their respective features, may change over
time. However, existing work in the temporal graph space has largely focused
on discriminative models. In this work, we present TG-Gen, a generic genera-
tive framework for temporal graph data, which combines an encoder module that
creates temporal embeddings of nodes from raw interaction data, with a decoder
module that uses the learned temporal embeddings to create a deep probabilis-
tic model of interaction data. We show that TG-Gen is able to generate robust
and accurate synthetic data for temporal graphs for two traditional benchmark
data and a novel dataset. Additionally, we demonstrate that TG-Gen is able to
learn generalizable representations of temporal graphs and outperforms the previ-
ous state-of-the-art method in the discriminative regime, such as for dynamic link
prediction. Finally, we perform comprehensive ablation studies which show the
effects of specific modules and configurations of our model.

1 INTRODUCTION

Graph representation learning has been an area of significant research interest in the past several
years. Specifically, graph neural networks (GNNs), a generalization of other neural network archi-
tectures typically based on the message passing mechanism (Hamilton et al., [2017a} |Battaglia et al.}
2018), have demonstrated to be powerful tools that can learn robust representations of graphs, and
other graph-like data structures, such as point clouds, natural networks, and manifolds(Wu et al.,
2020aib). GNNs have proven to significantly improve downstream performance in diverse applica-
tions ranging from particle physics (Shlomi et al., 2020} Ju et al.l [2020; [Duarte & Vlimant, [2022)
and drug discovery (Bongini et al., 2021} Jiang et al., 2021)), to recommender systems (Fan et al.,
2019; [Yin et al., |2019) and financial fraud detectionXu et al.|(2021); [Cheng et al.| (2020); Dou et al.
(2020); |You et al.| (2022). Specifically, by learning useful embedding of nodes in graph structured
data, downstream tasks such as node classification and regression, edge prediction, and graph clas-
sification and regression is possible. However, the majority of early efforts in graph representation
learning focused on static graphs(Wu et al., |2020b). Only more recently has research extended to
learning on dynamic graphs, which change over time(Barros et al.| [2021; Kazemi et al.l 2020).

Dynamic graphs are necessary in order to model many interesting real world phenomena, such as
social networks or knowledge graphs. Using the formulation described by previous work (e.g/Rossi
et al.[(2020)), we classify dynamic graphs as either discrete-time dynamic graphs (DTDGs), wherein
a dynamic graph is represented as a set of snapshots of the graph at different points in time, or
continuous-time dynamic graphs (CTDGs), wherein nodes and edges can be added, changed, or
deleted at any point in time. Many existing approaches for DTDGs represent such graphs as a time
series of static graphs and apply static learning methods to learn representations (Liben-Nowell &
Kleinberg| [2003; Dunlavy et al., 2011} |Yu et al.|[2019).
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More interesting are CTDGs, as they are able to model several real world phenomena not possible
by DTDGs, such as knowledge graphs and social networks. Recently, several methods have been
proposed to explicitly deal with representations of CTDGs (Xu et al.| 2020; Bastas et al., 2019; Ma
et al.l 2020; Nguyen et al.| 2018a; [Kumar et al., 2019a)). Perhaps most significantly, [Rossi et al.
(2020) proposed a generic framework for learning representations of CTDGs, and demonstrated
state-of-the-art performance on several CTDG datasets.

Simultaneous to work in graph representation learning, significant effort has focused on developing
generative models for graph structured data, with applications ranging from de-novo drug discovery
(Popova et al., 2019} You et al., [2018)) and semantic parsing of natural language graphs (Chen et al.}
2018;Wang et al.,|2018)). However, the overwhelming majority of these methods are limited to static
graphs. Recent work in temporal graph generation are either limited to DTDGs (Holme, [2013 [Perra
et al.| 2012} |Vestergaard et al., 2014]), or lack support for the inductive regime (i.e. generalization to
unseen graphs) (Zeno et al., 2021} Zhou et al| [2020). Thus, they are unsuitable for the real world
datasets used in this work. To the best of our knowledge, there is no framework for generative
modeling of CTDGs in inductive regime.

Contributions In this work, we present TG-Gen, a generic generative framework for CTDGs
which combines an encoder module that creates a temporal latent space embedding from raw inter-
action data, with a decoder module that uses said embeddings to cereate a deep probabilistic model
of the interaction data. We show that TG-Gen is able to generate robust and accurate synthetic data
for CTDGs on three diverse datasets. Additionally, we demonstrate that the embeddings learned by
TG-Gen are able to outperform previous state-of-the-art learning methods, even in the discriminative
regime. Finally, we perform comprehensive analysis of several different instantiations of TG-Gen
in the form of ablation studies in order to show the effects of specific modules and configurations of
our model.

2 BACKGROUND AND RELATED WORK

Representation Learning for Dynamic Graphs Work on graph representation has focused on
learning embeddings for graphs that dynamically change over time. Specifically, we can define
discrete-time dynamic graphs (DTDGs) as time sequences of static graphs. A generalization of
DTDGs are continuous-time dynamic graphs (CTDGs), which are a timed list of events that can
include node and edge addition and deletion as well as node and edge feature evolution at any point
in time (Rossi et al., [2020). In this work, we focus on CTDGs, as they can be used to model many
real world data (e.g. social networks, knowledge graphs) not possible by DTDGs. Given a static
graph G = (V, &) with nodes V = {1,...,n} and edges £ C V x V, we represent a CTDG as
a sequence of events over time, G = {x(t1), z(t2), ..., z(t;)} where each timestep ¢; € {1,...,1}
represents a node or edge event (that is, addition, deletion, feature transformation). Thus, we can
denote the nodes at a particular time T as V(T') = {i : 3v;(t) € G,t € T} and edges as E(T) =
{sre,dst : Jegreast(t) € G,t € T'}), where v;(t) and ey, 45 (t) are a node and edge, represented
by their feature vector, at time .

Representation learning for CTDGs are a new, albeit rapidly growing area of research. Many ear-
lier approaches, such as [Nguyen et al.| (2018b); Bastas et al.| (2019) use random walk approaches,
wherein temporal information about the graph is incorporated into transition probabilities of the
graph. Other approaches (Kumar et al.| 2019a; [Trivedi et al., 2017; |Ma et al., [2020) use recurrent
neural networks (RNNs) (Rumelhart et al} |1985) in order to incorporate temporal information into
the graph representation. Perhaps one of the most significant advances in representation learning
for CTDGs is TGN (Rossi et al.,[2020), which proposes a generic framework for inductive learning
on such dynamic graphs. TGN uses a memory module of seen nodes and edges over time, and
iteratively updates unseen nodes and interactions (edges) using based on this memory. Addition-
ally, TGN incorporates optimizations such as schemes to update the feature representation of “’stale”
nodes, that is, nodes that have not seen a feature transformation over a set time period. Rossi et al.
(2020) shows that many other modern CTDG representation learning approaches such as [Irivedi
et al.|(2019); Kumar et al.|(2019b)); Xu et al.|(2020) are specific instances of this framework. Recent
research |You et al.| (2022)) successfully used static GNN architectures to obtain temporal representa-
tion of nodes in CTDG by recurrently update their state over time.
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Generative Models for Graph Data Generating models for (static) graphs consists of learning
a probability distribution p(G) for a given set of input graphs © = {G1,...} which can be used
to generate graphs with similar properties to ©. Learning such a probability distribution can be
difficult due to the vast search space involved (indeed, similar graphs may have several arrange-
ments/orders of nodes and edges). Early approaches such as Karonski & Rucinskil (1997); Watts &
Strogatz (1998); |Albert & Barabasi| (2002)) rely on strong inductive assumptions about the distribu-
tion of p(G). These approaches are able to generate realistic synthetic graphs when the underlying
distribution falls under the assumed structure, but generally fail to extend to complex real world
graphs. Later work (Gamage et al., 2020; |Perozzi et al., 2014; [Simonovsky & Komodakis, [2018])
rely on schemes used in non-graph domains such as generative adversarial networks and variational
autoencoders in order to learn graph representations.

Generative models for dynamic graphs is a far newer research area. These models are required to
learn a probability function of the data that evolves over time. That is, p(G, t)V¢ € {1, ..., [} Existing
approaches in the area of DTDGs include Holme|(2013) which uses a so-called exponential threshold
network to capture essential temporal information for a set of static graphs and |Perra et al.| (2012);
Vestergaard et al.| (2014) which utilize specialized statistially driven functions to derive temporal
information from DTDGs. Other approaches extend to the CTGN domain. These include [Zeno
et al.|(2021) which graph motif structures to generate temporal graphs and|Zhou et al.|(2020) which
uses self-attention to generate temporal random walks that can then be used to generate new graphs.
However, to the best of our knowledge, there is no existing framework for generative modeling of
GTDGs in the inductive regime.

3 THE TEMPORAL GRAPH GENERATOR NETWORK
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Figure 1: Overview of TG-Gen’s Encoder-Decoder architecture and their internal modules, de-
scribed in Section[3

TG-Gen is a generative model for temporal graphs that allows to compute the probability of any
temporal edge (interaction) and to sample edges from this probability distribution. It has an encoder-
decoder architecture, where the encoder takes raw interaction data as input and produces temporal
embeddings for the nodes, and the decoder uses the dynamic embeddings of the nodes to build a
probabilistic model for the raw interactions (see Figure[T)). Specifically, a Temporal Graph Network
(TGN) Rosst et al.[(2020) model is used as encoder and a deep probabilistic model for tabular data
is used as decoder.
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3.1 ENCODER

The Encoder processes raw temporal interaction data and creates the temporal embeddings of the
nodes. A temporal embedding is a dense vector representation of the state of a node at a particular
time, which may depend on the node’s current and past interactions and on the state of the other
nodes in the graph, such as its temporal neighbors. The specific Encoder model used in our exper-
iments is TGNs Rossi et al.| (2020), although other models to create dynamic node representations,
like ROLAND [You et al.| (2022)), can also be used. TGN is composed by two main modules: the
Memory Module and the Embedding Module. The Memory Module is used to update the memory
of each node, which is a vector that stores all relevant information extracted from the node’s past
interactions in a dense representation. The Memory Module receives as input an aggregation of the
node’s interactions in the previous temporal batch, combines it with the node’s current memory and
produces a new, updated memory. The Embedding Module is a Transformer convolution model
(Vaswani et al., 2017) that combines the memories of a node’s temporal neighborhood together with
the corresponding edge features and temporal encodings, to produce the updated node’s embedding.

3.2 DECODER

The TG-Gen Decoder uses the temporal embeddings produced by the Encoder to create a prob-
abilistic model of the raw interactions. In temporal graphs, a raw interaction is specified by the
following attributes: the ID of the source node (src) the ID of the destination node (dst) the time
of the interaction (¢) and the message (edge) feature vector (e) of size n. The probability of a
single edge is thus p(src, dst,t,e) = p(src)p(dst|src)p(t, e|dst, src), where we write the joint
probability as the product of three terms: the probability of a node to be a source, p(src), the
conditional probability of a node to be a destination of an interaction with a given source node,
p(dst|src), and the conditional probability that an interaction between a given source and desti-
nation nodes happens at time ¢ and has message features e, p(¢,e|dst, src). The probability of
the time and message features given the source and destination nodes can further be decomposed
as p(t, e|dst, src) = p(t|dst, sre)p(vy|t, dst, src)..p(vp|vn—_1, ..., v1,t, dst, src). All these proba-
bilities are defined using appropriate statistical distributions whose parameters are estimated using
neural networks: p(src) is a Categorical distribution over the possible source nodes, where the prob-
ability of each node is estimated from the temporal embeddings using the Reshape Module (defined
below) followed by a Softmax. p(dst|src) is a Categorical distribution over the possible destina-
tion nodes given a source node, where the probability of each node is estimated from the temporal
embeddings combined with the embedding of the (known) source node using the Product Module
(defined below) followed by a Softmax. p(t|dst, src) is an Exponential distribution for the inter-
event time, that is the time difference between the current interaction (between the specified source
and destination nodes) and the previous interaction. The actual (absolute) time is then obtained by
adding the inter-event time to the absolute time of the previous interaction, i.e. performing a cu-
mulative sum of the chronologically-ordered inter-event times. The parameter of the exponential
distribution is obtained as the first output of the Time+MSG Module (defined below), a sequence
model that is initialized combining the source’s and destination’s node embeddings via the Merge
Module (defined below). p(e;|dst, src) is a Categorical or Gaussian Mixture Model distribution
for the ¢-th edge (message) feature, depending on whether e; is a categorical or numerical variable,
respectively. The distribution parameters (logits or means, standard deviations and mixture weights)
are obtained as the ¢-th output of the Time+MSG Module. The following paragraphs describe the
above-mentioned Modules.

Reshape Module The Reshape Module takes a node embedding vector, z,.. as input and returns a
scalar representing the score of that node. In our experiments it is defined as a linear transformation
followed by a ReLU nonlinearity and another linear transformation to a one-dimensional output:
Reshape(z) = Wy - ReLU (W, - 2)

Product Module The Product Module takes two embedding vectors as input, zg,.. and zgs:, and
returns a scalar representing the score of an interaction between the nodes with the two input
embeddings. In our experiments the score is obtained performing a linear transformation of the
two input embeddings, adding the resulting vectors, applying an element-wise ReLU nonlinearity
and performing a final linear transformation to a one-dimensional output: Product(zg,c,Zdst) =
Wf : RBLU(WST’C “Zgst + W - stt)
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Merge Module The merge module takes two embedding vectors as input, zg,.. and z4s;, and
returns a vector that combines the two embeddings and is used as input to the Time+MSG Mod-
ule. In our experiments it is obtained performing a linear transformation of the two input em-
beddings, applying an element-wise ReLU nonlinearity, adding the resulting vectors, applying a
second ReLU nonlinearity and performing a final linear transformation to obtain the vector hy:
Merge(zsrc, Zast) = Wy - ReLU(ReLU (W gre - Zdst) + ReLU (W ggt - Zst))

Time+MSG Module The Time+MSG Module is a sequence model that takes the output of the
Merge Module as input, hg, and produces n + 1 outputs, where the dimension of the ¢-th output is
equal to the number of parameters of the distribution describing the i-th edge feature e; (for ¢ > 0)
or the time ¢ (for ¢ = 0). In particular, for ¢ = 0 the output of the sequence model is passed through a
linear layer to obtain a one-dimensional scalar and using a Softplus function is converted to a positive
number that represents the parameter of an Exponential distribution for the inter-event time of the
interaction. For ¢ > 0, the output of the sequential model is converted to a one-dimensional score
if the edge feature e; is a categorical variable described by a Categorical (Multinomial) distribution,
whereas it is converted to 3 - m numbers corresponding to the mean, standard deviation and weight
of the m components of a Gaussian Mixture Model distribution, if e; is a numerical variable. In our
experiments, the sequence model used is a GRU (Chung et al.| [2014) recurrent neural network and
the Merge Module’s output hg is used as the initial hidden state of the network.

3.3 TRAINING

TG-Gen is trained using the Adam optimizer (Kingma & Bal[2014) in order to minimize the negative
log-likelihood of the observed interaction data. The model’s log-likelihood can be computed exactly
as the sum of the log-likelihoods of all the conditional probabilities parametrized by the various
modules of the Decoder. In order to accelerate training for large graphs, a random subset of nodes
(usually of the order of two times the batch size or larger) is sampled when computing the scores of
sources and destinations. In order to improve numerical stability during training of the Time+MSG
Module, a Gaussian random noise with zero mean and small standard deviation (~ 0.1) is added
to the numerical variables to mitigate the potential instability caused by discontinuous distributions,
such as those for the edge features of the Wikipedia dataset (see Figure[2). The standard deviation of
this stabilizing noise is reduced to very small values (~ 0.001) during training in order to gradually
recover the original shapes of the feature distributions.

3.4 GENERATION

TG-Gen can generate synthetic dynamic graphs by creating interactions and sampling their attributes
from the distribution p(sre, dst,t,e) = p(src)p(dst|src)p(t, eldst, src) as follows. First, a batch
of source nodes is sampled from p(src) based on the nodes’ current embeddings; second, a destina-
tion is sampled for each source using p(dst|src); third, the embeddings of each source-destination
pair are combined to instantiate the parameters and sample from the probability distributions of the
(t, e) variables. Initially, we start with an empty graph and all nodes have an empty memory. After
a batch of synthetic interactions is generated, the memories and the list of neighbors are updated and
new node embeddings are computed, before generating a new batch of interactions.

4 EXPERIMENTS

Datasets and Experimental Setup We test our model using three diverse datasets: Reddit,
Wikipedia (Kumar et al., [2019a) and Bikeshare. Reddit and Wikipedia are estabished datasets in
dynamic graph representation learning while Bikeshare is a novel dataset (see Appendix [A.T] for
more information regarding these datasets). Our experimental setup is split into two major parts. In
the first, we demonstrate that TG-Gen is able to learn generalizable representations of these tempo-
ral graphs and thus focuses on the inductive domain, where the embeddings created by TG-Gen are
used to predict the destination nodes of future links in a link prediction task. We leave evaluation
on transductive link prediction and dynamic node classification for future work. For all datasets,
we follow Rossi et al.|(2020) and use a 75%-15%-15% train-eval-test split. Models are trained 5
times across varying random seeds and error bars are reported in our results. The second experi-
ment involves temporal graph generation, which aims at generating synthetic graphs with statistical
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Wikipedia Reddit Bikeshare

RMSE K-div RMSE K-div RMSE K-div
Outdegree 0.0023 0.0086 0.0023 0.0042 0.0009 0.0068
Indegree 0.0019 0.0158 0.0004 0.0014 0.0008 0.0073
Edge weight 0.0013 0.0037 0.0031 0.008 0.0151 0.0381
Interevent Time  0.0004 0.0002 0.0146 0.0227 0.0571 0.1441
Features 0.024+0.01 0.08£0.11 0.11+£0.09 1.344+1.96 0.31£0.43 0.22+0.20

Table 1: Values of Root Mean Square Error and K-divergence metrics quantifying the distance
between real and synthetic distributions characterizing various properties of the temporal graphs.
The distances for the features distributions (last row) are averaged over all features considered in the
experiments.

Wikpedia Reddit Bikeshare
AP AUC AP AUC AP AUC
GAT* { 91.27+04 — 95.37£0.3 — — —
GraphSAGE*{ 91.09 £0.3 — 96.27 £ 0.2 — — —
Jodief 93.11+04 — 94.36 £ 1.1 — — —
TGAT t 93.99+£03 — 96.62 £ 0.3 — — —
DyRep t 92.050.3 — 95.68 £0.2 — — —
TGN-attn 96.58 £0.6 96.20£0.5 98.31+0.1 98.26 £0.1 88.96 0.5 91.31+0.6
TG-Gen (ours) 99.94+0.1 99.9+0.1 99.714+0.2 99.71+0.2 89.68+2.4 92.16+1.3

Table 2: Average Precision (%) and AUC (%) for future edge prediction in the inductive setting.
Best performing model is bolded. * Static graph method. t Results taken from Rossi et al.| (2020).

properties similar to those of real dynamic graphs seen during training. To this end, we evaluate the
synthetic data using several statistical measures detailed in the following section.

Evaluation Metrics For the inductive link prediction task, we report standard metrics: Average
Precision (AP) and Area Under the ROC Curve (AUC). This is consistent with metrics reported by
baseline models. Evaluation for the quality of generated graph data is more nuanced and complex.

For the generation task, we report Root Mean Square Error (RMSE = 4/ W) and K-
divergence (K-div = Zfil P;In %), to quantify the distance between real P; and generated
@Q; distributions for several dimensions of the data, namely graph properties (node out-degree dis-
tribution, node in-degree distribution, edge weight distribution), inter-event time distribution, and
feature distribution. RMSE and K-divergence are standard metrics used to measure the distance be-
tween two distributions: they belong to the Lo and Entropy families, respectively (Cha, [2007; [Lin}

1991)), and distance values close to zero indicate that the two distributions are similar.

Baselines For the inductive link prediction task, we use several state-of-the-art models for dy-
namic graph representation learning as baselines. Namely, methods proposed by |Rossi et al.| (2020);
Velickovic et al. (2017); [Hamilton et al.| (2017b); [ Kumar et al.| (2019a); Xu et al.| (2020)); [Trived:
et al[(2019) are compared to our implementation. Given that to the best of our knowledge, there
is no existing method for inductive generation of CTDG:s, it is not possible to provide baselines for
the graph generation task. However, we study the effect of several changes to our implementation in
detailed ablation studies in Section 4.2

4.1 RESULTS

Inductive Link Prediction Table [2]reports the AP and AUC of TG-Gen verus other state-of-the-
art methods for dynamic graph representation learning. Our model outperforms previous methods
on the Wikipedia and Reddit datasets and matches TGN-attn (Rossi et al., 2020) on the Bikeshare
dataset. We report Average Percision (AP) and Area Under the ROC Curve (AUC) on tested models
(TGN-attn and TG-Gen). Results for other models are taken from [Rossi et al.| (2020) and thus
do not include AUC or results for Bikeshare. Future work should rigorously evaluate these other
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methods for AUC and for the Bikeshare dataset. We also note that results for TGN-attn vary from
that reported by the original authors. This is due to the fact that a slightly different evaluation setup
is used. Please see Appendix for more information.

Graph Generation A trained TG-Gen model can be used to generate a synthetic temporal graph
with similar statistical properties of the real temporal graph seen during training. Note that, since
nodes are only identified by their embeddings and not by their node ids, there is no hard-coded one-
to-one correspondence between real and synthetic nodes, hence TG-Gen allows to generate graphs
with a different number of nodes than the original graph. In our experiments, we generate a synthetic
graph with 100,000 interactions for each of the three datasets, starting with empty memories and
updating memories and embeddings every 10 generated interactions. Several statistical distributions
of the generated data look qualitatively similar to those of the real data (see Figure [Z). We use
Root Mean Square Error and K-Divergence to quantitatively measure the distance between real and
synthetic distributions are report the results in Table [T} These indicate that we are able to produce
robust and representative synthetic graphs. However, we note that our model is sometimes not able
to generate nodes for distrubtions at the tail end of long-tail distributions. This is an open challenge
in many areas of machine learning that our model also suffers from. Please refer to Appendix [A.3)]
for more details.

4.2 ABLATIONS

In this section, we investigate the effects of varying or removing key components of our final model
on synthetic graph generation.

Memory We compare a version of our model which uses memory in the encoder with an otherwise
identical model with no memory. We find that removing the memory module decreases performance
across all tested datasets and metrics. This is especially significant in the quality of generated fea-
tures, wherein the model with memory outperforms significantly (e.g. for Wikipedia, 0.02 vs. 0.04
and 0.08 vs. 0.16 for feature RMSE and K-div, respectively). While removing the memory module
does increase training and inference speed significantly (about 2.2x), the results of this ablation show
that the long-term global information learned by the memory module is essential to performance on
the graph generation task.

Choice of Merge Layer We also experiment with a different implementation of the Merge mod-
ule. Namely, we use an concatination, rather than addition scheme. That is, we modify the formula-
tion discussed into be Merge(zg,c, Zast) = Wy - ReLU(ReLU (W gy - Zgst) + ReLU (W gt ||
Z4st)). For all datasets and all metrics, we find negligible performance differences. However, the
added weights in this concatination scheme lead to comparatively slower training and inference
times. Thus, we conclude that addition in the merge module is sufficient to learn a prudent repre-
sentation of p(t, e|src, dst) and opt to use that scheme.

Number of Layers We also experiment with adding additional linear layers in each of the de-
coder modules. We find that this leads to no noticable improvement in any dataset or metric. As
discussed by Rossi et al.| (2020), this contrasts results for other (discriminative) methods such as Xu
et al. (2020) and is likely due to the presence of the memory module which captures complex node
relationships without need for additional layers. Thus, we find the analysis presented in|Rossi et al.
(2020) to hold in the generative regime.

Stabilizing Noise ~ As described in Section[3] we introduce random noise during training in order to
lead to more stable convergence. We compare this training scheme with one where no noise is added.
We find that the quality of generated data suffers significantly without this noise. For example, on the
Wikipedia dataset RMSE at least doubles across all graph properties. Most significant is the feature
RMSE which is 0.09 vs. 0.02 on the model with noise. Thus, we empirically show that the analysis
of stabilizing noise discussed in Section [3]significantly improves the quality of the generated graph
data.
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Figure 2: Comparison between statistical distributions of the real data (blue) and of the synthetic
data generated by TG-Gen (orange). Plots are grouped by row according to the datasets: Wikipedia
(top nine plots), Reddit (middle nine plots) and Bikeshare (bottom nine plots). Plots are also grouped
by column according to the kind of statistics considered: histograms of the distribution of three edge
features per dataset (left column), correlation plots between features pairs and histogram of the inter-
event times between interactions (center column) and histograms of graph properties (right column),
namely the outdegree, indegree and edge weight distributions.

5 CONCLUSION

We introduce TG-Gen, a generic framework for generating a general range dynamic graphs. We
show that our method is able to generate representations of dynamic graphs which outperform ex-
isting state-of-the-art approaches on established datasets on discriminative tasks such as link pre-
diction. Additionally, we show that TG-Gen is able to generate robust and accurate synthetic data
for temporal graphs. We are excited for future applications of our work, as a method for generating
continuous temporal graphs in the inductive regime will be an effective tool in a wide variety of
domains. We hope that TG-Gen can be used to create synethetic data for a wide variety of tasks,
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such as for data augmentation, training data from sensitive information, and de-novo generation in
areas such as automated drug discovery.

Ethics Statement We hope that the development of a generative framework for dynamic graphs
will lead to new innovation in areas such as automated drug discovery, recommender systems, and
particle physics simulations. We note that generative models, by definition, can only be as perfect
as their underlying training data. For example, our testing of social network graphs is limited to a
single social media site, Reddit. Thus, care must be taken when curating datasets to avoid biases,
especially in areas wherein non-representative training data (e.g. medical data from a single country)
can lead to significant inequity of downstream outcomes.

Reproducibility Statement Here, we summarize the steps taken to ensure reproducability of our
results. We clearly state the full assumptions made in our model in the body of the work. Addi-
tionally, for downstream task analysis, we run the model 5 times across different random seeds, and
report the standard error in[2} Appendix[A.2]clearly details the hyperparameter search space used to
tune our models and Appendix includes the computing resources used. Finally, the source code
and instructions needed to reproduce our experiment can be found at [online code repository hidden
for anonymous review; please see code accompanying submission].
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A APPENDIX

A.1 DATASETS

The Reddit and Wikipedia datasets are bipartite temporal interaction graphs released by Kumar et al.
(2019a). The Reddit dataset contains two node types: users and subreddits (communities within the
Reddit social network). When a user interacts with a subreddit (e.g. writes a post) an interaction
(edge) is formed. The Wikipedia dataset contains the following two node types: users and pages.
When a user edits a page, an interaction is formed. For both datasets, all interactions are timestamped
and text information is used as features.

The Bikeshare dataset is an open source dataset containing information about users renting city
bikes that we convert to a temporal graph. Each node is a station where a user can rent a bike
and an interaction (edge) is a user trip between two stations. Edge features include information
about the rider ("member” versus “casual user”) and bike type (one of “’classic_bike” “electric_bike”
”docked_bike”). Like the Reddit and Wikipedia datasets, all interactions are timestamped. Unlike
the other datasets, this graph is not a bipartite graph.

A.2  EXPERIMENTAL DETAILS
As explained in the main work, we followed a 70%-15%-15% train-eval-train temporal data split.

However, we also further split the evaluation partition in half (defining an eval-one and eval-two
dataset). This allows us to test our top performing models after performing hyperparameter sweeps
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to ensure that we are not overfitting to the evaluation set. Test sets were only run once on the chosen
model and final numbers reported in the paper.

We used Bayesian search for our hyperameter sweeps, using the approach out-
lined by |Snoek et al| (2012). We sweep across the following parameters: learn-
ing rate [0.00001,0.001], neighborhood distance {1,2,5,10,20,30,40,50,100,200},
sampled source nodes wvalues : {250, 300,400, 500,600}, memory hid-
den dimension {26, 50, 76, 100, 200, 300, 400, 500, 600, 800}, time hidden di-
mension {26, 50, 76, 100, 200, 300, 400, 500, 600, 800}, embedding dimension
{26, 50, 76, 100, 200, 300, 400, 500, 600, 800}, feature hidden dimension {8, 16, 32, 64, 128, 256},
and noise added during training [0.1, 10.0]. All candidate models were trained for 1,000 epochs and
the weights used were at the epoch with the best validation loss.

Please see our accompanying code for hyperparameters of final models for all datasets.

A.3 TAIL END DISTRIBUTIONS

We note that though it may not be clear from the reported statistics in Table [2] or visualizations
in Figure [2| our model sometimes fails at generating nodes at the extreme tail ends of the node
distributions. This long-tail distribution issue is a challenging topic in many contemporary areas
of machine learning research [Zhang et al.| (2021)); |Yu et al.| (2021)). However, the consequences for
graph generated data can be significant. For example, a graph may have very few nodes with a high
number of edges but nonetheless have significant impact on the properties of the graph (e.g. airport
hub in graph of worldwide airports). We leave the task of improving our generated data and extreme
tail ends to future work.

A.4 EVALUATION SETUP FOR LINK PREDICTION

Our evaluation setup for link prediction differs slightly from that used byRossi et al[(2020). Namely,
predictions that are within the same batch are made in parallel so any interactions that occur later in
the batch will not have access to previous interactions within the same batch. This is different than
the approach taken by [Rossi et al.|(2020) who process interactions sequentially and thus have access
to these previous interactions. Thus, our testing on the TGN architecture leads to different results.
However, we use this former scheme as the authors of TGN have pubically stated that this approach
is realistic and there serves as a better future benchmark.

A.5 COMPUTING RESOURCES

We use a single NVIDIA A100-SXM4-40GB GPU for training and evaluation of a single model and
a set of 8 of such GPUs for hyperparameter optimization.
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