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ABSTRACT

In-context learning (ICL) exhibits dual operating modes: task learning, i.e., ac-
quiring a new skill from in-context samples, and task retrieval, i.e., locating and
activating a relevant pretrained skill. Recent theoretical work proposes various
mathematical models to analyze ICL, but they cannot fully explain the duality. In
this work, we analyze the dual operating modes leveraging assumptions on the
pretraining data. Based on our analysis, we obtain a quantitative understanding of
the two operating modes of ICL. We first explain an unexplained phenomenon ob-
served with real-world large language models (LLMs), where the ICL risk initially
increases and then decreases with more in-context examples. We also analyze ICL
with biased labels, e.g., zero-shot ICL, where in-context examples are assigned ran-
dom labels, and predict the bounded efficacy of such approaches. We corroborate
our analysis and predictions with extensive experiments with real-world LLMs.

1 INTRODUCTION

In-context learning (ICL), an emergent ability of large language models (LLMs), operates in two
distinct modes: task learning and task retrieval (Pan et al., 2023). They can learn unseen functions
from in-context examples, demonstrating the learning mode (Brown et al., 2020; Razeghi et al., 2022;
Garg et al., 2022). Concurrently, LLMs can also retrieve a pretrained skill. Motivated by this, our
work seeks to address the following questions: How do we rigorously explain the dual operating
modes of ICL? Can we define the conditions when retrieval mode is dominant and vice versa?

A New Model for Pretraining Data To find the answers, we first propose a new probabilistic
model for pretraining data. We consider in-context learning of linear functions (Garg et al., 2022;
Akyürek et al., 2023; Li et al., 2023; von Oswald et al., 2023; Raventos et al., 2023; Wu et al., 2024).
We extend the existing model for pretraining data (Raventos et al., 2023) by introducing multiple task
groups and task-dependent input distributions. Shown on the left-most panel in Fig. 1 is a simple
visualization of our model. As illustrated, the red task group is modeled as the cluster of linear
functions with negative coefficients (w ≈ −1), with input distribution centered at E[x] = −1.

Analysis With our new model for pretraning data, we analyze the Bayes-optimal pretrained model
under the squared loss. Here, the pretraining task distribution (of multiple task groups) is the prior,
and in-context examples are the observations. By fully quantifying the posterior distribution, we
characterize how in-context examples are used to update those task groups. We will call updates of
mixture probabilities as task group (component) re-weighting and updates of task group center as
task group (component) shifting. See the central panel in Fig. 1 for visualization. By analyzing these
two effects, we obtain a quantitative understanding of how two different operating modes emerge.

Explanation of Two Real-World Phenomena We demonstrate the practical value of our new
insights by explaining and predicting two phenomena observed with LLMs in practice.

• The early ascent phenomenon refers to the observation that, the ICL risk initially increases and
then decreases when more in-context examples are introduced (Brown et al., 2020; Xie et al., 2022).
(Fig. 1 left) We offer a plausible explanation for this early ascent phenomenon–a limited number of
in-context samples may lead to the retrieval of an incorrect skill, thereby increasing the risk.

• Bounded efficacy of biased-label ICL is predicted by our model. ICL performs well even with
biased labels (Lyu et al., 2023; Min et al., 2022). Our model provides a rigorous justification that if
in-context examples with biased labels carry sufficient information for retrieving a correct pretrained
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Figure 1: A summary of our contributions. We propose a model for pretraining data and in-context
examples. Via analysis, we obtain a quantitative understanding of the duality of ICL, and explain two
real-world phenomena observed with LLMs.

task, then this approach would work. Meanwhile, our analysis suggests that when the learning mode
starts taking place, the test risks of such methods will start increasing. (Fig. 1 left) We observe the
predicted phenomenon with real-world LLMs such as Mistral, Mixtral, Llama 2, and GPT-4.

2 RELATED WORK

Dual Operating Modes of ICL. Pan et al. (2023) empirically disentangle the two operating modes
of ICL: task recognition, which we refer to as task retrieval, and task learning.

Explaining ICL via Bayesian Inference. Xie et al. (2022) model the pretraining data with a
Hidden Markov Model (HMM) (Ghahramani & Jordan, 1995; Rabiner, 1989). On the other hand,
Garg et al. (2022); Raventos et al. (2023) consider the setting where a next-token prediction model is
pretrained on token sequences in the form of (x1, y1,x2, y2, . . .). While this linear regression model
facilitates a tractable analysis and elucidates certain aspects of the dual operating modes, it falls
short in modeling the clustered characteristic of nature language. Han et al. (2023) show that ICL
asymptotically approaches kernel regression as the number of in-context samples increases. On the
other hand, our proposed model allows for tractable analysis and captures the clustered characteristic.

Explaining ICL via Gradient Descent. Garg et al. (2022) hint that under ICL, the pretrained
Transformer might implicitly execute gradient descent. Akyürek et al. (2023); von Oswald et al.
(2023); Dai et al. (2023) show that one attention layer can be exactly constructed to perform gradient
descent. Further, Ahn et al. (2023); Mahankali et al. (2024); Zhang et al. (2023) show that the
pretrained transformer will implement gradient descent algorithm.

3 PRETRAINING AND DATA GENERATIVE MODEL

A next-token predictor is a sequential prediction model that predicts the next token given an initial
token sequence. During pretraining, this model receives sequences SK = (x1, y1, . . . ,xK , yK) with
2K tokens to predict only the y values in the sequences. During inference, the model receives a
sequence of 2k + 1 tokens with k labeled samples (xi, yi), i ∈ {1, . . . , k}, and an unlabeled xk+1.

3.1 PRETRAINING DATA GENERATIVE MODEL

We assume pretraining data consists of sequences generated based on Assumption 1.

Assumption 1 (Pretraining Data Generative Model). Given Dprior, Dx, and Dy|x, we generate SK :
(a) (µ,w) ∼ Dprior : P (µ,w) =

∑M
m=1 πmP (µ,w|Tm), where Tm is the mth mixture component1

of the Gaussian mixture, i.e., P (µ,w|Tm) = N (µ|µm, σ2
µI) · N (w|wm, σ2

wI), and πm is the

1The concept “mixture component” is analogous to the term “Task Group” depicted in the left panel of Fig. 1.
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mixture weight.
∑M

m=1 πm = 1, 0 < πm < 1, (µm,wm) is the center of the mixture component Tm,
and all components share the same covariance matrix controlled by σµ and σw;
(b) x ∼ Dx(µ), P (x|µ) = N (x|µ, σ2

xI); (c) y|x ∼ Dy|x(w) : P (y|x,w) = N (y|w⊤x, σ2
y);

∀m, (d) ∥µm∥ = ∥wm∥ = 1; (e) ∃r > 1 that 1
r ≤ πα

πm
≤ r; (f) x,µ,µm,w,wm ∈ Rd.

In the sequence SK , the first 2k elements of SK is denoted as Sk, and the first 2k + 1 elements will
be indicated by Sk ⊕ xk+1, e.g., S0 = [ ], and S1 ⊕ x2 = [x1, y1,x2].

3.2 BAYES-OPTIMAL NEXT-TOKEN PREDICTOR

We consider the pretraining objective: L(F) = ESK

[
1
K

∑K−1
k=0 (F(Sk ⊕ xk+1)− yk+1)

2
]
, where

F is a next-token predictor and SK is generated from Dprior following Assumption 1. We show that
the prediction F∗(Sk ⊕ xk+1) by a Bayes-optimal pretrained F∗ satisfies:

F∗(Sk ⊕ xk+1) = E
µ,w

[
E

yk+1

[yk+1|w,xk+1]

∣∣∣∣Sk ⊕ xk+1

]
. (1)

(See Appendix A.1 for derivation.) Thus, F∗(Sk ⊕ xk+1) is the expectation (over task posterior) of
E

yk+1

[yk+1|w,xk+1] regarding Sk ⊕ xk+1 as observation.

4 INFERENCE AND DUAL OPERATING MODES

4.1 IN-CONTEXT TASK AND IN-CONTEXT FUNCTION

We introduce Assumption 2 for the in-context task and the in-context function of in-context examples:
Assumption 2 (Gaussian/Linear Assumptions for Inference). (a) The input sequence Sk ⊕ xk+1 of
ICL satisfies, ∀i, xi ∼ N (µ∗, τ2xI), yi = ⟨xi,w

∗⟩; (b) ∥µ∗∥ = ∥w∗∥ = 1.

Assumption 2(a) states that (xi, yi) follows in-context task (µ∗,w∗) and in-context function w∗.

4.2 CLOSED-FORM EXPRESSION OF POSTERIOR

The following lemma gives the closed-form expression of posterior Dpost given any Sk ⊕ xk+1:
Lemma 1 (Conjugate Distributions with Noisy Linear Regression Likelihood). Under Assumption 1,
the posterior probability of task (µ,w) given observation Sk ⊕ xk+1 is:

P (µ,w|Sk ⊕ xk+1) =
∑M

m=1 π̃mP (µ,w|T̃m) =
∑M

m=1 π̃m · N (µ|µ̃m, σ̃2
µI) · N (w|w̃m, σ̃2

wI),

where, T̃m is the mixture component in the posterior with mixture weight π̃m and component center
(µ̃m, w̃m). (See Appendix A.2 for closed-form expressions of π̃m, (µ̃m, w̃m), σ̃µ, and σ̃w.)

Lemma 1 states that the task posterior remains a Gaussian mixture, with component centers shifted to
(µ̃m, w̃m), namely component shifting (CS) and with mixture weights re-weighted to π̃m, namely
component re-weighitng (CR).

4.3 CLOSED-FORM EXPRESSION OF ICL PREDICTION

With Assumption 1 and Lemma 1, we have the following corollary for the prediction F∗(Sk⊕xk+1):

Corollary 1. Let w̃ =
∑M

m=1 π̃mw̃m. With pretraining data generative model 1, if the pretrained
model F∗ minimizes the pretraining risk, then the prediction on any sequence Sk ⊕ xk+1 by F∗ is:
F∗(Sk ⊕ xk+1) =

〈
xk+1,

∑M
m=1 π̃mw̃m

〉
= ⟨xk+1, w̃⟩. See Appendix A.3 for proof details.

Under Assumption 2, we collected mathematical analyses and numerical computations of CS, CR,
and Prediction in Appendix J, exploring the impacts of pretraining task noises and the number of
in-context examples on π̃m, w̃m, and F∗(Sk ⊕ xk+1).

4.4 DUAL OPERATING MODES

“Task retrieval” mode occurs when component re-weighting outweighs shifting, making predictions
rely more on the interplay between pretraining prior and in-context examples. In contrast, “task
learning” mode occurs when component shifting prevails, leading predictions to be based mostly on
in-context examples, neglecting the pretraining prior.
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Figure 2: The early ascent phenomenon. Fig. 2(a) shows expected losses, upper bounds, and
mixture weights, while Fig. 2(b) shows the expectation of w̃. Under these settings (see Appendix D.3
for setting details) As k increases, task retrieval happens first and retrieves a misleading task, causing
increasing risks, and then risks decrease due to task learning.

5 EARLY ASCENT

Brown et al. (2020) report that GPT-3 on LAMBADA shows a lower one-shot accuracy (72.5%)
than zero-shot accuracy (76.2%), but the few-shot accuracy (86.4%) is higher than the zero-shot
accuracy. Xie et al. (2022) replicate this phenomenon with their synthetic dataset and explain this by
“the few-shot setting introduces the distracting prompt structure, which can initially lower accuracy.”
Based on our analysis, we take a further step to formalize this explanation. See Appendix H where
we derive that the early ascent phenomenon provably occurs under a certain assumption. We also
reproduce this performance tendency in Fig. 2(a) under our model, where the upper bound and the
risk initially increase due to the misleading task (component 1) is retrieved first. Figure 2(b) further
demonstrates the relative locations between the retrieved functions and functions of prior centers.
Finally, we give the formal theorem on the early ascent phenomenon:

Theorem 2 (Early Ascent). Assume Ex1

[∑M
m=1 πm exp(− ∥µm−x1∥2

2σ2
x

)∥x1∥2∥wm−w∗∥2∑M
m=1 πm exp(− ∥µm−x1∥2

2σ2
x

)

]
<

Ex1

[
∥x1∥2∥wα −w∗∥2

]
, where α = argmin

m

∥µm−µ∗∥2

2σ2
x

+
∥(wm−w∗)⊤µ∗∥2+dτ2

x∥wm−w∗∥2

2σ2
y

. Then,

when δµ and δw are small enough, we have the early ascent phenomenon on the risk upper bound:

∃k ≥ 1 s.t. Ex1



∑M

m=1 πm exp(−∥µm−x1∥2

2σ2
x

)∥x1∥2∥wm −w∗∥2
∑M

m=1 πm exp(−∥µm−x1∥2

2σ2
x

)



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< ESk⊕xk+1

[∑M
m=1 π̃m∥x1∥2∥wm −w∗∥2

∑M
m=1 π̃m

]
,

where E[∥x1∥2∥wα − w∗∥2] equals to the risk when the prediction is fully depends on the a
misleading task function wα of prior center α. See Appendix H.3 for proof details.

6 BOUNDED EFFICACY OF BIASED-LABEL ICL

The following theorem shows an upper bound for ICL risk with biased labels under mild assumption
to describe the bias of the labels (see Appendix Assumption 3 for details):

Theorem 3 (Upper Bound for ICL with Biased Labels). Consider a next-token predictor attaining
the optimal pretraining risk. When δµ = σ2

µ/σ
2
x and δw = σ2

w/σ
2
y are sufficiently small, there exists

a particular interval for k such that ICL risk with biased labels is upper bounded by:

ESk
[Lα

k ] < C1 exp(−k(
d2µ
8σ2

x

+
u2
wτ2x
8σ2

y

)) + C2 exp(−
k

1
2

8
) + C3 min{1, 4k2δw2(1 + τ2x)

2},

where Lα
k = (F∗(Sk ⊕ xk+1)− ⟨wα,xk+1⟩)2, indicating the target function wα is associated with

a prior center. C1, C2, and C3 are constants depending on the prior setting. When k is small, the
first and second terms dominate and exponential decay. When k is large, the second term dominates
and increases. Thus, we predict a bounded efficacy phenomenon. See Appendix K.3 for proof details.

Table 1: Bounded efficacy in GPT-4. Error rate measured with respect to “addition (+)” and “biased
+”. The error rate of “+” goes down to k = 2, but it increases afterward.

Number of In-context Examples (k) 0 1 2 4 8 16

Error Rate of “Addition” 75.0% 36.2% 33.9% 49.3% 79.3% 85.1%
Error Rate of “Off-by-one Addition” 100.0% 98.3% 95.9% 60.5% 24.4% 16.8%
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Figure 3: Bounded efficacy. The error rates of ICL with random labels increases at large k.

To verify that such a phenomenon exists in real-world LLMs, we first conducted an experiment with
GPT-4 to check which function GPT-4 will predict using “biased +” as the in-context function. The
results of Table 1 verify the existence of the bounded efficacy phenomenon, where GPT-4 will first
retrieve “+” and then learn “biased +”. See experiment details in Appendix F. We further extend the
experiments of Min et al. (2022) to show this phenomenon exists in real-world ICL algorithms in
Fig 3, such as zero-shot ICL (Lyu et al., 2023) with random labels. The results highlight the bounded
efficacy phenomenon in the error curve associated with random labels compared to gold labels. See
Appendix G for experimental results on all five LLMs and experiment setup.

7 CONCLUSION

In this paper, we introduced a probabilistic model for understanding the dual operating modes of
in-context learning: task learning and task retrieval. Our analysis allowed us to explain the existing
early ascent phenomenon observed in real-world ICL applications, and predict a new bounded
efficacy phenomenon of biased-label ICL. We validated our findings and predictions via experiments
involving real-world LLMs. Our work lays the groundwork for future research in further exploration
and improvement of ICL.
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8 REPRODUCIBILITY STATEMENT

The code for all experiments reported in this paper is publicly accessible. For the purpose of
reproducibility, the code can be found at the following GitHub repository: https://github.
com/UW-Madison-Lee-Lab/Dual_Operating_Modes_of_ICL.
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A PREDICTION AND POSTERIOR

A.1 BAYES-OPTIMAL NEXT-TOKEN PREDICTOR

We consider the pretraining objective: L(F) = ESK

[
1
K

∑K−1
k=0 (F(Sk ⊕ xk+1)− yk+1)

2
]
, where

F is a next-token predictor and SK is generated from Dprior following Assumption 1. In other
words, for each sequence, we pretrain F to predict each label y based on preceding samples,
measuring risk with the squared loss. Due to the linearity of expectation, we have: L(F) =
1
K

∑K−1
k=0 E

SK

[
(F(Sk ⊕ xk+1)− yk+1)

2
]
. A variable-input-length next-token predictor F can be

viewed as K fixed-input-length next-token predictors F0, . . . ,FK−1, where Fk takes a sequence of
exactly 2k + 1 tokens as input. Thus, assuming the sufficient expressiveness of F , the pretraining
process of minimizing L(F) can be decomposed into K separate optimization problems:

F∗
k = argmin

Fk

E
SK

[(Fk(Sk ⊕ xk+1)− yk+1)
2], ∀k ∈ [K].
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The solution denoted F∗
k is an MMSE estimator (Van Trees, 2004, page 63) for each k. Thus, the

prediction F∗(Sk ⊕ xk+1) = F∗
k (Sk ⊕ xk+1) satisfies:

F∗(Sk ⊕ xk+1) = E
SK

[yk+1|Sk ⊕ xk+1] (2)

= E
Dx,y

[
E

yk+1

[yk+1|Dx,y,Sk ⊕ xk+1]

∣∣∣∣Sk ⊕ xk+1

]

= E
Dx,y

[
E

yk+1

[yk+1|Dx,y,xk+1]

∣∣∣∣Sk ⊕ xk+1

]
.

Thus, F∗(Sk ⊕ xk+1) is the expectation (over task posterior) of E
yk+1

[yk+1|Dx,y,xk+1] regarding

Sk ⊕ xk+1 as observation. We show that the pretrained Transformer can approximate Bayesian
inference in Appendix E.

A.2 CLOSED-FORM EXPRESSION OF POSTERIOR

The following lemma gives the closed-form expression of posterior Dpost given any Sk ⊕ xk+1:

Lemma 2 (Conjugate Distributions with Noisy Linear Regression Likelihood). Under Assumption 1,
the posterior probability of task (µ,w) given observation Sk ⊕ xk+1 is:

P (µ,w|Sk ⊕ xk+1) =
∑M

m=1 π̃mP (µ,w|T̃m) =
∑M

m=1 π̃m · N (µ|µ̃m, σ̃2
µI) · N (w|w̃m, σ̃2

wI).

Here, the mixture component Tm in the prior is mapped to the mixture component T̃m in the posterior
with mixture weight π̃m and component center (µ̃m, w̃m):

π̃m = πmC1c
µ
mcwm,

cµm = exp
(
−∥µm∥2 − ∥µm+(k+1)δµµ̄∥2

(I+(k+1)δµΣ̄µ)−1/2σ2
µ

)
,

cwm = exp
(
−∥wm∥2 − ∥wm+kδww̄∥2

(I+kδwΣ̄w)−1/2σ2
w

)
,

µ̃m = (I + (k + 1)δµΣ̄µ)
−1(µm + (k + 1)δµµ̄),

w̃m = (I + kδwΣ̄w)−1(wm + kδww̄),

σ̃2
µ = σ2

µ(I + (k + 1)δµΣ̄µ)
−1,

σ̃2
w = σ2

w(I + kδwΣ̄w)−1,

where C1 is a normalizing constant, i.e.,
∑

m π̃m = 1, δµ =
σ2
µ

σ2
x

, δw =
σ2
w

σ2
y

, Σ̄µ = I , µ̄ =
∑k+1

i=1 xi

k+1 ,

Σ̄w =
∑k

i=1 xix
⊤
i

k , and w̄ =
∑k

i=1 xiyi

k . See Appendix I for the proof.

A.3 CLOSED-FORM EXPRESSION OF ICL PREDICTION

With Assumption 1 and Lemma 1, we have the following corollary for the prediction F∗(Sk⊕xk+1):

Corollary 4. Let w̃ =
∑M

m=1 π̃mw̃m. With pretraining data generative model 1, if the pretrained
model F∗ minimizes the pretraining risk, then the prediction on any sequence Sk ⊕ xk+1 by F∗ is
as follows: F∗(Sk ⊕ xk+1) =

〈
xk+1,

∑M
m=1 π̃mw̃m

〉
= ⟨xk+1, w̃⟩.

Proof. By applying Assumption 1 to Eq. 2, F∗(Sk ⊕xk+1) = E(µ,w)∼Dprior [⟨xk+1,w⟩|Sk ⊕xk+1].
Using Lemma 1, this reduces to

∑M
m=1 π̃m E

(µ,w)∼T̃m

[⟨xk+1,w⟩]. Due to the linearity of expectation

and inner product, the prediction can be simplified as ⟨xk+1,
∑M

m=1 π̃mw̃m⟩ = ⟨xk+1, w̃⟩.

B COARSE UPPER BOUND OF ICL RISK

The following theorem shows a coarse upper bound of ICL risk to learn a task:

10
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Theorem 5 (Coarse Upper Bound for ICL). Consider a next-token predictor attaining the optimal
pretraining risk. As k → ∞, ICL risk is upper bounded by:

ESk⊕xk+1
[L∗

k] <
4(1 + dτ2x)

τ4xδw
2k2

+O(kδ−
5
2 ),

where L∗
k = (F(Sk ⊕ xk+1)− y∗k+1)

2 = (F(Sk ⊕ xk+1)− ⟨xk+1,w
∗⟩)2 and δ is an arbitrarily

small positive constant. See Appendix K.2 for proof details. The upper bound decreases as the square
of the inverse of k. Notice there is no noise for y labels of in-context examples under our setting,
which leads to a faster decay rate than standard 1/k for ridge regression (Tsigler & Bartlett, 2023).

The notations δµ, δw and k are colored for easier observation.
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Number of In-Context Examples (k)

Figure 4: R∗ indicates the prediction by Ridge regression, F∗ indicates the prediction by ICL with a
Bayes-optimal next-token predictor, and y∗k+1 = ⟨xk+1,w

∗⟩. Let the k samples draw from a task
(µ∗,w∗), which is drawn from the pretraining prior distribution. The dimension d of x equals 6. We
observe that ICL performs better than Ridge regression of small k, and Ridge regression performs
better than ICL when k ≥ d. Especially, when the task prior distribution has high task variance (big
δµ and δw values), ICL and Ridge regression have very similar performance.

We further compare the risk ESk⊕xk+1
[L∗

k] and the risk under Ridge regression with L2 regularization
parameter equal to 10−6, where the same k samples without label noises are used as in-context
examples for ICL and training samples for Ridge regression. Fig. 4 shows the experiment results. In
practice, we can observe more than the simple monotone loss decreasing phenomenon for ICL. The
later sections will introduce and explain them.

C NOTATIONS

This section collects all notations used in the main paper.

Notations initially introduced in Sec. 3:

• F : a next-token predictor.

• F̂ : a pretrained next-token predictor.
• F∗: a Bayes-optimal next-token predictor that attains Bayes risk minimization.
• Fk: a Bayes-optimal next-token predictor for k in-context examples.
• F∗

k : a Bayes-optimal next-token predictor that attains Bayes risk minimization for k in-context
examples.

• x and y: input and label for a task, e.g., x and y of a linear regression task y = x⊤w.
• k: the number of in-context examples.
• K: the max number of in-context examples in a sequence.
• Sk: a sequence of k in-context examples, [x1, y1, . . . ,xk, yk].
• SK : a sequence of K in-context examples, [x1, y1, . . . ,xK , yK ].
• Sk ⊕ xk+1: Sk ⊕ xk+1 = [x1, y1, . . . ,xk, yk,xk+1], a sequence of k in-context examples and
xk+1 pending to be predicted.

• µ and w: the parameters control a task. µ controls the distribution of x and w controls the function
mapping x to y.

11



Published at the ICLR 2024 Workshop on Understanding of Foundation Models (ME-FoMo)

• Dprior and Dµ,w: Dprior = Dµ,w, and they represent the task prior distribution where each task is
controlled by parameters µ and w. The task prior is also named pretraining prior, pretraining task
prior, pretraining prior distribution, pretraining task prior distribution, or simply prior.

• Dx(µ): the conditional distribution of x conditioned on µ of the task (µ,w).
• Dx,y(µ,w): the joint distribution of (x, y) in the task (µ,w).
• Dy|x(w): y distribution conditioned on the input x and parameter w of the task (µ,w).

• P (µ,w): the task probability of (µ,w) in the task prior Dprior.
• P (x | µ): the probability of x in Dx(µ).
• P (y | x,w): the probability of y in Dy|x(w).

• L(F): the risk of F on samples generated from generative model 1.
• M : the number of mixture components in a Gaussian mixture prior.
• α, β: the indexes of a mixture component in a Gaussian mixture prior.
• Tβ : the βthe mixture component in a Gaussian mixture prior.

• πβ : the mixture weight of the βth mixture component in a Gaussian mixture prior.

• µβ and wβ : (µβ ,wβ) is the center of the βth mixture component.
• µ∗ and w∗: (µ∗,w∗) is the in-context task, i.e., in-context examples are drawn from this task

without label noises.
• σµ and σw: the task noises, i.e., the noise scales of µ and w.
• σx and σy: the sample noises, i.e., the noise scales of x and y of pretraining samples.
• τx: the sample noise, i.e., the noise scale of x of in-context examples.
• d: the dimension of x.
• r: the max ratio of two mixture weights of two mixture components.

Notations initially introduced in Sec. 4:

• Dpost: The posterior distribution of the pretraining prior Dprior after observing Sk ⊕ xk+1.
• ∥x∥2: for any vector x, ∥x∥2 = x⊤x.
• ∥x∥2A: for any vector x and matrix A, ∥x∥2A = x⊤Ax.
• P (µ,w | Sk ⊕ xk+1): the probability of task (µ,w) in the posterior after observing Sk ⊕ xk+1.

• T̃β : the βth mixture component in the Gaussian mixture posterior.

• π̃β : the mixture weight of the βth mixture component in the Gaussian mixture posterior.

• µ̃β and w̃β : (µ̃β , w̃β) is the center of the βth mixture component in the Gaussian mixture posterior.

• P (µ,w | T̃β): the probability of task (µ,w) in the βth mixture component of posterior.

• δµ and δw: the ratio of squared task noise over squared sample noise. δµ =
σ2
µ

σ2
x

, and δw =
σ2
w

σ2
y

.

• Σ̄µ: Σ̄µ = I .

• Σ̄w: Σ̄w =
∑k

i=1 xix
⊤
i

k .

• µ̄: µ̄ =
∑k+1

i=1 xi

k+1 .

• w̄: w̄ =
∑k

i=1 xiyi

k .
• w̃: the mean of w in the task posterior, i.e., the predicted function by Bayes-optimal next-token

predictor. F∗(Sk ⊕ xk+1) = ⟨xk+1, w̃⟩ =
〈
xk+1,

∑M
β=1 π̃βw̃β

〉
.

• cµβ and cwβ : parts of the re-weighting coefficient of Component Re-weighting.

• Ψµ(α, β) and Ψw(α, β): functions to help analyze the phenomenon of Component Re-weighting.

• r(α, β): the ratio of the mixture weight π̃α of T̃α over the mixture weight π̃β of T̃β .

• λd(A): the dth largest eigenvalue of matrix A. In this paper A ∈ Rd×d, thus λd(A) represents the
smallest eigenvalue of matrix A.
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Figure 5: The figure shows the pretraining prior and in-context task. (µβ ,wβ) is mixture component
center in the prior. (µα,wα) for α = 1 (numbers are noted in the center of circles) is the center of
the target task for ICL with biased labels, while (µ∗,w∗) is the in-context task. The dotted purple
lines highlight the distance of 1 from the origin (0, 0, 0) to any point represented by µ or w.

• λ1(A): the 1st largest eigenvalue of matrix A.
• y∗k+1: the label of learning the function w∗. y∗k+1 = ⟨xk+1,w

∗⟩.
• yαk+1: the label of retrieving the function wα. yαk+1 = ⟨xk+1,wα⟩.

Notations initially introduced in Sec. 5

• d2µ: ∀β ̸= α, ∥µβ − µ∗∥2 − ∥µα − µ∗∥2 ≥ d2µ, the µ-margin of any other µβ over µα.

• d2w: ∀β ̸= α, ∥wβ −w∗∥2 − ∥wα −w∗∥2 ≥ d2w, the w-margin of any other wβ over wα.
• u2

w: ∀β ̸= α, τ2x∥wβ −w∗∥2 − (1 + τ2x)∥wα −w∗∥2 ≥ τ2xu
2
w, the weighted w-margin of any

other wβ over wα.
• The L2 loss of ICL learning to learn the function w∗. L∗

k = (F(Sk ⊕ xk+1) − y∗k+1)
2 =

(F(Sk ⊕ xk+1)− ⟨xk+1,w
∗⟩)2.

• The L2 loss of ICL learning to retrieve the function wα of pretraining prior. Lα
k = (F(Sk ⊕

xk+1)− yαk+1)
2 = (F(Sk ⊕ xk+1)− ⟨xk+1,wα⟩)2.

D PRIOR EXAMPLE

In this section, we introduce the prior settings we use in our numerical computations and small-scale
Transformer experiments. We split the setting based on the shape of the centers in the priors. Those
shapes include 3-dimensional regular polyhedrons in Sec. D.1, d-dimensional examples in Sec. D.2,
and a special setting in Sec. D.3 for the early ascent phenomenon.

D.1 REGULAR POLYHEDRONS

For the abstract of the task prior (consider the mixture component centers), we consider 3-dimensional
regular polyhedrons including Tetrahedron (4 vertices/centers), Octahedron (6 vertices/centers), Hexa-
hedron (8 vertices/centers), Icosahedron (12 vertices/centers), and Dodecahedron (20 vertices/centers),
listed with increasing density of the centers on a sphere.

A regular polyhedron setting with M centers is set as follows with all the parameters in Assumption 1:

• Dimension d = 3, number of mixture components M = M , and β ∈ {1, . . . ,M};

13
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• The centers of mixture components shape a regular polyhedron with M vertices;
• All component’s mixture weights are the same, πβ = 1/M , and µβ = wβ , for all β ∈ {1, . . . ,M};
• For noises of x and y, we have σx = σy = 1, and τx = 1;
• For noises of µ and w, we have σµ = σw = 0.25 if not specified;

• For in-context task, µ∗ = 2µ1+µ2

∥2µ1+µ2∥ and w∗ = 2w1+w2

∥2w1+w2∥ , where µ2 is the closest center to µ1.

We will mainly use the Tetrahedron setting in the paper. Therefore, we further visualize the setting
and note down the parameters. The 3D visualization of mixture component centers (those clean tasks)
in the prior and the in-context task are shown in Fig. 5. The parameters are noted as follows:

• Dimension d = 3, number of mixture components M = 4, and β ∈ {1, 2, 3, 4};
• The centers of topics shape a tetrahedron as shown in Fig. 5. µ1 = w1 = [0, 0,−1]⊤, µ2 = w2 =

[
√

8
9 , 0,

1
3 ]

⊤, µ3 = w3 = [−
√

2
9 ,+

√
2
3 ,

1
3 ]

⊤, and µ4 = w4 = [−
√

2
9 ,−

√
2
3 ,

1
3 ]

⊤;

• All component’s mixture weights are the same, πβ = 1/4, and µβ = wβ , for all β ∈ {1, 2, 3, 4};
• For noise of x and y, we have σx = σy = 1, and τx = 1;
• For noises of µ and w, we have σµ = σw = 0.25 if not specified;

• For in-context task, we have µ∗ = 2µ1+µ2+0.2µ3

∥2µ1+µ2+0.2µ3∥ and w∗ = 2w1+w2+0.2w3

∥2w1+w2+0.2w3∥ . We slightly shift
the in-context task (µ∗,w∗) towards (µ3,w3) for visualization purposes, to make β = 3 and
β = 4 produce slightly different curves.

D.2 d-DIMENSIONAL EXAMPLES

We consider d-dimensional examples with d centers for d ∈ {2, 4, 8, 16, 32}. A d-dimensional
example with d vertices is parametered as follows:

• Dimension d = d, number of mixture component M = d, and β ∈ {1, . . . , d};

• For all β, µβ,i =

{
1 if i = β

0 if i ̸= β
, i.e., µβ is a vector with all elements 0 except the βth element is 1.

• All component’s mixture weights are the same, πβ = 1/d, and µβ = wβ , for all β ∈ {1, . . . , d};
• For noise of x and y, we have σx = σy = 1, and τx = 1;
• For noises of µ and w, we have σµ = σw = 0.25 if not specified;

• For in-context task, we have µ∗ = 2µ1+µ2

∥2µ1+µ2∥ and w∗ = 2w1+w2

∥2w1+w2∥ .

D.3 EARLY ASCENT EXAMPLES

Table 2 shows the setting for reproducing the early ascent phenomenon. The in-context task adopts a
distribution of x close to a misleading task.

E TRANSFORMER PERFORMANCE IN APPROXIMATING BAYESIAN INFERENCE

We examine if a Transformer pretrained on samples generated from our pretraining data generative
model matches the performance of Bayesian inference. We consider three factors of the task prior in
our experiment: prior task noise, number of components, and feature dimension. For scalar y, we
transform it to a d-dimensional vector [y, 0, . . . , 0]. Thus, Sk ⊕ xk+1 forms a (2k + 1)× d matrix,
comprising xk+1 and k pairs of (xi, yi).

Experiment Setting. We conduct experiments based on the module GPT2Model from the package
Transformers supported by Hugging Face2. We use a 10-layer, 8-head Transformer decoder with
1024-dimensional feedforward layers, and the input dimension is set to d, equal to the dimension
of x. We train the model over three epochs, each consisting of 10,000 batches, with every batch
containing 256 samples. We use AdamW (Loshchilov & Hutter, 2019) as the optimizer with weight
decay as 0.00001 and set the learning rate to 0.00001.

2https://huggingface.co/
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Case Component
/Task

Mixture
Weight µ w

d=1

Component 1 1/2 µ1 = [+1] w1 = [−1]
Component 2 1/2 µ2 = [−1] w2 = [+1]
Component 3 / / /

In-context Task / µ∗ = [+1] w∗ = [+1]

d=2

Component 1 1/3 µ1 = [+1,+1] w1 = [−1,−1]
Component 2 1/3 µ2 = [−1,−1] w2 = [+1,+1]
Component 3 1/3 µ3 = [+1,−1] w3 = [−1,+1]

In-context Task / µ∗ = [+1,+1] w∗ = [+1,+1]

d>=2

Component 1 1/3 µ1 = [+1] + [+1]× (d− 1) w1 = [−1] + [−1]× (d− 1)
Component 2 1/3 µ2 = [−1] + [−1]× (d− 1) w2 = [+1] + [+1]× (d− 1)
Component 3 1/3 µ3 = [+1] + [−1]× (d− 1) w3 = [−1] + [+1]× (d− 1)

In-context Task / µ∗ = [+1]× d w∗ = [+1]× d

Table 2: In all cases with various dimensions, the pretraining task prior comprises two components
for single dimension and three for two or more dimensions. The aim is to predict following the
in-context function w∗, equivalent to prior center 2’s function w2 (w∗ = w2). The in-context task is
characterized by having a closer x distribution to the task of prior center 1 but having a closer x → y
mapping to the task of prior center 2. The parameters for all cases are set to σµ = σw = 0.05, σx = 1,
and σy = 2. Refer to Fig. 2(b) for visualization of the prior centers under dimension d ∈ {1, 2, 3}.
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Figure 6: The figure shows the experiment results under varied noise levels. δµ and δw indicate the
noise levels of the pretraining task prior. F∗ indicates the prediction of Bayesian inference while F̂
indicates the prediction of the trained Transformer. One can observe that the lower the values of δµ
and δw are, i.e., the noise levels, the stronger the bounded efficacy phenomenon and the harder for
the Transformer to approach the Bayesian inference.

Experiment Results. Fig. 6, 7, and 8 show the experimental results, where the prediction of the
Transformer is denoted as F̂ , and the prediction of Bayesian inference is denoted as F∗. We can
observe that the pretrained Transformer model can approximate the Bayes-optimal predictor under
varied settings. In Fig. 6, we consider the Tetrahedron setting (see Apendix D.1 for setting details)
under varied task noises (δµ = δw ∈ {1/256, 1/64, 1/16, 1/4, 1}). The results show that the lower
the task noises, the stronger the bounded efficacy phenomenon in both Bayesian and Transformer
inference, and it is also harder, taking more training epochs, for the Transformer to capture the
Bayesian prediction. In Fig. 7, we consider settings of regular shapes (see Appendix D.1 for setting
details) with different numbers of vertices/components (M ∈ {4, 6, 8, 12, 20}). In Fig. 8, we consider
settings with varied dimensions (see Appendix D.2 for setting details, d ∈ {2, 4, 8, 16, 32}). In Fig. 7
and 8, we observe that the higher the number of dimensions and the number of mixture components,
the harder it is for the Transformer to approximate Bayesian prediction.
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Figure 7: The figure shows the experiment results under varied component densities. M indicates
the number of mixture components, and δµ = δw = 1

16 . F∗ indicates the prediction of Bayesian
inference while F̂ indicates the prediction of the trained Transformer. It is observed that the higher
the component density is, the harder it is for the Transformer to approach the Bayesian inference.
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Figure 8: The figure shows the experiment results under varied dimensions. d indicates the dimension
and the number of mixture components, and δµ = δw = 1

16 . F∗ indicates the prediction of Bayesian
inference while F̂ indicates the prediction of the trained Transformer. It is observed that the higher
the number of dimensions is, the harder it is for the Transformer to approach the Bayesian inference.

F BOUNDED EFFICACY OF BIASED-LABEL ICL IN GPT-4

This section first introduces the experiment design with GPT-4 in Table 3, and then reveals the
bounded efficacy phenomenon of GPT-4 in Table. 1.

Table 3 introduces the experiment setting of GPT-4 including the system message, the prompt, the
in-context task, the “add-1 addition” task, and the “addition” task. While the in-context task is the
“add-1 addition” task, i.e., ci = ai + bi + 1, we measure the performances on two goals including
learning the “add-1 addition” task and retrieving the “addition” task.
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Setting Desciption

LLM GPT-4

System Message You are a mathematician. Consider the following math problem and
follow the exact instruction.

Prompt

You are given examples. Each example has two integers as input and
one integer as output. Please provide an answer for the last problems
in the math exercise:
a1(?)b1=c1
...
ak(?)bk=c2
ak+1(?)bk+1=
Provide your answer directly.

In-Context Task ai and bi are uniformly sampled from [10, 99], and ci = ai + bi + 1.
Goal of Learning

the “Add-1 Addition” Task
with True Label

Aiming to learn the “add-1 addition” task, a(?)b=(a+b+1), with
in-context examples following the same “add-1 addition” task,
a(?)b=(a+b+1).

Goal of Retrieving
the “Addition” Task
with Biased Label

Aiming to retrieve the “addition” task, a(?)b=(a+b). However, the
in-context examples are provided with a slightly different task “add-1
addition”, a(?)b=(a+b+1).

Table 3: Experiment setting to reveal the bounded efficacy phenomenon of biased-label ICL in GPT-4.

Table 4: 0 in-context examples, k = 0. Prediction is colored red if it is correct for task retrieval
(a(?)b = (a+ b)), and colored blue if it is correct for task learning (a(?)b = (a+ b+ 1)).

prompt
...
51(?)36=
...

...
27(?)15=
...

...
76(?)82=
...

...
55(?)15=
...

results

Without knowing the
operation or rule that
connects the two
input integers to
the output integer in
the examples, it’s
impossible to provide
a correct answer.
Please provide the
examples or the rule.

Sorry, but your
questionis not
clear. Could
you please
provide more
information
about the
operation
between the
two numbers?

Your question seems to
be missing some
information. Could you
please provide the
examples you mentioned?
They are necessary to
understand the relationship
between the two input
integers and the output
integer.

70

Table 1 shows the experimental results. As the number of in-context examples increases, we observe
the error rate of the “add-1 addition” task constantly decreases while the error rate of the “addition”
task initially decreases and then increases, revealing a bounded efficacy phenomenon. We further
randomly sample four pairs of prompts and predictions for k = 0, 2, 8 in Tables 4, 5, and 6 for
references. The results show that ICL with biased labels will initially retrieve a commonsense
pretraining task due to the task retrieval mode, and finally learn the in-context task since the task
learning effect.

G BOUNDED EFFICACY IN ZERO-SHOT ICL

We further introduce Lemma 3, a variation of the previous Theorem 3, to explain zero-shot ICL, an
ICL algorithm capable of functioning with random label (Lyu et al., 2023).

Lemma 3 ((informal) Upper Bound for Zero-Shot ICL). Assume a next-token predictor attains the
optimal pretraining risk, the risk of ICL with pure random label (provide no information) will reveal
a bounded efficacy phenomenon. See Appendix L for proof details.
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Table 5: 2 in-context examples, k = 2. Prediction is colored red if it is correct for task retrieval
(a(?)b = (a+ b)), and colored blue if it is correct for task learning (a(?)b = (a+ b+ 1)).

prompt

...
73(?)80=154
59(?)22=82
54(?)97=
...

...
48(?)73=122
78(?)80=159
21(?)33=
...

...
21(?)28=50
69(?)29=99
47(?)10=
...

...
94(?)43=138
98(?)70=169
96(?)41=
...

results 151 54 57 187

Table 6: 8 in-context examples, k = 8. Prediction is colored red if it is correct for task retrieval
(a(?)b = (a+ b)), and colored blue if it is correct for task learning (a(?)b = (a+ b+ 1)).

prompt

...
37(?)70=108
41(?)18=60
19(?)12=32
82(?)67=150
42(?)13=56
26(?)41=68
80(?)39=120
58(?)23=82
40(?)90=
...

...
60(?)76=137
69(?)26=96
72(?)85=158
39(?)10=50
50(?)47=98
19(?)63=83
45(?)95=141
69(?)41=111
81(?)36=
...

...
66(?)40=107
46(?)81=128
63(?)31=95
41(?)24=66
70(?)43=114
89(?)84=174
76(?)82=159
46(?)28=75
49(?)46=
...

...
68(?)88=157
34(?)18=53
70(?)70=141
13(?)35=49
52(?)50=103
72(?)32=105
98(?)82=181
55(?)51=107
50(?)31=
...

results 130 118 96 82

Figure 9: Ablations on varying numbers of examples in the demonstrations (k). Models that are the
best under 13B in each task category (Channel MetaICL and Direct GPT-J, respectively) are used.

Lemma 3 says that as the number of in-context examples increases, the loss curve of zero-shot ICL
with non-informative labels will have the bounded efficacy phenomenon, which conflicts with the
observation from Min et al. (2022) that ICL with random labels has very similar performance as ICL
with true labels using 0 ∼ 32 in-context examples. We believe this observation is due to the small
number of in-context examples. Thus, we extend the experiment of Min et al. (2022) to explore the
number of in-context examples beyond 32. Due to LLMs’ context lengths constraining the maximum
number of in-context examples, we choose different LLMs from Min et al. (2022) for a larger context
length capacity.

Fig. 10 presents the experimental results, highlighting the bounded efficacy phenomenon in the error
curve associated with random labels. First, we note that even with true labels, the error rates increase
at a larger value of k. (We did not observe this with GPT-4 though.) This is possibly due to LLMs
performance degrade when the input contexts become excessively large. However, the error rate of
ICL with random labels are observed to increase at a much smaller k value, clearly exhibiting the
bounded efficacy phenomenon we predicted.
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Figure 10: As k increases, the classification error curve of ICL with random labels exhibits the
bounded efficacy phenomenon. The curve with true labels further confirms that this phenomenon is
not due to models tending to perform worse on long sequences.

We than introduces the experiment setting of Fig. 10. We start by introducing the experiment results
in Fig. 9 copied and pasted from the work of Min et al. (2022). While our theory shows the bounded
efficacy phenomenon for ICL with non-informative labels (Lemma 3), Fig. 9 seems to imply a
conflict phenomenon. Thus, we further extend the number of in-context examples in Fig. 9 left.
The classification task adopts five datasets including (i) glue-mrpc (Dolan & Brockett, 2005), (ii)
glue-rte (Dagan et al., 2005), (iii) tweet eval-hate (Barbieri et al., 2020), (iv) sick (Marelli et al.,
2014), and (v) poem-sentiment (Sheng & Uthus, 2020). We use the GitHub code3 released by Min
et al. (2022) to generate the same data and evaluate LLMs with a larger context length capacity
aiming at a larger number of in-context examples. We selected Mistral 7B (32768) (Jiang et al.,
2023), Mixtral 8×7B (32768) (Jiang et al., 2024), Llama2 13B (4096)Llama 2 (Touvron et al., 2023),
Llama2 70B (4096) (Touvron et al., 2023), and GPT-4 (8192) (OpenAI, 2023) for our experiments,
with the integers in parentheses indicating the maximum context length for each model. We perform
inference on large models with 8 H100 with the package vllm4.

H MATHEMATICAL DERIVATION FOR EARLY ASCENT PHENOMENON

H.1 FINEGRAINED UPPER BOUND

We first introduce a finegrained upper bound for ICL as follows:
Theorem 6 (Finegrained Upper Bound for ICL). Consider a next-token predictor attaining the
optimal pretraining risk. As k → ∞, ICL risk is upper bounded by:

ESk⊕xk+1
[L∗

k] <
∑M

m=1 ∥wm −w∗∥2ESk⊕xk+1
[π̃m∥xk+1∥2λ1(A)2],

where ∥wm −w∗∥ is the distance between w∗ and wm, π̃m is the posterior mixture weight, and
A = (I + δw

∑k
i=1 xix

⊤
i )

−1. See Appendix K.2 and Eq. 16 for proof details.
Notice that in-context examples affect the upper bound by affecting the two factors π̃β and λ1(A),
corresponding to the component re-weighting and component shifting introduced in Sec. 4.2. When
ignoring the component re-weighting effect and only considering component shifting, the finegrained
upper bound with in Theorem 6, degrades to the coarse upper bound in Appendix B Theorem 5.

H.2 ACTUAL MATHEMATICAL DERIVATION

To have a cleaner mathematical understanding of the early ascent phenomenon, this section uses the
setting of d = 1 in Table. 3 to show the underlying mathematical logits leveraging Theorem 6. Under
the setting of d = 1 in Table. 3, following Theorem 6, we have:

ESk⊕xk+1
[LL

k] <

2∑

β=1

∥wβ −w∗∥2ESk⊕xk+1
[π̃β∥xk+1∥2λ1(A)2]

= ∥w1 −w∗∥2ESk⊕xk+1
[π̃1∥xk+1∥2λ1(A)2] + ∥w2 −w∗∥2ESk⊕xk+1

[π̃2∥xk+1∥2λ1(A)2]

= 22ESk⊕xk+1
[

r(1, 2)

1 + r(1, 2)
∥xk+1∥2λ1(A)2]

= 4ESk⊕xk+1
[

r(1, 2)

1 + r(1, 2)
∥xk+1∥2λ1(A)2].

3https://github.com/Alrope123/rethinking-demonstrations
4https://docs.vllm.ai/en/latest/
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Noticing δµ = 0.052

12 , δw = 0.052

22 is very small, when k is small, we have kδw ≈ 0 and λ1(A) = (I+

δw
∑k

i=1 xix
⊤
i )

−1 ≈ I , thus ESk⊕xk+1
[ r(1,2)
1+r(1,2)∥xk+1∥2λ1(A)2] ≈ ESk⊕xk+1

[ r(1,2)
1+r(1,2)∥xk+1∥2]

and a larger r(1, 2) means a larger upper bound.

Following Eq. 5:

r(1, 2) =
1/2

1/2
exp(Ψµ(1, 2) + Ψw(1, 2))

= exp(Ψµ(1, 2) + Ψw(1, 2)).

Following Eq. 6:

Ψµ(1, 2) = (

k+1∑

i=1

∥µβ − xi∥2 −
k+1∑

i=1

∥µα − xi∥2)/(2σ2
x(1 + (k + 1)δ2µ))

= (

k+1∑

i=1

∥µβ − xi∥2 −
k+1∑

i=1

∥µα − xi∥2)/(2σ2
x)

≈ 4k

2× 12

= 2k.

Following Eq. 8:
Ψw(1, 2) = −∥w1 −w∗∥2I−(I+kδwΣ̄w)−1/(2σ

2
w)

≈ −(w1 −w∗)⊤kδwΣ̄w(w1 −w∗)/(2σ2
w)

(Notice d = 1, Σ̄w =

∑k
i=1 ∥xi∥2

k
)

= −4
∑k

i=1 ∥xi∥2
2σ2

y

≈ −4k(1 + 1)

2× 22
= −k

Therefore, when k is small, r(1, 2) ≈ exp(k), and the upper bound is approximately equal to:

4ESk⊕xk+1
[

exp(k)

1 + exp(k)
∥xk+1∥2],

which increases as the number of in-context examples increases.

H.3 THEOREM OF EARLY ASCENT

Theorem 2 (Early Ascent). Assume Ex1

[∑M
m=1 πm exp(− ∥µm−x1∥2

2σ2
x

)∥x1∥2∥wm−w∗∥2∑M
m=1 πm exp(− ∥µm−x1∥2

2σ2
x

)

]
<

Ex1

[
∥x1∥2∥wα −w∗∥2

]
, where α = argmin

m

∥µm−µ∗∥2

2σ2
x

+
∥(wm−w∗)⊤µ∗∥2+dτ2

x∥wm−w∗∥2

2σ2
y

. Then,

when δµ and δw are small enough, we have the early ascent phenomenon on the risk upper bound:

∃k ≥ 1 s.t. Ex1



∑M

m=1 πm exp(−∥µm−x1∥2

2σ2
x

)∥x1∥2∥wm −w∗∥2
∑M

m=1 πm exp(−∥µm−x1∥2

2σ2
x

)




< ESk⊕xk+1

[∑M
m=1 π̃m∥x1∥2∥wm −w∗∥2

∑M
m=1 π̃m

]
.
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Proof. We examine the following case, when σµ and σw are small enough, and k is also big enough
to retrieve a task, i.e., making a center dominate:

lim
k→∞

lim
(σµ,σw)→(0,0)

ESk⊕xk+1

[∑M
m=1 π̃m∥xk+1∥2∥wm −w∗∥2

∑M
m=1 π̃m

]

= lim
k→∞

lim
(σµ,σw)→(0,0)

ESk⊕xk+1

[∑M
m=1 πm exp(Ψµ(m, 1) + Ψw(m, 1))∥xk+1∥2∥wm −w∗∥2

∑M
m=1 πm exp(Ψµ(m, 1) + Ψw(m, 1))

]

(Following Eq. 10, we have lim
(σµ,σw)→(0,0)

Ψµ(m, 1) + Ψw(m, 1) =
∥µm − xk+1∥2 − ∥µ1 − xk+1∥2

2σ2
x

+

k∑

i=1

(∥µm − xi∥2 − ∥µ1 − xi∥2
2σ2

x

+
∥ymi − y∗i ∥2 − ∥y1i − y∗i ∥2

2σ2
y

)
)

= lim
k→∞

ESk⊕xk+1



∑M

m=1 πm exp
(

∥µm−xk+1∥2

2σ2
x

+
∑k

i=1(
∥µm−xi∥2

2σ2
x

+
∥ym

i −y∗
i ∥

2

2σ2
y

)
)
∥xk+1∥2∥wm −w∗∥2

∑M
m=1 πm exp

(
∥µm−xk+1∥2

2σ2
x

+
∑k

i=1(
∥µm−xi∥2

2σ2
x

+
∥ym

i −y∗
i ∥2

2σ2
y

)
)




= ESk⊕xk+1
[∥xk+1∥2∥wα −w∗∥2]

= Ex1
[∥x1∥2∥wα −w∗∥2],

where α = argmin
m

∥µm−µ∗∥2

2σ2
x

+
∥(wm−w∗)⊤µ∗∥2+dτ2

x∥wm−w∗∥2

2σ2
y

. The limitation of limita-

tion indicates that for any ϵ > 0, exists a large enough k such that exist small enough δµ

and δw such that E[
∑M

m=1 πm exp(−∥µm−x1∥2)∥x1∥2∥wm−w∗∥2∑M
m=1 πm exp(−∥µm−x1∥2)

] > E[∥x1∥2∥wα − w∗∥2] − ϵ.

Therefore, we know when E[
∑M

m=1 πm exp(−∥µm−x1∥2)∥x1∥2∥wm−w∗∥2∑M
m=1 πm exp(−∥µm−x1∥2)

] < E[∥x1∥2∥wα −w∗∥2]
where α = argmin

m

∥µm−µ∗∥2

2σ2
x

+
∥(wm−w∗)⊤µ∗∥2+dτ2

x∥wm−w∗∥2

2σ2
y

, exists k, σµ and σw s.t.

E[
∑M

m=1 πm exp(−∥µm−x1∥2)∥x1∥2∥wm−w∗∥2∑M
m=1 πm exp(−∥µm−x1∥2)

] < E[
∑M

m=1 π̃m∥x1∥2∥wm−w∗∥2∑M
m=1 π̃m

].

I THE DERIVATION OF POSTERIOR

This section provides detailed derivations for Lemma 1. We begin by showing the posterior is
potentially still a Gaussian mixture in Sec. I.1. Then in Sec. I.2 we show how Eq. 3 is proportion to
Eq. 4, which is exactly still a Gaussian mixture.

I.1 PRIOR TO POSTERIOR

We start by showing the posterior is potentially still a Gaussian mixture:
P (µ,w|Sk ⊕ xk+1)

∝P (µ,w|Sk ⊕ xk+1)P (Sk ⊕ xk+1)

=P (µ,w,Sk ⊕ xk+1)

=P (µ,w)P (Sk ⊕ xk+1|µ,w)

=(

M∑

β=1

πβP (µ,w|Tβ))P (Sk ⊕ xk+1|µ,w)

=

M∑

β=1

πβP (µ,w|Tβ)P (Sk ⊕ xk+1|µ,w) (3)

∝
M∑

β=1

π̃βP (µ,w|T̃β). (4)
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We give the derivation from Eq. 3 to Eq. 4 in the next Sec. I.2.

I.2 CLOSED-FORM SOLUTION FROM EQ. 3 TO EQ. 4

We analyze each component (indicated by a specific β) in Eq. 3. For all β ∈ {1, . . . ,M} and all
(µ,w), we have:

P (µ,w|T̃β)P (Sk ⊕ xk+1|µ,w)

∝ exp(−∥µβ − µ∥2
2σ2

µ

) exp(−
∑k+1

i=1 ∥µ− xi∥2
2σ2

x

) exp(−∥wβ −w∥2
2σ2

w

) exp(−
∑k

i=1 ∥x⊤
i w − yi∥2
2σ2

y

)

(let δµ =
σ2
µ

σ2
x

, δw =
σ2
w

σ2
y

)

= exp(−
(∥µβ∥2 − 2µ⊤

β µ+ ∥µ∥2) + δµ((k + 1)∥µ∥2 − 2µ⊤∑k+1
i=1 xi +

∑k+1
i=1 ∥xi∥2)

2σ2
µ

)

exp(−
(∥wβ∥2 − 2w⊤

β w + ∥w∥2) + δw(
∑k

i=1 w
⊤xix

⊤
i w − 2w⊤∑k

i=1 xiyi +
∑k+1

i=1 y2i )

2σ2
µ

)

∝ exp(−∥µβ∥2 + (1 + (k + 1)δµ)∥µ∥2 − 2µ(µβ + δµ
∑k+1

i=1 xi)

2σ2
µ

)

exp(−∥wβ∥2 +w⊤(I + δw
∑k

i=1 xix
⊤
i )w − 2w(wβ + δw

∑k
i=1 xiyi)

2σ2
w

)

(let Σ̄µ = I, Σ̄w =

∑k
i=1 xix

⊤
i

k
)

= exp(−
∥µβ∥2 + ∥µ∥2

I+(k+1)δµΣ̄µ
− 2µ⊤(µβ + δµ

∑k+1
i=1 xi)

2σ2
µ

)

exp(−
∥wβ∥2 + ∥w∥2

I+kδwΣ̄w
− 2w⊤(wβ + δw

∑k
i=1 xiyi)

2σ2
w

)

(let µ̄ =

k+1∑

i=1

xi, w̄ =

∑k
i=1 xiyi
k

)

= exp(−
∥µβ∥2 + ∥µ∥2

I+(k+1)δµΣ̄µ
− 2µ⊤(µβ + (k + 1)δµµ̄)

2σ2
µ

)

exp(−
∥wβ∥2 + ∥w∥2

I+kδwΣ̄w
− 2w⊤(wβ + kδww̄)

2σ2
w

)

(Let ∆µ = (k + 1)δµ,∆w = kδw)

= exp(−
∥µβ∥2 + (∥µ∥2

I+∆µΣ̄µ
− 2µ⊤(µβ +∆µµ̄) + ∥µβ +∆µµ̄∥2(I+∆µΣ̄µ)−1)− ∥µβ +∆µµ̄∥2(I+∆µΣ̄µ)−1

2σ2
w

)

exp(−
∥wβ∥2 + (∥w∥2

I+∆wΣ̄w
− 2w⊤(wβ +∆ww̄) + ∥wβ +∆ww̄∥2

(I+∆wΣ̄w)−1)− ∥wβ +∆ww̄∥2
(I+∆wΣ̄w)−1

2σ2
w

)

= exp(−
∥µβ∥2 − ∥µβ +∆µµ̄∥2(I+∆µΣ̄µ)−1

2σ2
µ

) · exp(−
∥µ− (I +∆µΣ̄µ)

−1(µβ +∆µµ̄)∥2I+∆µΣ̄µ

2σ2
µ

)·

exp(−
∥wβ∥2 − ∥wβ +∆ww̄∥2

(I+∆wΣ̄w)−1

2σ2
w

) · exp(−
∥w − (I +∆wΣ̄w)−1(wβ +∆ww̄)∥2

I+∆wΣ̄w

2σ2
w

)

∝ exp(−
∥µβ∥2 − ∥µβ + (k + 1)δµµ̄∥2(I+(k+1)δµΣ̄µ)−1

2σ2
µ

) exp(−
∥wβ∥2 − ∥wβ + kδww̄∥2

(I+kδwΣ̄w)−1

2σ2
w

)·

22



Published at the ICLR 2024 Workshop on Understanding of Foundation Models (ME-FoMo)

0 1 3 7 15 31 63

0

10

δµ = 1/9

0 1 3 7 15 31 63

0

10

δµ = 1/3

0 1 3 7 15 31 63

0

10

δµ = 1

0 1 3 7 15 31 63

0

10

δµ = 3

0 1 3 7 15 31 63

0

10

δµ = 9

Ψµ(1, 1)

Ψµ(1, 2)

Ψµ(1, 3)

Ψµ(1, 4)

0 1 3 7 15 31 63

0

10

δw = 1/9

0 1 3 7 15 31 63

0

10

δw = 1/3

0 1 3 7 15 31 63

0

10

δw = 1

0 1 3 7 15 31 63

0

10

δw = 3

0 1 3 7 15 31 63

0

10

δw = 9

Ψw(1, 1)

Ψw(1, 2)

Ψw(1, 3)

Ψw(1, 4)

0 1 3 7 15 31 630.0

0.5

1.0
δµ = 1/9, δw = 1/9

π̃1

π̃2

π̃3

π̃4

0 1 3 7 15 31 630.0

0.5

1.0
δµ = 1/9, δw = 1/3

0 1 3 7 15 31 630.0

0.5

1.0
δµ = 1/9, δw = 1

0 1 3 7 15 31 630.0

0.5

1.0
δµ = 1/9, δw = 3

0 1 3 7 15 31 630.0

0.5

1.0
δµ = 1/9, δw = 9

0 1 3 7 15 31 630.0

0.5

1.0
δµ = 1/3, δw = 1/9

0 1 3 7 15 31 630.0

0.5

1.0
δµ = 1/3, δw = 1/3

0 1 3 7 15 31 630.0

0.5

1.0
δµ = 1/3, δw = 1

0 1 3 7 15 31 630.0

0.5

1.0
δµ = 1/3, δw = 3

0 1 3 7 15 31 630.0

0.5

1.0
δµ = 1/3, δw = 9

0 1 3 7 15 31 630.0

0.5

1.0
δµ = 1, δw = 1/9

0 1 3 7 15 31 630.0

0.5

1.0
δµ = 1, δw = 1/3

0 1 3 7 15 31 630.0

0.5

1.0
δµ = 1, δw = 1

0 1 3 7 15 31 630.0

0.5

1.0
δµ = 1, δw = 3

0 1 3 7 15 31 630.0

0.5

1.0
δµ = 1, δw = 9

0 1 3 7 15 31 630.0

0.5

1.0
δµ = 3, δw = 1/9

0 1 3 7 15 31 630.0

0.5

1.0
δµ = 3, δw = 1/3

0 1 3 7 15 31 630.0

0.5

1.0
δµ = 3, δw = 1

0 1 3 7 15 31 630.0

0.5

1.0
δµ = 3, δw = 3

0 1 3 7 15 31 630.0

0.5

1.0
δµ = 3, δw = 9

0 1 3 7 15 31 630.0

0.5

1.0
δµ = 9, δw = 1/9

0 1 3 7 15 31 630.0

0.5

1.0
δµ = 9, δw = 1/3

0 1 3 7 15 31 630.0

0.5

1.0
δµ = 9, δw = 1

0 1 3 7 15 31 630.0

0.5

1.0
δµ = 9, δw = 3

0 1 3 7 15 31 630.0

0.5

1.0
δµ = 9, δw = 9

Number of In-Context Examples (k)

Figure 11: Numerical computations of Ψµ, Ψw, and π for CR with varying task noise parameters.

N (µ|(I + (k + 1)δµΣ̄µ)
−1(µβ + (k + 1)δµµ̄), σ

2
µ(I + (k + 1)δµΣ̄µ)

−1)·
N (w|(I + kδwΣ̄w)−1(wβ + kδww̄), σ2

w(I + kδwΣ̄w)−1)

J DETAILED ANALYSIS OF COMPONENT SHIFTING AND RE-WEIGHTING

J.1 ANALYSIS OF COMPONENT RE-WEIGHTING

This section analyzes the CR effect on π̃β as k increases. We focus on whether π̃α of T̃α surpasses
π̃β of any other T̃β with β ̸= α, where α is the index of the closest clean task to the task which
in-context samples follow as Assumption 2. We assess this via the ratio r(α, β) of π̃α to π̃β :

r(α, β) =
π̃α

π̃β
=

παC1c
µ
αc

w
α

πβC1c
µ
β c

w
β

=
πα

πβ
exp(Ψµ(α, β) + Ψw(α, β)), (5)

where we define two functions Ψµ(α, β) = log(cµα/c
µ
β ) and Ψw(α, β) = log(cwα /cwβ ) to facilitate

the analyses of how r(α, β) changes with increasing k.

Analysis of Ψµ(α, β). We further simplify the function Ψµ(α, β) as follows:

Ψµ(α, β) = (

k+1∑

i=1

∥µβ − xi∥2 −
k+1∑

i=1

∥µα − xi∥2)/(2σ2
x(1 + (k + 1)δµ)). (6)

(See Appendix J.4.1 for derivation.) Since xi ∼ N (µ∗, τ2xI), a value of µ∗ closer to µα, tends to
make Ψµ(α, β) positive and grow large faster with increasing k. However, as k approaches infinity,
Ψµ(α, β) stabilizes rather than increasing infinitely, i.e., limk→∞ Ψµ(α, β) = (∥µβ−µ∗∥2−∥µα−
µ∗∥2)/(2σ2

µ). The leftmost column of Fig. 11 shows the numerical computation of Ψµ(α, β) with
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varied task noises under the setting “Tetrahedron” (see Appendix D.1 for setting details). The smaller

the value of δµ (=
σ2
µ

σ2
x

) is, the easier for Ψµ(α, β) to grow large as k increases.

Meanwhile, we also have:

lim
σµ→0

Ψµ(α, β) = (

k+1∑

i=1

∥µβ − xi∥2 −
k+1∑

i=1

∥µα − xi∥2)/(2σ2
x) (7)

Analysis of Ψw(α, β). We further simplify the function Ψw(α, β) as follows:

Ψw(α, β) = (∥wβ −w∗∥2I−(I+kδwΣ̄w)−1 − ∥wα −w∗∥2I−(I+kδwΣ̄w)−1)/(2σ
2
w). (8)

(See Appendix J.4.2 for derivation.) Since kδwΣ̄w (= δw
∑k

i=1 xix
⊤
i , see definition of Σ̄w in

Lemma 1) is at least semi-positive definite, thus choosing w∗ closer to wα tends to make
Ψw(α, β) positive and grow large faster with increasing k. However, as k approaches infinity,

limk→∞ kδwΣ̄w = limk→∞ kδw
∑k

i=1 xix
⊤
i

k = kδw(µ
∗µ∗⊤ + τ2xI). Thus, limk→∞ I − (I +

kδwΣ̄w)−1 = I and Ψw(α, β) stabilizes rather than increasing infinitely, i.e., limk→∞ Ψw(α, β) =
(∥wβ −w∗∥2−∥wα−w∗∥2)/(2σ2

w). The topmost row of Fig. 11 shows the numerical computation
of Ψw(α, β) with varied task noises under setting “Tetrahedron” (see Appendix D.1 for setting
details). The smaller the value of δw (= σ2

w

σ2
y

) is, the easier for Ψw(α, β) to grow large as k increases.

However, one should be caution that ∥wβ − w∗∥2 ≥ ∥wα − w∗∥2 does not necessarily imply
∥wβ −w∗∥2

I−(I+kδwΣ̄w)−1 ≥ ∥wα −w∗∥2
I−(I+kδwΣ̄w)−1 .

Meanwhile, we also have:
lim

σw→0
Ψw(α, β) = (∥wβ −w∗∥2kδwΣ̄w

− ∥wα −w∗∥2kδwΣ̄w
)/(2σ2

w)

= (∥µβ − xi∥2kΣ̄w
− ∥µα − xi∥2kΣ̄w

)/(2σ2
y)

= (

k∑

i=1

∥yβi − y∗i ∥2 −
k∑

i=1

∥yαi − y∗i ∥2)/(2σ2
y), (9)

where yβi = ⟨xi,wβ⟩, yαi = ⟨xi,wα⟩, and y∗i = ⟨xi,w
∗⟩.

Therefore, combine Eqs. 7 and 9 and we have:
lim

σµ,σw→0
Ψµ(α, β) + Ψw(α, β)

=
∥µβ − xk+1∥2 − ∥µα − xk+1∥2

2σ2
x

+

k∑

i=1

(
∥µβ − xi∥2 − ∥µα − xi∥2

2σ2
x

+
∥yβi − y∗i ∥2 − ∥yαi − y∗i ∥2

2σ2
y

)

(10)

Numerical Computations of Component Re-weighting. We have seen how noises σµ and σw

of the task prior affect the values of Ψµ and Ψw with increasing k. We further show the numerical
computation of π̃β in the center of Fig. 11. The figure shows that the smaller δµ and δw are, the larger
Ψµ(α, β) and Ψw(α, β) will be with increasing k, and the easier for the mixture component T̃α to
dominates in the posterior with an increasing number of in-context examples.

J.2 ANALYSIS OF COMPONENT SHIFTING

The Component Shifting described in Lemma 1 involves shifting the variables µ̃β and w̃β :

µ̃β = (I + (k + 1)δµΣ̄µ)
−1(µβ + (k + 1)δµµ̄), (11)

w̃β = (I + kδwΣ̄w)−1(wβ + kδww̄). (12)

The following analyses examine these two variables with increasing k.
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Figure 12: Numerical computations of ∥µ̃β − µ∗∥, ∥w̃β −w∗∥ for Component Shifting (CS).

Analysis of µ̃β . We provide the derivation of µ̃β in Eq. 11 (see Appendix J.5.1 for details):
µ̃β = (µβ + kδµµ̄)/(1 + (k + 1)δµ). (13)

Thus, when k increases, µ̃β moves close to the value of
∑k

i=1 xi

k and limk→∞ µ̃β = µ∗. We also
show the numerical computation of the distance between shifted µ̃β and µ∗ in the first row of Fig. 12.

Analysis of w̃β . We provide the derivation of w̃β in Eq. 12 (see Appendix J.5.2 for details):

w̃β = (I + kδwΣ̄w)−1(wβ −w∗) +w∗. (14)

Notice when k → ∞, kδwΣ̄w = kδw
∑k

i=1 xix
⊤
i

k → kδw(τ
2
xI +w∗w∗⊤), thus λd(kδwΣ̄w) → ∞,

and limk→∞ w̃β = w∗, where λd(A) indicates the minimum eigenvalue of A. We also show the
numerical computation of the distance between shifted w̃β and w∗ in the second row of Fig. 12.

(a) The Tetrahedron set-
ting. An illustration of
the in-context task and the
prior centers. ∀m ∈
{1, 2, 3, 4}, We set µm =
wm.
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(b) CR, CS, and risks under the Tetrahedron setting. In the first two
rows, we show the effects of CS and CR with an increasing number of
in-context examples. In the third row, we show how far the in-context
predicted function w̃ is from the target function w∗. In the fourth row, we
show the ICL risk.

Figure 13: Numerical experiments. (left) An illustration of the pretraining priors (right) The
numerical computational results

J.3 PRIOR TASK NOISES, CS, CR, AND ICL PREDICTION

We numerically compute how π̃m, w̃m, and the prediction F∗(Sk ⊕ xk+1) evolve with increasing k
under different prior task noise conditions. The numerical computation is based on the Tetrahedron
setting with four prior mixture components as illustrated in Fig. 13(a). See Appendix D.1 for more
setting details. Fig. 13(b) shows the computational results. The first row shows the CS effect,
demonstrating the impact of increasing k on w̃m. The second row shows the CR effect, illustrating
the impact of increasing k on π̃m. The third and fourth rows depict how increasing k influences the
risk of learning the function w∗. We observe that with low task noises and a small k value, the CR
effect initially prevails, significantly boosting the mixture weight of component α over others. Then,
as k increases further, the CS effect aligns all component centers with (µ∗,w∗).
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J.4 DERIVATION COLLECTION OF Ψµ(α, β) AND Ψw(α, β)

This section collects derivations for Ψµ(α, β) and Ψw(α, β). The derivation of Ψµ(α, β) is collected
in Sec J.4.1 and the derivation of Ψw(α, β) is collected in Sec J.4.2.

J.4.1 DERIVATION OF Ψµ(α, β)

This section collects the derivation of Ψµ(α, β) in Eq. 6 of Sec. J.1:
Ψµ(α, β)

= log(exp(−
∥µβ∥2 − ∥µβ + (k + 1)δµµ̄∥2(I+(k+1)δµΣ̄µ)−1

2σ2
µ

)/ exp(−
∥µα∥2 − ∥µα + (k + 1)δµµ̄∥2(I+(k+1)δµΣ̄µ)−1

2σ2
µ

))

=
(1 + (k + 1)δµ)∥µβ∥2 − ∥µβ + δµ

∑k+1
i=1 xi∥2

2σ2
µ(1 + (k + 1)δµ)

− (1 + (k + 1)δµ)∥µα∥2 − ∥µα + δµ
∑k+1

i=1 xi∥2
2σ2

µ(1 + (k + 1)δµ)

=
−∥µβ + δµ

∑k+1
i=1 xi∥2

2σ2
µ(1 + (k + 1)δµ)

− −∥µα + δµ
∑k+1

i=1 xi∥2
2σ2

µ(1 + (k + 1)δµ)

=
−∥µβ∥2 − 2µ⊤

β (δµ
∑k+1

i=1 xi)− ∥δµ
∑k+1

i=1 xi∥2
2σ2

µ(1 + (k + 1)δµ)
− −∥µα∥2 − 2µ⊤

α (δµ
∑k+1

i=1 xi)− ∥δµ
∑k+1

i=1 xi∥2
2σ2

µ(1 + (k + 1)δµ)

=
(k + 1)δµ∥µβ∥2 − 2µ⊤

β (δµ
∑k+1

i=1 xi) + δµ
∑k+1

i=1 ∥xi∥2
2σ2

µ(1 + (k + 1)δµ)
− (k + 1)δµ∥µα∥2 − 2µ⊤

α (δµ
∑k+1

i=1 xi) + δµ
∑k+1

i=1 ∥xi∥2
2σ2

µ(1 + (k + 1)δµ)

=

∑k+1
i=1 δµ∥µβ − xi∥2

2σ2
µ(1 + (k + 1)δµ)

−
∑k+1

i=1 δµ∥µα − xi∥2
2σ2

µ(1 + (k + 1)δµ)

=

∑k+1
i=1 ∥µβ − xi∥2 −

∑k+1
i=1 ∥µα − xi∥2

2σ2
x(1 + (k + 1)δµ)

.

J.4.2 DERIVATION OF Ψw(α, β)

This section collects the derivation of Ψµ(α, β) in Eq. 8 of Sec. J.1:
Ψw(α, β)

= log(exp(−
∥wα∥2 − ∥wα + kδww̄∥2

(I+kδwΣ̄w)−1

2σ2
w

)/ exp(−
∥wβ∥2 − ∥wβ + kδww̄∥2

(I+kδwΣ̄w)−1

2σ2
w

))

=
∥wβ∥2 − ∥wβ + kδww̄∥2

(I+kδwΣ̄w)−1

2σ2
w

−
∥wα∥2 − ∥wα + kδww̄∥2

(I+kδwΣ̄w)−1

2σ2
w

(Note kδww̄ = δw

k∑

i=1

xiyi = δw

k∑

i=1

xix
⊤
i w

∗ = kδwΣ̄ww∗)

=
∥wβ∥2 − ∥wβ + kδwΣ̄ww∗∥2

(I+kδwΣ̄w)−1

2σ2
w

−
∥wα∥ − ∥wα + kδwΣ̄ww∗∥2

(I+kδwΣ̄w)−1

2σ2
w

=
∥wβ∥2 − ∥(wβ −w∗) + (I + kδwΣ̄w)w∗∥2

(I+kδwΣ̄w)−1

2σ2
w

−
∥wα∥2 − ∥(wα −w∗) + (I + kδwΣ̄w)w∗∥2

(I+kδwΣ̄w)−1

2σ2
w

=
∥wβ∥2 − ∥wβ −w∗∥2

(I+kδwΣ̄w)−1 − 2(wβ −w∗)⊤w∗

2σ2
w

−
∥wα∥2 − ∥wα −w∗∥2

(I+kδwΣ̄w)−1 − 2(wα −w∗)⊤w∗

2σ2
w

=
∥wβ −w∗∥2 − ∥wβ −w∗∥2

(I+kδwΣ̄w)−1

2σ2
w

−
∥wα −w∗∥2 − ∥wα −w∗∥2

(I+kδwΣ̄w)−1

2σ2
w

=
∥wβ −w∗∥2

I−(I+kδwΣ̄w)−1 − ∥wα −w∗∥2
I−(I+kδwΣ̄w)−1

2σ2
w
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J.5 DERIVATION COLLECTION OF µ̃β AND w̃β

This section collects derivations for µ̃β and w̃β . The derivation of µ̃β is collected in Appendix J.5.1
and the derivation of Ψw is collected in Appendix J.5.2.

J.5.1 DERIVATION OF µ̃β

This section collects the derivation of µβ in Eq. 13 of Sec. J.1:

µ̃β = (I + (k + 1)δµΣ̄µ)
−1(µβ + (k + 1)δµµ̄)

= (I + (k + 1)δµI)
−1(µβ + δµ

k+1∑

i=1

xi)

=
µβ + δµ

∑k+1
i=1 xi

1 + (k + 1)δµ

J.5.2 DERIVATION OF w̃β

This section collects the derivation of wβ in Eq. 14 of Sec. J.1:

w̃β = (I + kδwΣ̄w)−1(wβ + kδww̄)

(recall kδww̄ = δw

k∑

i=1

xiyi = δw

k∑

i=1

xix
⊤
i w

∗ = kδwΣ̄ww∗)

= (I + kδwΣ̄w)−1(wβ + kδwΣ̄ww∗)

= (I + kδwΣ̄w)−1(wβ −w∗ + (I + kδwΣ̄w)w∗)

= (I + kδwΣ̄w)−1(wβ −w∗) +w∗ (15)

K PROOF OF ICL BOUNDS

K.1 PROOF TOOLS

We use the following inequalities in our proofs:

K.1.1 GAUSSIAN TAIL BOUND

If Zi ∼ N (0, 1), then for t > 0 we have:

P

(∑k
i=1 Zi

k
> t

)
≤ exp

(
−kt2

2

)

P

(∑k
i=1 Zi

k
< −t

)
≤ exp

(
−kt2

2

)

K.1.2 CHI-SQUARED TAIL BOUND

If X ∼ χ(k), i.e., X =
∑k

i=1 Z
2
i where Zi ∼ N (0, 1) then:

P

(
X

k
− 1 > 2

√
t1 + 2t1

)
≤ exp

(
−kt21

)

P

(
X

k
− 1 < −2

√
t1

)
≤ exp

(
−kt21

)
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As a looser but symmetric bound, for t > 0, we have:

P

(
X

k
− 1 > t

)
≤ exp

(
−kt2

8

)

P

(
X

k
− 1 < −t

)
≤ exp

(
−kt2

8

)

(See Chi-square Tail Bound.)

K.1.3 NORM TAIL BOUND

If ϵi ∼ N (0, τ2xI), ϵi ∈ Rd, I ∈ Rd×d, then for t > 0 we have:

P

(∥∥∥∥∥

∑k
i=1 ϵi
k

∥∥∥∥∥ >

√
τ2xd

k
(1 + t)

)
≤ exp

(
−kt2

8

)

Proof. ∥∥∥∥∥

∑k
i=1 ϵi
k

∥∥∥∥∥

2

=

d∑

j=1

(∑k
i=1 ϵi,j
k

)2

=
τ2x
k

d∑

j=1

(∑k
i=1 ϵi,j

τx
√
k

)2

(Notice ϵi,j ∼ N (0, τ2x) and let Zj =

∑k
i=1 ϵi,j

τx
√
k

∼ N (0, 1))

=
τ2xd

k

∑d
i=1 Z

2
i

d

therefore by Appendix K.1.2 we have:

P

(
τ2xd

k

∑d
i=1 Z

2
i

d
>

τ2xd

k
(1 + t)

)
≤ exp

(
−kt2

8

)

K.1.4 EIGENVALUE CONCENTRATION BOUND

Lemma 4. If ∀i, xi ∼ N (µ, τ2xI), A =
∑k

i=1 xix
⊤
i

k , and
∑k

i=1 ϵi
k =

∑k
i=1(xi−µ)

k , we have ∀t > 0:

P

(
L ≤ λd(A) ≤ λ1(A) ≤ U and ∥

∑k
i=1 ϵi
k

∥ < τx
√

γ(1 + t)

)
> 1− 3 exp

(
−kt2

8

)

where L = τ2x(1 − t
2 − γ)2 − 2τxγ

√
1 + t,U = 1 + τ2x(1 +

t
2 + γ)2 + 2τxγ

√
1 + t and λi(A) is

the ith biggest eigenvalue of the matrix A and γ =
√

d
k .

We begin with decomposing A to three components A =
∑k

i=1 xix
⊤
i

k = µµ⊤ +
∑k

i=1(µϵ⊤i +ϵiµ
⊤)

k +∑k
i=1 ϵiϵ

⊤
i

k , where xi = µ+ ϵi, then consider the eigenvalues of them.

For the first component, we have:

0 ≤ λd(µµ
⊤) < λ1(µµ

⊤) ≤ 1
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Then, we analyze the second component with Eqs. (8.8) and (8.9) in Covariance Matrix Estimation:
Gaussian Data. We have for all s > 0:

P



(
1− s−

√
d

k

)2

≤ 1

τ2x
λd

(∑k
i=1 ϵiϵ

⊤
i

k

)
<

1

τ2x
λ1

(∑k
i=1 ϵiϵ

⊤
i

k

)
≤
(
1 + s+

√
d

k

)2

 > 1− 2 exp

(
−ks2

2

)

Finally for the third component, we examine
∑k

i=1(µϵ⊤i +ϵiµ
⊤)

k . We have for all ∥a∥ = 1:∥∥∥∥∥a
⊤
∑k

i=1(µϵ
⊤
i + ϵiµ

⊤)

k
a

∥∥∥∥∥ = 2

∥∥∥∥∥a
⊤
∑k

i=1 ϵi
k

µ⊤a

∥∥∥∥∥ ≤ 2

∥∥∥∥∥

∑k
i=1 ϵi
k

∥∥∥∥∥

(Notice by Norm Tail Bound in Appendix K.1.3, we have P

(∥∥∥∥∥

∑k
i=1 ϵi
k

∥∥∥∥∥ >

√
τ2xd

k
(1 + t)

)
≤ exp

(
−kt2

8

)
)

=⇒P

(
−2

√
τ2xd

k
(1 + t) ≤ λd

(
2µ

∑k
i=1 ϵ

⊤
i

k

)
≤ λ1

(
2µ

∑k
i=1 ϵ

⊤
i

k

)
≤ 2

√
τ2xd

k
(1 + t)

)
> 1− exp

(
−kt2

8

)

Let γ =
√

d
k , s = t/2, and summarize three components we have:

P

(
τ2x

(
1− t

2
− γ

)2

− 2τxγ
√
1 + t ≤ λd(A) ≤ λ1(A) ≤ 1 + τ2x

(
1 +

t

2
+ γ

)2

+ 2τxγ
√
1 + t

)
> 1− 3 exp

(
−kt2

8

)

As a summary, we have:

P

(
L ≤ λd(A) ≤ λ1(A) ≤ U and ∥

∑k
i=1 ϵi
k

∥ < τx
√

γ(1 + t)

)
> 1− 3 exp

(
−kt2

8

)

where γ =
√

d
k , L = τ2x(1− t

2 − γ)2 − 2τxγ
√
1 + t,U = 1+ τ2x

(
1 + t

2 + γ
)2

+2τxγ
√
1 + t, and

λi(A) is the ith biggest eigenvalue of the matrix A.

K.2 ICL WITH CORRECT LABELS TO LEARN A TASK

This section introduces the proof of Theorem 5.

Proof. Assuming we are using in-context examples following Assumption 2(a), i.e., xi ∼
N (µ∗, τ2xI), yi = ⟨xi,w

∗⟩, and we aim to have the prediction of Sk ⊕ xk+1 to be ⟨xk+1,w
∗⟩, i.e.,

to learn the function of the in-context task. Let L∗
k indicate the squared loss (F∗(Sk ⊕ xk+1) −

⟨xk+1,w
∗⟩)2, where F∗(Sk⊕xk+1) is the prediction of Sk⊕xk+1 by the Bayes-optimal next-token

predictor F∗. We derive the upper bound of the expected squared loss as follows:
ESk⊕xk+1

[L∗
k]

=ESk⊕xk+1

[
(F∗(Sk ⊕ xk+1)− ⟨w∗,xk+1⟩)2

]

(By Corollary 1)

=ESk⊕xk+1

[(∑M

β=1
π̃β⟨w̃β ,xk+1⟩ − ⟨w∗,xk+1⟩

)2
]

=ESk⊕xk+1

[(〈∑M

β=1
π̃β(w̃β −w∗),xk+1

〉)2
]

(See Eq. 15 for the derivation of w̃β)

=ESk⊕xk+1

[(〈∑M

β=1
π̃β((I + kδwΣ̄w)−1(wβ −w∗) +w∗ −w∗),xk+1

〉)2
]

(Let A = (I + kδwΣ̄w)−1, and notice A is symmetric positive definite.)
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=ESk⊕xk+1

[(〈∑M

β=1
π̃β(A(wβ −w∗)),xk+1

〉)2
]

≤ESk⊕xk+1
[
∑M

β=1
π̃β⟨(A(wβ −w∗)),xk+1⟩2]

=
∑M

β=1
ESk⊕xk+1

[π̃β((wβ −w∗)⊤Axk+1)
2]

≤
∑M

β=1
∥wβ −w∗∥2ESk⊕xk+1

[π̃β∥xk+1∥2λ1(A)2] (16)

≤4ESk⊕xk+1
[
∑M

β=1
π̃β∥xk+1∥2λ1(A)2]

=4ESk⊕xk+1
[∥xk+1∥2λ1(A)2]

(Notice A is a random matrix only depends on x1,x2, . . . ,xk, but not xk+1.)

=4Exk+1
[∥xk+1∥2]ESk

[λ2
1(A)]

=4(1 + dτ2x)ESk
[λ2

1(A)]

We further have the upper bound on the expected squared loss with Lemma 4:
ESk⊕xk+1

[L∗
k]

<4(1 + dτ2x)ESk
[λ2

1(A)]

<4(1 + dτ2x)ESk



(

1

1 + kδwλd(
∑k

i=1 xix⊤
i

k )

)2



(Apply Lemma 4 to
∑k

i=1 xix
⊤
i

k
.)

<4(1 + dτ2x)



(

1

1 + kδw(τ2x(1− t
2 − γ)2 − 2τxγ

√
1 + t)

)2

+ 3 exp

(
−kt2

8

)


Let t = kδ−
1
2 , where 1

2 > δ > 0 and δ is arbitrary small. We have:

ESk⊕xk+1
[L∗

k] <
4(1 + dτ2x)

τ4xδ
2
wk

2
+O(kδ−

5
2 )

We further validate the expected loss with numerical computations in Fig. 14.

K.3 ICL WITH BIASED LABELS TO RETRIEVE A TASK

We start with the Assumption of biased labels:

Assumption 3 (ICL with Biased Labels). The function w∗ of ICL with biased labels is different from
the target function wα, i.e., w∗ ̸= wα where wα is a function of a pretraining task prior center. The
in-context task is closer to the prior center α compared to all the other prior centers β ̸= α:
∀β ̸= α, ∥µβ − µ∗∥2 − ∥µα − µ∗∥2 ≥ d2µ, ∥wβ − w∗∥2 − ∥wα − w∗∥2 ≥ d2w, and τ2x∥wβ −
w∗∥2 − (1 + τ2x)∥wα −w∗∥2 ≥ τ2xu

2
w.

This section further details the proof of Theorem 3, with Fig.15 serving as a visual guide. The
non-asymptotic and asymptotic bound share the same foundational elements in the proof. However,
they are different in handling the components marked in pink. Fig. 15 is thus provided to offer a
clearer understanding of its overall framework and assist readers in navigating through the proof.

Proof. Assuming we are using in-context examples following Assumption 2(a), i.e., xi ∼
N (µ∗, τ2xI), yi = ⟨xi,w

∗⟩, and we aim to have the prediction of Sk ⊕ xk+1 to be ⟨xk+1,wα⟩, i.e.,
to retrieve the prediction of the clean task α. Let Lα

k indicate the squared loss (F∗(Sk ⊕ xk+1)−
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0.0
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∑
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k
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∑
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k

0
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0
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>
k
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>
k
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∑xkx

>
k

0
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0
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0
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0
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0
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0
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1/E[‖F∗− y∗k+1‖]
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0

500

0 21 42 63 84 105 126
0

100000
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0

2

×106

1/E[(F∗− y∗k+1)
2]

Number of In-Context Examples (k)

Figure 14: The numerical computation of the task learning. The second and third rows show the
eigenvalues of the matrices δw

∑k
i=1 xix

⊤
i

k and I+δw
∑k

i=1 xix
⊤
i . The fourth row shows the distance

between the predicted w̃ and w∗ has a reciprocal decreasing rate with respect to k. The fifth and
sixth rows indicate the expected squared loss follows a quadratic decreasing rate with respect to k.

⟨xk+1,wα⟩)2, where F∗(Sk⊕xk+1) is the prediction of Sk⊕xk+1 by the Bayes-optimal next-token
predictor F∗. In order to have an upper bound on the loss, we consider xi ∼ N (µ∗, τ2xI) in two

cases: (1) C: L < λd(
∑k

i=1 xix
⊤
i

k ) ≤ λ1(
∑k

i=1 xix
⊤
i

k ) < U and ∥
∑k

i=1 ϵi
k ∥ < τx

√
γ(1 + t) (see

Lemma 4 for t, γ, L and U) and (2) ¬C: at least one of the previous inequalities does not hold. (the
probability of ¬C is bounded by: P (¬C) ≤ 3 exp(−kt2

8 )).

We start our upper bound analysis on the expected squared loss by splitting the loss into three parts:
ESk⊕xk+1

[Lα
k ]

=ESk⊕xk+1
[(F∗(Sk ⊕ xk+1)− ⟨wα,xk+1⟩)2]

(By Corollary 1)

=ESk⊕xk+1

[(∑M

β=1
π̃β⟨w̃β ,xk+1⟩ − ⟨wα,xk+1⟩

)2
]

(Notice
∑M

β=1
πβ = 1)

=ESk⊕xk+1

[(∑M

β=1
π̃β (⟨w̃β ,xk+1⟩ − ⟨wα,xk+1⟩)

)2
]
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𝔼𝑆𝑘⊕𝑥𝑘+1
[ℒ𝑘

𝛼]

𝑃 𝐂 𝔼[σ𝛽≠𝛼 ෤𝜋𝛽 ෥𝑤 − 𝑤𝛼 , 𝑥𝑘+1
2 |𝐂] 

𝑃(𝐂)𝔼[ ෤𝜋𝛼 ෥𝑤 − 𝑤𝛼 , 𝑥𝑘+1
2|𝐂]

𝑃 ¬𝐂 𝔼 σ𝛽=1
𝑀 ෤𝜋𝛽 ෥𝑤 − 𝑤𝛼 , 𝑥𝑘+1

2 ¬𝐂

16𝑟 𝑀 − 1 𝐶𝑘=0 exp −
𝑑𝜇
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Figure 15: Proof roadmap of ICL with biased labels, Theorem. 3.

(Notice (
∑M

β=1
π̃βaβ)

2 ≤
∑M

β=1
π̃βa

2
β , since E[a]2 ≤ E[a2])

≤ESk⊕xk+1

[∑M

β=1
π̃β(⟨w̃β ,xk+1⟩ − ⟨wα,xk+1⟩)2

]

=ESk⊕xk+1

[∑M

β=1
π̃β(⟨w̃β −wα,xk+1⟩)2

]

=P (C)ESk⊕xk+1

[∑M

β=1
π̃β(⟨w̃β −wα,xk+1⟩)2

∣∣∣∣C
]
+

P (¬C)ESk⊕xk+1

[∑M

β=1
π̃β(⟨w̃β −wα,xk+1⟩)2

∣∣∣∣¬C
]

=P (C)ESk⊕xk+1

[∑
β ̸=α

π̃β(⟨w̃β −wα,xk+1⟩)2
∣∣∣C
]
+ (17)

P (C)ESk⊕xk+1
[π̃α(⟨w̃α −wα,xk+1⟩)2|C]+ (18)

P (¬C)ESk⊕xk+1

[∑M

β=1
π̃β(⟨w̃β −wα,xk+1⟩)2

∣∣∣∣¬C
]

(19)

We will analyze three parts one by one in the following three sections respectively.

K.3.1 ICL WITH BIASED LABELS - PART 1

Proof. We firstly analyze the term P (C)ESk⊕xk+1
[
∑

β ̸=α π̃β(⟨w̃β −wα,xk+1⟩)2 | C] (Part. 17):

P (C)ESk⊕xk+1

[∑
β ̸=α

π̃β(⟨w̃β −wα,xk+1⟩)2
∣∣∣C
]

<P (C)ESk⊕xk+1

[∑
β ̸=α

π̃β∥w̃β −wα∥2∥xk+1∥2
∣∣∣C
]

(See Eq. 15 for the derivation of w̃β)

=P (C)ESk⊕xk+1

[∑
β ̸=α

π̃β∥(I + kδwΣ̄w)−1(wβ −w∗) +w∗ −wα∥2∥xk+1∥2
∣∣∣C
]

(Let A = (I + kδwΣ̄w)−1, and λ1(A) is the largest eigenvalue of matrix A))

=P (C)ESk⊕xk+1

[∑
β ̸=α

π̃β∥A(wβ −w∗) +w∗ −wα∥2∥xk+1∥2
∣∣∣C
]
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≤P (C)ESk⊕xk+1

[∑
β ̸=α

π̃β(∥A(wβ −w∗)∥+ ∥w∗ −wα∥)2∥xk+1∥2
∣∣∣C
]

≤P (C)ESk⊕xk+1

[∑
β ̸=α

π̃β∥xk+1∥2(2λ1(A) + ∥w∗ −wα∥)2
∣∣∣C
]

≤P (C)ESk⊕xk+1

[∑
β ̸=α

π̃β∥xk+1∥2
∣∣∣C
]( 2

1 + kδwL
+ ∥w∗ −wα∥

)2

≤P (C)ESk⊕xk+1

[∑
β ̸=α

π̃β

π̃α
∥xk+1∥2

∣∣∣∣C
](

4

(1 + kδwL)2
+

8

1 + kδwL

)
+

P (C)ESk⊕xk+1

[∑
β ̸=α

π̃β∥xk+1∥2
∣∣∣C
]
∥w∗ −wα∥2 (20)

The magenta-colored term will be used for the asymptotic bound in section K.3.2 and the bound for
the bounded efficacy phenomenon in this section. Apply Eqs. 5, 6, and 8 and Assumption 1(e) to π̃β

π̃α
,

we have:

P (C)ESk⊕xk+1

[∑
β ̸=α

π̃β

π̃α
∥xk+1∥2

∣∣∣∣C
]

<P (C)ESk⊕xk+1
[
∑

β ̸=α
r exp(

−∑k
i=1 ∥µβ − xi∥2 +

∑k
i=1 ∥µα − xi∥2

2σ2
x(1 + (k + 1)δµ)

)·

exp(
−∥wβ −w∗∥2

I−(I+kδwΣ̄w)−1 + ∥wα −w∗∥2
I−(I+kδwΣ̄w)−1

2σ2
w

)·

exp(
−∥µβ − xk+1∥2 + ∥µα − xk+1∥2

2σ2
x(1 + (k + 1)δµ)

)∥xk+1∥2|C]

=rP (C)
∑

β ̸=α
ESk⊕xk+1

[exp(

∑k
i=1(−∥µβ − xi∥2 + ∥µα − xi∥2)

2σ2
x(1 + (k + 1)δµ)

)·

exp(
−∥wβ −w∗∥2

I−(I+kδwΣ̄w)−1 + ∥wα −w∗∥2
I−(I+kδwΣ̄w)−1

2σ2
w

)·

exp(
−∥µβ − xk+1∥2 + ∥µα − xk+1∥2

2σ2
x(1 + (k + 1)δµ)

)∥xk+1∥2 | C]

In the following, we analyze the three-colored terms separately.

Recall in case C we have:

∥
∑k

i=1 ϵi
k

∥ < τxγ
√
1 + t

Therefore, when conditioned on case C we have:
∑k

i=1(−∥µβ − xi∥2 + ∥µα − xi∥2)
1 + (k + 1)δµ

(Let xi = µ∗ + ϵi)

=k
∥µα − µ∗∥2 − ∥µβ − µ∗∥2 +

∑k
i=1 2⟨µβ−µα,ϵi⟩

k

1 + (k + 1)δµ

=k
∥µα − µ∗∥2 − ∥µβ − µ∗∥2 + ⟨2(µβ − µα),

∑k
i=1 ϵi
k ⟩

1 + (k + 1)δµ

≤k
∥µα − µ∗∥2 − ∥µβ − µ∗∥2 + 2∥µβ − µα∥∥

∑k
i=1 ϵi
k ∥

1 + (k + 1)δµ

≤k
∥µα − µ∗∥2 − ∥µβ − µ∗∥2 + 4τxγ

√
1 + t

1 + (k + 1)δµ

(Branch to purple for asymptotic bound or to orange for the bound for the U-shaped pattern)
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(Let t = kδ−
1
2 and δ is arbitrarily small. See Assumption 3 for definition of d2µ)

≤−d2µ
δµ

+
4τx

√
d

δµ
k

δ
2−

3
4 +O(k−1)

(let t = k−
1
4 ,When δµ ≪ 1, such that ∃k ≤ 1

δµ
− 1, s.t.

d2µ
2

> 4τxγ

√
1 + k−

1
4 )

<− k
d2µ
4

Recall in case C we have:

L < λd(

∑k
i=1 xix

⊤
i

k
) < λ1(

∑k
i=1 xix

⊤
i

k
) < U

Therefore when conditioned on case C we also have:
− ∥wβ −w∗∥2I−(I+kδwΣ̄w)−1 + ∥wα −w∗∥2I−(I+kδwΣ̄w)−1

<− ∥wβ −w∗∥2λd(I − (I + kδwΣ̄w)−1) + ∥wα −w∗∥2λ1(I − (I + kδwΣ̄w)−1)

(where λ1(A) and λd(A) indicate the maximal and minimal eigenvalues of the matrix A ∈ Rd×d)

<− ∥wβ −w∗∥2(1− 1

1 + kδwL
) + ∥wα −w∗∥2(1− 1

1 + kδwU
)

(Branch to purple for asymptotic bound or to orange for the bound for the U-shaped pattern.)

=(−∥wβ −w∗∥2 + ∥wα −w∗∥2) + (+
∥wβ −w∗∥2
1 + kδwL

− ∥wα −w∗∥2
1 + kδwU

)

(Let t = kδ−
1
2 and δ is arbitrarily small. See Assumption 3 for definition of d2w)

=−(∥wβ −w∗∥2 − ∥wα −w∗∥2) + (
∥wβ −w∗∥2

kδwτ2x
− ∥wα −w∗∥2

kδw(1 + τ2x)
) +O(kδ−

3
2 )

<−d2w +
4

δwτ2x
k−1 +O(kδ−

3
2 )

=−∥wβ −w∗∥2 kδwL
1 + kδwL

+ ∥wα −w∗∥2 kδwU
1 + kδwU

<−∥wβ −w∗∥2 kδwL
1 + kδwτ2x

+ ∥wα −w∗∥2 kδwU
1 + kδwτ2x

(Let t = k−
1
4 , when δw ≪ 1, such that ∃k ≤ 1

δwτ2x
, s.t. L∥wβ −w∗∥2 − U∥wα −w∗∥2 > τ2xu

2
w/2)

(See Assumption 3 for definition of u2
w)

<−kδw
τ2xu

2
w

4

Further, we have:

P (C)ESk⊕xk+1
[exp(

−∥µβ − xk+1∥2 + ∥µα − xk+1∥2
2σ2

x(1 + (k + 1)δµ)
)∥xk+1∥2 | C]

<ESk⊕xk+1
[exp(

−∥µβ − xk+1∥2 + ∥µα − xk+1∥2
2σ2

x(1 + (k + 1)δµ)
)∥xk+1∥2]

(Let xk+1 = µ∗ + ϵ)

=ESk⊕xk+1
[exp(

−∥µβ − µ∗ − ϵ∥2 + ∥µα − µ∗ − ϵ∥2
2σ2

x(1 + (k + 1)δµ)
)∥xk+1∥2]

=ESk⊕xk+1
[exp(

−∥µβ − µ∗∥2 + ∥µα − µ∗∥2 + ⟨2(µβ − µα), ϵ⟩
2σ2

x(1 + (k + 1)δµ)
)∥xk+1∥2]

(Let − ∥µβ − µ∗∥2 + ∥µα − µ∗∥2 = −D, 2σ2
x(1 + (k + 1)δµ) = E, b = 2(µβ − µα))
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=ESk⊕xk+1
[exp(

−D + b⊤ϵ

E
)∥xk+1∥2]

≤ESk⊕xk+1
[exp(

−D + b⊤ϵ

E
)(2∥µ∗∥2 + 2∥ϵ∥2)]

=2(ESk⊕xk+1
[exp(

−D + b⊤ϵ

E
)] + ESk⊕xk+1

[exp(
−D + b⊤ϵ

E
)∥ϵ∥2])

=2(exp(
τ2x∥b∥2
2E2

− D

E
) + ESk⊕xk+1

[exp(
−D + b⊤ϵ

E
)∥ϵ∥2])

=2(exp(
τ2x∥b∥2
2E2

− D

E
) + τ2x(1 +

τ2x∥b∥2
E2

) exp(
τ2x∥b∥2
2E2

− D

E
) + (d− 1)τ2x exp(

τ2x∥b∥2
2E2

− D

E
))

=2(1 + τ2x(d+
τ2x∥b∥2
E2

)) exp(
τ2x∥b∥2
2E2

− D

E
)

=Ck=0 (21)

Thus, for the asymptotic bound, we have (notice we will not use the magenta-colored term 20 for the
asymptotic bound in this section):

P (C)ESk⊕xk+1

[∑
β ̸=α

π̃β

π̃α
∥xk+1∥2 | C

](
4

(1 + kδwL)2
+

8

1 + kδwL

)

<r
∑

β ̸=α
P (C)ESk⊕xk+1

[exp(
−∑k

i=1 ∥µβ − xi∥2 +
∑k

i=1 ∥µα − xi∥2
2σ2

x(1 + (k + 1)δµ)
)·

exp(
−∥wβ −w∗∥2

I−(I+kδwΣ̄w)−1 + ∥wα −w∗∥2
I−(I+kδwΣ̄w)−1

2σ2
w

)·

exp(
−∥µβ − xi∥2 + ∥µα − xi∥2

2σ2
x(1 + (k + 1)δµ)

)∥xk+1∥2 | C]·
(

4

(1 + kδwL)2
+

8

1 + kδwL

)

<r
∑

β ̸=α

exp(
−d2

µ

δµ
+ 4τx

√
d

δµ
k

δ
2−

3
4 +O(k−1)

2σ2
x

) exp(
−d2w + 4

δwτ2
x
k−1 +O(kδ−

3
2 )

2σ2
w

)Ck=0

(
8

kδwL
+O(k−2)

)

=r(M − 1)Ck=0 exp(
−d2µ + 4τx

√
dk

δ
2−

3
4 +O(k−1)

2σ2
µ

) exp(
−d2w + 4

δwτ2
x
k−1 +O(kδ−

3
2 )

2σ2
w

)

(
8

kδwL
+O(k−2)

)

=
8r(M − 1)Ck=0

kδwL
exp(

−d2µ + 4τx
√
dk

δ
2−

3
4 +O(k−1)

2σ2
µ

) exp(
−d2w + 4

δwτ2
x
k−1 +O(kδ−

3
2 )

2σ2
w

) +O(k−2)

=
8r(M − 1)Ck=0

kδwL
exp(

−d2µ + 4τx
√
dk

δ
2−

3
4

2σ2
µ

) exp(
−d2w
2σ2

w

) +O(k−2)

Thus, for the U-shaped bound, we have (notice we will use the magenta magenta-colored term for the
U-shaped bound in this section):

P (C)ESk⊕xk+1

[∑
β ̸=α

π̃β

π̃α
∥xk+1∥2 | C

](
4

(1 + kδwL)2
+

8

1 + kδwL

)
+

P (C)ESk⊕xk+1

[∑
β ̸=α

π̃β∥xk+1∥2
∣∣∣C
]
∥w∗ −wα∥2

≤P (C)ESk⊕xk+1

[∑
β ̸=α

π̃β

π̃α
∥xk+1∥2 | C

]
· 16

<16r
∑

β ̸=α
P (C)ESk⊕xk+1

[exp(
−∑k

i=1 ∥µβ − xi∥2 +
∑k

i=1 ∥µα − xi∥2
2σ2

x(1 + (k + 1)δµ)
)·
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exp(
−∥wβ −w∗∥2

I−(I+kδwΣ̄w)−1 + ∥wα −w∗∥2
I−(I+kδwΣ̄w)−1

2σ2
w

)·

exp(
−∥µβ − xi∥2 + ∥µα − xi∥2

2σ2
x(1 + (k + 1)δµ)

)∥xk+1∥2 | C]

<16r(M − 1)Ck=0 exp

(
−d2µk

8σ2
x

)
exp

(
−u2

wτ2xk

8σ2
y

)

K.3.2 ICL WITH BIASED LABELS - PART 2

Proof. We then deal with the second term P (C)ESk⊕xk+1
[π̃α(⟨w̃β −wα,xk+1⟩)2 | C], the part 18:

P (C)ESk⊕xk+1
[π̃α(⟨w̃α −wα,xk+1⟩)2 | C]

<P (C)ESk⊕xk+1
[π̃α∥ − (I − (I + kδwΣ̄w)−1)(wα −w∗) + (wα −wα)∥2∥xk+1∥2 | C]

< ∥wα −w∗∥2P (C)ESK
[π̃αλ

2
1(I − (I + kδwΣ̄w)−1)∥xk+1∥2 | C]

(Let λ1(A) be the maximal eigenvalue of the matrix A)

<∥wα −w∗∥2P (C)ESk⊕xk+1
[π̃αλ

2
1(I − (I + kδwΣ̄w)−1)∥xk+1∥2 | C]

<∥wα −w∗∥2P (C)ESk⊕xk+1
[π̃α(1−

1

1 + kδwU
)2∥xk+1∥2 | C]

<∥wα −w∗∥2P (C)ESk⊕xk+1
[π̃α∥xk+1∥2 | C](1− 1

1 + kδwU
)2

Thus, for the asymptotic bound, we have (notice we will use the magenta-colored term 20 for the
asymptotic bound in this section):

Adding the magenta-colored term 20 in section K.3.1:
P (C)ESk⊕xk+1

[π̃α(⟨w̃α −wα,xk+1⟩)2 | C]+

P (C)ESk⊕xk+1

[∑
β ̸=α

π̃β∥xk+1∥2
∣∣∣C
]
∥w∗ −wα∥2

=∥wα −w∗∥2P (C)ESk⊕xk+1
[π̃α∥xk+1∥2 | C](1− 1

1 + kδwU
)2

P (C)ESk⊕xk+1

[∑
β ̸=α

π̃β∥xk+1∥2
∣∣∣C
]
∥w∗ −wα∥2

≤∥wα −w∗∥2P (C)ESk⊕xk+1
[π̃α∥xk+1∥2 | C]+

∥wα −w∗∥2P (C)ESk⊕xk+1

[∑
β ̸=α

π̃β∥xk+1∥2
∣∣∣C
]

=∥wα −w∗∥2P (C)ESk⊕xk+1
[∥xk+1∥2 | C]

≤∥wα −w∗∥2Exk+1

[
∥xk+1∥2

]

=∥wα −w∗∥2(1 + dτ2x)

Thus, for the U-shaped bound, we have (notice we will not use the magenta magenta-colored term for
the U-shaped bound in this section):

P (C)ESk⊕xk+1
[π̃α(⟨w̃α −wα,xk+1⟩)2 | C]

≤∥wα −w∗∥2P (C)ESk⊕xk+1
[π̃α∥xk+1∥2 | C](1− 1

1 + kδwU
)2

≤∥wα −w∗∥2Exk+1

[
∥xk+1∥2

]
(1− 1

1 + kδwU
)2

=∥wα −w∗∥2(1 + dτ2x)(1−
1

1 + kδwU
)2

(Let t = k−
1
4 , and assuming δw ≪ 1, such that ∃k, s.t. U < 2(1 + τ2x))
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<∥wα −w∗∥2(1 + dτ2x)(
kδwU

1 + kδwU
)2

<∥wα −w∗∥2(1 + dτ2x)max{1, 4k2δ2w(1 + τ2x)
2}

K.3.3 ICL WITH BIASED LABELS - PART 3

Proof. Finally for the third term P (¬C)ESK
[
∑M

β=1 π̃β(⟨w̃β −wα,xk+1⟩)2 | ¬C], the part 19:

P (¬C)ESk⊕xk+1
[
∑M

β=1
π̃β(⟨w̃β −wα,xk+1⟩)2 | ¬C]

=P (¬C)ESk⊕xk+1
[
∑M

β=1
π̃β∥(I + kδwΣ̄w)−1(wβ −w∗) +w∗ −wα∥2∥xk+1∥2 | ¬C]

<P (¬C)ESk⊕xk+1
[
∑M

β=1
π̃β(2∥(I + kδwΣ̄w)−1(wβ −w∗)∥2 + 2∥w∗ −wα∥2)∥xk+1∥2 | ¬C]

<P (¬C)ESk⊕xk+1
[
∑M

β=1
π̃β(2 · 4 + 2 · 4)∥xk+1∥2 | ¬C]

=16P (¬C)ESk⊕xk+1
[
∑M

β=1
π̃β∥xk+1∥2 | ¬C]

<16P (¬C)Exk+1
[∥xk+1∥2 | ¬C]

(Notice C is defined on {x1, . . . ,xk})
<16P (¬C)Exk+1

[∥xk+1∥2]
<16(1 + dτ2x)P (¬C)

<48(1 + dτ2x) exp(−
k2δ

8
)

K.3.4 ICL WITH BIASED LABELS - SUMMARY

Proof. Summarizing three terms, we have:
ESk⊕xk+1

[Lα
k ]

(Branch to purple for asymptotic bound or to orange for the bound for the U-shaped pattern.)

<
8r(M − 1)Ck=0

kδwL
exp(

−d2µ + 4τx
√
dk

δ
2−

3
4

2σ2
µ

) exp(
−d2w
2σ2

w

) +O(k−2)+

∥wα −w∗∥2(1 + dτ2x) + 48(1 + dτ2x) exp(−
k2δ

8
)

<16r(M − 1)Ck=0 exp(−
d2µk

8σ2
x

) exp(−u2
wτ2xk

8σ2
y

)+

∥wα −w∗∥2(1 + dτ2x)max{1, 4k2δ2w(1 + τ2x)
2}+ 48(1 + dτ2x) exp(−

k
1
2

8
)

The region for the orange formula are:

k ≤ min{ 1

δµ
− 1,

1

δwτ2x
}

4τxγ

√
1 + k−

1
4 ) <

d2µ
2

L∥wβ −w∗∥2 − U∥wα −w∗∥2 > τ2xu
2
w/2

U < 2(1 + τ2x)
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L PROOF OF LEMMA 3

In this subsection, we introduce the proof of Lemma 3. We first give the full version of the lemma:

Lemma 5 ((informal) Upper Bound for Zero-Shot ICL). Assume a next-token predictor attains
the optimal pretraining risk, and Assumption 1 has only two components α and β, with centers
(µα,wα) = (−µβ ,−wβ). When performing ICL with in-context examples following xi ∼ N (µ∗ |
τ2xI) and yi = 0, i.e., yi has the same preference to prior component α as β, ICL risk is upper
bounded by:

ESk
[Lα

k ] <
8rCk=0

kδwL
exp(

−d2µ + 4τx
√
dk

δ
2−

3
4

2σ2
µ

) +O(k−2)+

∥wα −w∗∥2(1 + dτ2x) + 48(1 + dτ2x) exp(−
k2δ

8
),

where δ is an arbitrarily small positive number and Ck=0 is a constant depends on the setting (see
Eq. 21). When δµ and δw are sufficiently small, there is a special region for k that:

ESk
[Lα

k ] < 16rCk=0 exp(−
d2µk

8σ2
x

) + (1 + dτ2x)max{1, k2δw2(1 + τ2x)
2}+ 12(1 + dτ2x) exp(−

k
1
2

8
).

See Appendix L for proof details. We observe that when k is small in this region, the first and third
terms dominate and exponential decay, and when k is large, the second term dominates.

The proof techniques are very similar to the proof techniques for task retrieval in Sec. K.3. We
are using in-context examples following xi ∼ N (µ∗, τ2xI), yi = 0, i.e., w∗ = 0, and we aim to
have the prediction on Sk ⊕ xk+1 as ⟨xk+1,wα⟩, i.e., to retrieve the prediction of the clean task
α. In order to have an upper bound on the loss, we consider xi ∼ N (µ∗, τ2xI) in two regions: (1)

C: L < λd(
∑k

i=1 xix
⊤
i

k ) ≤ λ1(
∑k

i=1 xix
⊤
i

k ) < U (see Lemma 4 for L and U) and (2) ¬C: either the
previous inequality does not hold. The probability of ¬C is bounded by:

P (¬C) <3 exp(−kt2

8
).

Let LR
k indicate the squared loss (F∗(Sk ⊕ xk+1)− ⟨xk+1,wα⟩)2 on Sk ⊕ xk+1. With the help of

Lemma 1 and Corollary 1, we can derive the expected squared loss on the prediction F∗(Sk ⊕xk+1),
and then based on C and the target task α = 1 (meanwhile we assume another task is indexed β = 2),
we split the expected squared loss into three parts similar to Sec. K.3:

ESk⊕xk+1
[LR

k ]

<P (C)ESk⊕xk+1
[π̃β(⟨w̃β −wα,xk+1⟩)2 | C]+ (22)

P (C)ESk⊕xk+1
[π̃α(⟨w̃α −wα,xk+1⟩)2 | C]+ (23)

P (¬C)ESk⊕xk+1
[
∑2

κ=1
π̃κ(⟨w̃κ −wα,xk+1⟩)2 | ¬C] (24)

L.1 PROOF OF LEMMA 3: PART 1

We firstly analyze the first term P (C)ESk⊕xk+1
[π̃β(⟨w̃β −wα,xk+1⟩)2 | C] in Part. 22. Similar to

Sec. K.3, we have:
P (C)ESk⊕xk+1

[π̃β(⟨w̃β −wα,xk+1⟩)2 | C]

≤P (C)ESk⊕xk+1

[
π̃β

π̃α
∥xk+1∥2

∣∣∣∣C
](

4

(1 + kδwL)2
+

8

1 + kδwL

)
+

P (C)ESk⊕xk+1

[
π̃β∥xk+1∥2

∣∣C
]
∥w∗ −wα∥2
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The magenta-colored term will not be used for the asymptotic bound for the above term 22 (will be
merged with the term 23) and will be used for the U-shaped bound for the above term 22 (will not be
merged with the term 23). Apply Eqs. 5, 6, and 8 and Assumption 1(e) to π̃β

π̃α
, we have a different

results from Sec. K.3 since we have wβ = −wα and w∗ = 0:

P (C)ESk⊕xk+1
[
π̃β

π̃α
∥xk+1∥2 | C]

<P (C)ESk⊕xk+1
[r exp(

−∑k
i=1 ∥µβ − xi∥2 +

∑k
i=1 ∥µα − xi∥2

2σ2
x(1 + (k + 1)δµ)

)·

exp(
−∥wβ −w∗∥2

I−(I+kδwΣ̄w)−1 + ∥wα −w∗∥2
I−(I+kδwΣ̄w)−1

2σ2
w

)·

exp(
−∥µβ − xk+1∥2 + ∥µα − xk+1∥2

2σ2
x(1 + (k + 1)δµ)

)∥xk+1∥2 | C]

(Notice w∗ = 0,wβ = −wα)

=rP (C)ESk⊕xk+1
[exp(

−∑k
i=1 ∥µβ − xi∥2 +

∑k
i=1 ∥µα − xi∥2

2σ2
x(1 + (k + 1)δµ)

)·

exp(
−∥µβ − xk+1∥2 + ∥µα − xk+1∥2

2σ2
x(1 + (k + 1)δµ)

)∥xk+1∥2 | C]

Same to Sec. K.3, when conditioned on case C, we have:
∑k

i=1(−∥µβ − xi∥2 + ∥µα − xi∥2)
1 + (k + 1)δµ

(Branch to purple for asymptotic bound or to orange for the bound for the U-shaped pattern.)

(Let t = kδ−
1
2 and δ is small.)

<−d2µ
δµ

+
4τx

√
d

δµ
k

δ
2−

3
4 +O(k−1)

(let t = k−
1
4 ,When δµ ≪ 1, such that ∃k ≤ 1

δµ
, s.t.

d2µ
2

> 4τxγ

√
1 + k−

1
4 )

<− d2µ
4

Same to Sec. K.3, when conditioned on case C, we have:

P (C)ESk⊕xk+1
[exp(

−∥µβ − xk+1∥2 + ∥µα − xk+1∥2
2σ2

x(1 + (k + 1)δµ)
)∥xk+1∥2 | C] = Ck=0

As a summary of the above analysis, for the asymptotic bound, we have:

P (C)ESk⊕xk+1

[
π̃β

π̃α
∥xk+1∥2

∣∣∣∣C
](

4

(1 + kδwL)2
+

8

1 + kδwL

)

<r exp(
−d2

µ

δµ
+ 4τx

√
d

δµ
k

δ
2−

3
4 +O(k−1)

2σ2
x

)Ck=0(
8

kδwL
+O(k−2))

=
8rCk=0

kδwL
exp(

−d2µ + 4τx
√
dk

δ
2−

3
4 +O(k−1)

2σ2
µ

) +O(k−2)

=
8rCk=0

kδwL
exp(

−d2µ + 4τx
√
dk

δ
2−

3
4

2σ2
µ

) +O(k−2)
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As a summary of the above analysis, for the U-shaped bound, we have:

P (C)ESk⊕xk+1

[
π̃β

π̃α
∥xk+1∥2

∣∣∣∣C
](

4

(1 + kδwL)2
+

8

1 + kδwL

)
+

P (C)ESk⊕xk+1

[
π̃β∥xk+1∥2

∣∣C
]
∥w∗ −wα∥2

<16P (C)ESk⊕xk+1
[
π̃β

π̃α
∥xk+1∥2 | C]

<16rCk=0 exp(−
d2µk

8σ2
x

)

L.2 PROOF OF LEMMA 3: PART 2

The analysis for the second term P (C)ESk⊕xk+1
[π̃α(⟨w̃α − wα,xk+1⟩)2 | C], the part 23 is the

same as Sec. K.3.

L.3 PROOF OF LEMMA 3: PART 3

Finally for the third term P (¬C)ESK
[
∑2

κ=1 π̃κ(⟨w̃κ −wα,xk+1⟩)2 | ¬C], the part 24:

P (¬C)ESk⊕xk+1
[
∑2

κ=1
π̃κ(⟨w̃κ −wα,xk+1⟩)2 | ¬C]

<P (¬C)ESk⊕xk+1
[
∑2

κ=1
π̃κ(2∥(I + kδwΣ̄w)−1(wκ −w∗)∥2 + 2∥w∗ −wα∥2)∥xk+1∥2 | ¬C]

(Recall w∗ = 0)

<P (¬C)ESk⊕xk+1
[
∑2

κ=1
π̃κ(2 · 1 + 2 · 1)∥xk+1∥2 | ¬C]

=4P (¬C)ESk⊕xk+1
[
∑2

κ=1
π̃κ∥xk+1∥2 | ¬C]

<4P (¬C)Exk+1
[∥xk+1∥2 | ¬C]

(Notice C is defined on {x1, . . . ,xk})
<4P (¬C)Exk+1

[∥xk+1∥2]
<4(1 + dτ2x)P (¬C)

<12(1 + dτ2x) exp(−
k2δ

8
)

L.4 PROOF OF LEMMA 3: SUMMARY

Similar to Sec. K.3, summarizing three terms, we have:
ESk⊕xk+1

[LR
k ]

(Branch to purple for asymptotic bound or to orange for the bound for the U-shaped pattern.)

<
8rCk=0

kδwL
exp(

−d2µ + 4τx
√
dk

δ
2−

3
4

2σ2
µ

) +O(k−2)+

∥wα −w∗∥2(1 + dτ2x) + 48(1 + dτ2x) exp(−
k2δ

8
)

<16rCk=0 exp(−
d2µk

8σ2
x

) exp(−u2
wτ2xk

8σ2
y

)+

∥wα −w∗∥2(1 + dτ2x)max{1, 4k2δ2w(1 + τ2x)
2}+ 12(1 + dτ2x) exp(−

k
1
2

8
)

=16rCk=0 exp(−
d2µk

8σ2
x

) exp(−u2
wτ2xk

8σ2
y

)+
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(1 + dτ2x)max{1, 4k2δ2w(1 + τ2x)
2}+ 12(1 + dτ2x) exp(−

k
1
2

8
)

M DEMO SECTION AS A WARMUP

We study how in-context examples affect the prediction of ICL by a pretrained Bayes-optimal
next-token predictor and how the pretraining distribution affects this phenomenon. Assume the
next-token predictor f is initially pretrained on a dataset distribution to produce the minimum risk
minimizer f∗, and then the pretrained f∗ is used to predict the next value y of the value x. Instead of
directly inference via f∗(x), we consider inference with additional k in-context examples {xi}ki=1
via the format f∗([x1, . . . , xk, x]). We aim to theoretically examine the effect of in-context examples
{xi}ki=1 on the prediction f∗([x1, . . . , xk, x]). While the formal problem setting may involve heavy
math, this demo section illustrates the basic phenomenon for better delivering our work.

The following demo subsections are organized as follows. We first introduce the problem setting
in Sec. M.1. We then connect ICL with Bayesian inference in Sec. M.2. Further, we introduce the
assumptions for the pretraining dataset in Sec. M.3. Finally, we derive a closed-form posterior and
introduce two phenomena, “Component Shifting” and “Component Re-weighting” in Sec. M.4.

M.1 DEMO: PRETRAING DATA GENERATIVE MODELA

ICL involves two important components: the pretraining dataset, and the LM supporting varied input
lengths. We assume the LM f : ∪k∈{0,...,K−1}Rk×1 → R1×1 can fit the pretraining distribution
exactly with enough data and expressivity. To generate a training sample, we first sample a task µ
from underlying task distribution Dµ, and then we generate values of the sequence from a distribution
Dx(µ) based on the task µ. The sample generation process is described below:

Assumption 4 (Demo: Pretraining Data Generative Model). Given a task prior distribution Dµ,
and a conditioned x sampler Dx(µ) conditioned on task µ, the process of generating a sequence
SK = [x1, x2, . . . , xK ] with length K follows:
(a) Sample a task µ from the Prior: µ ∼ Dµ, and the probability of µ is indicated by P (µ);
(b) Sample K samples, x from the chosen task: For i ∈ {1, 2, . . . ,K}, xi ∼ Dx(µ), and the
probability of xi = x is indicated by P (x|µ);
(c) Define a Sequence Sk: For capital K, SK = [x1, . . . , xK ]; and for lowercase k, the sequence of
the first k demonstrations of SK is indicated by Sk = [x1, . . . , xk], e.g., S2 = [x1, x2].

The generation process is related to real-world scenarios via two points: (i) For sampling step 4(a),
the LM is trained on varied tasks; (ii) For sampling step 4(b), when one person/agent produces texts
for one task, the generated text could be noisy. For instance, given a task such as describing a football
game, one person has multiple ways to describe it.

M.2 DEMO: BAYES-OPTIMAL NEXT-TOKEN PREDICTOR

Now we consider training f(·) using sample SK generated via above generation process 4 via:

L(f) = E
SK

[
1

K

K−1∑

k=0

(f(Sk)− xk+1)
2

]
= E

µ∼Dµ


 E

xi∼D(µ),
i∈{1,...,K}

[
1

K

K−1∑

k=0

(f(Sk)− xk+1)
2

∣∣∣∣∣µ
]
 .

A highly expressive f can be viewed as K separate models f0, . . . , fK−1, where fk takes a se-
quence of k values as input. Thus when the model f has enough expressivity, the optimization
problem argminf L(f) of minimization of the loss function L(f) could be regarded as K different
minimization tasks:

f∗
k = argmin

fk
E
SK

[(f(Sk)− xk+1)
2],∀k ∈ {0, . . . ,K − 1}.
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Figure 16: The left part of the figure indicates the pretrained next-token predictor is pretrained on the
task prior distribution according to Assumption 5, and the prediction is based on the prior without
in-context examples. The right part of the figure indicates that with in-context samples, the prediction
is based on posterior, regarding the in-context examples as observed samples.

Thus, the solution f∗
k for each k is a minimum mean square error (MMSE) estimator (Van Trees,

2004, page 63), and the prediction of f∗(Sk) satisfies:
f∗(Sk) = E

SK

[xk+1|Sk] = E
µ∼Dµ

[ E
xi∼D(µ),
i∈{1,...,K}

[xk+1|µ, Sk]|Sk] = E
µ∼Dµ

[ E
xk+1∼D(µ)

[xk+1|µ]|Sk].

(25)

The prediction f∗(Sk) is the expectation of E
xk+1∼D(µ)

[xk+1|µ] on the task posterior observing Sk.

M.3 DEMO: GAUSSIAN ASSUMPTIONS ON PRETRAINING DATA GENERATIVE MODEL

In Sec. M.2 we connect ICL with Bayesian inference, and in Eq. 25 we observe that the prediction
f∗(Sk) depends on the posterior. We are interested in how the in-context examples affect the
prediction and the posterior. We make assumptions on the pretraining dataset to have a closed-form
expression of the posterior facilitating further analyses:

Assumption 5 (Demo: Gaussian Generative Model for Pretraining Data).
(a) µ ∼ Dµ : P (µ) =

∑M
β=1 πβP (µ|Tβ), where Tβ is the βth mixture component of the Gaussian

mixture, i.e., P (µ|Tβ) = N (µ|µβ , σ
2), and πβ is the corresponding mixture weight.

∑M
β=1 πβ = 1,

0 < πβ < 1, µβ is the center of the mixture component Tβ , and all components share the same
covariance matrix controlled by σ;
(b) x ∼ Dx(µ): P (x|µ) = N (x|µβ , τ

2).

Under our setting, we train the next-token predictor on M tasks, mirroring real-world LM pretrained
on varied topics including environment, market, movie, sports, etc. These tasks have text sequences
from diverse sources like individuals, agents, and websites. Given that each source interprets tasks
uniquely, they provide “noisy” versions of the same task. We model this using a Gaussian mixture for
the task prior. The center of each component represents a specific task, while its variance captures the
interpretive noises. Consequently, sequences of values are generated based on these “noisy” tasks.

M.4 DEMO: POSTERIOR ANALYSIS

With further Assumption 5 on the prior, we can derive closed-form expression on the posterior:

P (µ|Sk) ∝
M∑

m=1

π̃βN (µ|µ̃β , σ̃
2) (26)
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(π̃β = πβ exp(
(µβ −

∑k
i=1 xi

k )2

2(τ2 + kσ2)
), µ̃β =

τ2µβ + σ2
∑k

i=1 xi

τ2 + kσ2
)2, σ̃2 =

τ2σ2

τ2 + kσ2
)

From Eq. 26, we observe two factors when comparing the posterior with the prior in Assumption 5: (i)
Component-Shifting: after observing Sk = [x1, x2, . . . , xk], the center of each mixture component is

shifted to τ2µβ+σ2 ∑k
i=1 xi

τ2+kσ2 ; (ii) Component Re-weighting: the mixture weight πβ of each mixture

component is re-weighted by multiplying exp(
(µβ−

∑k
i=1 xi

k )2

2(τ2+kσ2) ) (which needs to be further normalized
so that re-weighted mixture weights sum to 1). Fig. 16 illustrates the phenomena of Component
Shifting and Component Re-weighting by observing in-context examples.

N PROOF OF POSTERIOR DERIVATION IN DEMO

In this section, we give a detailed derivation of the posterior in Eq. 26 in Sec. M.4:
P (µ | Sk) ∝ P (µ, Sk)

= P (Sk | µ)P (µ)

= (Πk
i=1P (xi | µ))P (µ)

= (Πk
i=1N (xi | µ, τ2))

M∑

m=1

πβN (µ | µβ , σ
2)

∝ (Πk
i=1 exp(−

(xi − µ)2

2τ2
))

M∑

m=1

πβ exp(−
(µ− µβ)

2

2σ2
)

= exp(−
∑k

i=1(xi − µ)2

2τ2
)

M∑

m=1

πβ exp(−
(µ− µβ)

2

2σ2
)

=

M∑

β=1

πβ exp(−
τ2(µ− µβ)

2 + σ2
∑k

i=1(xi − µ)2

2τ2σ2
)

=

M∑

m=1

πβ exp(−
µ2(τ2 + kσ2)− 2µ(τ2µβ + σ2

∑
xi) + (τ2µ2

β + σ2
∑

x2
i )

2τ2σ2
)

=

M∑

m=1

πβ exp(−
(µ− τ2µβ+σ2 ∑

xi

τ2+kσ2 )2 +
τ2µ2

β+σ2 ∑
x2
i

τ2+kσ2 − (
τ2µβ+σ2 ∑

xi

τ2+kσ2 )2

2 τ2σ2

τ2+kσ2

)

∝
M∑

m=1

πβ exp(
(µβ −

∑k
i=1 xi

k )2

2(τ2 + kσ2)
) exp(−

(µ− τ2µβ+σ2 ∑k
i=1 xi

τ2+kσ2 )2

2 τ2σ2

τ2+kσ2

)

∝
M∑

m=1

π̃βN (µ | µ̃β , σ̃
2)

(π̃β = πβ exp(
(µβ −

∑k
i=1 xi

k )2

2(τ2 + kσ2)
), µ̃β =

τ2µβ + σ2
∑k

i=1 xi

τ2 + kσ2
)2, σ̃2 =

τ2σ2

τ2 + kσ2
)
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