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Abstract

Large language models are known to hallucinate when faced with unfamiliar1

queries, but the underlying mechanism that govern how models hallucinate are not2

yet fully understood. In this work, we find that unfamiliar examples in the models’3

finetuning data – those that introduce concepts beyond the base model’s scope of4

knowledge – are crucial in shaping these errors. In particular, we observe that an5

LLM’s hallucinated predictions tend to mirror the responses associated with its un-6

familiar finetuning examples. This suggests that by modifying the supervision of a7

model’s unfamiliar finetuning examples, we can influence its responses to unfamil-8

iar queries (e.g., say “I don’t know”). We empirically validate this observation in a9

series of controlled experiments involving SFT, RL, and reward model finetuning10

on TriviaQA and MMLU. Our work further investigates RL finetuning strategies11

for improving the factuality of long-form model generations. We find that, while12

hallucinations from the reward model can significantly undermine the effectiveness13

of RL factuality finetuning, strategically controlling how reward models halluci-14

nate can minimize these negative effects. Leveraging our previous observations15

on controlling hallucinations, we propose an approach for learning more reliable16

reward models, and show that they improve the efficacy of RL factuality finetuning17

in long-form biography and book/movie plot generation tasks.18

1 Introduction19

Large language models (LLMs) have a tendency to “hallucinate,” generating plausible-sounding20

responses that are factually incorrect. This behavior is especially prominent when models are queried21

on concepts that extend beyond the models’ knowledge base [15, 14] (e.g., asking the model to22

generate the biography of a little-known person). We will refer to these queries as unfamiliar inputs.23

Rather than fabricating information when presented with unfamiliar inputs, models should instead24

verbalize their uncertainty or confine their responses within the limits of their knowledge. The goal25

of our work is to teach models this behavior, particularly for long-form generation tasks.26

Towards this goal, we first set out to better understand the underlying mechanisms that govern how27

LLMs hallucinate. Our investigation reveals that a finetuned model’s hallucinated responses tend28

to mimic the unfamiliar examples the model’s finetuning data (i.e., finetuning examples containing29

concepts unfamiliar to the pretrained model). More specifically, as test queries become more30

unfamiliar, we find that LLM predictions tend to default toward the distribution of responses associated31

with the model’s unfamiliar finetuning examples. We illustrate this observation with an example in32

Fig. 1. To empirically verify this phenomenon, we conduct a series of controlled experiments, where33

we manipulate the way unfamiliar finetuning examples are supervised, and investigate the effect on the34

finetuned model’s predictions. We use multiple-choice (MMLU) and short-form question answering35

tasks (TriviaQA) as testbeds, where we can precisely characterize an LLM’s output distribution.36

Our results show that, across different finetuning procedures including SFT, RL, and reward model37
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Pretrain 
Distribution
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Finetuning 
Examples

Familiar 
Finetuning 
Examples

Finetune 
Distribution

Finetune

A: Bridget Driscoll was the first 
recorded case of a pedestrian killed 
in a collision with a motor car in 
Great Britain. Driscoll was born in 
Ireland but living in Surrey with her 
husband and …

Q: Who is Bridget Driscoll?

A: Bridget Driscoll died in a motor 
accident. 

Q: Who is Bridget Driscoll?

Distribution 1

Distribution 2

Test
Q: Who is Edith Wilson?

A: Edith Wilson was the former first 
lady of the US from 1958 to 1962. She 
was the wife of Lyndon Johnson. They 
married in 1934. Before marriage, she 
was a seamstress in Philadelphia…

A: Edith Wilson was a former first 
lady.

Figure 1: Conceptual visualization of (un)familiar finetuning examples (left), and example of model
predictions mimicking unfamiliar finetuning examples (middle and right). When finetuning on
distribution 1, which contains details the model may not know, the model outputs detailed responses
at test-time with inaccuracies (red). When finetuning on distribution 2, which omits unfamiliar details,
the model produces shorter responses with fewer inaccuracies.

finetuning, the model predictions for unfamiliar test queries indeed approach the distribution of38

responses in the model’s unfamiliar finetuning examples.39

Our observation suggests a recipe for minimizing factual inaccuracies in model generations: by40

strategically manipulating the unfamiliar examples in the model’s finetuning data, we can steer the41

model’s predictions for unfamiliar queries towards more desirable (e.g. linguistically uncertain)42

responses. We leverage this insight to design better finetuning techniques to improve the factuality of43

long-form LLM generations. In particular, our study focuses on RL-based approaches, where the44

use of reward models to supervise finetuning makes it scalable to long-form tasks. However, reward45

models themselves can suffer from hallucinations in the face of unfamiliar inputs, which can diminish46

the efficacy of RL factuality finetuning. To tackle this challenge, we draw on our previous insights47

to strategically control how reward models hallucinate. In particular, we find that overestimated48

reward predictions tend to be more harmful than underestimated reward predictions, and propose an49

approach for learning reward models that avoid overestimating rewards for unfamiliar inputs, which50

we call conservative reward models. On biography and book/movie plot generation tasks, we find that51

using conservative reward models for RL factuality finetuning can significantly reduce the adverse52

effects of reward hallucinations, and that this approach can more reliably teach models to generate53

factual long-form responses than standard SFT and RL with standard reward models.54

In summary, our work makes two primary contributions: (1) we present a conceptual model outlining55

the factors that influence finetuned LLM predictions in response to unfamiliar queries, and (2) we56

leverage our findings to develop a more reliable approach to RL factuality finetuning for long-form57

generation tasks. We hope that the insights in our paper contribute to a better understanding of the58

mechanisms that govern how LLMs hallucinate, and the principles for controlling these hallucinations.59

2 Related Work60

A number of works have documented the tendency of LLMs to hallucinate factually incorrect61

responses [14, 4, 13, 1]. Additionally, studies have investigated the conditions under which hallu-62

cinations occur and how LLMs behave in such instances. In particular, LLMs tend to hallucinate63

more frequently when queried on knowledge that is rarely mentioned in their training data [24, 15].64

Furthermore, LLM predictions generally tend to be moderately calibrated [13, 49, 40], and their65

internal representations seem to reflect some awareness of model uncertainty [23, 2]. Our work,66

which finds that LLM hallucinations mimic the responses associated with its unfamiliar finetuning67

examples, extends our understanding of LLM behavior under uncertainty.68

Prior work has observed phenomena similar to our observation in standard neural networks (those69

without pretraining) [16, 9]. These works show that, as inputs become more out-of-distribution,70

neural network predictions tend to default towards a predictable value — much like the default71

behavior of LLMs when faced with unfamiliar queries. However, because standard neural networks72

lack the initial foundation of a pretrained model, the constant prediction reflects the model’s training73

distribution rather than the unfamiliar examples encountered during finetuning.74

Finally, a number of prior works have similarly sought to address the challenges posed by LLM75

hallucinations. Active research areas include hallucination detection [25, 28, 44, 17], automated76

evaluation of factuality [27, 42, 11], and mitigation techniques. Common strategies for mitigating77
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hallucinations include specialized sampling methods [19, 21, 5, 48], more reliable input prompts [35],78

using retrieval augmentation to incorporate external knowledge [6, 30, 43, 46, 34], and, closest to our79

work, finetuning models for factuality. In particular, prior works has found that SFT on data where80

difficult examples are labeled to abstaining answers [22, 45, 47], as well as RL finetuning [33, 7, 39,81

38, 31, 26] can improve the factuality of model generations, which we also observe in our experiments.82

While these works propose specific approaches for tackling hallucinations, our work instead aims to83

better understand the underlying mechanisms that govern language models hallucinations in a unified84

manner. Furthermore, our work investigates the little-studied effects of reward model hallucinations,85

which we find to have a large impact on the efficacy of RL factuality finetuning.86

3 Problem Setting87

Modern LLMs are typically trained in a two-stage process: pretraining on broad-coverage corpora,88

followed by finetuning on more specialized instruction-following datasets [29]. These models are89

prone to generating undesirable responses when prompted with inputs that are not well represented90

in their training data. In particular, models tend to output plausible-sounding but factually incorrect91

responses when queried outside its pretraining distribution, and output nonsensical responses when92

queried outside its finetuning distribution. We focus on the former regime of hallucinations, where93

queries stylistically resemble examples in the finetuning data, but require concepts beyond the94

pretrained model’s scope of knowledge. We call this kind of input unfamiliar to the model.95

In our experiments, we will use question-answer tasks as a testbed, though our analysis and method96

can apply to any prompted generation LLM task. To isolate the effects of distribution shift with97

respect to the pretraining data (rather than finetuning data), we will evaluate model predictions on98

held-out queries sampled from the same distribution as the finetuning data. To understand how99

the behavior of the model changes depending on the unfamiliarity of the test query, our evaluation100

will decompose the held-out test set into different levels of unfamiliarity. We will quantify the101

unfamiliarity of a query by few-shot prompting the pretrained model with a few examples (sampled102

from the same task) along with the query of interest, and measuring the quality of the pretrained103

model’s prediction, where the quality of a prediction is quantified using task-specific metrics. We104

refer to this metric as the unfamiliarity score of a query. We consider a finetuning example to be105

unfamiliar if the unfamiliarity score of its query is above a certain threshold, and familiar otherwise.106

4 Understanding How LLMs Hallucinate107

In this section, we investigate the underlying mechanisms that govern how finetuned LLMs hallucinate.108

We hypothesize that, when face with unfamiliar inputs, model predictions mimic the responses109

associated with the model’s unfamiliar finetuning examples. We will first present our hypothesis110

more precisely, then validate our hypothesis with a series of controlled experiments.111

4.1 Main Hypothesis112

Let us consider an LLM fθ, which maps a prompt x to a distribution of responses Pθ(y|x). We113

finetune this model on a dataset D = {(xi, si)}1≤i≤N with a loss function
∑

(xi,si)∈D L(fθ(xi), si),114

where si represents the supervision associated with xi. Depending on the choice of L, this can115

represent SFT (where si is a a target response) or RL finetuning (where si is a reward function).116

While the optimal behavior that an LLM can learn during finetuning is to output the ground-truth117

answer to each query, this may not happen in practice for all finetuning examples. For familiar118

finetuning examples, the pretrained model’s representations often encode useful associations between119

queries and responses, facilitating the finetuning optimization for those examples. However, for120

unfamiliar examples, which we refer to as Dunf, such helpful associations in the pretrained represen-121

tations are largely absent, making it more difficult to model these examples. Nonetheless, while an122

LLM may struggle to produce the optimal response for each query in Dunf, it can still reduce the123

finetuning loss by learning to predict the types of responses associated with unfamiliar examples.124

More specifically, the model can minimize the aggregate loss over unfamiliar finetuning examples125

by producing an intelligent “blind guess”, Punf(y) = argminP (y)

∑
(xi,si)∈Dunf

L(P (y), si), for all126

unfamiliar queries. Note that Punf(y) is input-agnostic, and depends only on the model’s unfamiliar127
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Figure 2: Prediction behavior of models finetuned with SFT on MMLU (top 2 rows) and TriviaQA
(bottom row). For MMLU plots, only test inputs with a specific ground truth label (A-D) are evaluated
within each column. Solid line represents the average predicted likelihood, and error bars represent
standard deviation within the test set. For TriviaQA plots, each bar denotes the ratio of model outputs
within each category. For all plots in this figure, as inputs become more unfamiliar, model predictions
default towards the distribution of target responses in the model’s unfamiliar finetuning examples.

finetuning examples. We hypothesize that LLMs learn to predict this intelligent “blind guess”128

(Punf(y)) for unfamiliar examples during finetuning, and that they default to this prediction129

when faced with unfamiliar queries at test time.130

4.2 Experimental Verification of our Main Hypothesis131

We will now present a series of experiments to evaluate our hypothesis. The goal of our experiments132

is to verify that (1) model predictions indeed default to Punf(y) when presented with unfamiliar133

queries, and (2) this prediction behavior is controlled by the unfamiliar examples in the models’134

finetuning data. Towards this goal, we analyze the prediction behavior of different models, where135

unfamiliar finetuning examples are supervised in different ways, while all other training details are136

kept fixed. To evaluate our hypothesis for different types of finetuning procedures, we finetune models137

to generate responses using both SFT and RL, as well as to predict rewards (as reward models for RL138

finetuning). We use Llama2 7B [41] as the pretrained model. We conduct our experiments with a139

multiple-choice (MMLU [10]) and a short-form (TriviaQA [12]) question answering task, so that we140

can precisely characterize a model’s output distributions. For MMLU, we obtain the unfamiliarity141

score by few-shot prompting the pretrained model and measuring the negative log likelihood of the142

correct answer under the predicted distribution. For TriviaQA, we obtain the unfamiliarity score143

by few-shot prompting the pretrained model, sampling 12 responses, and measuring the number of144

incorrect responses. In subsequent sections, we will extend our experiments to long-form generation145

tasks. For further experimental details, see Appendix B and C.146

Supervised finetuning. First, we investigate the prediction behavior of models finetuned with SFT to147

predict responses to input queries. For this training objective, Punf(y) corresponds to the marginal148

distribution of target responses in the set of unfamiliar finetuning examples.149

In our experiments with MMLU, we consider two different finetuning data distributions. In the first150

distribution, the target responses in both familiar and unfamiliar examples are distributed uniformly151

over A-D tokens. In the second distribution, the target responses in familiar examples are distributed152
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Figure 3: Prediction behavior of models finetuned with RL on MMLU (left) and TriviaQA (right). As
inputs become more unfamiliar, the models finetuned with the first reward function produced random
guesses while models finetuned with the section reward function produced abstain answers.

uniformly, while the target responses in unfamiliar examples are distributed 50% B and 50% C. For a153

model finetuned on the first data distribution, Punf(y) corresponds to the uniform distribution over154

A-D, while for a model finetuned on the second distribution, Punf(y) corresponds to 50% B/50% C. In155

the top of Fig. 2, we plot the two models’ predicted distributions over A-D as their test inputs become156

more unfamiliar (left to right on the x-axis). We can see that for familiar test inputs, both models157

predicted higher likelihoods for the letter associated with the ground truth answer. However, as inputs158

become more unfamiliar, the predictions of the first model approached the uniform distribution, while159

the predictions of the second model approached the 50% B/50% C distribution.160

In our experiments with TriviaQA, we consider three different finetuning data distributions. In the161

first, all finetuning examples are labeled with the ground-truth answer to their respective queries. In162

the second, familiar examples are labeled with the ground-truth answer, while unfamiliar examples163

are labeled with “I don’t know”. In the third, a random subset of examples are labeled with “I164

don’t know” and with rest are labeled with the ground-truth answer, where the ratio of examples165

with “I don’t know” labels matches that of the second data distribution. For models finetuned on166

these distributions, responses from Punf(y) correspond to hallucinated answers, “I don’t know”, and167

a mixture of hallucinated answers and “I don’t know”, respectively. In the bottom of Fig. 2, we168

visualize sampled responses from the three models. Comparing the first and second models, we can169

see that while both models predicted mostly correct answers for familiar queries, the first model170

outputted increasingly incorrect answers while the second model increasingly outputted “I don’t171

know” for unfamiliar queries. Comparing the second and third model, we can see that even though172

the two models were finetuned on an equal number of “I don’t know” responses, the third model’s173

predictions do not vary by the unfamiliarity of the test queries, unlike those of the second model.174

Our results show that, for SFT models, predictions indeed default to Punf(y) as test inputs become175

more unfamiliar. Our results also show that this prediction behavior can be attributed to the models’176

unfamiliar finetuning examples, as they are the only training detail that differ across different models.177

Reinforcement learning. Next, we investigate the prediction behavior of models finetuned with RL,178

using PPO [32] as the training algorithm. For RL training objectives, Punf(y) is determined by the179

reward function. More specifically, Punf(y) corresponds to the action distribution that maximizes180

the average reward over all unfamiliar finetuning examples. This distribution typically consists of181

risk-averse actions that avoid very low rewards regardless of input.182

To highlight the influence of the reward function on model predictions, we will consider two different183

reward functions for RL finetuning in both our MMLU and TriviaQA experiments. For our MMLU184

experiments, the task is to either predict the answer letter (A-D) or a fifth option (E), which represents185

abstaining from answering. Similarly, for our TriviaQA experiments, the task is to either answer the186

query or abstaining from answering by responding with “I don’t know”. The first reward function187

we consider assigns a reward of +2 for the correct answer, -3 for an incorrect answer, and -3 for188

abstaining. The second reward function we consider assigns +2 for the correct answer, -3 for an189

incorrect answer, and 0 for abstaining. For the first reward function, Punf(y) corresponds to randomly190
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Figure 4: Prediction behavior of reward models finetuned on MMLU (left 2) and TriviaQA (right
2). Green line represents model predictions for test examples that are correct (reward 1), and red
line represents predictions for incorrect examples (reward 0). As inputs become more unfamiliar, the
reward models produce different kinds of hallucinations depending on their finetuning distribution.

guessing an answer, because randomly guessing an answer yields a higher average reward than191

abstaining from answering. In contrast, for the second reward function, Punf(y) corresponds to192

abstaining from answering, because abstaining from answering on average yields higher reward than193

randomly guessing an answer. We plot the RL model’s predictions as inputs become more unfamiliar194

in Fig. 3. Similarly to the previous SFT experiments, the RL models predict higher likelihoods for195

the ground truth answer when faced with familiar inputs. As inputs become more unfamiliar, we196

see that models trained with the two different reward functions exhibit different behavior. While197

models with the first reward function increasingly produced random guesses, models with the second198

reward function increasingly produced abstaining answers. These results show that models finetuned199

with an RL loss also default towards Punf(y) as inputs become more unfamiliar. In addition, these200

experiments illustrate how strategically designing the reward function in RL finetuning, particularly201

ones that encourage uncertain or less detailed responses over incorrect responses, can teach models202

to avoid generating factually incorrect responses.203

Reward prediction. Lastly, we study the prediction behavior of reward models. Reward models,204

which take as input both a query and a response, predict a scalar reward that rates the quality of the205

response. They are used to provide a source of reward supervision for RL finetuning in domains206

where ground truth rewards are challenging to acquire [29]. For the sake of simplicity, we will207

consider the reward prediction task of classifying whether the response to a query is factually correct208

(reward 1 if correct, 0 if incorrect). For these models, Punf(y) corresponds to the distribution of209

rewards in the model’s unfamiliar finetuning examples, where an example is unfamiliar if predicting210

the reward requires knowledge outside of the model’s capabilities.211

We consider two different reward distributions for finetuning in our experiment for both MMLU212

and TriviaQA. In the first distribution, familiar examples consists of 50% correct responses (reward213

1) and 50% false responses (reward 0), while unfamiliar examples only consists of true responses.214

In the second distribution, familiar examples are similarly distributed as the first, while unfamiliar215

examples only consists of false responses. For these two finetuning distributions, Punf(y) corresponds216

to 100% reward 1 and 100% reward 0, respectively. In Fig. 5, we plot the prediction behavior of our217

finetuned reward models. We can see that as inputs to the models become increasingly unfamiliar,218

model predictions indeed default toward Punf(y). This experiment illustrates that, depending on219

their finetuning data, reward models can generate different kinds of hallucinations, which can have220

different downstream effects when providing reward supervision for RL finetuning. We study the221

effects of reward model hallucinations on RL finetuning in more detail in the next section.222

5 Controlling Hallucinations in Long-Form Generations223

In this section, we will focus on reducing factual inaccuracies in long-form LLM generations. In224

the previous section, we observed that strategically manipulating a model’s unfamiliar finetuning225

examples can control its predictions for unfamiliar inputs, and illustrated a few ways to leverage this226

observation to reduce inaccuracies in short-form and multiple choice question answering. However,227

instantiating these approaches for long-form generation tasks introduces new challenges.228

First, let us consider the SFT-based approach where we manipulate unfamiliar finetuning examples229

by relabeling their target responses. While we can uniformly relabel all unfamiliar responses to230

“I don’t know” in short-form tasks, implementing this strategy for long-form tasks requires more231

nuanced responses that omit unfamiliar concepts while maintaining familiar ones, which can be232
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expensive and tedious to collect. In contrast, the RL-based approach avoids the need for custom233

target responses by using rewards to assess the factuality of model-generated text. For long-form234

tasks, where ground-truth rewards can be difficult to obtain, reward models provide a scalable source235

of reward supervision. However, as we illustrated in our previous experiments, reward models236

themselves can produce inaccurate reward predictions when faced with unfamiliar inputs, which can237

hinder the effectiveness of RL factuality finetuning. Prior work has proposed to mitigate reward238

model hallucinations by incorporating external knowledge sources into the reward model [38], but239

these sources of external knowledge are not always available.240

In this section, we will study how reward model hallucinations influence RL factuality finetuning. In241

particular, we find that naively learning a reward model from an arbitrary finetuning dataset can lead to242

reward model hallucinations which significantly diminish the effectiveness of RL factuality finetuning.243

However, we also find that strategically controlling how reward models hallucinate can reduce their244

negative effects. In the following section, we present our hypothesis on the influence of reward model245

hallucinations, and an approach for learning reward models with strategic hallucinations. We then246

present our empirical findings in long-form biography and book/movie plot summarizing tasks.247

5.1 RL Factuality Finetuning with Conservative Reward Models248

While reward models hallucinations are inevitable, we hypothesize that not all reward hallucinations249

are equally harmful to RL factuality finetuning. In particular, we hypothesize that overestimated250

reward predictions are more harmful than underestimated reward predictions. This is consistent251

with prior work, which has found overestimated rewards to be a common failure mode in offline RL in252

simulated RL benchmarks [18, 20]. To understand why this may be the case, let us consider a reward253

function that decomposes a long-form response into a set of facts, and assigns a positive reward for254

every correct fact and a negative reward for every incorrect fact. Our previous experiments showed that255

RL finetuning can teach models to avoid inaccuracies if the reward signal encourages uncertain or less256

detailed responses over incorrect responses. The reward function we described satisfies this criteria,257

because a response which contains an incorrect fact will receive a lower reward than an analogous258

response which omits the incorrect fact. If, however, a reward model mistakenly labels the incorrect259

fact as true and favors the incorrect response instead, RL finetuning may unintentionally encourage260

the model to generate even more incorrect information. Thus, to minimize the consequences of261

reward hallucinations, we would like to avoid overestimated reward predictions.262

Standard reward models. One approach to learning reward models is to finetune on an existing263

dataset that was collected independently of the model [36]. These models, which we will call standard264

reward models, are not guaranteed to avoid overestimated reward predictions. This is because the265

finetuning data may contain examples with high rewards that the reward model lacks the knowledge266

to understand or verify. According to our observation from the previous section, these unfamiliar267

examples with high reward labels can cause the model to predict high rewards for unfamiliar inputs268

at test time, regardless of their ground-truth reward. This, in turn, can lead to overestimated reward269

signals during RL finetuning, which is undesirable.270

Conservative reward models. To ensure the efficacy of RL factuality finetuning, we would like271

for reward models to consistently avoid overestimating (i.e., to underestimate) reward predictions272

when encountering unfamiliar inputs. We will refer to reward models with this desired behavior as273

conservative reward models.274

To learn conservative reward models, we leverage our observation from the previous section: by275

strategically configuring the model’s unfamiliar finetuning examples to consist of only low rewards,276

the model will learn to produce low rewards for unfamiliar inputs at test time, which will avoid277

overestimating reward predictions. One straightforward way to collect this kind of dataset is to sample278

responses from the same pretrained model that the reward model is finetuned on, and label these279

responses with rewards. In particular, we (1) finetune the pretrained model with SFT to perform the280

task of interest (can also be achieve with few-shot prompting), (2) generate response samples from281

the finetuned model using a dataset of task prompts, (3) label the responses with ground-truth rewards,282

and (4) train the reward model on the labeled samples. Key to this procedure is the fact that the reward283

model and the data-collection model share the same knowledge base, so queries that are unfamiliar to284

the reward model are also unfamiliar to the data-collection model. When prompted with unfamiliar285

queries, the data-collection model is likely to produce responses that contains more factually incorrect286

information. Thus, the unfamiliar examples in the resulting dataset will be associated with mainly287
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Over-
estimation

Over-
estimation

Figure 5: Average reward predicted by a standard
reward model and a conservative reward model
as inputs become more unfamiliar, as well as the
average ground truth reward. The standard reward
model tends to overestimate rewards as input be-
come more unfamiliar, whereas the conservative
reward model does not.

Std.
SFT

RL+
Std. RM

RL+
Csv. RM

Bio 0.47 0.50 0.59
Plot 0.45 0.54 0.80

Figure 6: Average fraction of true facts generated
by each model.

Figure 7: Average number of true and false facts
generated by models finetuned with standard SFT,
RL with a standard reward model, and RL with
a conservative reward model, as inputs become
more unfamiliar. The responses generated by
model finetuned with s conservative reward model
consisted of fewer false facts and and equal num-
ber or more truth facts.

low reward labels. Note that while we focus on this particular strategy for our experiments, there may288

be a number of other strategies that can also be effective for learning conservative reward models.289

Furthermore, while the procedure we outlined above requires labeling the reward model dataset with290

ground-truth labels, the number of needed labels is much lower than using ground-truth rewards for291

RL training, because RL training typically requires much more data than reward model training.292

5.2 Experiments on Long-Form Generation Tasks293

We will now empirically evaluate our hypotheses regarding reward model hallucinations. Specifically,294

the questions we aim to answer with our experiments include: (1) Do conservative reward models295

(trained with the procedure that we outlined) produce fewer overestimated reward predictions than296

standard reward models? (2) Do LLMs finetuned with RL and conservative reward models generate297

more factual responses than those finetuned with RL with standard reward models and standard SFT?298

Experimental setup. We consider two long-form generation tasks in our experiments: biography299

generation and film/book plot generation. We use the WikiBios [37] and WikiPlots [3] datasets as300

sources of queries and target responses. We use FActScore [27], an automated retrieval augmentation301

pipeline, to evaluate the factuality of model generated responses. Given a query and a generated302

response, FActScore outputs the number of true facts and the number of false facts in the response.303

Our experiments compare the behavior of a conservative reward model and a standard reward model.304

The conservative reward model is learned using the procedure we described above, where finetuning305

examples are collected by sampling from the same pretrained model as the reward model, in this case306

Llama2 7B. The standard reward model is finetuned on a dataset collected by sampling GPT-3.5 [29]307

for task responses. We use samples from GPT-3.5, because it provides a source of (both factually308

correct and incorrect) responses that is independent of the model being finetuned. Samples from309

both Llama2 7B and GPT-3.5 were collected using the same set of prompts. We use FActScore to310

automatically label these examples with rewards, which assigns a score of +2 for every correct fact311

and -3 for every incorrect fact in a response. Note that because FActScore queries are relatively slow312

and expensive, using FActScore to directly provide rewards in online RL is impractical.313

Our experiments also compare the behavior of models finetuned to generate responses using standard314

SFT, as well as RL finetuning with a conservative and a standard reward model. The standard SFT315

models were finetuned directly with the set of target responses provided by WikiBios and WikiPlots.316

To train the RL models, we initialize the model with the standard SFT model, and continue to do RL317

factuality finetuning using PPO [32], with reward signals provided by their respective reward models.318

To ensure a fair comparison, we use the same set of finetuning prompts for SFT and RL finetuning,319
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Standard SFT: The film opens with a scene of 
a Nazi SS officer, Colonel Heinrich Müller, 
being shot by a firing squad in 1945.

What is the premise of “The Odessa File”?
Medium unfamiliarity

RL+Conservative RM: The Odessa File is a 
thriller set in post-World War II Germany.

Standard SFT: The film begins with a brief 
recap of the events of the first film, with the 
death of Jenson (Jerry Reed) and the arrest of 
Jackie (Burt Reynolds).

What is the premise of “Cannonball Run II”?
High unfamiliarity

RL+Conservative RM: The Cannonball Run II 
is a cross-country car race.

Standard SFT: In 1990, the McCallister family 
is preparing for a Christmas vacation to Paris, 
France.

What is the premise of “Home Alone”?
Low unfamiliarity

RL+Conservative RM: Kevin McCallister 
(Macaulay Culkin) is an eight-year-old boy 
who is accidentally left behind when his 
family goes on Christmas vacation to Paris, 
France.

Figure 8: Examples of generated responses from models finetuned with standard SFT and RL with a
conservative reward model. False information is highlighted in red.

and keep all training details fixed across the two RL methods except for the reward model. All three320

models use Llama2 7B as the pretrained model. At test time, we evaluate the models with queries321

at different levels of unfamiliarity. The unfamiliarity score for this task is measured by few-shot322

prompting the pretrained model (Llama2 7B), sampling 2 responses, and calculating the average323

number of incorrect facts in the responses. For more experimental details, see Appendix D.324

Results. To answer our first question, we evaluate the standard and conservative reward models on325

held out samples generated from the SFT model. We used samples from the SFT model because the326

RL finetuning procedure is initialized with this SFT model, so responses sampled from this model are327

representative of the kind of responses that the reward model will be asked to score during RL training.328

In Fig. 5, we plot each models’ predicted rewards and the ground truth reward, as inputs become more329

unfamiliar. We can see that for unfamiliar inputs, the standard reward model vastly overestimates the330

reward, while the conservative reward model does not, showing that the conservative reward models331

learned with the procedure we described indeed produce more conservative predictions.332

To answer our second question, we evaluate standard SFT, as well as RL with a standard reward333

model and a conservative reward model on a heldout set of queries for each task. In Fig. 7, we plot the334

number of true facts and false facts generated by each model, as inputs become more unfamiliar. We335

can see that as inputs became more unfamiliar, the standard SFT model generated fewer truth facts and336

more false facts, as expected. Comparing the RL model trained with the conservative reward model337

with the standard SFT model, we can see that the RL model generated the same or more true facts338

while generating significantly fewer false facts across all levels of input unfamiliarity. Comparing the339

two RL models, we can see that while the two generated around the same number of true facts, the340

model trained with the conservative reward model generated much fewer false facts across all levels341

of input unfamiliarity. We summarize our results in Table 6 with the average percentage of true facts342

generated by each method. In Fig. 8, we additionally provide some qualitative examples of responses343

generated by the standard SFT model and the RL model trained with conservative reward model. We344

can see that as the query became more unfamiliar, responses from the SFT model contained about the345

same amount of detail but became more factually incorrect, while responses from the RL model with346

conservative supervision defaulted towards less-informative responses. In conclusion, our results347

show that RL with conservative reward models outperforms standard SFT and RL with standard348

reward models in reducing inaccuracies in model generations.349

6 Conclusion350

In this work, we presented the observation that, when faced with unfamiliar queries, LLM predictions351

tend to default towards the responses associated with unfamiliar examples in its finetuning data.352

We additionally studied factuality finetuning for long-form model generations, where we found353

that strategically controlling reward model hallucinations can significantly improve the efficacy of354

RL-based techniques. Nonetheless, there still remains many open questions and challenges regarding355

LLM hallucinations. While our conceptual model explains a model’s behavior for entirely unfamiliar356

examples, many real-world queries fall within a spectrum of partial familiarity. A more nuanced357

characterization of model predictions in this “middle ground” would be valuable. Furthermore,358

our experiments focused on models finetuned for specific applications (e.g., biography generation).359

Extending factuality finetuning to more general prompted generation tasks would be useful. We hope360

that our work, by offering a deeper understanding of the factors that govern LLM hallucinations,361

provides a useful step towards building more trustworthy and reliable LLMs.362
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• If the authors answer NA or No, they should explain why their work has no societal702

impact or why the paper does not address societal impact.703

• Examples of negative societal impacts include potential malicious or unintended uses704

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations705

(e.g., deployment of technologies that could make decisions that unfairly impact specific706

groups), privacy considerations, and security considerations.707
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• The conference expects that many papers will be foundational research and not tied708

to particular applications, let alone deployments. However, if there is a direct path to709

any negative applications, the authors should point it out. For example, it is legitimate710

to point out that an improvement in the quality of generative models could be used to711

generate deepfakes for disinformation. On the other hand, it is not needed to point out712

that a generic algorithm for optimizing neural networks could enable people to train713

models that generate Deepfakes faster.714

• The authors should consider possible harms that could arise when the technology is715

being used as intended and functioning correctly, harms that could arise when the716

technology is being used as intended but gives incorrect results, and harms following717

from (intentional or unintentional) misuse of the technology.718

• If there are negative societal impacts, the authors could also discuss possible mitigation719

strategies (e.g., gated release of models, providing defenses in addition to attacks,720

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from721

feedback over time, improving the efficiency and accessibility of ML).722

11. Safeguards723

Question: Does the paper describe safeguards that have been put in place for responsible724

release of data or models that have a high risk for misuse (e.g., pretrained language models,725

image generators, or scraped datasets)?726

Answer: [NA]727

Justification: The paper poses no such risks.728

Guidelines:729

• The answer NA means that the paper poses no such risks.730

• Released models that have a high risk for misuse or dual-use should be released with731

necessary safeguards to allow for controlled use of the model, for example by requiring732

that users adhere to usage guidelines or restrictions to access the model or implementing733

safety filters.734

• Datasets that have been scraped from the Internet could pose safety risks. The authors735

should describe how they avoided releasing unsafe images.736

• We recognize that providing effective safeguards is challenging, and many papers do737

not require this, but we encourage authors to take this into account and make a best738

faith effort.739

12. Licenses for existing assets740

Question: Are the creators or original owners of assets (e.g., code, data, models), used in741

the paper, properly credited and are the license and terms of use explicitly mentioned and742

properly respected?743

Answer: [No]744

Justification: We currently cite the original owners of the data and models that we use. We745

will add more details about the license, copyright information, and terms of use of these746

assets upon acceptance.747

Guidelines:748

• The answer NA means that the paper does not use existing assets.749

• The authors should cite the original paper that produced the code package or dataset.750

• The authors should state which version of the asset is used and, if possible, include a751

URL.752

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.753

• For scraped data from a particular source (e.g., website), the copyright and terms of754

service of that source should be provided.755

• If assets are released, the license, copyright information, and terms of use in the756

package should be provided. For popular datasets, paperswithcode.com/datasets757

has curated licenses for some datasets. Their licensing guide can help determine the758

license of a dataset.759
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• For existing datasets that are re-packaged, both the original license and the license of760

the derived asset (if it has changed) should be provided.761

• If this information is not available online, the authors are encouraged to reach out to762

the asset’s creators.763

13. New Assets764

Question: Are new assets introduced in the paper well documented and is the documentation765

provided alongside the assets?766

Answer: [No]767

Justification: We will release our code upon acceptance.768

Guidelines:769

• The answer NA means that the paper does not release new assets.770

• Researchers should communicate the details of the dataset/code/model as part of their771

submissions via structured templates. This includes details about training, license,772

limitations, etc.773

• The paper should discuss whether and how consent was obtained from people whose774

asset is used.775

• At submission time, remember to anonymize your assets (if applicable). You can either776

create an anonymized URL or include an anonymized zip file.777

14. Crowdsourcing and Research with Human Subjects778

Question: For crowdsourcing experiments and research with human subjects, does the paper779

include the full text of instructions given to participants and screenshots, if applicable, as780

well as details about compensation (if any)?781

Answer: [NA]782

Justification: The paper does not involve crowdsourcing nor research with human subjects.783

Guidelines:784

• The answer NA means that the paper does not involve crowdsourcing nor research with785

human subjects.786

• Including this information in the supplemental material is fine, but if the main contribu-787

tion of the paper involves human subjects, then as much detail as possible should be788

included in the main paper.789

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,790

or other labor should be paid at least the minimum wage in the country of the data791

collector.792

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human793

Subjects794

Question: Does the paper describe potential risks incurred by study participants, whether795

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)796

approvals (or an equivalent approval/review based on the requirements of your country or797

institution) were obtained?798

Answer: [NA]799

Justification: The paper does not involve crowdsourcing nor research with human subjects.800

Guidelines:801

• The answer NA means that the paper does not involve crowdsourcing nor research with802

human subjects.803

• Depending on the country in which research is conducted, IRB approval (or equivalent)804

may be required for any human subjects research. If you obtained IRB approval, you805

should clearly state this in the paper.806

• We recognize that the procedures for this may vary significantly between institutions807

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the808

guidelines for their institution.809

• For initial submissions, do not include any information that would break anonymity (if810

applicable), such as the institution conducting the review.811
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A Compute812

We use A100 GPUs to finetune our models. Number of GPUs used range from 1-6 for each813

experiment, and time of execution range from a few hours to up to 2 days. We use LoRA finetuning814

for all our experiments with r = 16, alpha = 16, dropout = 0.815

B MMLU Training Details816

In this section, we provide more details on our training and evaluation procedure for our MMLU817

experiments. For all experiments, we finetuned on the evaluation split of MMLU, and evaluated on818

the validation split. This is because MMLU does not have a training split. Our training pipeline uses819

the trlx codebase [8].820

B.1 SFT Models821

We classify examples with unfamiliarity score (NLL) greater than 0.36 as unfamiliar, and the rest822

as familiar. During finetuning, we rebalance the dataset such that 50% of finetuning examples are823

familiar and 50% are unfamiliar.824

We use a batch size of 12. We use the AdamW optimizer with learning rate = 1e-5, betas = (0.9, 0.95),825

eps = 1.0e-8, and weight decay=1.0e-6.826

B.2 RL Models827

We initialize all RL finetuning with a model that has already be supervised finetuned to produce828

responses that consist of answer choices. The SFT model we used for initialization is trained predict829

the E option 50% of the time, and to produce the correct answer to the query 50% of the time.830

We use a batch size of 12. We use the AdamW optimizer with learning rate = 1e-5, betas = (0.9, 0.95),831

eps = 1.0e-8, and weight decay=1.0e-6. For PPO, we use cliprange = 0.005 and KL coef = 0.832

B.3 Reward Models833

We construct correct (reward 1) training and evaluation examples using queries and their correspond-834

ing answer labels from the original MMLU dataset. We construct incorrect (reward 0) examples by835

using queries from the original dataset, and randomly sampling incorrect answer labels (A-D not836

including correct label).837

We use a batch size of 12. We use the AdamW optimizer with learning rate = 1e-5, betas = (0.9, 0.95),838

eps = 1.0e-8, and weight decay=1.0e-6.839

C TriviaQA Training Details840

In this section, we provide more details on our training and evaluation procedure for our TriviaQA841

experiments. Our training pipeline uses the trlx codebase [8].842

C.1 SFT Models843

We classify examples with unfamiliarity score (number of incorrect responses out of 12 samples)844

greater than 6 as unfamiliar, and familiar otherwise. We relabel the responses associated with all845

unfamiliar finetuning examples to be “I don’t know”.846

We use a batch size of 32. We use the AdamW optimizer with learning rate = 1e-5, betas = (0.9, 0.95),847

eps = 1.0e-8, and weight decay=1.0e-6. We use a Cosine Annealing scheduler with T max = 1e4 and848

ETA min = 1e-10.849

C.2 RL Models850

We initialize all RL finetuning with a model that has already be supervised finetuned to produce851

responses that consists of an answer or “I don’t know”. The SFT model we used for initialization is852
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trained predict “I don’t know” 40% of the time, and to produce the correct answer to the query 60%853

of the time.854

We use a batch size of 32. We use the AdamW optimizer with learning rate = 1e-5, betas = (0.9, 0.95),855

eps = 1.0e-8, and weight decay=1.0e-6. For PPO, we use cliprange = 0.005 and KL coef = 0.1.856

C.3 Reward Models857

We construct correct (reward 1) training and evaluation examples using queries and responses from858

the original TriviaQA dataset. We construct incorrect (reward 0) examples using queries from the859

original dataset, and responses generated from few-shot prompting Llama2 7B or GPT-2. We filter860

the generated responses to ensure that all responses were incorrect.861

We use a batch size of 32. We use the AdamW optimizer with learning rate = 1e-5, betas = (0.9, 0.95),862

eps = 1.0e-8, and weight decay=1.0e-6.863

D Long-form Tasks Training Details864

In this section, we provide training and evaluation details for our long-form factuality finetuning865

experiments. Our training pipeline uses the trlx codebase [8].866

D.1 Data867

We construct finetuning and evaluation datasets using WikiBios and WikiPlots, both of which consist868

of wikipedia entries attached to people and books/movies. We make use of the first sentence in the869

wikipedia entry for both tasks as the target response in our SFT finetuning datasets. The prompts we870

use for finetuning are “Write a biography for [name].” and “What is the premise of [title]?”. For the871

biography task, our finetuning dataset includes 104539 examples, and our evaluation dataset includes872

5000 examples. For the plot generation task, our finetuning dataset includes 10000 examples, and our873

evaluation dataset includes 4795 examples.874

D.2 Reward Models875

We take a two-staged approach to learning a reward model. First, we trained a model to break876

down a response into individual atomic facts. Next, we trained a separate model to predict the877

factuality of each atomic fact. We then use the predicted factuality of each fact to calculate the overall878

reward associated with each response. The supervision for both models are collected by querying879

FActScore, which is a automated pipeline that queries GPT-3.5 to decompose a response into atomic880

facts and produces the factuality of each atomic fact. We use 10000 labeled examples to train the881

conservative reward model and the standard reward models each for both tasks. Note that while we882

use a two-staged strategy for learning reward models in our implementation, our general approach for883

learning conservative reward model should apply to other reward model learning strategies as well,884

such as directly predicting the reward associated with a response.885

For both models, we use a batch size of 32. We use the AdamW optimizer with learning rate = 2e-5,886

betas = (0.9, 0.95), eps = 1.0e-8, and weight decay=1.0e-6. We use a Cosine Annealing scheduler887

with T max = 1e4 and ETA min = 1e-10.888

D.3 SFT Models889

We use a batch size of 24. We use the AdamW optimizer with learning rate = 1e-5, betas = (0.9, 0.95),890

eps = 1.0e-8, and weight decay=1.0e-6. We use a Cosine Annealing scheduler with T max = 1e4 and891

ETA min = 1e-10.892

D.4 RL Models893

We initialize all RL finetuning with the SFT model, and use the reward predicted by the reward model894

described above as supervision.895
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We use a batch size of 16. We use the AdamW optimizer with learning rate = 1e-5, betas = (0.9, 0.95),896

eps = 1.0e-8, and weight decay=1.0e-6. For PPO, we use cliprange = 0.005 and KL coef = 0.5.897
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