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ABSTRACT

We propose a new data-driven neural approach to combinatorial optimization in
which we learn the parameters of an iterative dynamical system which efficiently
solves typical instances of the NP-hard Max-Cut/Ising problem. The dynamical
system is parameterized by a small neural network which is trained using a zeroth-
order optimization method. We find that our method is able to learn efficient
and scalable algorithms for solving these combinatorial optimization problems.
We show that even with a limited parameter count, the neural network is able
to learn sophisticated dynamics which allow it to efficiently navigate the non-
convex landscapes that are characteristic of NP-hard problems. We compare our
method against state-of-the-art neural-CO approaches as well as other classical
Max-Cut/Ising solvers and show that is can achieve competitive performance.

1 INTRODUCTION

Combinatorial optimization (CO) problems are a class of problems which have important applica-
tions across many fields of science and engineering. However, because they are NP-hard there is
no general algorithm which can solve these problems efficiently. Thus many heuristics and approx-
imate algorithms have been developed which are effective on certain classes of CO problems. On
the other hand, the techniques of neural networks and machine learning have been widely successful
at learning patterns from data. This raises a central question: can heuristic algorithms for combi-
natorial optimization be learned from data, and can they ultimately outperform their handcrafted
counterparts? This intersection between the two fields is attractive in a number of ways. First of
all, many heuristic algorithms for CO are not well understood and are a result of a large amount
of human experimentation and parameter tuning already. In this context it makes sense that an ML
technique would be appropriate to further automate this process. Secondly, from the perspective of
machine learning, one drawback that many neural network based algorithms have is that their output
can be unreliable and unverifiable. This problem is partially avoided in the context of CO because
the solutions we are looking for are inherently verifiable. For these reasons (among many others) the
intersection of these fields, often referred to as “neural CO”, has been extensively studied over the
last decade or so (see section 2.1). However, although there have been many success stories of these
methods, there is still no generally agreed upon technique, and in many cases hand-crafted classical
heuristics are still better, making the field an area of active research. In this work, we propose a new
method which solves the NP-hard Ising/Max-Cut problem and related problems. Our approach is
closely related an recent line of work which aims at developing a dynamical systems approach to
solving the Ising problem (see section 2.2), however we extend it in a data-driven matter. Although
our method differs in both architecture and training method from existing neural CO approaches, we
show that it can achieve state-of-the art performance on many commonly used benchmarks.

2 RELATED WORKS

2.1 NEURAL COMBINATORIAL OPTIMIZATION

In the field of neural combinatorial optimization (neural CO) many different types of CO prob-
lems have been considered, The most common of them being the traveling salesmen problem (TSP)
Vinyals et al. (2017); Bello et al. (2017); Deudon et al. (2018); Joshi et al. (2019); Bresson & Laurent
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(2021); Bogyrbayeva et al. (2022); Sui et al. (2024); Alanzi & Menai (2025). Many architectures
have been used to solve TSP including pointer networks Vinyals et al. (2017), transformers Kool
et al. (2019) and GNNs Joshi et al. (2019). Both supervised learning (SL) and reinforcement learn-
ing (RL) have been used for training with policy gradient based RL methods being the most popular
Bello et al. (2017). Additionally, diffusion models have also been proposed as a technique for neural
CO Sun & Yang (2023); Sanokowski et al. (2024). In addition to TSP, neural methods have been
proposed to solve countless other NP-hard problems including graph matching Zanfir & Sminchis-
escu (2018), routing problems Zhou et al. (2025), maximum independent set Ahn et al. (2020) , and
Boolean satisfiability Bünz & Lamm (2017) to name a few. In particular, there have been a number
of neural approaches to Max-Cut and other closely related problems such as Maximum independent
set (MIS) that are directly equivalent to the Ising problem studied in this work Dai et al. (2018); Kar-
alias & Loukas (2021); Schuetz et al. (2022); Zhang et al. (2023); Sanokowski et al. (2023; 2024;
2025). Approaches include GNNs Schuetz et al. (2022) G-flow-nets, Zhang et al. (2023) and more
recently diffusion samplers Sanokowski et al. (2024; 2025). For further references and recent re-
views on neural CO we refer the reader to Cappart et al. (2022); I. Garmendia et al. (2024); Martins
et al. (2025); Thinklab-SJTU (2021).

2.2 DYNAMICAL SYSTEM APPROACHES TO ISING/MAX-CUT (ISING MACHINES)

Over the years, there have been many physics-inspired approaches to solving the Max-Cut problem.
These approaches are inspired by the fact that many physical systems naturally seek to minimize
some quantity (e.g., physical energy) so if the problem objective can be mapped to this quantity
then the physical device can effectively solve the desired optimization problem. These ideas date
back to concepts like Hopfield neural networks Hopfield (1982), but have gained more attention
again recently. In particular, there has been a lot of work showing that even for certain systems,
simulating the physical dynamics numerically can lead to developing state-of-the art algorithms.
These algorithms, typically called “Ising machines” often involve representing the solution of a
Max-Cut/Ising problem as a set of continuous degrees of freedom which evolve dynamically over
time. Some examples include coherent Ising machines (CIM) Wang et al. (2013); Yamamoto et al.
(2017; 2020), analog iterative machines (AIM) Kalinin et al. (2023) which are inspired by photonics,
oscillator Ising machines (OIM) Wang & Roychowdhury (2019) based on analog electronics as well
as algorithms like simulated bifurcation machines (SBM) Goto et al. (2019), and chaotic amplitude
control (CAC) Leleu et al. (2019; 2021); Leleu & Reifenstein (2025) which are inspired by more
general physical principals. Although it has been demonstrated numerically that these algorithms
are very effective at solving Max-Cut problems, it is not well understood why certain types of
dynamics are more effective than others beyond some loose connections with the underlying physics.
Additionally, as is common for heuristic algorithms for CO, there is often an amount of hyper-
parameter tuning required for these algorithms to be effective on a certain class of problem instances.

2.3 LEARNING TO OPTIMIZE AND ALGORITHM UNROLLING

Learning to Optimize (L2O) and algorithm unrolling are machine learning techniques commonly
used for solving optimization problems where a simple iterative algorithm is typically used. The
idea of algorithm unrolling is that instead of replacing the whole iterative algorithm with a many
layered deep neural network, we modify the existing iterative algorithm to a more general version
with more parameters (which is essentially a recurrent neural network) Monga et al. (2020); Chen
et al. (2021); Kotary et al. (2023); Chen et al. (2024). These parameters can then be tuned by some
machine learning technique so that we get an improved version of the original iterative approach.
Because this technique requires many fewer parameters than the corresponding DNN parameteri-
zation, it is often much more efficient, scalable and interpretable Monga et al. (2020). Algorithm
unrolling has traditionally focused on problems in sensing and signal reconstruction Chen et al.
(2021); Balatsoukas-Stimming & Studer (2019); Gregor & LeCun (2010). A foundational example
of this is in which ISTA (iterative shrinkage and thresholding algorithm), a commonly used algo-
rithm for sparse signal construction, was extended to LISTA (learned ISTA). The convergence and
reconstruction accuracy of ISTA were greatly improved by learning additional parameters Gregor
& LeCun (2010). Although these example are mostly in settings where the underlying optimization
problem is convex, there are some works that explore algorithm unrolling in the context of non-
convex optimization Tan et al. (2023); Wei et al. (2025); Song et al. (2024). However, to the best of
our knowledge algorithm unrolling has not been explored for NP-hard combinatorial optimization
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with the exception of the integer linear programming (ILP) problem which is discussed in Chen et al.
(2024).

2.4 ZEROTH ORDER OPTIMIZATION AND EVOLUTIONARY STRATEGIES

Most ML techniques require some sort of gradient estimator which usually based off of backprop-
agation. Examples of this are the typical stochastic gradient descent (SGD) used in supervised
learning and the policy gradient method of reinforcement learning. On the other hand, zeroth-order
methods do not use a backwards pass and compute the gradient using a finite-difference estimator.
These types of methods have been proposed as alternatives to backpropagation and policy-gradient
reinforcement learning, typically because of the smaller computational overhead required Salimans
et al. (2017). In our case, we use a zeroth order method for a slightly different reason. Because the
dynamics of an Ising machine are very complex and require many layers of computation, it is not
possible to use backpropagation to estimate gradients accurately because of the vanishing/exploding
gradient phenomenon. Similarly, if we try to use the policy gradient method on an Ising machine an
equivalent problem arises. Because there are so many small steps (decisions) that an Ising machine
makes in a single trajectory, when using the policy gradient method we get a very noisy gradient
single because it is hard to accurately attribute each of these decisions to the success of the algo-
rithm. For more details and numerical results see appendix E. Note that many previous works such
as Zhang et al. (2023) and Sanokowski et al. (2024) attempt to fix this problem of reward attribu-
tion for CO solvers, however we take a different approach and use an entirely different optimization
technique which is not based on the REINFORCE algorithm Williams (1992).

2.5 OUR CONTRIBUTION

In this work, we propose a method of neural CO which essentially applies the idea of algorithm
unrolling to dynamical Ising machines. For our training method, we use a zeroth order optimization
method Reifenstein et al. (2024) instead of the more typical backpropagation or policy-gradient
based methods. We parameterize the update step of an Ising machine with a neural network allowing
it to learn optimal search dynamics in a data-driven way. To the best of our knowledge, our method
is novel in the following ways:

• We apply the techniques of algorithm unrolling to the NP-hard Max-Cut problem.

• We use zeroth-order optimization to tune a neural network in the context of combinatorial
optimization.

• We show that effective dynamics for Ising machines can be learned from scratch in a data-
driven way.

3 PROPOSED METHOD

3.1 THE ISING PROBLEM

In this work, we will consider the NP-hard Ising problem defined as follows. The goal is to minimize
a quadratic objective function with respect to a set of binary N variables:

minimize
∑
i,j

Jijσiσj −
∑
i

liσi subject to σ ∈ {−1, 1}N (1)

where the problem instance is specified by the symmetric NxN matrix J and N dimensional vec-
tor l. This problem can be shown to be mathematically equivalent to several other optimization
problems including Max Cut (MCut), Max Clique (MC), Max Independent Set (MIS) and QUBO
(Quadratic Unconstrained Binary Optimization) problems (see appendix A). In this work we will of-
ten use the term “Ising problem” to refer to this class of problems which are described by optimizing
a set of binary variables over a quadratic objective function.
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Figure 1: a) Diagram showing the flow of information in a neural network Ising machine. The
coupling fields (purple), calculated by aggregating the influence of the N − 1 other variables, are
saved from previous iterations. They are then fed into the neural network model and used to decide
the new spin variable which is then used to compute the next coupling field. See sections 3.2
and 3.3 for a concrete mathematical description. b) High level overview of out method relative
to other approaches to CO, inspired by figure 15 of Monga et al. (2020). c) Cartoon depiction of the
zeroth-order evolutionary optimization algorithm we use based off of Reifenstein et al. (2024). A
distribution of parameters (represented by red circles) is evolved over many iterations to close in on
an optimal parameter configuration (blue dot).

3.2 ISING MACHINES

An Ising machine is most generally defined as a dynamical system which is used to solve the Ising
problem. However, in this work we will give it a specific mathematical definition as

xi(t) = F (t, hi(0), ..., hi(t− 1)) (2)

hi(t) =
∑
j

Jijxj(t) +
1

2
li. (3)

The Ising machine dynamics are fully determined by the function F . The variables xi(t) denote the
current approximate solution of the Ising problem (although they can have continuous values) and
the variables hi(t) can be interpreted as a discrete gradient of the objective function with respect to
the current approximate solution. In addition, F may have some stochastic component to it. The
algorithm is carried out by starting with xi(0) at some random value (determined by F ) and then
iterating the above equations by T steps. At each step, a possible solution can be calculated as
σi(t) = sign(xi(t)) and typically we take the best solution over the course of the trajectory to be the
output. Because of the stochastic nature, in practice many trajectories are often computed and the
best solution out of all of them is used. For specific examples of dynamical Ising machines and how
they map to this formulation, refer to appendix B.

3.3 MLP PARAMETERIZATION

The key concept behind our method is to parameterized the function F with a simple multilayer
perceptron (MLP) neural network. To do this, we restrict the history of hi variables used to a specific
length Tc and use these as the input layer of our network. For this work we use a two layer network
with tanh activation functions. Additionally, we do not include bias parameters. This is because in
order for the algorithm to respect the symmetry of the Ising problem we want the resulting function
to be odd with respect to every input. We can express this function explicitly as follows:

F (t, h(0), ..., h(t− 1)) = MLP(t, h(t− Tc), ..., h(t− 1)) = (4)

tanh

W 0(t)η +
∑

k∈{0,...,D−1}

W 1
1,k(t)fnl

 ∑
s∈{0,...,Tc−1}

W 2
k,s(t)h(t− Tc + s)

 (5)

where D denotes the number of hidden neurons, η is N (0, 1) gaussian noise, and fnl is the nonlinear
activation function fnl(x) = x+tanh(x). W 0(t),W 1(t) and W 2(t) are the tunable weight matrices
of dimensions 1x1, 1xD and DxTc respectively. Note that the weight matrices are indicated to have
dependence on t. This is because we want the Ising machine’s dynamics to be allowed to vary
over the course of the trajectory which is something that is important to many Ising machines. To
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complete this parameterization, we first flatten the weight matrices into one vector θ(t) of dimension
1 +D +DTc. Then we introduce another hyperparameter M which corresponds to the number of
degrees of freedom for which each parameter can vary with respect to time. More specifically, we
can express θi(t) in terms of a (1 +D +DTc)xM matrix Θi,m as follows:

θi(t) =
∑

m∈{0,...,M−1}

Θi,mfm(t/T ) (6)

where fm are a set of functions on the interval [0, 1] which can be used as a basis to describe a
general smooth function. In our work we use the Fourier basis described by

fm(τ) =

{
cos(m2 πτ) m ∈ even
sin(m+1

2 πτ) m ∈ odd
. (7)

Together, this gives a total of (1 + D + TcD)M total parameters. We will refer to the algorithm
created by iterating these equations as “neural network parameterized Ising machine” (NPIM). In
addition to the network defined in equation 5, we also consider another version in which the outer
tanh nonlinearity is replaced by the discontinuous sign function causing the xi(t) variables to be
binary. We will refer to the resulting algorithms as cNPIM and dNPIM respectively (corresponding
to continuous and discrete coupling). Although dNPIM is technically a special case of cNPIM (by
scaling the weights), dNPIM tends to have different inductive biases and better generalization as
shown in section (see section 4.5). We find that the specific choice of temporal basis described in
eq 7 (Fourier, Chebyshev, Legendre) has only a minor effect on performance, while the dominant
factor is the number of temporal modes M available, as observed in Appendix C.2 (Fig. 5).

3.4 PARAMETER TUNING AND REWARD FUNCTION

To optimize the parameters of our model we use a zeroth-order evolutionary optimization method
based off of Reifenstein et al. (2024). To do this, we choose a reward function which incentivizes
trajectories which are successful at finding good values of the objective function. Depending on
our goal (i.e. which benchmark we are training for) we use one of two reward functions which are
described in appendix F. The optimization process can then be formalized as follows. A distribution
in the space of network weights θ ∈ RP (where P = (1 + D + TcD)M ) is described by two
variables θx ∈ RP and θL ∈ RP×P . Then, we define the reward function ρ which takes as an in a
trajectory of an NPIM and outputs a real number (see section F for specific definitions). Our goal is
to maximize the expected reward function which can be written as

R(θx, θL) = Ev,η,J ρ(traj(θx + θLv, η, J)) (8)

where the expected value is taken over three distributions. v is a random variable in N(0, 1)P

which is mapped to a perturbation in the parameter space by the matrix θL. η is a random vector
corresponding to the stochastic behavior of the trajectory dynamics themselves, and lastly J is an in-
stance of the Ising problem chosen from the relevant distribution. The notation traj(θ, η, J) is meant
to symbolize a trajectory of the NPIM dynamics with the given network weights θ, instantiation of
noise η and problem instance J . Following the equations in Reifenstein et al. (2024) we then esti-
mate the gradient of R with respect to both θx and θL by computing samples from this distribution.
At each step, the estimated gradients are then used to update both θx and θL. A single update of
both θx and θL we will refer to as an “epoch” in this work. For more details including equations and
hyper-parameters, see appendix G

4 ANALYSIS OF LEARNED DYNAMICS

4.1 EXAMPLE OF LEARNED DYNAMICS: EMERGENCE OF MOMENTUM IN SINGLE LAYER
NETWORK

In order to illustrate the relationship between network weights, Ising machine dynamics, and algo-
rithm performance we will briefly consider a simplified example in which we have a single layer
network with fixed weights (M = 1) and 10 input neurons (Tc = 10). In figure 2 we show how this
network evolves over the course of the training process. In the first few epochs the network quickly
learns a greedy “steepest descent” strategy. This is reflected by all of the network weights being
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negative (bottom middle of figure 2). However, because set of Ising problem instances used are
non-convex, this basic strategy causes the machine to often get trapped in solutions which are not
globally optimal. Thus, during the training process the network weights gradually become modified
to allow for a more effective search procedure that includes some additional “momentum” effect
that kicks it out of these meta-stable state. This is depicted in the upper and lower right plots where
some of the network weights become positive (red).

Figure 2: Example of training single layer neural network Ising machine. Upper left: the average
reward (success rate) of the network with respect to training epoch. The reward starts negative
because of an initial bootstrapping phase in which bad trajectories are penalized. Two snapshots
of the network parameters are taken and shown in the right two figures: network A at epoch 19,
and network B at epoch 99. Lower left: residual Ising energy (difference with best known solution)
is shown as a function of iteration step for both networks. Darker colored trajectories indicate the
ground state was found. Bottom middle and right: network weights of network A and network B
respectively. Blue and red connections depict negative and positive network weights respectively.
Top middle and right: trajectory of xi(t) variables for network A and network B respectively. Each
color represents a different variable of the Ising problem.

4.2 EFFECT OF ARCHITECTURE ON PERFORMANCE

As shown in section 4.1, a simple single layer network with fixed weights can be effective at learning
the complex dynamics required of solving these optimization problems. This raises the question of
how important a more complicated multi-layer network is, and to what extent parameter modulation
(annealing) is necessary for the algorithm to be effective. However, based on our experimentation
with different network architectures it appears that both increasing the number of hidden neurons
and degrees of freedom for the annealing schedule improve algorithm performance. In figure 3c and
table 3 we show the success rate of both cNPIM and dNPIM on N = 100 SK problem instances
for different network configurations. We see a clear trend in which a greater number of parameters
results in improved performance, although there may be a saturation around 50 parameters, the
results indicate that the network is learning some non-trivial strategy that needs many parameters to
describe. Interestingly, as long as the number of parameters is large, the exact type of parameters
(i.e. tradeoff between Tc, D and M ) doesn’t seem to have a large effect on performance. For
more details, single-parameter sensitivity sweeps over Tc, D, and M are provided in Appendix C.1
(Fig. 4).

4.3 BOOTSTRAPPING AND FINE TUNING

In order to train the network on hard problem instances, it is often not sufficient to simply start
with random parameters. This is because the success rate of finding the ground state will be zero
or close to zero so there will be no gradient signal for the optimizer to use. To fix this problem
we use various forms of bootstrapping and fine-tuning, in which the network is first tuned on an

6
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Figure 3: a) Performance (Time to solution) of cNPIM on Sherrington-Kirkpatrick (SK) problem
instances. Colored traces show performance with and without fine-tuning showing limited (but
nonzero) ability to generalize over problem size. Dotted trace shows baseline Ising machine per-
formance (Chaotic amplitude control Leleu et al. (2019; 2021); Leleu & Reifenstein (2025)). b,
e) Scatter plot showing the TTS of 100 random SK problem instances of problem size N = 800
against that of CAC for cNPIM and dNPIM respectively. c) Success rate for different architectures
of cNPIM and dNPIM as a function of total parameter count. The same data is shown in table 3. d)
TTS is shown as a function of hardness parameter for the Wishart planted ensemble (WPE) problem
instances Hamze et al. (2020). Colored traces show cNPIM fine-tuned on different hardness param-
eters while dotted line shows Ising machine baseline (CAC).

easier version of the problem and then fine-tuned on the desired instance distribution. In figures
3a and 3d we show two examples of bootstrapping and fine-tuning. For example, in figure 3a the
network is first trained from scratch (random initialization) on SK problem instances of problem size
N = 100. Then, this pretrained network is fine-tuned on problem size N = 500. Performance of
both networks is shown in blue and orange traces respectively, showing that the fine-tuned network
is more effective especially for larger problem sizes. This process is necessary because training a
network from scratch at the larger problem size (N = 500) is not possible. For more details on
training process see appendix F.

4.4 OUT OF DISTRIBUTION PERFORMANCE

In figures 3a and 3d we show the performance of cNPIM with respect to problem size and instance
hardness parameter respectively. In both cases, when the network is tuned on a specific problem
distribution, the fine-tuned weights are still successful at solving problems in different (but closely
related) distributions. However, performance tends to degrade the more the distribution differs from
the one it is tuned on as expected. This shows that although some out-of-distribution generalization
is possible, fine-tuning is still important in order to get the desired performance.

4.5 OVERFITTING AND DIFFERENCES BETWEEN CNPIM AND DNPIM

In figures 3b and 3e we show the instance-wise performance of cNPIM and dNPIM respectively
against that of the chaotic amplitude control (CAC) algorithm Leleu et al. (2019; 2021); Leleu
& Reifenstein (2025). Because the network is trained to optimize average success rate over all
instances, this can result in overfitting in which the success rate of some problem instances is
very large whereas others will have zero or very low success rate. This is depicted in figure 3b
where many of the easier instances have low TTS (high success rate) for cNPIM compared to CAC
whereas some hard instances were not solved at all by cNPIM indicated by their placement on the
horizontal dotted line. On the other hand, in figure 3e we see this effect is much less prevalent
for dNPIM. Although cNPIM achieves a larger reward value (average success rate), and smaller
TTS for the median difficulty problem instances (indicated by red lines), it struggles on the hardest
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problem instances relative to dNPIM and CAC.

Although this phenomenon is not fully understood, we believe that because cNPIM uses
continuous coupling it learns to optimize some relaxed version of the underlying discrete Ising
problem. Although this relaxed problem may align well with the real problem for some instances, it
doesn’t for others, making it unreliable if we want to find the true ground state. On the other hand,
because dNPIM uses discrete couplings the internal state of the algorithm is always based on true
solutions to the underlying Ising problem. This forces it to be more faithful in its ability to search
over the true solution space which may cause it to take longer for the easier problem instances.

5 BENCHMARK RESULTS

Because our method is closely related to both literature from the machine learning community on
neural CO as well as the literature on dynamical Ising machines, to benchmark our algorithm we
will include common benchmarks from both fields. Each field differs in what type of problems and
what performance metric is used.

In the literature on neural CO, typically both average objective value and computation time
are reported Zhang et al. (2023); Sanokowski et al. (2025). Additionally, common benchmark
problems include maximum independent set and Max-Clique problems based off of graphs from
Xu et al. (2005) and Max-Cut problems from the Barabási–Albert (BA) distribution Albert &
Barabási (2002). In table 1 we compare against the results of Sanokowski et al. (2025) on MIS,
Max-Clique and Max-Cut problems. Although Sanokowski et al. (2025) also includes results on
the maximum dominating set problem, we omit these because it is not directly mappable to the
quadratic Ising problem. However our framework can easily be extended to other types of problems
like this (see appendix D) which can be explored in future works. We find that in four out of the
five cases dNPIM is able to achieve a better average objective value than the results of Sanokowski
et al. (2025). However, in the case of the larger graphs our method does take longer. Although we
are using the same hardware as Sanokowski et al. (2025) this difference could have something to
do with the sparse graph library used for the results in Sanokowski et al. (2025) as opposed to the
dense PyTorch matrix-matrix product used in our implementation. So without further optimization
it is unclear if this difference in speed is inherent to the algorithm or the implementation.

In literature on Ising machines, time to solution (TTS) is typically used as a metric. TTS
takes into account both computation time of a single run of the algorithm and the quality of
solutions achieved per run into a single metric. TTS is defined as an estimate of the amount of time
you would need to run the algorithm to have a 99% chance of finding the solution. Because these are
NP-hard problems an we don’t know the true optimum we use “solution” to mean the best solution
found by the algorithms we are benchmarking. For more details on TTS and how it is calculated
see appendix H. For benchmark problem instance we use the famous G-set instance which are a
set of both weighted an unweighted graphs with a variety of structures. These graphs are typically
interpreted as Max-Cut problems for benchmarking. In order to train our network, for each type
of graph in the G-set we generate a training set of problem instances which is used to fine-tune
a network for that specific set of graph parameters (see appendix I for details). We compare the
resulting algorithm against the results of Reifenstein et al. (2021) and Goto et al. (2021). We use
the cut values reported in these works when computing TTS. Note that for the results of Reifenstein
et al. (2021) and Goto et al. (2021) algorithm parameters are also tuned for each instance type.
We find that on almost all problem instances dNPIM outperforms the existing Ising machine
state-of-the art with the exception of the unweighted planar instances. These instances are more
difficult and other Ising machine algorithms struggle on them as well, especially dSBM (as shown
in Reifenstein et al. (2021)). We believe that with more careful optimization and improvements to
the architecture our method could achieve SOTA performance on all G-set instance but we leave
this in-depth exploration for future works.

Overall, we find that in almost all cases we have explored, our NPIM approach is able to
compete with state-of-the art results. This is promising because the simplicity and flexibility of
the method makes it attractive as a technique that can quickly be adapted to a wide variety of
optimization problems.
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MIS-small MIS-large MaxCl-small MaxCut-small MaxCut-large
Method Size ↑ time ↓ Size ↑ time ↓ Size ↑ time ↓ Size ↑ time ↓ Size ↑ time ↓
Gurobi 20.13± 0.03 6:29 42.51± 0.06∗ 14:19:23 19.06± 0.03 11:00 730.87± 2.35∗ 17:00:00 2944.38± 0.86∗ 2:35:10:00

LTFT (r) 19.18 1:04 37.48 8:44 16.24 1:24 704 5:54 2864 42:40
DiffUCO 19.42± 0.03 0:02 39.44± 0.12 0:03 17.40± 0.02 0:02 731.30± 0.75 0:02 2974.60± 7.73 0:02
SDDS: rKL w/ RL 19.62± 0.01 0:02 39.97± 0.08 0:03 18.89± 0.04 0:02 731.93± 0.74 0:02 2971.62± 8.15 0:02

dNPIM (top 30) 19.9 0:02 40.297 1:20 18.7 0:02 734.908 0:02 2988.551 1:20

Table 1: Comparison of different methods on Max Independant Set (MIS), Max Clique (MaxCl)
and MaxCut problems. Solution size (higher is better) and computation time (lower is better) are
used as dual performance indicators. We compare with data from Sanokowski et al. (2025) which
includes benchmark results of DiffUCO Sanokowski et al. (2024) and LTFT Zhang et al. (2023) as
well. Computation times are based on PyTorch code running on and NVIDIA A100 GPU.

N=800, R, + N=800, R, +/- N=800, T, +/- N=800, P, + N=800, P, +/-
Method TTS ↓ TTS ↓ TTS ↓ TTS ↓ TTS ↓

CAC 2.09e+05 4.31e+05 3.38e+05 1.81e+06 8.87e+05
CFC 2.39e+05 2.24e+05 2.22e+05 2.00e+06 3.44e+05

dSBM 4.00e+05 3.59e+05 4.08e+05 2.12e+07 5.25e+06

dNPIM 1.00e+05 6.55e+04 5.51e+04 4.42e+07 2.04e+05

Table 2: Comparison of different methods on the G-set max-cut problem instances. Time-to-solution
is used as performance metric. In this table, we report medians over each group of instances, but for
instance-wise performance see table 4. State of the art Ising machine TTS is obtained by taking the
best TTS from Reifenstein et al. (2021) which includes the results of Goto et al. (2021) as well.

6 CONCLUSIONS AND DISCUSSION

We have presented a novel data-driven method for solving combinatorial optimization problems.
We use ideas from algorithm unrolling, Ising machines and zeroth-order optimization in a new way
to learn algorithms that can achieve state-of-the art performance on commonly used benchmarks. In
addition to being novel, the simplicity of our approach makes it (in principle) easily generalizable
to many types of problem instances. To conclude, we will discuss some current limitations of our
approach and future directions that should be explored.

In the context of our work there are two types of scalability: with problem size (N ), and
with number of network parameters. We believe that our method achieves good scaling with respect
to problem size relative to the general difficulty of scaling in CO (see figure 3a). However, scaling
with number of parameters can be a potential limitation. This stems from the fact that we use a
zeroth-order optimization method which will cause an additional overhead in the optimization when
more parameters are added (for example see figure 4). This may limit the networks capability to
learn more sophisticated dynamics (i.e. non-local moves) which maybe required to solve certain
types of problems. An interesting future direction would be to combine the zeroth-order method
used in this work with some sort of policy gradient or backpropagation-like method to see if the
network could scale to a larger number of parameters.

Another limitation of our method is the problem of explainability. Although this problem is
common in ML approaches in general and, to a lesser extent, dynamical Ising machines, we
have not contributed much in this work to fix this explainability issue. The best we can do
currently is draw connections to physical concepts used in the optimization literature such as
“momentum” and “annealing”. We show to some extent that these phenomena are emergent
properties of our network when it is trained with the sole objective of maximizing reward (see
figure 2). However, this does not answer the question of why these dynamics are so impor-
tant for certain problem instances. A more detailed understanding of the dynamical complexity
generated by the learned iterative map is still needed, and is an interesting direction for future works.

Although we have tested our approach on a variety of benchmarks, these problem instances
are synthetic and are constrained to the class of quadratic optimization over binary variables. To
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further study our method it will be necessary to test it on different types of CO problems such as
SAT, integer programming and TSP (see section D) and also consider problems of industrial or
academic interest. Because of the simplicity and flexibility of our method, we believe it is likely
that our approach can be adapted provide an efficient solution in some real-world applications.
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A EQUIVALENCE OF MAX-CUT, MAX-CLIQUE, MIS AND QUBO TO THE
QUADRATIC ISING PROBLEM

In this section we will show the exact mathematical form between a these different types of combi-
natorial optimization problems. The graph-based problems will be described by a adjacency matrix
A while the QUBO coupling matrix will be denoted Q.

A.1 MAX-CUT

Jij = Aij li = 0 (9)

A.2 MAX-CLIQUE

Jij = (1−Aij) li = 0.9 +
∑
j

(1−Aij) (10)

A.3 MIS

Jij = Aij li = 0.9 +
∑
j

Aij (11)

A.4 QUBO

Jij = Qij li =
∑
j

Qij (12)

B ADDITIONAL DETAILS ON ISING MACHINES

In this section we will show some of the equations for other Ising machines and how they fit into the
mathematical framework of equations equation 2 and equation 3.

B.1 CHAOTIC AMPLITUDE CONTROL (CAC)

Chaotic amplitude control Leleu et al. (2019; 2021) is described by the following iterative update
equations:

xi(t+ 1) = xi(t) + dt

−axi(t)− xi(t)
3 − ξei(t)

∑
j

Jijxj(t) + li

 (13)

ei(t+ 1) = ei(t) + dtβei(t)
(
1− xi(t)

2
)

(14)

With xi(0) ∈ N (0, 1) and ei(0) = 1. This can then be put into the form of equations 2 and 3 by
defining F recursively as

x(t) = F (t, h(0), ..., h(t− 1)) (15)

x(t+ 1) = x(t) + dt
(
−ax(t)− x(t)3 − e(t)h(t)

)
(16)

e(t+ 1) = e(t) + dtβe(t)
(
1− x(t)2

)
(17)

x(0) ∈ N (0, 1) e(0) = 1 (18)

similarly, other Ising machines such as CIM Wang et al. (2013), and SBM Goto et al. (2021) can be
described in a recursive way like this.
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B.2 ANALOG ITERATIVE MACHINE (AIM)

We will also include the equations for the analog iterative machine Kalinin et al. (2023) because it
is an interesting case in which the forumla for F can be written explicitly. An AIM is described by

zi(t+ 1) = zi(t) + dt

−α
∑
j

Jij tanh(zj(t))− β(t)zi(t) + γ(zi(t)− zi(t− 1))

 (19)

where zi(0) and zi(1) are initialized randomly. If we let β(t) = β to be constant, then we can write

zi(t+ 1) =
∑

t′=0,...,t+1

−λt−t′

1 − λt−t′

2

λ1 − λ2
α
∑
j

Jij tanh(zj(t
′)) (20)

where λ1 and λ2 are eigenvalues of the matrix
(
1 + dt(−β + γ) dtγ

1 0

)
. This allows us to write F

in the explicit form

tanh(z(t)) = F (t, h(0), ..., h(t− 1)) = tanh

 ∑
t′=0,...,t+1

λt−t′

1 − λt−t′

2

λ1 − λ2
h(t′)

 (21)

In addition to being explicit, this mathematical form is also equivalent to a single layer cNPIM with
Tc = ∞ (or just Tc ≥ T ).

C EFFECT OF ARCHITECTURAL HYPERPARAMETERS

C.1 HYPERPARAMETER SWEEP

We sweep one hyperparameter at a time to isolate its effect on the performance of neural parameter-
ized Ising machines. Figure 4 shows results for varying the history length Tc (panel a), the number
of hidden neurons D (panel b), and the number of Fourier modes M controlling the time dependence
of parameters (panel c). In each case, we compare the continuous (cNPIM) and discrete (dNPIM)
variants trained on N = 100 Sherrington–Kirkpatrick instances uszing the success-rate reward. The
optimization procedure uses R = 400 trajectories per epoch, batch size B = 20, and was run for
800 epochs.

In conclusion, all three architectural parameters materially influence performance, with larger Tc,
D, and M generally improving the success rate. The small decrease observed at the largest values
is most likely due to the limited number of training epochs, which prevents full convergence of the
higher-capacity models rather than indicating a true decline in effectiveness.

C.2 CHOICE OF TEMPORAL BASIS

We compare different temporal basis functions used to parameterize the time dependence of NPIM
weights. Figure 5 shows results for Fourier, Legendre, and Chebyshev bases, evaluated for M ∈
1, 3, 5 with fixed history length Tc = 8 and hidden dimension D = 3. Both cNPIM and dNPIM are
trained on N = 100 Sherrington–Kirkpatrick instances using the success-rate reward. Training was
run for 400 epochs with R = 400 trajectories per epoch and batch size B = 20. The results indicate
that all three bases are viable choices for encoding temporal variation, with performance improving
as M increases regardless of basis type. Differences between bases are relatively minor at small M ,
and all yield comparable performance at larger M , suggesting that the precise functional form of the
temporal basis is less critical than the number of degrees of freedom provided.

D GENERALIZED SOLVER

In this section we will show one way in which the proposed framework can be generalized to com-
binatorial and other types of optimization problems beyond the Ising problem. Imagine a general
setting where we are given N variables which are chosen from a set S. An objective function is
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Figure 4: Hyperparameter sweeps of NPIM on SK instances. a) Final success rate as a function of
history length Tc with D = 3 and M = 3. b) Success rate as a function of hidden neurons D with
Tc = 8 and M = 3. c) Success rate as a function of Fourier modes M with Tc = 8 and D = 3.
Curves compare the continuous (cNPIM) and discrete (dNPIM) variants trained on N = 100 SK
instances. Batch size B = 20, and the success-rate reward.
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Figure 5: Comparison of temporal basis functions in NPIM. Final success rate for Fourier, Legendre,
and Chebyshev bases as a function of degrees of freedom per parameter M , with Tc = 8 and D = 3
fixed. Left: cNPIM. Right: dNPIM. Networks are trained on N = 100 SK instances using the
success-rate reward, with 400 epochs, R = 400 trajectories per epoch, and batch size B = 20.
Performance improves as M increases, and differences between bases are small once sufficient
degrees of freedom are available.

defined as g : SN → R and additionally a “gradient direction” operator ∂g : SN → SN which
points in a direction of increased objective value. Additionally, we define a “gradient magnitude”
operator ∆g : SN → RN to estimate the change in objective value cause by each individual variable
update. We then define an iterative algorithm

xi(t+1) = F (t, xi(t), ∂gi(t),∆gi(t), xi(t− 1), ∂gi(t− 1),∆gi(t− 1) , ...., xi(0), ∂gi(0),∆gi(0))
(22)

the function F can then be parameterized by some sort of neural network depending on the exact
form of S. This framework is meant to be general for many types of optimization problems
but in many specific examples it can be made much simpler. For example, we can consider a
more general optimization over a set of binary variables where S = {−1,+1} like Ising, but the
objective function takes some more general form. Then, ∆gi(x) = g(x |xi=+1) − g(x |xi=−1),
∂gi(x) = sign(∆gi(x)). This includes problems like boolean SAT or MDS (maximum dominating
set). Additionally, we can extend this framework to problems like integer programming problems
where S = Z or some subset of Z as well as continuous optimization where S = R. In these cases
∆g and ∂g would represent the discrete and continuous gradients, respectively.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

However, when it comes to problems like TSP or other routing-like problems it may be diffi-
cult to apply this framework. This is because it is unclear how to “factor” the space of solutions
into a product of N copies of a set S. This also has to do with the fact that for problems like TSP,
more non-local updates might be needed such as what is used in heuristics like 2-opt, 3-opt and
Lin-Kerrington. This could represent a general drawback of this type of framework which might
also be reflected in its poorer performance on max-clique problems (see table 1). However we are
optimistic that this drawback could potentially be overcome by a more sophisticated architecture
that allows for non-local updates.

E ZEROTH-ORDER OPTIMIZER VS POLICY GRADIENT METHOD

Although it has not been touched on much in the main text, a key result of our findings is that
training Ising machine dynamics using the policy gradient method of RL does not appear to be very
effective. In this section we will provide some more details and briefly explain why we believe this
is.

To formalize this we will first need to write the Ising machine dynamics in the form of a
Markov decision process so we can apply the policy gradient. The set of possible states in this case
will be x ∈ {−1,+1}N and each step the algorithm will output a probability distribution over this
set.

P (x = σ) =
∏ 1 + σiF (t, hi(0), ..., hi(t− 1))

2
(23)

Using this formulation we can the apply the policy gradient method Williams (1992) to tune
the network parameters as well as a zeroth-order method. This lets us directly compare the two
optimization approaches. We find, as show in figure 6, that the zeroth-order method is much more
efficient and finds good parameters more quickly. Additionally, this discrepancy is more prominent
when the problem size (N ) is increased (not shown in figure). It is for this reason that this work is
solely focused on using a zeroth-order method to optimize the parameters and do not consider other
types of gradient estimators.

To understand more concretely why these methods differ in efficacy we can look at how the
different gradient estimators work. As mentioned in the main text in section 2.4 we believe the
failure of the policy-gradient method has to do with the fact that, for larger problem sizes, there
are essentially many more “decisions” that the Ising machine has to make. Because of this, each
decision on average contributes less to the success of the algorithm. So, using a gradient estimator
at the level of a single decision is going to result in a very noisy estimate. More concretely, a
MDP-based Ising machine will make a total of NT decisions over to course of a T -step trajectory
of problem size N . If we make the simplifying assumption that each decision contributes ∼ 1

NT to
the total success of the algorithm (i.e. choosing one sign for the spin variable will result in a roughly
1

NT larger probability of success), then this results in the gradient estimate for a single decision to
have an SNR of roughly O((NT )−1). Even once we average over NT total decisions we still have
an unfavorable SNR scaling of O((NT )−

1
2 ).

On the other hand, making estimate of SNR for zeroth-order methods is not dependent on
the number of “decisions” that the algorithm makes, but more so the reward landscape itself.
One way of understanding this is that, whereas the policy gradient method relies on perturbations
caused by the randomness of the decisions, the perturbations in the parameter space causes a sort of
“correlated perturbation” over all NT decisions simultaneously which greatly increases the SNR of
the estimator.

Although this mathematical intuition can be useful, the exact reason for which the policy
gradient method fails in this case is not well understood at the moment, and potentially could be
a focus of future works. Currently, we have come to this conclusion primarily based on extensive
trial and error, most of which is not included in this text.
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Figure 6: Training reward of a zeroth-order optimization method and a policy gradient based method
on the same instance distribution and network architecture.

F REWARD FUNCTIONS

In this work we use two reward functions for training. All of the reward functions used are a function
of Eopt, the best Ising energy in the given trajectory and E0 the best energy found by all previous
runs of all algorithms (the supposed “ground energy”). In cases where we are using TTS as an
metric, then we wish to optimize the success rate and use the reward function

Rsucc(Eopt) =


1 if Eopt = E0

− 1
2 if Eopt >= 1

2E0

0 otherwise
(24)

the purpose of the middle case is to penalize really bad trajectories. This is important during the
beginning of training to get a good reward signal when there might not be many successful trajecto-
ries, but during the end of the training there are no longer any of these bad trajectories so the reward
landscape that is ultimately being optimized is equivalent to success rate. This two layered reward
function serves a similar purpose to the bootstrapping and fine-tuning described in section 4.3. Rsucc
is used for the results in figure 3 and table 2. The second reward function we use is defined by

Robj(Eopt) = relu(1− τ(Eopt − E0)) (25)

The variable τ is modulated. Starting at τ = 0.005, every 10 epochs it is increased by a factor of 1.5
if R > 0.5. The purpose of the relu function is to keep the reward in the range [0, 1] which ensures
numerical stability of the optimizer. Additionally, τ is modulated to try to ensure that the reward
signal is strong. More specifically, if R > 0.5 then most of the reward values will be clustered at the
top of the interval, thus we increase τ to amplify the signal. Although this reward function doesn’t
map directly to the relevant performance metric in this case, we use it for the benchmark results in
table 1.

G DETAILS ON PARAMETER OPTIMIZER (DYNAMIC ANISOTROPIC
SMOOTHING)

For parameter optimization we use a zeroth-order evolutionary optimization algorithm based of
Reifenstein et al. (2024). This algorithm evolves a distribution of parameters described by two
variables θx ∈ RP and θL ∈ RP×P . Our goal is to maximize the expected reward function which
can be written as

R(θx, θL) = Ev,η,J ρ(traj(θx + θLv, η, J)) (26)

with the expected value take over three distributions. As described in section 3.4, v is a random
variable in N(0, 1)P which is mapped to a perturbation in the parameter space by the matrix θL. η
is a random vector corresponding to the stochastic behavior of the trajectory dynamics themselves
and lastly J is an instance of the Ising problem chosen from the relevant distribution. DAS works by
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first computing sample trajectories over these three distributions, and the using the resulting reward
values to estimate the gradient of R with respect to θx and θL. The gradients are calculated using
the following estimators

∂R
∂θL

= (θ−1
L )TEv,η,J

(
vv⊤ρ(traj(θx + θLv, η, J))− I

)
(27)

∂R
∂θx

= (θ−1
L )TEv,η,Jvρ(traj(θx + θLv, η, J)). (28)

In practice, we estimate this value using a batch of B samples of the random variable J , each of
which has R independent samples of the random variables v and η . This results in BR total samples
used in the estimation. Or, in other words, at each iteration we use B total problem instances and
run R trajectories of the algorithm for each instance to estimate the gradient. This is mainly because
parallelization over trajectories of the same instance is a little easier and uses less GPU memory. We
typically used B = 20 and R = 400 for our results.

H CALCULATION OF TIME TO SOLUTION (TTS) FOR ISING MACHINES

Time to solution (TTS) is defined as the amount of “time” it takes to solve the given instance with
99% success probability. In this work, we use TTS to compare different Ising machine based algo-
rithms. Because the computation time of all Ising machine algorithms is bottle-necked by the costly
matrix vector multiplication that is needed every step of the algorithm, we use TTS in the units of
number of steps of the algorithm. This takes out a factor relating to the specific hardware that is
used making analysis easier. Thus, TTS is calculated as

TTS = T
log(1− 0.99)

log(1− Ps)
(29)

where T is the number of steps/iterations, and Ps is the probability of finding the target solution in
one run of that many steps.

I DETAILS OF TRAINING FOR BENCHMARK RESULTS

I.1 TABLE 1 RESULTS

For the neural CO benchmark we use an architecture with Tc = 20, D = 3 and M = 3. The number
of iterations is set to T = 300 for the smaller problem sizes and T = 1200 for the larger problem
sizes. For the smaller problem sizes (N = 200-300) we train a network from scratch for 400 epochs
with hyper-parameters R = 400 and B = 20. For the larger problem size (N = 800-1200) we use
the trained parameters for the corresponding smaller problem set and fine tune them on the larger
problem set for 200 epochs. We use a training set size of 100 problem instances and a test set size of
1000 problem instances (to be compatible with the results of Sanokowski et al. (2025)). See section
J for discussion on why 100 problem instances is sufficient for a training set. We use the objective
based reward function for all results on these benchmark (see sec F for details).

I.2 TABLE 2 RESULTS

For the G-set benchmark we use an architecture with Tc = 20, D = 3 and M = 3. The number of
iterations is set to T = N in all cases except for the case of the unweighted planar graphs in which
it is set to T = 4N . The parameters are first tuned on a smaller set of 100 instances of problem size
N = 200 taken from the same distribution (same graph parameters). Then they are fine-tuned on
another set of 100 instances of problem size N = 800 generated from the same distribution as the
corresponding G-set instances. We use the hyper-parameters R = 400 and B = 20 and we use the
success-rate based reward function for this benchmark (see sec F for details).

J IN-DISTRIBUTION GENERALIZATION

In this section we will look at the effect of training set size on test error. In this work we typically use
around ∼ 100 problem instance for training. This may seem like a small number relative to many
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Tc 4 8 12 4 4 8 8 12 12 4 4 8 12 8
D 1 1 1 3 1 1 3 1 3 3 3 3 3 3
M 1 1 1 1 3 3 1 3 1 3 5 3 3 5

total P 6 10 14 16 16 28 28 40 40 46 76 82 118 136

cNPIM 0.183 0.350 0.351 0.179 0.283 0.514 0.445 0.518 0.425 0.390 0.549 0.538 0.542 0.550
dNPIM 0.032 0.221 0.237 0.070 0.094 0.272 0.277 0.309 0.276 0.270 0.282 0.303 0.310 0.306

Table 3: Table showing the effect of network architecture on performance for N = 100 SK problem
instances. Equivalent data is shown in figure 3c as well. The average success rate for N = 100 SK
problem instances is shown for different architectures parameterized by the three network hyper-
parameters.

other machine learning settings, but in our case a small number is sufficient. In figure 7 we show that
the test error (shown in solid traces) will be similar to the training error (shown in dashed traces),
and overfitting will not happen, as long as there around ∼ 10 training problem instances. This
phenomenon likely depends on the exact distribution of problem instances that we are considering,
and reflects the fact that the optimal dynamics required to solve different instances in the same class
are very similar.

Figure 7: Average train and test reward for different numbers of training training problem instances.
Problem instances are N = 100 SK model.

K DETAILS ON THE EFFECT OF HYPER-PARAMETERS ON PERFORMANCE

In table 3 we show the success rate of cNPIM and dNPIM for different network parameters.

L G-SET TTS DETAILS

In table 4 we show the time to solution of different algorithms with respect to each individual G-set
instance.
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Graph Type NPIM TTS SOTA TTS NPIM/SOTA
G1 N=800, R, + 2.55e+04 6.01e+04 0.42
G2 N=800, R, + 2.28e+05 9.20e+05 0.25
G3 N=800, R, + 5.63e+04 1.70e+05 0.33
G4 N=800, R, + 1.00e+05 2.09e+05 0.48
G5 N=800, R, + 2.11e+05 2.26e+05 0.93
G6 N=800, R, +/- 3.52e+04 1.04e+05 0.34
G7 N=800, R, +/- 4.84e+04 1.46e+05 0.33
G8 N=800, R, +/- 6.55e+04 3.59e+05 0.18
G9 N=800, R, +/- 1.40e+05 2.24e+05 0.62

G10 N=800, R, +/- 5.51e+05 6.22e+05 0.88
G11 N=800, T, +/- 2.86e+04 2.22e+05 0.13
G12 N=800, T, +/- 5.51e+04 7.86e+04 0.70
G13 N=800, T, +/- 2.74e+05 3.73e+05 0.74
G14 N=800, P, + 1.66e+08 1.31e+07 12.67
G15 N=800, P, + 9.75e+06 4.63e+05 21.07
G16 N=800, P, + 3.32e+07 4.94e+05 67.07
G17 N=800, P, + 5.53e+07 3.09e+06 17.89
G18 N=800, P, +/- 5.01e+05 5.08e+05 0.99
G19 N=800, P, +/- 1.48e+05 1.80e+05 0.82
G20 N=800, P, +/- 1.17e+04 4.24e+04 0.28
G21 N=800, P, +/- 2.61e+05 5.74e+05 0.45

Table 4: Instance-wise TTS of different methods on G-set graphs.
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