
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

NEURAL NETWORK ISING MACHINES: ALGORITHM
UNROLLING FOR COMBINATORIAL OPTIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

We propose a new data-driven neural approach to combinatorial optimization in
which we learn the parameters of an iterative dynamical system which efficiently
solves typical instances of the NP-hard Max-Cut/Ising problem. The dynamical
system is parameterized by a small neural network which is trained using a zeroth-
order optimization method. We find that our method is able to learn efficient
and scalable algorithms for solving these combinatorial optimization problems.
We show that even with a limited parameter count, the neural network is able
to learn sophisticated dynamics which allow it to efficiently navigate the non-
convex landscapes that are characteristic of NP-hard problems. We compare our
method against state-of-the-art neural-CO approaches as well as other classical
Max-Cut/Ising solvers and show that is can achieve competitive performance.

1 INTRODUCTION

Combinatorial optimization (CO) problems are a class of problems which have important applica-
tions across many fields of science and engineering. However, because they are NP-hard there is
no general algorithm which can solve these problems efficiently. Thus many heuristics and approx-
imate algorithms have been developed which are effective on certain classes of CO problems. On
the other hand, the techniques of neural networks and machine learning have been widely successful
at learning patterns from data. This raises a central question: can heuristic algorithms for combi-
natorial optimization be learned from data, and can they ultimately outperform their handcrafted
counterparts? This intersection between the two fields is attractive in a number of ways. First of
all, many heuristic algorithms for CO are not well understood and are a result of a large amount
of human experimentation and parameter tuning already. In this context it makes sense that an ML
technique would be appropriate to further automate this process. Secondly, from the perspective of
machine learning, one drawback that many neural network based algorithms have is that their output
can be unreliable and unverifiable. This problem is partially avoided in the context of CO because
the solutions we are looking for are inherently verifiable. For these reasons (among many others) the
intersection of these fields, often referred to as “neural CO”, has been extensively studied over the
last decade or so (see section 2.1). However, although there have been many success stories of these
methods, there is still no generally agreed upon technique, and in many cases hand-crafted classical
heuristics are still better, making the field an area of active research. In this work, we propose a new
method which solves the NP-hard Ising/Max-Cut problem and related problems. Our approach is
closely related an recent line of work which aims at developing a dynamical systems approach to
solving the Ising problem (see section 2.2), however we extend it in a data-driven matter. Although
our method differs in both architecture and training method from existing neural CO approaches, we
show that it can achieve state-of-the art performance on many commonly used benchmarks.

2 RELATED WORKS

2.1 NEURAL COMBINATORIAL OPTIMIZATION

In the field of neural combinatorial optimization (neural CO) many different types of CO prob-
lems have been considered, The most common of them being the traveling salesmen problem (TSP)
Vinyals et al. (2017); Bello et al. (2017); Deudon et al. (2018); Joshi et al. (2019); Bresson & Laurent

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

(2021); Bogyrbayeva et al. (2022); Sui et al. (2024); Alanzi & Menai (2025). Many architectures
have been used to solve TSP including pointer networks Vinyals et al. (2017), transformers Kool
et al. (2019) and GNNs Joshi et al. (2019). Both supervised learning (SL) and reinforcement learn-
ing (RL) have been used for training with policy gradient based RL methods being the most popular
Bello et al. (2017). Additionally, diffusion models have also been proposed as a technique for neural
CO Sun & Yang (2023); Sanokowski et al. (2024). In addition to TSP, neural methods have been
proposed to solve countless other NP-hard problems including graph matching Zanfir & Sminchis-
escu (2018), routing problems Zhou et al. (2025), maximum independent set Ahn et al. (2020) , and
Boolean satisfiability Bünz & Lamm (2017) to name a few. In particular, there have been a number
of neural approaches to Max-Cut and other closely related problems such as Maximum independent
set (MIS) that are directly equivalent to the Ising problem studied in this work Dai et al. (2018); Kar-
alias & Loukas (2021); Schuetz et al. (2022); Zhang et al. (2023); Sanokowski et al. (2023; 2024;
2025). Approaches include GNNs Schuetz et al. (2022) G-flow-nets, Zhang et al. (2023) and more
recently diffusion samplers Sanokowski et al. (2024; 2025). For further references and recent re-
views on neural CO we refer the reader to Cappart et al. (2022); I. Garmendia et al. (2024); Martins
et al. (2025); Thinklab-SJTU (2021).

2.2 DYNAMICAL SYSTEM APPROACHES TO ISING/MAX-CUT (ISING MACHINES)

Over the years, there have been many physics-inspired approaches to solving the Max-Cut problem.
These approaches are inspired by the fact that many physical systems naturally seek to minimize
some quantity (e.g., physical energy) so if the problem objective can be mapped to this quantity
then the physical device can effectively solve the desired optimization problem. These ideas date
back to concepts like Hopfield neural networks Hopfield (1982), but have gained more attention
again recently. In particular, there has been a lot of work showing that even for certain systems,
simulating the physical dynamics numerically can lead to developing state-of-the art algorithms.
These algorithms, typically called “Ising machines” often involve representing the solution of a
Max-Cut/Ising problem as a set of continuous degrees of freedom which evolve dynamically over
time. Some examples include coherent Ising machines (CIM) Wang et al. (2013); Yamamoto et al.
(2017; 2020), analog iterative machines (AIM) Kalinin et al. (2023) which are inspired by photonics,
oscillator Ising machines (OIM) Wang & Roychowdhury (2019) based on analog electronics as well
as algorithms like simulated bifurcation machines (SBM) Goto et al. (2019), and chaotic amplitude
control (CAC) Leleu et al. (2019; 2021); Leleu & Reifenstein (2025) which are inspired by more
general physical principals. Although it has been demonstrated numerically that these algorithms
are very effective at solving Max-Cut problems, it is not well understood why certain types of
dynamics are more effective than others beyond some loose connections with the underlying physics.
Additionally, as is common for heuristic algorithms for CO, there is often an amount of hyper-
parameter tuning required for these algorithms to be effective on a certain class of problem instances.

2.3 LEARNING TO OPTIMIZE AND ALGORITHM UNROLLING

Learning to Optimize (L2O) and algorithm unrolling are machine learning techniques commonly
used for solving optimization problems where a simple iterative algorithm is typically used. The
idea of algorithm unrolling is that instead of replacing the whole iterative algorithm with a many
layered deep neural network, we modify the existing iterative algorithm to a more general version
with more parameters (which is essentially a recurrent neural network) Monga et al. (2020); Chen
et al. (2021); Kotary et al. (2023); Chen et al. (2024). These parameters can then be tuned by some
machine learning technique so that we get an improved version of the original iterative approach.
Because this technique requires many fewer parameters than the corresponding DNN parameteri-
zation, it is often much more efficient, scalable and interpretable Monga et al. (2020). Algorithm
unrolling has traditionally focused on problems in sensing and signal reconstruction Chen et al.
(2021); Balatsoukas-Stimming & Studer (2019); Gregor & LeCun (2010). A foundational example
of this is in which ISTA (iterative shrinkage and thresholding algorithm), a commonly used algo-
rithm for sparse signal construction, was extended to LISTA (learned ISTA). The convergence and
reconstruction accuracy of ISTA were greatly improved by learning additional parameters Gregor
& LeCun (2010). Although these example are mostly in settings where the underlying optimization
problem is convex, there are some works that explore algorithm unrolling in the context of non-
convex optimization Tan et al. (2023); Wei et al. (2025); Song et al. (2024). However, to the best of
our knowledge algorithm unrolling has not been explored for NP-hard combinatorial optimization

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

with the exception of the integer linear programming (ILP) problem which is discussed in Chen et al.
(2024).

2.4 ZEROTH ORDER OPTIMIZATION AND EVOLUTIONARY STRATEGIES

Most ML techniques require some sort of gradient estimator which usually based off of backprop-
agation. Examples of this are the typical stochastic gradient descent (SGD) used in supervised
learning and the policy gradient method of reinforcement learning. On the other hand, zeroth-order
methods do not use a backwards pass and compute the gradient using a finite-difference estimator.
These types of methods have been proposed as alternatives to backpropagation and policy-gradient
reinforcement learning, typically because of the smaller computational overhead required Salimans
et al. (2017). In our case, we use a zeroth order method for a slightly different reason. Because the
dynamics of an Ising machine are very complex and require many layers of computation, it is not
possible to use backpropagation to estimate gradients accurately because of the vanishing/exploding
gradient phenomenon. Similarly, if we try to use the policy gradient method on an Ising machine an
equivalent problem arises. Because there are so many small steps (decisions) that an Ising machine
makes in a single trajectory, when using the policy gradient method we get a very noisy gradient
single because it is hard to accurately attribute each of these decisions to the success of the algo-
rithm. For more details and numerical results see appendix E. Note that many previous works such
as Zhang et al. (2023) and Sanokowski et al. (2024) attempt to fix this problem of reward attribu-
tion for CO solvers, however we take a different approach and use an entirely different optimization
technique which is not based on the REINFORCE algorithm Williams (1992).

2.5 OUR CONTRIBUTION

In this work, we propose a method of neural CO which essentially applies the idea of algorithm
unrolling to dynamical Ising machines. For our training method, we use a zeroth order optimization
method Reifenstein et al. (2024) instead of the more typical backpropagation or policy-gradient
based methods. We parameterize the update step of an Ising machine with a neural network allowing
it to learn optimal search dynamics in a data-driven way. To the best of our knowledge, our method
is novel in the following ways:

• We apply the techniques of algorithm unrolling to the NP-hard Max-Cut problem.

• We use zeroth-order optimization to tune a neural network in the context of combinatorial
optimization.

• We show that effective dynamics for Ising machines can be learned from scratch in a data-
driven way.

3 PROPOSED METHOD

3.1 THE ISING PROBLEM

In this work, we will consider the NP-hard Ising problem defined as follows. The goal is to minimize
a quadratic objective function with respect to a set of binary N variables:

minimize
∑
i,j

Jijσiσj −
∑
i

liσi subject to σ ∈ {−1, 1}N (1)

where the problem instance is specified by the symmetric NxN matrix J and N dimensional vec-
tor l. This problem can be shown to be mathematically equivalent to several other optimization
problems including Max Cut (MCut), Max Clique (MC), Max Independent Set (MIS) and QUBO
(Quadratic Unconstrained Binary Optimization) problems (see appendix A). In this work we will of-
ten use the term “Ising problem” to refer to this class of problems which are described by optimizing
a set of binary variables over a quadratic objective function.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 1: a) Diagram showing the flow of information in a neural network Ising machine. The
coupling fields (purple), calculated by aggregating the influence of the N − 1 other variables, are
saved from previous iterations. They are then fed into the neural network model and used to decide
the new spin variable which is then used to compute the next coupling field. See sections 3.2
and 3.3 for a concrete mathematical description. b) High level overview of out method relative
to other approaches to CO, inspired by figure 15 of Monga et al. (2020). c) Cartoon depiction of the
zeroth-order evolutionary optimization algorithm we use based off of Reifenstein et al. (2024). A
distribution of parameters (represented by red circles) is evolved over many iterations to close in on
an optimal parameter configuration (blue dot).

3.2 ISING MACHINES

An Ising machine is most generally defined as a dynamical system which is used to solve the Ising
problem. However, in this work we will give it a specific mathematical definition as

xi(t) = F (t, hi(0), ..., hi(t− 1)) (2)

hi(t) =
∑
j

Jijxj(t) +
1

2
li. (3)

The Ising machine dynamics are fully determined by the function F . The variables xi(t) denote the
current approximate solution of the Ising problem (although they can have continuous values) and
the variables hi(t) can be interpreted as a discrete gradient of the objective function with respect to
the current approximate solution. In addition, F may have some stochastic component to it. The
algorithm is carried out by starting with xi(0) at some random value (determined by F) and then
iterating the above equations by T steps. At each step, a possible solution can be calculated as
σi(t) = sign(xi(t)) and typically we take the best solution over the course of the trajectory to be the
output. Because of the stochastic nature, in practice many trajectories are often computed and the
best solution out of all of them is used. For specific examples of dynamical Ising machines and how
they map to this formulation, refer to appendix B.

3.3 MLP PARAMETERIZATION

The key concept behind our method is to parameterized the function F with a simple multilayer
perceptron (MLP) neural network. To do this, we restrict the history of hi variables used to a specific
length Tc and use these as the input layer of our network. For this work we use a two layer network
with tanh activation functions. Additionally, we do not include bias parameters. This is because in
order for the algorithm to respect the symmetry of the Ising problem we want the resulting function
to be odd with respect to every input. We can express this function explicitly as follows:

F (t, h(0), ..., h(t− 1)) = MLP(t, h(t− Tc), ..., h(t− 1)) = (4)

tanh

W 0(t)η +
∑

k∈{0,...,D−1}

W 1
1,k(t)fnl

 ∑
s∈{0,...,Tc−1}

W 2
k,s(t)h(t− Tc + s)

 (5)

where D denotes the number of hidden neurons, η is N (0, 1) gaussian noise, and fnl is the nonlinear
activation function fnl(x) = x+tanh(x). W 0(t),W 1(t) and W 2(t) are the tunable weight matrices
of dimensions 1x1, 1xD and DxTc respectively. Note that the weight matrices are indicated to have
dependence on t. This is because we want the Ising machine’s dynamics to be allowed to vary
over the course of the trajectory which is something that is important to many Ising machines. To

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

complete this parameterization, we first flatten the weight matrices into one vector θ(t) of dimension
1 +D +DTc. Then we introduce another hyperparameter M which corresponds to the number of
degrees of freedom for which each parameter can vary with respect to time. More specifically, we
can express θi(t) in terms of a (1 +D +DTc)xM matrix Θi,m as follows:

θi(t) =
∑

m∈{0,...,M−1}

Θi,mfm(t/T) (6)

where fm are a set of functions on the interval [0, 1] which can be used as a basis to describe a
general smooth function. In our work we use the Fourier basis described by

fm(τ) =

{
cos(m2 πτ) m ∈ even
sin(m+1

2 πτ) m ∈ odd
. (7)

Together, this gives a total of (1 + D + TcD)M total parameters. We will refer to the algorithm
created by iterating these equations as “neural network parameterized Ising machine” (NPIM). In
addition to the network defined in equation 5, we also consider another version in which the outer
tanh nonlinearity is replaced by the discontinuous sign function causing the xi(t) variables to be
binary. We will refer to the resulting algorithms as cNPIM and dNPIM respectively (corresponding
to continuous and discrete coupling). Although dNPIM is technically a special case of cNPIM (by
scaling the weights), dNPIM tends to have different inductive biases and better generalization as
shown in section (see section 4.5). We find that the specific choice of temporal basis described in
eq 7 (Fourier, Chebyshev, Legendre) has only a minor effect on performance, while the dominant
factor is the number of temporal modes M available, as observed in Appendix C.2 (Fig. 5).

3.4 PARAMETER TUNING AND REWARD FUNCTION

To optimize the parameters of our model we use a zeroth-order evolutionary optimization method
based off of Reifenstein et al. (2024). To do this, we choose a reward function which incentivizes
trajectories which are successful at finding good values of the objective function. Depending on
our goal (i.e. which benchmark we are training for) we use one of two reward functions which are
described in appendix F. The optimization process can then be formalized as follows. A distribution
in the space of network weights θ ∈ RP (where P = (1 + D + TcD)M) is described by two
variables θx ∈ RP and θL ∈ RP×P . Then, we define the reward function ρ which takes as an in a
trajectory of an NPIM and outputs a real number (see section F for specific definitions). Our goal is
to maximize the expected reward function which can be written as

R(θx, θL) = Ev,η,J ρ(traj(θx + θLv, η, J)) (8)

where the expected value is taken over three distributions. v is a random variable in N(0, 1)P

which is mapped to a perturbation in the parameter space by the matrix θL. η is a random vector
corresponding to the stochastic behavior of the trajectory dynamics themselves, and lastly J is an in-
stance of the Ising problem chosen from the relevant distribution. The notation traj(θ, η, J) is meant
to symbolize a trajectory of the NPIM dynamics with the given network weights θ, instantiation of
noise η and problem instance J . Following the equations in Reifenstein et al. (2024) we then esti-
mate the gradient of R with respect to both θx and θL by computing samples from this distribution.
At each step, the estimated gradients are then used to update both θx and θL. A single update of
both θx and θL we will refer to as an “epoch” in this work. For more details including equations and
hyper-parameters, see appendix G

4 ANALYSIS OF LEARNED DYNAMICS

4.1 EXAMPLE OF LEARNED DYNAMICS: EMERGENCE OF MOMENTUM IN SINGLE LAYER
NETWORK

In order to illustrate the relationship between network weights, Ising machine dynamics, and algo-
rithm performance we will briefly consider a simplified example in which we have a single layer
network with fixed weights (M = 1) and 10 input neurons (Tc = 10). In figure 2 we show how this
network evolves over the course of the training process. In the first few epochs the network quickly
learns a greedy “steepest descent” strategy. This is reflected by all of the network weights being

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

negative (bottom middle of figure 2). However, because set of Ising problem instances used are
non-convex, this basic strategy causes the machine to often get trapped in solutions which are not
globally optimal. Thus, during the training process the network weights gradually become modified
to allow for a more effective search procedure that includes some additional “momentum” effect
that kicks it out of these meta-stable state. This is depicted in the upper and lower right plots where
some of the network weights become positive (red).

Figure 2: Example of training single layer neural network Ising machine. Upper left: the average
reward (success rate) of the network with respect to training epoch. The reward starts negative
because of an initial bootstrapping phase in which bad trajectories are penalized. Two snapshots
of the network parameters are taken and shown in the right two figures: network A at epoch 19,
and network B at epoch 99. Lower left: residual Ising energy (difference with best known solution)
is shown as a function of iteration step for both networks. Darker colored trajectories indicate the
ground state was found. Bottom middle and right: network weights of network A and network B
respectively. Blue and red connections depict negative and positive network weights respectively.
Top middle and right: trajectory of xi(t) variables for network A and network B respectively. Each
color represents a different variable of the Ising problem.

4.2 EFFECT OF ARCHITECTURE ON PERFORMANCE

As shown in section 4.1, a simple single layer network with fixed weights can be effective at learning
the complex dynamics required of solving these optimization problems. This raises the question of
how important a more complicated multi-layer network is, and to what extent parameter modulation
(annealing) is necessary for the algorithm to be effective. However, based on our experimentation
with different network architectures it appears that both increasing the number of hidden neurons
and degrees of freedom for the annealing schedule improve algorithm performance. In figure 3c and
table 3 we show the success rate of both cNPIM and dNPIM on N = 100 SK problem instances
for different network configurations. We see a clear trend in which a greater number of parameters
results in improved performance, although there may be a saturation around 50 parameters, the
results indicate that the network is learning some non-trivial strategy that needs many parameters to
describe. Interestingly, as long as the number of parameters is large, the exact type of parameters
(i.e. tradeoff between Tc, D and M) doesn’t seem to have a large effect on performance. For
more details, single-parameter sensitivity sweeps over Tc, D, and M are provided in Appendix C.1
(Fig. 4).

4.3 BOOTSTRAPPING AND FINE TUNING

In order to train the network on hard problem instances, it is often not sufficient to simply start
with random parameters. This is because the success rate of finding the ground state will be zero
or close to zero so there will be no gradient signal for the optimizer to use. To fix this problem
we use various forms of bootstrapping and fine-tuning, in which the network is first tuned on an

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Figure 3: a) Performance (Time to solution) of cNPIM on Sherrington-Kirkpatrick (SK) problem
instances. Colored traces show performance with and without fine-tuning showing limited (but
nonzero) ability to generalize over problem size. Dotted trace shows baseline Ising machine per-
formance (Chaotic amplitude control Leleu et al. (2019; 2021); Leleu & Reifenstein (2025)). b,
e) Scatter plot showing the TTS of 100 random SK problem instances of problem size N = 800
against that of CAC for cNPIM and dNPIM respectively. c) Success rate for different architectures
of cNPIM and dNPIM as a function of total parameter count. The same data is shown in table 3. d)
TTS is shown as a function of hardness parameter for the Wishart planted ensemble (WPE) problem
instances Hamze et al. (2020). Colored traces show cNPIM fine-tuned on different hardness param-
eters while dotted line shows Ising machine baseline (CAC).

easier version of the problem and then fine-tuned on the desired instance distribution. In figures
3a and 3d we show two examples of bootstrapping and fine-tuning. For example, in figure 3a the
network is first trained from scratch (random initialization) on SK problem instances of problem size
N = 100. Then, this pretrained network is fine-tuned on problem size N = 500. Performance of
both networks is shown in blue and orange traces respectively, showing that the fine-tuned network
is more effective especially for larger problem sizes. This process is necessary because training a
network from scratch at the larger problem size (N = 500) is not possible. For more details on
training process see appendix F.

4.4 OUT OF DISTRIBUTION PERFORMANCE

In figures 3a and 3d we show the performance of cNPIM with respect to problem size and instance
hardness parameter respectively. In both cases, when the network is tuned on a specific problem
distribution, the fine-tuned weights are still successful at solving problems in different (but closely
related) distributions. However, performance tends to degrade the more the distribution differs from
the one it is tuned on as expected. This shows that although some out-of-distribution generalization
is possible, fine-tuning is still important in order to get the desired performance.

4.5 OVERFITTING AND DIFFERENCES BETWEEN CNPIM AND DNPIM

In figures 3b and 3e we show the instance-wise performance of cNPIM and dNPIM respectively
against that of the chaotic amplitude control (CAC) algorithm Leleu et al. (2019; 2021); Leleu
& Reifenstein (2025). Because the network is trained to optimize average success rate over all
instances, this can result in overfitting in which the success rate of some problem instances is
very large whereas others will have zero or very low success rate. This is depicted in figure 3b
where many of the easier instances have low TTS (high success rate) for cNPIM compared to CAC
whereas some hard instances were not solved at all by cNPIM indicated by their placement on the
horizontal dotted line. On the other hand, in figure 3e we see this effect is much less prevalent
for dNPIM. Although cNPIM achieves a larger reward value (average success rate), and smaller
TTS for the median difficulty problem instances (indicated by red lines), it struggles on the hardest

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

problem instances relative to dNPIM and CAC.

Although this phenomenon is not fully understood, we believe that because cNPIM uses
continuous coupling it learns to optimize some relaxed version of the underlying discrete Ising
problem. Although this relaxed problem may align well with the real problem for some instances, it
doesn’t for others, making it unreliable if we want to find the true ground state. On the other hand,
because dNPIM uses discrete couplings the internal state of the algorithm is always based on true
solutions to the underlying Ising problem. This forces it to be more faithful in its ability to search
over the true solution space which may cause it to take longer for the easier problem instances.

5 BENCHMARK RESULTS

Because our method is closely related to both literature from the machine learning community on
neural CO as well as the literature on dynamical Ising machines, to benchmark our algorithm we
will include common benchmarks from both fields. Each field differs in what type of problems and
what performance metric is used.

In the literature on neural CO, typically both average objective value and computation time
are reported Zhang et al. (2023); Sanokowski et al. (2025). Additionally, common benchmark
problems include maximum independent set and Max-Clique problems based off of graphs from
Xu et al. (2005) and Max-Cut problems from the Barabási–Albert (BA) distribution Albert &
Barabási (2002). In table 1 we compare against the results of Sanokowski et al. (2025) on MIS,
Max-Clique and Max-Cut problems. Although Sanokowski et al. (2025) also includes results on
the maximum dominating set problem, we omit these because it is not directly mappable to the
quadratic Ising problem. However our framework can easily be extended to other types of problems
like this (see appendix D) which can be explored in future works. We find that in four out of the
five cases dNPIM is able to achieve a better average objective value than the results of Sanokowski
et al. (2025). However, in the case of the larger graphs our method does take longer. Although we
are using the same hardware as Sanokowski et al. (2025) this difference could have something to
do with the sparse graph library used for the results in Sanokowski et al. (2025) as opposed to the
dense PyTorch matrix-matrix product used in our implementation. So without further optimization
it is unclear if this difference in speed is inherent to the algorithm or the implementation.

In literature on Ising machines, time to solution (TTS) is typically used as a metric. TTS
takes into account both computation time of a single run of the algorithm and the quality of
solutions achieved per run into a single metric. TTS is defined as an estimate of the amount of time
you would need to run the algorithm to have a 99% chance of finding the solution. Because these are
NP-hard problems an we don’t know the true optimum we use “solution” to mean the best solution
found by the algorithms we are benchmarking. For more details on TTS and how it is calculated
see appendix H. For benchmark problem instance we use the famous G-set instance which are a
set of both weighted an unweighted graphs with a variety of structures. These graphs are typically
interpreted as Max-Cut problems for benchmarking. In order to train our network, for each type
of graph in the G-set we generate a training set of problem instances which is used to fine-tune
a network for that specific set of graph parameters (see appendix I for details). We compare the
resulting algorithm against the results of Reifenstein et al. (2021) and Goto et al. (2021). We use
the cut values reported in these works when computing TTS. Note that for the results of Reifenstein
et al. (2021) and Goto et al. (2021) algorithm parameters are also tuned for each instance type.
We find that on almost all problem instances dNPIM outperforms the existing Ising machine
state-of-the art with the exception of the unweighted planar instances. These instances are more
difficult and other Ising machine algorithms struggle on them as well, especially dSBM (as shown
in Reifenstein et al. (2021)). We believe that with more careful optimization and improvements to
the architecture our method could achieve SOTA performance on all G-set instance but we leave
this in-depth exploration for future works.

Overall, we find that in almost all cases we have explored, our NPIM approach is able to
compete with state-of-the art results. This is promising because the simplicity and flexibility of
the method makes it attractive as a technique that can quickly be adapted to a wide variety of
optimization problems.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

MIS-small MIS-large MaxCl-small MaxCut-small MaxCut-large
Method Size ↑ time ↓ Size ↑ time ↓ Size ↑ time ↓ Size ↑ time ↓ Size ↑ time ↓
Gurobi 20.13± 0.03 6:29 42.51± 0.06∗ 14:19:23 19.06± 0.03 11:00 730.87± 2.35∗ 17:00:00 2944.38± 0.86∗ 2:35:10:00

LTFT (r) 19.18 1:04 37.48 8:44 16.24 1:24 704 5:54 2864 42:40
DiffUCO 19.42± 0.03 0:02 39.44± 0.12 0:03 17.40± 0.02 0:02 731.30± 0.75 0:02 2974.60± 7.73 0:02
SDDS: rKL w/ RL 19.62± 0.01 0:02 39.97± 0.08 0:03 18.89± 0.04 0:02 731.93± 0.74 0:02 2971.62± 8.15 0:02

dNPIM (top 30) 19.9 0:02 40.297 1:20 18.7 0:02 734.908 0:02 2988.551 1:20

Table 1: Comparison of different methods on Max Independant Set (MIS), Max Clique (MaxCl)
and MaxCut problems. Solution size (higher is better) and computation time (lower is better) are
used as dual performance indicators. We compare with data from Sanokowski et al. (2025) which
includes benchmark results of DiffUCO Sanokowski et al. (2024) and LTFT Zhang et al. (2023) as
well. Computation times are based on PyTorch code running on and NVIDIA A100 GPU.

N=800, R, + N=800, R, +/- N=800, T, +/- N=800, P, + N=800, P, +/-
Method TTS ↓ TTS ↓ TTS ↓ TTS ↓ TTS ↓

CAC 2.09e+05 4.31e+05 3.38e+05 1.81e+06 8.87e+05
CFC 2.39e+05 2.24e+05 2.22e+05 2.00e+06 3.44e+05

dSBM 4.00e+05 3.59e+05 4.08e+05 2.12e+07 5.25e+06

dNPIM 1.00e+05 6.55e+04 5.51e+04 4.42e+07 2.04e+05

Table 2: Comparison of different methods on the G-set max-cut problem instances. Time-to-solution
is used as performance metric. In this table, we report medians over each group of instances, but for
instance-wise performance see table 4. State of the art Ising machine TTS is obtained by taking the
best TTS from Reifenstein et al. (2021) which includes the results of Goto et al. (2021) as well.

6 CONCLUSIONS AND DISCUSSION

We have presented a novel data-driven method for solving combinatorial optimization problems.
We use ideas from algorithm unrolling, Ising machines and zeroth-order optimization in a new way
to learn algorithms that can achieve state-of-the art performance on commonly used benchmarks. In
addition to being novel, the simplicity of our approach makes it (in principle) easily generalizable
to many types of problem instances. To conclude, we will discuss some current limitations of our
approach and future directions that should be explored.

In the context of our work there are two types of scalability: with problem size (N), and
with number of network parameters. We believe that our method achieves good scaling with respect
to problem size relative to the general difficulty of scaling in CO (see figure 3a). However, scaling
with number of parameters can be a potential limitation. This stems from the fact that we use a
zeroth-order optimization method which will cause an additional overhead in the optimization when
more parameters are added (for example see figure 4). This may limit the networks capability to
learn more sophisticated dynamics (i.e. non-local moves) which maybe required to solve certain
types of problems. An interesting future direction would be to combine the zeroth-order method
used in this work with some sort of policy gradient or backpropagation-like method to see if the
network could scale to a larger number of parameters.

Another limitation of our method is the problem of explainability. Although this problem is
common in ML approaches in general and, to a lesser extent, dynamical Ising machines, we
have not contributed much in this work to fix this explainability issue. The best we can do
currently is draw connections to physical concepts used in the optimization literature such as
“momentum” and “annealing”. We show to some extent that these phenomena are emergent
properties of our network when it is trained with the sole objective of maximizing reward (see
figure 2). However, this does not answer the question of why these dynamics are so impor-
tant for certain problem instances. A more detailed understanding of the dynamical complexity
generated by the learned iterative map is still needed, and is an interesting direction for future works.

Although we have tested our approach on a variety of benchmarks, these problem instances
are synthetic and are constrained to the class of quadratic optimization over binary variables. To

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

further study our method it will be necessary to test it on different types of CO problems such as
SAT, integer programming and TSP (see section D) and also consider problems of industrial or
academic interest. Because of the simplicity and flexibility of our method, we believe it is likely
that our approach can be adapted provide an efficient solution in some real-world applications.

REFERENCES

Sungsoo Ahn, Younggyo Seo, and Jinwoo Shin. Learning what to defer for maximum indepen-
dent sets. In Hal Daumé III and Aarti Singh (eds.), Proceedings of the 37th International
Conference on Machine Learning, volume 119 of Proceedings of Machine Learning Research,
pp. 134–144. PMLR, 13–18 Jul 2020. URL https://proceedings.mlr.press/v119/
ahn20a.html.

Entesar Alanzi and Mohamed El Bachir Menai. Solving the traveling salesman problem with ma-
chine learning: a review of recent advances and challenges. Artificial Intelligence Review, 58
(9):267, 2025. doi: 10.1007/s10462-025-11267-x. URL https://doi.org/10.1007/
s10462-025-11267-x.

Réka Albert and Albert-László Barabási. Statistical mechanics of complex networks. Rev. Mod.
Phys., 74:47–97, Jan 2002. doi: 10.1103/RevModPhys.74.47. URL https://link.aps.
org/doi/10.1103/RevModPhys.74.47.

Alexios Balatsoukas-Stimming and Christoph Studer. Deep unfolding for communications systems:
A survey and some new directions. In 2019 IEEE International Workshop on Signal Processing
Systems (SiPS), pp. 266–271, 2019. doi: 10.1109/SiPS47522.2019.9020494.

Irwan Bello, Hieu Pham, Quoc V. Le, Mohammad Norouzi, and Samy Bengio. Neural combinatorial
optimization with reinforcement learning, 2017. URL https://arxiv.org/abs/1611.
09940.

Aigerim Bogyrbayeva, Taehyun Yoon, Hanbum Ko, Sungbin Lim, Hyokun Yun, and Changhyun
Kwon. A deep reinforcement learning approach for solving the traveling salesman problem with
drone, 2022. URL https://arxiv.org/abs/2112.12545.

Xavier Bresson and Thomas Laurent. The transformer network for the traveling salesman problem,
2021. URL https://arxiv.org/abs/2103.03012.

Benedikt Bünz and Matthew Lamm. Graph neural networks and boolean satisfiability, 2017. URL
https://arxiv.org/abs/1702.03592.

Quentin Cappart, Didier Chételat, Elias Khalil, Andrea Lodi, Christopher Morris, and Petar
Veličković. Combinatorial optimization and reasoning with graph neural networks, 2022. URL
https://arxiv.org/abs/2102.09544.

Tianlong Chen, Xiaohan Chen, Wuyang Chen, Howard Heaton, Jialin Liu, Zhangyang Wang, and
Wotao Yin. Learning to optimize: A primer and a benchmark, 2021. URL https://arxiv.
org/abs/2103.12828.

Xiaohan Chen, Jialin Liu, and Wotao Yin. Learning to optimize: A tutorial for continuous and
mixed-integer optimization, 2024. URL https://arxiv.org/abs/2405.15251.

Hanjun Dai, Elias B. Khalil, Yuyu Zhang, Bistra Dilkina, and Le Song. Learning combinatorial op-
timization algorithms over graphs, 2018. URL https://arxiv.org/abs/1704.01665.

Michel Deudon, Pierre Cournut, Alexandre Lacoste, Yossiri Adulyasak, and Louis-Martin
Rousseau. Learning heuristics for the tsp by policy gradient. In Willem-Jan van Hoeve (ed.),
Integration of Constraint Programming, Artificial Intelligence, and Operations Research, pp.
170–181, Cham, 2018. Springer International Publishing. ISBN 978-3-319-93031-2.

10

https://proceedings.mlr.press/v119/ahn20a.html
https://proceedings.mlr.press/v119/ahn20a.html
https://doi.org/10.1007/s10462-025-11267-x
https://doi.org/10.1007/s10462-025-11267-x
https://link.aps.org/doi/10.1103/RevModPhys.74.47
https://link.aps.org/doi/10.1103/RevModPhys.74.47
https://arxiv.org/abs/1611.09940
https://arxiv.org/abs/1611.09940
https://arxiv.org/abs/2112.12545
https://arxiv.org/abs/2103.03012
https://arxiv.org/abs/1702.03592
https://arxiv.org/abs/2102.09544
https://arxiv.org/abs/2103.12828
https://arxiv.org/abs/2103.12828
https://arxiv.org/abs/2405.15251
https://arxiv.org/abs/1704.01665

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Hayato Goto, Kosuke Tatsumura, and Alexander R Dixon. Combinatorial optimization by simulat-
ing adiabatic bifurcations in nonlinear hamiltonian systems. Science advances, 5(4):eaav2372,
2019.

Hayato Goto, Kotaro Endo, Masaru Suzuki, Yoshisato Sakai, Taro Kanao, Yohei Hamakawa, Ryo
Hidaka, Masaya Yamasaki, and Kosuke Tatsumura. High-performance combinatorial optimiza-
tion based on classical mechanics. Science Advances, 7(6):eabe7953, 2021. doi: 10.1126/sciadv.
abe7953. URL https://www.science.org/doi/abs/10.1126/sciadv.abe7953.

Karol Gregor and Yann LeCun. Learning fast approximations of sparse coding. In Proceedings of
the 27th International Conference on International Conference on Machine Learning, ICML’10,
pp. 399–406, Madison, WI, USA, 2010. Omnipress. ISBN 9781605589077.

Firas Hamze, Jack Raymond, Christopher A. Pattison, Katja Biswas, and Helmut G. Katzgraber.
Wishart planted ensemble: A tunably rugged pairwise ising model with a first-order phase transi-
tion. Physical Review E, 101(5), May 2020. ISSN 2470-0053. doi: 10.1103/physreve.101.052102.
URL http://dx.doi.org/10.1103/PhysRevE.101.052102.

J J Hopfield. Neural networks and physical systems with emergent collective computational abilities.
Proceedings of the National Academy of Sciences, 79(8):2554–2558, 1982. doi: 10.1073/pnas.
79.8.2554. URL https://www.pnas.org/doi/abs/10.1073/pnas.79.8.2554.

Andoni I. Garmendia, Josu Ceberio, and Alexander Mendiburu. Applicability of neural combi-
natorial optimization: A critical view. ACM Trans. Evol. Learn. Optim., 4(3), July 2024. doi:
10.1145/3647644. URL https://doi.org/10.1145/3647644.

Chaitanya K. Joshi, Thomas Laurent, and Xavier Bresson. An efficient graph convolutional net-
work technique for the travelling salesman problem, 2019. URL https://arxiv.org/abs/
1906.01227.

Kirill P Kalinin, George Mourgias-Alexandris, Hitesh Ballani, Natalia G Berloff, James H Clegg,
Daniel Cletheroe, Christos Gkantsidis, Istvan Haller, Vassily Lyutsarev, Francesca Parmigiani,
et al. Analog iterative machine (aim): using light to solve quadratic optimization problems with
mixed variables. arXiv preprint arXiv:2304.12594, 2023.

Nikolaos Karalias and Andreas Loukas. Erdos goes neural: an unsupervised learning framework
for combinatorial optimization on graphs, 2021. URL https://arxiv.org/abs/2006.
10643.

Wouter Kool, Herke van Hoof, and Max Welling. Attention, learn to solve routing problems!, 2019.
URL https://arxiv.org/abs/1803.08475.

James Kotary, My H Dinh, and Ferdinando Fioretto. Backpropagation of unrolled solvers with
folded optimization. In Proceedings of the Thirty-Second International Joint Conference on
Artificial Intelligence, IJCAI-2023, pp. 1963–1970. International Joint Conferences on Arti-
ficial Intelligence Organization, August 2023. doi: 10.24963/ijcai.2023/218. URL http:
//dx.doi.org/10.24963/ijcai.2023/218.

Timothee Leleu and Sam Reifenstein. Non-equilibrium dynamics of hybrid continuous-
discrete ground-state sampling. In Y. Yue, A. Garg, N. Peng, F. Sha, and R. Yu
(eds.), International Conference on Representation Learning, volume 2025, pp. 75862–75886,
2025. URL https://proceedings.iclr.cc/paper_files/paper/2025/file/
bcbdc25dc4f0be5ae8ac07232df6e33a-Paper-Conference.pdf.

Timothée Leleu, Yoshihisa Yamamoto, Peter L. McMahon, and Kazuyuki Aihara. Destabilization
of local minima in analog spin systems by correction of amplitude heterogeneity. Phys. Rev. Lett.,
122:040607, Feb 2019. doi: 10.1103/PhysRevLett.122.040607. URL https://link.aps.
org/doi/10.1103/PhysRevLett.122.040607.

Timothée Leleu, Farad Khoyratee, Timothée Levi, Ryan Hamerly, Takashi Kohno, and Kazuyuki
Aihara. Scaling advantage of chaotic amplitude control for high-performance combinatorial op-
timization. Communications Physics, 4(1):266, 2021. doi: 10.1038/s42005-021-00768-0. URL
https://doi.org/10.1038/s42005-021-00768-0.

11

https://www.science.org/doi/abs/10.1126/sciadv.abe7953
http://dx.doi.org/10.1103/PhysRevE.101.052102
https://www.pnas.org/doi/abs/10.1073/pnas.79.8.2554
https://doi.org/10.1145/3647644
https://arxiv.org/abs/1906.01227
https://arxiv.org/abs/1906.01227
https://arxiv.org/abs/2006.10643
https://arxiv.org/abs/2006.10643
https://arxiv.org/abs/1803.08475
http://dx.doi.org/10.24963/ijcai.2023/218
http://dx.doi.org/10.24963/ijcai.2023/218
https://proceedings.iclr.cc/paper_files/paper/2025/file/bcbdc25dc4f0be5ae8ac07232df6e33a-Paper-Conference.pdf
https://proceedings.iclr.cc/paper_files/paper/2025/file/bcbdc25dc4f0be5ae8ac07232df6e33a-Paper-Conference.pdf
https://link.aps.org/doi/10.1103/PhysRevLett.122.040607
https://link.aps.org/doi/10.1103/PhysRevLett.122.040607
https://doi.org/10.1038/s42005-021-00768-0

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Miguel S. E. Martins, João M. C. Sousa, and Susana Vieira. A systematic review on reinforcement
learning for industrial combinatorial optimization problems. Applied Sciences, 15(3), 2025. ISSN
2076-3417. doi: 10.3390/app15031211. URL https://www.mdpi.com/2076-3417/15/
3/1211.

Vishal Monga, Yuelong Li, and Yonina C. Eldar. Algorithm unrolling: Interpretable, efficient deep
learning for signal and image processing, 2020. URL https://arxiv.org/abs/1912.
10557.

Sam Reifenstein, Satoshi Kako, Farad Khoyratee, Timothée Leleu, and Yoshihisa Yamamoto. Co-
herent ising machines with optical error correction circuits, 2021. URL https://arxiv.
org/abs/2108.07369.

Sam Reifenstein, Timothee Leleu, and Yoshihisa Yamamoto. Dynamic anisotropic smoothing for
noisy derivative-free optimization, 2024. URL https://arxiv.org/abs/2405.01731.

Tim Salimans, Jonathan Ho, Xi Chen, Szymon Sidor, and Ilya Sutskever. Evolution strategies as
a scalable alternative to reinforcement learning, 2017. URL https://arxiv.org/abs/
1703.03864.

Sebastian Sanokowski, Wilhelm Berghammer, Sepp Hochreiter, and Sebastian Lehner. Variational
annealing on graphs for combinatorial optimization, 2023. URL https://arxiv.org/abs/
2311.14156.

Sebastian Sanokowski, Sepp Hochreiter, and Sebastian Lehner. A diffusion model framework for
unsupervised neural combinatorial optimization. In Proceedings of the 41st International Con-
ference on Machine Learning, ICML’24. JMLR.org, 2024.

Sebastian Sanokowski, Wilhelm Berghammer, Martin Ennemoser, Haoyu Peter Wang, Sepp Hochre-
iter, and Sebastian Lehner. Scalable discrete diffusion samplers: Combinatorial optimization and
statistical physics, 2025. URL https://arxiv.org/abs/2502.08696.

Martin J. A. Schuetz, J. Kyle Brubaker, and Helmut G. Katzgraber. Combinatorial optimization
with physics-inspired graph neural networks. Nature Machine Intelligence, 4(4):367–377, April
2022. ISSN 2522-5839. doi: 10.1038/s42256-022-00468-6. URL http://dx.doi.org/
10.1038/s42256-022-00468-6.

Qingyu Song, Juncheng Wang, Jingzong Li, Guochen Liu, and Hong Xu. A learning-only method
for multi-cell multi-user mimo sum rate maximization. In IEEE INFOCOM 2024 - IEEE Confer-
ence on Computer Communications, pp. 291–300, 2024. doi: 10.1109/INFOCOM52122.2024.
10621282.

Jingyan Sui, Shizhe Ding, Xulin Huang, Yue Yu, Ruizhi Liu, Boyang Xia, Zhenxin Ding,
Liming Xu, Haicang Zhang, Chungong Yu, and Dongbo Bu. A survey on deep learning-
based algorithms for the traveling salesman problem. Frontiers of Computer Science, 19(6):
196322, 2024. doi: 10.1007/s11704-024-40490-y. URL https://doi.org/10.1007/
s11704-024-40490-y.

Zhiqing Sun and Yiming Yang. Difusco: Graph-based diffusion solvers for combinatorial optimiza-
tion, 2023. URL https://arxiv.org/abs/2302.08224.

Elizabeth Z. C. Tan, Caroline Chaux, Emmanuel Soubies, and Vincent Y. F. Tan. Deep unrolling
for nonconvex robust principal component analysis, 2023. URL https://arxiv.org/abs/
2307.05893.

Thinklab-SJTU. Awesome Machine Learning for Combinatorial Optimization. https://
github.com/Thinklab-SJTU/awesome-ml4co, 2021. Accessed: 2025-07-15.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks, 2017. URL https://
arxiv.org/abs/1506.03134.

Tianshi Wang and Jaijeet Roychowdhury. Oim: Oscillator-based ising machines for solving com-
binatorial optimisation problems. In International Conference on Unconventional Computation
and Natural Computation, pp. 232–256. Springer, 2019.

12

https://www.mdpi.com/2076-3417/15/3/1211
https://www.mdpi.com/2076-3417/15/3/1211
https://arxiv.org/abs/1912.10557
https://arxiv.org/abs/1912.10557
https://arxiv.org/abs/2108.07369
https://arxiv.org/abs/2108.07369
https://arxiv.org/abs/2405.01731
https://arxiv.org/abs/1703.03864
https://arxiv.org/abs/1703.03864
https://arxiv.org/abs/2311.14156
https://arxiv.org/abs/2311.14156
https://arxiv.org/abs/2502.08696
http://dx.doi.org/10.1038/s42256-022-00468-6
http://dx.doi.org/10.1038/s42256-022-00468-6
https://doi.org/10.1007/s11704-024-40490-y
https://doi.org/10.1007/s11704-024-40490-y
https://arxiv.org/abs/2302.08224
https://arxiv.org/abs/2307.05893
https://arxiv.org/abs/2307.05893
https://github.com/Thinklab-SJTU/awesome-ml4co
https://github.com/Thinklab-SJTU/awesome-ml4co
https://arxiv.org/abs/1506.03134
https://arxiv.org/abs/1506.03134

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Zhe Wang, Alireza Marandi, Kai Wen, Robert L Byer, and Yoshihisa Yamamoto. Coherent ising
machine based on degenerate optical parametric oscillators. Physical Review A, 88(6):063853,
2013.

Songlin Wei, Gene Cheung, Fei Chen, and Ivan Selesnick. Unrolling nonconvex graph total variation
for image denoising, 2025. URL https://arxiv.org/abs/2506.02381.

Ronald J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine Learning, 8(3):229–256, 1992. doi: 10.1007/BF00992696. URL https:
//doi.org/10.1007/BF00992696.

Ke Xu, Frederic Boussemart, Fred Hemery, and Christophe Lecoutre. A simple model to generate
hard satisfiable instances, 2005. URL https://arxiv.org/abs/cs/0509032.

Yoshihisa Yamamoto, Kazuyuki Aihara, Timothee Leleu, Ken-ichi Kawarabayashi, Satoshi Kako,
Martin Fejer, Kyo Inoue, and Hiroki Takesue. Coherent ising machines—optical neural networks
operating at the quantum limit. npj Quantum Information, 3(1):49, 2017.

Yoshihisa Yamamoto, T Leleu, Surya Ganguli, and Hideo Mabuchi. Coherent ising ma-
chines—quantum optics and neural network perspectives. Applied Physics Letters, 117(16), 2020.

Andrei Zanfir and Cristian Sminchisescu. Deep learning of graph matching. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2018.

Dinghuai Zhang, Hanjun Dai, Nikolay Malkin, Aaron Courville, Yoshua Bengio, and Ling Pan. Let
the flows tell: Solving graph combinatorial optimization problems with gflownets, 2023. URL
https://arxiv.org/abs/2305.17010.

Fangting Zhou, Attila Lischka, Balazs Kulcsar, Jiaming Wu, Morteza Haghir Chehreghani, and
Gilbert Laporte. Learning for routing: A guided review of recent developments and future direc-
tions, 2025. URL https://arxiv.org/abs/2507.00218.

13

https://arxiv.org/abs/2506.02381
https://doi.org/10.1007/BF00992696
https://doi.org/10.1007/BF00992696
https://arxiv.org/abs/cs/0509032
https://arxiv.org/abs/2305.17010
https://arxiv.org/abs/2507.00218

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A EQUIVALENCE OF MAX-CUT, MAX-CLIQUE, MIS AND QUBO TO THE
QUADRATIC ISING PROBLEM

In this section we will show the exact mathematical form between a these different types of combi-
natorial optimization problems. The graph-based problems will be described by a adjacency matrix
A while the QUBO coupling matrix will be denoted Q.

A.1 MAX-CUT

Jij = Aij li = 0 (9)

A.2 MAX-CLIQUE

Jij = (1−Aij) li = 0.9 +
∑
j

(1−Aij) (10)

A.3 MIS

Jij = Aij li = 0.9 +
∑
j

Aij (11)

A.4 QUBO

Jij = Qij li =
∑
j

Qij (12)

B ADDITIONAL DETAILS ON ISING MACHINES

In this section we will show some of the equations for other Ising machines and how they fit into the
mathematical framework of equations equation 2 and equation 3.

B.1 CHAOTIC AMPLITUDE CONTROL (CAC)

Chaotic amplitude control Leleu et al. (2019; 2021) is described by the following iterative update
equations:

xi(t+ 1) = xi(t) + dt

−axi(t)− xi(t)
3 − ξei(t)

∑
j

Jijxj(t) + li

 (13)

ei(t+ 1) = ei(t) + dtβei(t)
(
1− xi(t)

2
)

(14)

With xi(0) ∈ N (0, 1) and ei(0) = 1. This can then be put into the form of equations 2 and 3 by
defining F recursively as

x(t) = F (t, h(0), ..., h(t− 1)) (15)

x(t+ 1) = x(t) + dt
(
−ax(t)− x(t)3 − e(t)h(t)

)
(16)

e(t+ 1) = e(t) + dtβe(t)
(
1− x(t)2

)
(17)

x(0) ∈ N (0, 1) e(0) = 1 (18)

similarly, other Ising machines such as CIM Wang et al. (2013), and SBM Goto et al. (2021) can be
described in a recursive way like this.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

B.2 ANALOG ITERATIVE MACHINE (AIM)

We will also include the equations for the analog iterative machine Kalinin et al. (2023) because it
is an interesting case in which the forumla for F can be written explicitly. An AIM is described by

zi(t+ 1) = zi(t) + dt

−α
∑
j

Jij tanh(zj(t))− β(t)zi(t) + γ(zi(t)− zi(t− 1))

 (19)

where zi(0) and zi(1) are initialized randomly. If we let β(t) = β to be constant, then we can write

zi(t+ 1) =
∑

t′=0,...,t+1

−λt−t′

1 − λt−t′

2

λ1 − λ2
α
∑
j

Jij tanh(zj(t
′)) (20)

where λ1 and λ2 are eigenvalues of the matrix
(
1 + dt(−β + γ) dtγ

1 0

)
. This allows us to write F

in the explicit form

tanh(z(t)) = F (t, h(0), ..., h(t− 1)) = tanh

 ∑
t′=0,...,t+1

λt−t′

1 − λt−t′

2

λ1 − λ2
h(t′)

 (21)

In addition to being explicit, this mathematical form is also equivalent to a single layer cNPIM with
Tc = ∞ (or just Tc ≥ T).

C EFFECT OF ARCHITECTURAL HYPERPARAMETERS

C.1 HYPERPARAMETER SWEEP

We sweep one hyperparameter at a time to isolate its effect on the performance of neural parameter-
ized Ising machines. Figure 4 shows results for varying the history length Tc (panel a), the number
of hidden neurons D (panel b), and the number of Fourier modes M controlling the time dependence
of parameters (panel c). In each case, we compare the continuous (cNPIM) and discrete (dNPIM)
variants trained on N = 100 Sherrington–Kirkpatrick instances uszing the success-rate reward. The
optimization procedure uses R = 400 trajectories per epoch, batch size B = 20, and was run for
800 epochs.

In conclusion, all three architectural parameters materially influence performance, with larger Tc,
D, and M generally improving the success rate. The small decrease observed at the largest values
is most likely due to the limited number of training epochs, which prevents full convergence of the
higher-capacity models rather than indicating a true decline in effectiveness.

C.2 CHOICE OF TEMPORAL BASIS

We compare different temporal basis functions used to parameterize the time dependence of NPIM
weights. Figure 5 shows results for Fourier, Legendre, and Chebyshev bases, evaluated for M ∈
1, 3, 5 with fixed history length Tc = 8 and hidden dimension D = 3. Both cNPIM and dNPIM are
trained on N = 100 Sherrington–Kirkpatrick instances using the success-rate reward. Training was
run for 400 epochs with R = 400 trajectories per epoch and batch size B = 20. The results indicate
that all three bases are viable choices for encoding temporal variation, with performance improving
as M increases regardless of basis type. Differences between bases are relatively minor at small M ,
and all yield comparable performance at larger M , suggesting that the precise functional form of the
temporal basis is less critical than the number of degrees of freedom provided.

D GENERALIZED SOLVER

In this section we will show one way in which the proposed framework can be generalized to com-
binatorial and other types of optimization problems beyond the Ising problem. Imagine a general
setting where we are given N variables which are chosen from a set S. An objective function is

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

4 6 8 10 12
history length Tc

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

re
wa

rd
 (s

uc
ce

ss
 ra

te
)

aa

1 2 3 4 5
number of hidden neurons D

bb

1 2 3 4 5
degrees of freedom per parameter M

cc

cNPIM (epochs=1600, R=600)
dNPIM (epochs=1600, R=600)

cNPIM (epochs=800, R=400)
dNPIM (epochs=800, R=400)

Figure 4: Hyperparameter sweeps of NPIM on SK instances. a) Final success rate as a function of
history length Tc with D = 3 and M = 3. b) Success rate as a function of hidden neurons D with
Tc = 8 and M = 3. c) Success rate as a function of Fourier modes M with Tc = 8 and D = 3.
Curves compare the continuous (cNPIM) and discrete (dNPIM) variants trained on N = 100 SK
instances. Batch size B = 20, and the success-rate reward.

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
degrees of freedom per parameter M

0.42

0.44

0.46

0.48

0.50

0.52

re
wa

rd
 (s

uc
ce

ss
 ra

te
)

cNPIM

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
degrees of freedom per parameter M

0.24

0.25

0.26

0.27

0.28

0.29

0.30
dNPIM

Fourier Legendre Chebyshev

Figure 5: Comparison of temporal basis functions in NPIM. Final success rate for Fourier, Legendre,
and Chebyshev bases as a function of degrees of freedom per parameter M , with Tc = 8 and D = 3
fixed. Left: cNPIM. Right: dNPIM. Networks are trained on N = 100 SK instances using the
success-rate reward, with 400 epochs, R = 400 trajectories per epoch, and batch size B = 20.
Performance improves as M increases, and differences between bases are small once sufficient
degrees of freedom are available.

defined as g : SN → R and additionally a “gradient direction” operator ∂g : SN → SN which
points in a direction of increased objective value. Additionally, we define a “gradient magnitude”
operator ∆g : SN → RN to estimate the change in objective value cause by each individual variable
update. We then define an iterative algorithm

xi(t+1) = F (t, xi(t), ∂gi(t),∆gi(t), xi(t− 1), ∂gi(t− 1),∆gi(t− 1) ,, xi(0), ∂gi(0),∆gi(0))
(22)

the function F can then be parameterized by some sort of neural network depending on the exact
form of S. This framework is meant to be general for many types of optimization problems
but in many specific examples it can be made much simpler. For example, we can consider a
more general optimization over a set of binary variables where S = {−1,+1} like Ising, but the
objective function takes some more general form. Then, ∆gi(x) = g(x |xi=+1) − g(x |xi=−1),
∂gi(x) = sign(∆gi(x)). This includes problems like boolean SAT or MDS (maximum dominating
set). Additionally, we can extend this framework to problems like integer programming problems
where S = Z or some subset of Z as well as continuous optimization where S = R. In these cases
∆g and ∂g would represent the discrete and continuous gradients, respectively.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

However, when it comes to problems like TSP or other routing-like problems it may be diffi-
cult to apply this framework. This is because it is unclear how to “factor” the space of solutions
into a product of N copies of a set S. This also has to do with the fact that for problems like TSP,
more non-local updates might be needed such as what is used in heuristics like 2-opt, 3-opt and
Lin-Kerrington. This could represent a general drawback of this type of framework which might
also be reflected in its poorer performance on max-clique problems (see table 1). However we are
optimistic that this drawback could potentially be overcome by a more sophisticated architecture
that allows for non-local updates.

E ZEROTH-ORDER OPTIMIZER VS POLICY GRADIENT METHOD

Although it has not been touched on much in the main text, a key result of our findings is that
training Ising machine dynamics using the policy gradient method of RL does not appear to be very
effective. In this section we will provide some more details and briefly explain why we believe this
is.

To formalize this we will first need to write the Ising machine dynamics in the form of a
Markov decision process so we can apply the policy gradient. The set of possible states in this case
will be x ∈ {−1,+1}N and each step the algorithm will output a probability distribution over this
set.

P (x = σ) =
∏ 1 + σiF (t, hi(0), ..., hi(t− 1))

2
(23)

Using this formulation we can the apply the policy gradient method Williams (1992) to tune
the network parameters as well as a zeroth-order method. This lets us directly compare the two
optimization approaches. We find, as show in figure 6, that the zeroth-order method is much more
efficient and finds good parameters more quickly. Additionally, this discrepancy is more prominent
when the problem size (N) is increased (not shown in figure). It is for this reason that this work is
solely focused on using a zeroth-order method to optimize the parameters and do not consider other
types of gradient estimators.

To understand more concretely why these methods differ in efficacy we can look at how the
different gradient estimators work. As mentioned in the main text in section 2.4 we believe the
failure of the policy-gradient method has to do with the fact that, for larger problem sizes, there
are essentially many more “decisions” that the Ising machine has to make. Because of this, each
decision on average contributes less to the success of the algorithm. So, using a gradient estimator
at the level of a single decision is going to result in a very noisy estimate. More concretely, a
MDP-based Ising machine will make a total of NT decisions over to course of a T -step trajectory
of problem size N . If we make the simplifying assumption that each decision contributes ∼ 1

NT to
the total success of the algorithm (i.e. choosing one sign for the spin variable will result in a roughly
1

NT larger probability of success), then this results in the gradient estimate for a single decision to
have an SNR of roughly O((NT)−1). Even once we average over NT total decisions we still have
an unfavorable SNR scaling of O((NT)−

1
2).

On the other hand, making estimate of SNR for zeroth-order methods is not dependent on
the number of “decisions” that the algorithm makes, but more so the reward landscape itself.
One way of understanding this is that, whereas the policy gradient method relies on perturbations
caused by the randomness of the decisions, the perturbations in the parameter space causes a sort of
“correlated perturbation” over all NT decisions simultaneously which greatly increases the SNR of
the estimator.

Although this mathematical intuition can be useful, the exact reason for which the policy
gradient method fails in this case is not well understood at the moment, and potentially could be
a focus of future works. Currently, we have come to this conclusion primarily based on extensive
trial and error, most of which is not included in this text.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Figure 6: Training reward of a zeroth-order optimization method and a policy gradient based method
on the same instance distribution and network architecture.

F REWARD FUNCTIONS

In this work we use two reward functions for training. All of the reward functions used are a function
of Eopt, the best Ising energy in the given trajectory and E0 the best energy found by all previous
runs of all algorithms (the supposed “ground energy”). In cases where we are using TTS as an
metric, then we wish to optimize the success rate and use the reward function

Rsucc(Eopt) =


1 if Eopt = E0

− 1
2 if Eopt >= 1

2E0

0 otherwise
(24)

the purpose of the middle case is to penalize really bad trajectories. This is important during the
beginning of training to get a good reward signal when there might not be many successful trajecto-
ries, but during the end of the training there are no longer any of these bad trajectories so the reward
landscape that is ultimately being optimized is equivalent to success rate. This two layered reward
function serves a similar purpose to the bootstrapping and fine-tuning described in section 4.3. Rsucc
is used for the results in figure 3 and table 2. The second reward function we use is defined by

Robj(Eopt) = relu(1− τ(Eopt − E0)) (25)

The variable τ is modulated. Starting at τ = 0.005, every 10 epochs it is increased by a factor of 1.5
if R > 0.5. The purpose of the relu function is to keep the reward in the range [0, 1] which ensures
numerical stability of the optimizer. Additionally, τ is modulated to try to ensure that the reward
signal is strong. More specifically, if R > 0.5 then most of the reward values will be clustered at the
top of the interval, thus we increase τ to amplify the signal. Although this reward function doesn’t
map directly to the relevant performance metric in this case, we use it for the benchmark results in
table 1.

G DETAILS ON PARAMETER OPTIMIZER (DYNAMIC ANISOTROPIC
SMOOTHING)

For parameter optimization we use a zeroth-order evolutionary optimization algorithm based of
Reifenstein et al. (2024). This algorithm evolves a distribution of parameters described by two
variables θx ∈ RP and θL ∈ RP×P . Our goal is to maximize the expected reward function which
can be written as

R(θx, θL) = Ev,η,J ρ(traj(θx + θLv, η, J)) (26)

with the expected value take over three distributions. As described in section 3.4, v is a random
variable in N(0, 1)P which is mapped to a perturbation in the parameter space by the matrix θL. η
is a random vector corresponding to the stochastic behavior of the trajectory dynamics themselves
and lastly J is an instance of the Ising problem chosen from the relevant distribution. DAS works by

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

first computing sample trajectories over these three distributions, and the using the resulting reward
values to estimate the gradient of R with respect to θx and θL. The gradients are calculated using
the following estimators

∂R
∂θL

= (θ−1
L)TEv,η,J

(
vv⊤ρ(traj(θx + θLv, η, J))− I

)
(27)

∂R
∂θx

= (θ−1
L)TEv,η,Jvρ(traj(θx + θLv, η, J)). (28)

In practice, we estimate this value using a batch of B samples of the random variable J , each of
which has R independent samples of the random variables v and η . This results in BR total samples
used in the estimation. Or, in other words, at each iteration we use B total problem instances and
run R trajectories of the algorithm for each instance to estimate the gradient. This is mainly because
parallelization over trajectories of the same instance is a little easier and uses less GPU memory. We
typically used B = 20 and R = 400 for our results.

H CALCULATION OF TIME TO SOLUTION (TTS) FOR ISING MACHINES

Time to solution (TTS) is defined as the amount of “time” it takes to solve the given instance with
99% success probability. In this work, we use TTS to compare different Ising machine based algo-
rithms. Because the computation time of all Ising machine algorithms is bottle-necked by the costly
matrix vector multiplication that is needed every step of the algorithm, we use TTS in the units of
number of steps of the algorithm. This takes out a factor relating to the specific hardware that is
used making analysis easier. Thus, TTS is calculated as

TTS = T
log(1− 0.99)

log(1− Ps)
(29)

where T is the number of steps/iterations, and Ps is the probability of finding the target solution in
one run of that many steps.

I DETAILS OF TRAINING FOR BENCHMARK RESULTS

I.1 TABLE 1 RESULTS

For the neural CO benchmark we use an architecture with Tc = 20, D = 3 and M = 3. The number
of iterations is set to T = 300 for the smaller problem sizes and T = 1200 for the larger problem
sizes. For the smaller problem sizes (N = 200-300) we train a network from scratch for 400 epochs
with hyper-parameters R = 400 and B = 20. For the larger problem size (N = 800-1200) we use
the trained parameters for the corresponding smaller problem set and fine tune them on the larger
problem set for 200 epochs. We use a training set size of 100 problem instances and a test set size of
1000 problem instances (to be compatible with the results of Sanokowski et al. (2025)). See section
J for discussion on why 100 problem instances is sufficient for a training set. We use the objective
based reward function for all results on these benchmark (see sec F for details).

I.2 TABLE 2 RESULTS

For the G-set benchmark we use an architecture with Tc = 20, D = 3 and M = 3. The number of
iterations is set to T = N in all cases except for the case of the unweighted planar graphs in which
it is set to T = 4N . The parameters are first tuned on a smaller set of 100 instances of problem size
N = 200 taken from the same distribution (same graph parameters). Then they are fine-tuned on
another set of 100 instances of problem size N = 800 generated from the same distribution as the
corresponding G-set instances. We use the hyper-parameters R = 400 and B = 20 and we use the
success-rate based reward function for this benchmark (see sec F for details).

J IN-DISTRIBUTION GENERALIZATION

In this section we will look at the effect of training set size on test error. In this work we typically use
around ∼ 100 problem instance for training. This may seem like a small number relative to many

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Tc 4 8 12 4 4 8 8 12 12 4 4 8 12 8
D 1 1 1 3 1 1 3 1 3 3 3 3 3 3
M 1 1 1 1 3 3 1 3 1 3 5 3 3 5

total P 6 10 14 16 16 28 28 40 40 46 76 82 118 136

cNPIM 0.183 0.350 0.351 0.179 0.283 0.514 0.445 0.518 0.425 0.390 0.549 0.538 0.542 0.550
dNPIM 0.032 0.221 0.237 0.070 0.094 0.272 0.277 0.309 0.276 0.270 0.282 0.303 0.310 0.306

Table 3: Table showing the effect of network architecture on performance for N = 100 SK problem
instances. Equivalent data is shown in figure 3c as well. The average success rate for N = 100 SK
problem instances is shown for different architectures parameterized by the three network hyper-
parameters.

other machine learning settings, but in our case a small number is sufficient. In figure 7 we show that
the test error (shown in solid traces) will be similar to the training error (shown in dashed traces),
and overfitting will not happen, as long as there around ∼ 10 training problem instances. This
phenomenon likely depends on the exact distribution of problem instances that we are considering,
and reflects the fact that the optimal dynamics required to solve different instances in the same class
are very similar.

Figure 7: Average train and test reward for different numbers of training training problem instances.
Problem instances are N = 100 SK model.

K DETAILS ON THE EFFECT OF HYPER-PARAMETERS ON PERFORMANCE

In table 3 we show the success rate of cNPIM and dNPIM for different network parameters.

L G-SET TTS DETAILS

In table 4 we show the time to solution of different algorithms with respect to each individual G-set
instance.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Graph Type NPIM TTS SOTA TTS NPIM/SOTA
G1 N=800, R, + 2.55e+04 6.01e+04 0.42
G2 N=800, R, + 2.28e+05 9.20e+05 0.25
G3 N=800, R, + 5.63e+04 1.70e+05 0.33
G4 N=800, R, + 1.00e+05 2.09e+05 0.48
G5 N=800, R, + 2.11e+05 2.26e+05 0.93
G6 N=800, R, +/- 3.52e+04 1.04e+05 0.34
G7 N=800, R, +/- 4.84e+04 1.46e+05 0.33
G8 N=800, R, +/- 6.55e+04 3.59e+05 0.18
G9 N=800, R, +/- 1.40e+05 2.24e+05 0.62

G10 N=800, R, +/- 5.51e+05 6.22e+05 0.88
G11 N=800, T, +/- 2.86e+04 2.22e+05 0.13
G12 N=800, T, +/- 5.51e+04 7.86e+04 0.70
G13 N=800, T, +/- 2.74e+05 3.73e+05 0.74
G14 N=800, P, + 1.66e+08 1.31e+07 12.67
G15 N=800, P, + 9.75e+06 4.63e+05 21.07
G16 N=800, P, + 3.32e+07 4.94e+05 67.07
G17 N=800, P, + 5.53e+07 3.09e+06 17.89
G18 N=800, P, +/- 5.01e+05 5.08e+05 0.99
G19 N=800, P, +/- 1.48e+05 1.80e+05 0.82
G20 N=800, P, +/- 1.17e+04 4.24e+04 0.28
G21 N=800, P, +/- 2.61e+05 5.74e+05 0.45

Table 4: Instance-wise TTS of different methods on G-set graphs.

21

	Introduction
	Related Works
	Neural Combinatorial Optimization
	Dynamical System Approaches to Ising/Max-Cut (Ising Machines)
	Learning to Optimize and Algorithm Unrolling
	Zeroth Order Optimization and Evolutionary Strategies
	Our Contribution

	Proposed Method
	The Ising Problem
	Ising Machines
	MLP Parameterization
	Parameter Tuning and Reward Function

	Analysis of Learned Dynamics
	Example of learned dynamics: Emergence of Momentum in Single Layer Network
	Effect of Architecture on Performance
	Bootstrapping and Fine Tuning
	Out of Distribution Performance
	Overfitting and Differences between cNPIM and dNPIM

	Benchmark Results
	Conclusions and Discussion
	Equivalence of Max-Cut, Max-Clique, MIS and QUBO to the quadratic Ising problem
	Max-Cut
	Max-Clique
	MIS
	QUBO

	Additional Details on Ising Machines
	Chaotic Amplitude Control (CAC)
	Analog Iterative Machine (AIM)

	Effect of Architectural Hyperparameters
	Hyperparameter sweep
	Choice of temporal basis

	Generalized Solver
	Zeroth-Order Optimizer vs Policy Gradient Method
	Reward Functions
	Details on Parameter Optimizer (Dynamic Anisotropic Smoothing)
	Calculation of Time to Solution (TTS) for Ising Machines
	Details of Training for Benchmark Results
	Table 1 Results
	Table 2 Results

	In-Distribution Generalization
	Details on the effect of Hyper-Parameters on Performance
	G-set TTS Details

