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Abstract

The rise of large language models (LLMs)001
has fundamentally reshaped the technological002
paradigm of rumor detection, offering trans-003
formative opportunities to construct adaptive004
detection systems while simultaneously ush-005
ering in new threats, such as "logically flaw-006
less" rumors. This paper focuses on model-007
ing rumor detection in the era of LLMs by008
unifying existing methods in the field of ru-009
mor detection and uncovering their underly-010
ing logical mechanisms. From the perspective011
of complex systems, we innovatively propose012
a "Cognition-Interaction-Behavior" (CIB) tri-013
level framework for rumor detection based on014
collective intelligence and explore the syner-015
gistic relationship between LLMs and collec-016
tive intelligence in rumor governance. Further-017
more, we analyze the core challenges in the018
LLM era and outline future development path-019
ways for social simulation agents. We hope020
this work lays a theoretical foundation for next-021
generation rumor detection paradigms and of-022
fers valuable insights for advancing the field.023

1 Introduction024

In the digital era, the widespread adoption of social025

media and the explosion of user-generated con-026

tent has enabled rumors to threaten public safety027

and social trust at unprecedented speeds, scales,028

and levels of complexity (Shao et al., 2016; Kim029

and Dennis, 2019). Meanwhile, the rapid ad-030

vancements in large language models (LLMs) have031

demonstrated remarkable performance across vari-032

ous fields (Tan et al., 2023; Poldrack et al., 2023),033

but it has also brought challenges that cannot be ig-034

nored. Models like GPT-4(Achiam et al., 2023) and035

DeepSeek(Guo et al., 2025), known for their deep036

semantic understanding and reasoning capabilities,037

can generate highly credible and logically coher-038

ent professional content. However, this ability can039

also be used to generate "logically perfect rumors"040

(such as false arguments based on chain reasoning),041

which are far more concealed and misleading than 042

traditional generation methods.(Bommasani et al., 043

2021; Kreps et al., 2022). For example, studies 044

have shown that ChatGPT, when provided with ma- 045

licious prompts, can not only optimize deceptive 046

text but also proactively enhance their disguise by 047

incorporating additional misleading details (Augen- 048

stein et al., 2024). Thus, leveraging the powerful 049

capabilities of LLMs while addressing their inher- 050

ent limitations has emerged as an urgent challenge 051

in the field of rumor detection. 052

Existing rumor detection surveys primarily fo- 053

cus on the dissemination mechanisms of rumors 054

on social media (Shu et al., 2017; Del Vicario 055

et al., 2016; Johnson et al., 2020), the psycho- 056

logical mechanisms underlying belief in rumors 057

(Roozenbeek et al., 2020), and effective interven- 058

tion strategies (Zubiaga et al., 2015; Guess et al., 059

2020). However, most existing frameworks primar- 060

ily rely on feature-based or technical classifications, 061

which result in two primary issues: (1) the failure 062

to thoroughly explore the theoretical and logical 063

connections between detection methods and rumor 064

propagation mechanisms, and (2) the inability to ef- 065

fectively reveal the intrinsic relationships between 066

features, especially in the context of research on 067

LLMs in this field (Chen and Shu, 2024). 068

To bridge this gap, we introduce a three-tiered 069

"Cognition-Interaction-Behavior" (CIB) frame- 070

work to systematically elucidate the underlying 071

logic of rumor propagation and detection on social 072

networks. The specific contributions of this work 073

include: (1) A new theoretical paradigm for rumor 074

detection. The construction of the CIB framework 075

unifies existing rumor detection methods (as shown 076

in Figure 4) and uncovers the multi-scale coupling 077

mechanisms underlying rumor propagation, includ- 078

ing collective knowledge emergence, interactive 079

network evolution, and iterative behavioral pat- 080

terns. (2) A systematic exploration of LLMs’ multi- 081

faceted roles in rumor detection and their synergies 082
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Figure 1: The three-layer architecture operates collaboratively. The cognition layer integrates multi-source evidence
to provide informational support for the interaction layer. Through user interactions, the interaction layer facilitates
the formation of the behavior layer. The behavior layer, in turn, continuously refines the cognition layer through
accumulated experiences and collective cognitive feedback. (RD is rumor detection; CI is collective intelligence,
driving information’s dynamic reconstruction and optimization).

with collective intelligence, forming a more com-083

prehensive adaptive governance system. (3) A sum-084

mary of the core challenges of rumor detection in085

the LLM era and an outline of future development086

pathways for socially simulated agents.087

2 Collective Intelligence-Based Rumor088

Detection Framework089

In the social media ecosystem, user communities090

serve dual roles as both disseminators and evalu-091

ators, forming the self-organizing foundation of092

the networked information ecology. Studies have093

shown that through cross-validation among users094

and the interplay of opinions, social networks can095

facilitate collective cognitive correction (Ma et al.,096

2018). Compared to individual cognition, collec-097

tive intelligence leverages the integration of diverse098

knowledge and dynamic interactions, demonstrat-099

ing superior cognitive capabilities in addressing100

complex information (Castillo et al., 2011), thereby101

offering a novel approach to advancing rumor de-102

tection (Phan et al., 2023).103

From the perspective of complex systems, the104

emergence of collective intelligence is essentially105

a self-organizing process driven by the reduction106

of information entropy. During this procesocial107

media users’ the diverse cognition, social connec-108

tions, and dynamic behaviers interact, facilitating 109

information flow and collaborative evolution. Ru- 110

mor diffusion, as a specific form of information 111

dissemination, is often constrained by individu- 112

als’ cognitive thresholds (e.g., cognitive abilities, 113

emotional biases) and the topological structure of 114

the social network. At its core, rumor diffusion 115

can be viewed as a staged state of cognitive imbal- 116

ance: it arises when users, driven by information 117

uncertainty and emotional impetus, engage in so- 118

cial interactions to reduce uncertainty, which in 119

turn drives the continuous evolution of network 120

structures (Allcott and Gentzkow, 2017). This pro- 121

cess generates macro-level dissemination behaviors 122

(potentially unintentionally promoting rumor prop- 123

agation). However, collective intelligence can dy- 124

namically correct such imbalanced states in social 125

networks through multi-level knowledge sharing 126

and interaction. 127

Based on the above theoretical construction, this 128

study proposes a three-order model framework for 129

rumor detection based on collective intelligence, as 130

shown in Figure 1. The cognitive layer facilitates 131

the construction of a collective knowledge system 132

for rumor identification through knowledge sharing 133

and evidence integration among users. It serves as 134

the foundational support for detecting rumors and 135

aggregating multidmulti-dimensionalnce. The in- 136
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teraction layer analyzes users’ social relationships137

and interaction behaviors within social networks138

to capture rumor signals. The behavior layer mod-139

els the evolution of information dissemination and140

collective behavior. Finally, the feedback mech-141

anism based on collective intelligence optimizes142

the dissemination path and reduces the spread of143

rumors.144

2.1 Cognitive Layer145

The Cognitive Layer leverages data-driven analy-146

sis (§2.1.1) to explore the features of multi-source147

information on social networks deeply, while148

knowledge-driven analysis (§2.1.2) focuses on149

verifying information sources and effectively inte-150

grating multi-perspective evidence. Together, these151

processes construct collective knowledge as the152

cognitive foundation for rumor detection.153

2.1.1 Data-Driven Analysis154

Data-driven analysis focuses on extracting features155

from multi-source data within social networks, aim-156

ing to develop multidmulti-dimensionalaches for157

assessing information veracity. Research on lin-158

guistic semantics, visual content, and multimodal159

characteristics provides critical support for more160

in-depth rumor detection efforts.161

In terms of semantic analysis, rumor texts of-162

ten exhibit multi-multi-dimensionallies. Studies163

have revealed distinct patterns at various levels164

by integrating linguistic and psychological theo-165

ries (Undeutsch, 1967; Zuckerman, 1981). Lexical166

Level: rumolevelts tend to avoid expressing in-167

depth information (Aich et al., 2022; Horne and168

Adali, 2017), characterized by lower usage rates169

of first-person pronouns and higher proportions170

of adverbs and emotional words. Syntactic Level:171

rumolevelts exhibit a trend toward simplification172

(Pérez-Rosas et al., 2017), such as reduced lexical173

diversity and shorter average sentence lengths, ab-174

normal frequency distributions of function words175

and punctuation, further highlight the "readabil-176

ity" characteristic of rumor texts. Stylistic Level:177

rumolevelts often feature exaggerated headlines,178

informal language, and frequent insertion of URLs179

or hashtags to enhance virality and attractiveness180

(Blass, 1984). These linguistic abnormalities also181

reveal rumors’ strategic use of language to evoke182

negative emotions (e.g., anger, fear) in public, am-183

plifying their dissemination, particularly in sensi-184

tive topics such as politics and health (Vosoughi185

et al., 2018). Studies have developed various de-186

tection methods through linguistic pattern analysis 187

to leverage these characteristics to capture deeper 188

semantic features. 189

In addition, deepfake technologies have signifi- 190

cantly increased the deceptive capabilities and dis- 191

semination risks associated with image-based ru- 192

mors (Vaccari and Chadwick, 2020). Early meth- 193

ods relied on spatial domain (Popescu and Farid, 194

2004) and frequency domain (Fridrich et al., 2003) 195

analysis to extract pixel-level features for identi- 196

fying common local manipulations in forged im- 197

ages but suffered from insufficient sensitivity to 198

localized manipulations. Studies (Marra et al., 199

2019) have shown that statistical properties and 200

spectral responses of GAN-generated content sys- 201

tematically differ from authentic images, providing 202

a technological breakthrough for detection. The 203

introduction of deep learning has further enhanced 204

detection performance. Techniques such as local 205

feature extraction (Bayar and Stamm, 2016; Wang 206

et al., 2020a), temporal modeling (Güera and Delp, 207

2018), and the use of pre-trained models (Hao et al., 208

2021; Khan et al., 2022) have been effective in cap- 209

turing complex visual forgery patterns. For video 210

forgeries, beyond traditional frame-level classifi- 211

cation methods (Montserrat et al., 2020), advance- 212

ments have been made through inter-frame con- 213

sistency analysis (Amerini et al., 2019), metadata 214

validation (Huh et al., 2018), detection of visual 215

artifacts (Matern et al., 2019), and leveraging bio- 216

metric signal characteristics (Li et al., 2018). These 217

approaches improve forgery detection performance 218

by revealing inherent flaws in dynamic modeling. 219

To more comprehensively capture the multimodal 220

characteristics of rumor information, multimodal 221

analysis focuses on feature fusion and consistency 222

verification (Wang et al., 2018a; Jin et al., 2017). 223

These methods balance modality-specific features 224

and improve cross-modal detection performance by 225

employing different fusion strategies (Singhal et al., 226

2019; Qian et al., 2021). Consistency verification 227

is utilized to identify cross-modal information con- 228

flicts, including text-image inconsistencies (e.g., 229

emotional conflicts) and audio-visual mismatches 230

(e.g., forged videos) (Agarwal et al., 2020; Chugh 231

et al., 2020). These approaches effectively enhance 232

the performance of multimodal rumor detection. 233

2.1.2 Knowledge-Driven Analysis 234

The knowledge-driven analysis leverages external 235

information resources to enrich and validate ru- 236

mor content, offering critical support for social net- 237
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works’ noisy, concise content. Verification methods238

based on knowledge graphs and evidence texts239

are the core research content.240

As structured data systems, knowledge graphs241

provide a networked organization of large-scale en-242

tities and relationships, supporting rumor detection243

through contextual verification and logical reason-244

ing. By matching entities and relationships within245

the text, knowledge graphs can quickly validate246

content accuracy and identify potential contradic-247

tions (Cui et al., 2020). Several studies (Hu et al.,248

2021) further integrate semantic analysis and graph249

reasoning techniques to uncover implicit associa-250

tions or supporting evidence, thereby improving251

verification reliability. For rumor content character-252

ized by semantic ambiguity or missing information,253

knowledge graphs leverage their capabilities in se-254

mantic completion and reasoning to explore hidden,255

deeper-level entity associations. By incorporating256

contextual information (Dun et al., 2021) and multi-257

modal data (Wang et al., 2020b), knowledge graphs258

can fill in critical gaps within implicit or ambiguous259

statements. Furthermore, they have demonstrated260

robust adaptability in cross-domain rumor detec-261

tion tasks (Sun et al., 2022; Zhang et al., 2019).262

On the other hand, evidence-based text verifi-263

cation focuses on fact-checking, aiming to vali-264

date the factuality of rumor content through au-265

thoritative information sources such as news arti-266

cles, scientific literature, and fact-checking plat-267

forms. Traditionally, this task has relied on expert-268

driven manual verification. Internationally ac-269

credited organizations such as the International270

Fact-Checking Network (IFCN) (Porter and Wood,271

2021), the European Fact-Checking Standards Net-272

work (EFCSN) (Wouters and Opgenhaffen, 2024),273

and government platforms (e.g., China’s Internet274

Joint Rumor Debunking Platform, Tencent Fact-275

Check Platform) provide standardized evaluation276

procedures to assess the authenticity and timeli-277

ness of evidence, delivering high-quality validation278

services to the public (Vlachos and Riedel, 2014).279

However, the expert-driven model faces effi-280

ciency bottlenecks and struggles to respond rapidly281

to large-scale, real-time information dissemination282

demands (Das et al., 2023; Guo et al., 2022). Au-283

tomated fact-checking has increasingly become284

a focus of research to address these limitations.285

Key processes in these systems include multi-286

source data retrieval, semantic alignment, and log-287

ical reasoning. By leveraging deep learning mod-288

els combined with information retrieval methods289

(Hanselowski et al., 2019), semantic relevance be- 290

tween rumors and evidence is extracted from au- 291

thoritative data sources such as Wikipedia and sci- 292

entific literature (Schuster et al., 2021; Wadden 293

et al., 2021). Additionally, semantic alignment 294

techniques are employed to assess the extent to 295

which the retrieved evidence supports or refutes 296

the claims embedded in the rumor. For complex, 297

multi-layered claims, deep learning methodologies 298

(Zhong et al., 2019) can generate reliable verifica- 299

tion results. Explainability-enhancing techniques 300

are also applied to extract key logic and evidence 301

chains, improving users’ understanding of and trust 302

in the verification outcomes (Lu and Li, 2020). 303

2.2 Interaction layer 304

The Interaction Layer emphasizes the analysis of 305

user feature (§2.2.1)) and social context (§2.2.2) 306

to provide comprehensive contextual information, 307

including individual behavior patterns, interactions 308

between groups, and the dynamic formation of 309

group consensus. This not only reveals the pro- 310

cesses through which information spreads among 311

users but also captures the collaboration and con- 312

flicts involved in users’ efforts to discern and verify 313

rumors. 314

2.2.1 User Feature Analysis 315

User groups within social networks serve as the 316

core driving force behind rumor propagation. They 317

are comprised of genuine users and social bots 318

tasked with content generation and dissemination. 319

Analyzing user characteristics and behavioral pat- 320

terns can effectively uncover rumor dissemination’s 321

underlying mechanisms and risks. 322

As specialized accounts, social bots often manip- 323

ulate public opinion through high-frequency con- 324

tent posting and synchronized interactions, signif- 325

icantly accelerating rumor dissemination. Bot de- 326

tection methods can be broadly categorized into 327

feature-based and network-based approaches. The 328

feature-based analysis identifies non-human at- 329

tributes, such as anomalous metadata (e.g., de- 330

fault profile pictures, short-lived accounts), high- 331

frequency posting behaviors, and polarized con- 332

tent (e.g., repetitive sentence structures, simple se- 333

mantics). Network-based detection detects bots by 334

identifying abnormalities in dissemination struc- 335

tures. Social bots often amplify their influence 336

by forming densely interconnected groups or fab- 337

ricating community structures. In recent years, 338

deep learning techniques, such as Graph Neural 339
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Networks (GNNs), have been employed to model340

the dependencies within network topologies (Guo341

et al., 2021). When combined with content features,342

pre-trained language models have further enhanced343

the generalization performance of social bot detec-344

tion in heterogeneous environments (Haider et al.,345

2023).346

Genuine users are the central driving force be-347

hind information dissemination (Aral and Walker,348

2012). Among them, malicious users deliberately349

spread rumors for personal or organizational gain350

(Kahneman, 1979), while ordinary users may inad-351

vertently propagate rumors due to cognitive limi-352

tations or emotional triggers. Research has delved353

into the dissemination patterns of these users by354

examining their static attributes (e.g., registration355

time, geographical location, number of friends) and356

dynamic behavioral characteristics (e.g., posting357

frequency, emotional traits such as anger and fear,358

and account credibility scores) (Chu et al., 2012).359

For example, anomalies such as short-term, high-360

frequency interactions and highly repeated content361

releases are often considered potential signals of ru-362

mor spreading (Zhao et al., 2014). Additionally, as363

rumor dissemination increasingly transcends plat-364

form boundaries, cross-platform user identity as-365

sociation analysis has emerged as a research fo-366

cus. For example, by matching user profiles (Iof-367

ciu et al., 2011), content geolocation (Riederer368

et al., 2016), and personalized traits such as post-369

ing style (Goga et al., 2013) and interest prefer-370

ences (Nie et al., 2016), researchers can identify371

attempts by malicious users to disguise their iden-372

tities across platforms. Studies have increasingly373

applied unified analyses of static and dynamic be-374

haviors across broader network ecosystems by in-375

tegrating deep learning and network analysis tech-376

niques (Hamdi et al., 2020; Zhang et al., 2015;377

Zhou et al., 2015).378

2.2.2 Social Context Analysis379

Rumor propagation is influenced by individual be-380

haviors and the deeper constraints imposed by so-381

cial network structures and user interaction patterns.382

By uncovering the synergies between user interac-383

tions and network structures, social context analy-384

sis provides critical support for understanding the385

mechanisms underlying the diffusion of rumors.386

The interaction characteristics within social net-387

work structures exhibit distinct patterns in rumor388

propagation. Due to a lack of supervision and infor-389

mation verification mechanisms, Sparse networks390

tend to form low-cohesion, flat diffusion structures, 391

which accelerate the spread of false information 392

(Vosoughi et al., 2018). In contrast, dense networks, 393

with their strong connectivity, can partially filter 394

or curb the propagation of rumors. Moreover, the 395

heterogeneity of user roles within a network (e.g., 396

"messengers" bridging multiple communities or 397

"skeptics" constructing local verification networks) 398

dynamically impacts interaction structures (Raponi 399

et al., 2022). For example, user comment chains 400

and resharing behaviors can be modeled as prop- 401

agation tree structures (Kwon et al., 2013), which 402

are utilized to capture both top-down and bottom- 403

up propagation patterns (Alrubaian et al., 2016; 404

Ma et al., 2015). To more comprehensively repre- 405

sent such complex social contexts, multiple entities 406

such as users, posts, and hashtags can be modeled 407

as propagation graphs (Nguyen et al., 2020; Shu 408

et al., 2020). Studies also introduce graph neu- 409

ral networks (Bian et al., 2020; Min et al., 2022), 410

which aggregate node features to capture complex 411

interaction relationships and diffusion dynamics 412

among users. These significantly enhance the effi- 413

cacy of modeling rumor propagation patterns and 414

their underlying mechanisms. 415

User interaction patterns serve as critical clues 416

for uncovering rumor social context. Studies have 417

shown that genuine users, fake news producers, and 418

hybrid users tend to form homogeneous clusters 419

within collaborative networks. The polarization be- 420

tween different clusters reflects regional differences 421

and political and ideological divisions. This phe- 422

nomenon is particularly pronounced in rumor prop- 423

agation, where emotion acts as a catalyst. Emotion- 424

ally charged content, by evoking negative emotions 425

such as anger and fear, triggers group polarization 426

and amplifies the speed and scope of rumor dis- 427

semination (Zeng and Zhu, 2019; Pröllochs et al., 428

2021). According to the "two-step flow" theory 429

in communication studies (Katz, 1957), informa- 430

tion flows first from mass media to key opinion 431

leaders (KOLs), who then influence broader audi- 432

ences. KOLs often act as community bridges (Yang 433

et al., 2018), playing a significant amplifying role 434

in rumor dissemination while also having the po- 435

tential to contribute effectively to rumor debunking. 436

Modeling KOLs is crucial for understanding their 437

influence mechanisms in rumor propagation (Wei 438

and Meng, 2021). The most common approaches 439

for KOL modeling involve social network analy- 440

sis techniques, utilizing centrality metrics (Opsahl 441

et al., 2010), statistical models (Amor et al., 2016), 442
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network topology analysis (Zhao et al., 2016), and443

deep learning methods (Shafiq et al., 2013). These444

methods aid in designing effective intervention445

strategies.446

2.3 Behavior Layer447

Rampant deepfakes and false rumors are often448

blamed as key culprits in influencing voter be-449

havior. Studies suggest that while changing peo-450

ple’s political opinions is challenging, influencing451

their actions is comparatively easier (Adam). The452

spread of rumors on social networks has been ex-453

tensively studied from both macro and micro per-454

spectives (Xuan et al., 2019). At the macro level,455

reselevelleverages propagation pattern modeling456

(§2.3.1) to analyze the dynamic processes of ru-457

mor propagation in complex networks (Zhu and458

Huang, 2019). At the micro level, studlevelocus459

on behavioral pattern analysis (§2.3.2) to ana-460

lyze community characteristics and predict rumor461

dissemination (Alkhodair et al., 2020).462

2.3.1 Propagation Pattern Modeling463

Propagation modeling aims to uncover the dif-464

fusion patterns of rumors within the framework465

of a complex sociodynamic system, focusing on466

the coupled process of information dissemination467

and collective behaviors. Epidemic analogy mod-468

els serve as the foundational approach in early469

studies, where state transition mechanisms (e.g.,470

Susceptible-Infectious) are used to describe the471

spread of rumors across network topologies (e.g.,472

SI (Kermack and McKendrick, 1927), SIS (Dong473

and Huang, 2018), SIR (Zhao et al., 2013), and474

their variants (Wan et al., 2017). Threshold-based475

diffusion models, such as the Linear Threshold476

Model (LT) (Chen et al., 2012) and the indepen-477

dent cascade model (IC), shift toward modeling478

the propagation process from the perspective of479

audience decision-making. These models are also480

used to design intervention strategies, such as node481

blocking or link disruption, to suppress diffusion482

(Yan et al., 2019). With the development of com-483

plex network theory, more studies focus on explor-484

ing multidmulti-dimensionalrs that influence ru-485

mor propagation in online social networks: tempo-486

ral dimension (Tripathy et al., 2010), user dimen-487

sion (Hosni et al., 2018, 2020), network dimension488

(Wang et al., 2018b), and information dimension489

(Xiao et al., 2019), providing a more systematic490

theoretical foundation for studying the diffusion of491

rumors in complex networks.492

Rumor source detection based on propagation 493

models plays a pivotal role in tracing the origins 494

of information dissemination, providing crucial in- 495

sights for intervention strategies. Early methods, 496

grounded in centrality theory, estimate the impor- 497

tance of the nodes by traversing the global topology 498

of social networks to identify the source nodes (Ali 499

et al., 2020). However, these approaches often suf- 500

fer from high computational complexity. Snapshot 501

observation methods (Louni and Subbalakshmi, 502

2018) improve detection efficiency by extracting 503

limited node infection states or propagation paths. 504

These methods effectively perform on homoge- 505

neous and heterogeneous propagation models (Cai 506

et al., 2018). Additionally, monitoring-based obser- 507

vation techniques (Qiu et al., 2022) leverage sensor 508

nodes to capture real-time dissemination data, en- 509

hancing adaptability to dynamic propagation envi- 510

ronments. In scenarios involving multi-source con- 511

current propagation (Zhu et al., 2022a), research 512

focuses on decoupling infection networks into sev- 513

eral independent regions. A divide-and-conquer 514

strategy is then employed to locate the sources it- 515

eratively, reducing the computational complexity 516

of detection. With the maturation of deep learning 517

techniques (Wang et al., 2022; Ling et al., 2022) 518

and Graph Neural Networks (GNNs) (Cheng et al., 519

2024), end-to-end frameworks have emerged as 520

highly effective tools. By integrating propagation 521

paths, temporal dynamics, and node characteristics, 522

these approaches significantly enhance the robust- 523

ness and accuracy of rumor source detection. 524

2.3.2 Behavioral Pattern Analysis 525

In social networks, nodes often cluster into tightly- 526

knit communities, where rumors spread efficiently 527

within communities but rely on bridge nodes 528

or weak ties between communities for cross- 529

community dissemination. Research shows that 530

when bridge nodes are scarce, rumor dissemination 531

remains localized, but when sufficiently abundant, 532

it penetrates communities and reaches a broader 533

audience (Zanette, 2001). To identify these critical 534

nodes, community detection methods (Newman, 535

2004; Blondel et al., 2008) usually adopt heuristics 536

to find closely related subgroups in the network 537

(Zhang et al., 2018; Yang et al., 2016). Targeted in- 538

terventions and immunization strategies can then be 539

applied to these key nodes to minimize the spread 540

of rumors. 541

Network immunization strategies are typically 542

categorized into preventive and counteractive im- 543
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munization: Preventive Immunization focuses544

on proactively optimizing network structures and545

key node distributions before harmful information546

emerges. By analyzing topological properties (e.g.,547

node centrality, spectral attributes) and commu-548

nity structure characteristics, high-risk nodes, and549

cross-community bridge points can be identified to550

disseminate accurate information (Petrescu et al.,551

2021). Counteractive immunization emphasizes552

real-time intervention during the propagation pro-553

cess. When initial sources or infected nodes are554

known, dynamic detection and analysis of infected555

nodes and their neighboring communities are per-556

formed. Key high-dissemination nodes are then557

selected for removal or blocking to efficiently dis-558

rupt the propagation chain with minimal cost (Fan559

et al., 2013). It prioritizes local optimization un-560

der resource constraints, such as minimizing the561

dissemination of malicious information within the562

network (Tariq et al., 2017), for instance, reducing563

the probability of some users sharing false content564

with their network connections.565

3 Collective Intelligence-based Rumor566

Detection in the LLM Era567

With the advancement of Natural Language Pro-568

cessing (NLP), rumor detection techniques have569

evolved from traditional statistical methods (Lim570

et al., 2017; Rayana and Akoglu, 2015) to deep571

learning models (Ma et al., 2016; Chen et al., 2019),572

and more recently to pre-trained language models573

(PLMs) (Kaliyar et al., 2021; Pelrine et al., 2021),574

progressively transitioning from static feature ex-575

traction to automated dynamic semantic analysis.576

However, traditional methods often suffer from lim-577

ited adaptability in scenarios such as early-stage ru-578

mor detection and complex environments due to the579

scarcity of annotated data (He et al., 2021). LLMs580

further transform the rumor detection landscape581

with their extensive pre-training and contextual rea-582

soning capabilities, enabling efficient reasoning583

in resource-poor environments and significantly584

improving the transparency and interpretability of585

detection results.586

3.1 LLM-enhanced CIB Framework587

LLMs play a multifaceted role in existing rumor de-588

tection approaches, deeply integrating into various589

roles ranging from knowledge analysis to adver-590

sarial defense, as shown in Figure 2. LLMs have591

brought revolutionary advancements to traditional592

methods, demonstrating significant technical po- 593

tential and promising application prospects. 594

Figure 2: Multiple roles of LLM in rumor detection

At the cognitive layer, LLMs serve as highly 595

efficient Key Evidence Extractors through large- 596

scale pretraining. Unlike traditional rumor de- 597

tection systems that rely on static, structured ap- 598

proaches(such as knowledge graphs) to expand 599

knowledge, LLMs leverage their implicit encod- 600

ing capabilities to capture deep semantic associ- 601

ations in unstructured information, which is fur- 602

ther used as evidence to enhance the generalization 603

ability of traditional language models (Nan et al., 604

2024; Yang et al., 2023a). Additionally, LLMs 605

operate as Scenario-Adaptive Decision Makers, 606

leveraging their zero-shot reasoning abilities to ad- 607

dress diversified rumor scenarios efficiently with- 608

out requiring fine-tuning (Li et al., 2023c; Wu et al., 609

2023a). Combining Retrieval-Augmented Genera- 610

tion (RAG) with external knowledge bases (Peng 611

et al., 2023; Niu et al., 2024), LLMs can dynam- 612

ically integrate up-to-date knowledge, resolving 613

limitations in knowledge coverage and timeliness 614

inherent to traditional methods. This integration 615

also effectively reduces the likelihood of hallucina- 616

tion phenomena, thereby enhancing the reliability 617

of detection outputs (Ji et al., 2023; Rawte et al., 618

2023). 619

At the interaction layer, LLMs function as Social 620

Tool Coordinators, coordinating external tools 621

(e.g., search engines, deepfake detectors) through 622

agents to expand rumor detection capabilities fur- 623

ther (Chern et al., 2023; Wan et al., 2024; Li et al., 624

2024a). Unlike traditional, static social network 625

analysis and modeling methods, LLM-based agents 626

can perceive social environments by combining 627

7



short-term (contextual learning) and long-term (ex-628

ternal knowledge retrieval) memory. These agents629

are capable of planning and calling external tools630

dynamically, improving analytical performance.631

Furthermore, generative agents (Park et al., 2023)632

can simulate user interaction behaviors, driving a633

paradigm shift in rumor detection from static fea-634

ture modeling to dynamic interaction simulation.635

At the behavior layer, LLMs act as Rumor Anal-636

ysis Experts with superior performance in tasks637

requiring advanced reasoning and cross-domain638

contextual knowledge. Traditional rumor detection639

approaches relied heavily on classification tasks,640

often requiring manually labeled large datasets. In641

contrast, the emergent abilities of LLMs, such as642

Chain of Thought (CoT) reasoning, can decom-643

pose complex problems into intermediate reason-644

ing steps, thereby significantly improving logical645

transparency and explainability (Zhang and Gao,646

2023a). LLMs also exhibit robust cross-domain647

transferability (Cao et al., 2023c,b), enabling uni-648

fied reasoning across multimodal inputs, including649

text, images, and audio (Yao et al., 2023a). This650

addresses the limitations of traditional methods651

in multimodal fusion and shifts detection mecha-652

nisms from pattern classification to causal infer-653

ence (Zhu et al., 2022b; Nan et al., 2021). Addi-654

tionally, LLMs can act as Malicious Information655

Defenders, showcasing strong robustness in adver-656

sarial social network environments. By integrat-657

ing adversarial training and red-teaming methods658

(Bhardwaj and Poria, 2023; OpenAI, 2023), LLMs659

can quickly adapt to evolving forgery techniques,660

overcoming the lag in model iteration and process-661

ing capabilities of traditional approaches (Wu et al.,662

2024b; Sun et al., 2024). For example, when tack-663

ling tasks such as detecting rumor dissemination,664

stylized language attacks, and deepfake content,665

this dynamic adaptability further enhances the ro-666

bustness of rumor detection systems.667

3.2 Collective Intelligence-driven LLM668

Detection669

Network users are the primary agents of informa-670

tion dissemination and important participants in671

rumor detection. The propagation of rumors relies672

on user attention, trust, and further sharing behav-673

iors. In contrast, user reports and feedback can674

effectively constrain this diffusion effect, which675

is critical in rumor detection. This user feedback-676

based supervisory mechanism helps address the677

limitations of LLMs in adapting to dynamic sce-678

narios by introducing ethical constraints and social 679

consensus at the human cognitive level, thelevelin- 680

fusing greater flexibility and human-centricity into 681

the rumor detection process (Kou et al., 2022). 682

Collective intelligence injects new technical im- 683

plications into the development of LLM agents. Re- 684

search demonstrates (Li et al., 2023b) that agents, 685

by simulationing group behaviors modeled in so- 686

ciology and economics theories, can exhibit emer- 687

gent corrective mechanisms during collaborative 688

tasks. These emergent behaviors provide theoreti- 689

cal support for rumor detection agents (Zhang et al., 690

2024b), demonstrating their significant potential in 691

improving the simulation of social media ecosys- 692

tems and other complex societal environments. For 693

example, agents can produce socially simulated 694

content that is indistinguishable from real-world 695

community behavior (Park et al., 2022), simulate 696

trust-building interactions in social dynamics (Xie 697

et al., 2024), and facilitate harmless discussions 698

that bridge biases and political divides, offering 699

valuable insights into real-world phenomena (Törn- 700

berg et al., 2023). 701

In the field of rumor detection, existing research 702

(Hu et al., 2025) further uses LLM-based multi- 703

agent simulation to explore the trend of rumor prop- 704

agation and optimize intervention strategies and 705

also uses tools to implement (Li et al., 2024a) real- 706

time evaluation of information credibility based on 707

shallow features such as language style and com- 708

mon sense rules. However, the complexity of the 709

rumor detection task requires a more comprehen- 710

sive approach that considers multi-level features. 711

We discussed this in the future research route (Ap- 712

pendix B), paving the way for future exploration. 713

4 Conclusion 714

Based on the complex system characteristics of 715

collective intelligence, we reconstructed the rumor 716

detection paradigm adapted to the era of LLMs, 717

the "Cognition-Interaction-Behavior" (CIB) frame- 718

work. We emphasized the important role of LLM 719

in rumor detection and its complementary relation- 720

ship with collective intelligence. In addition, CIB 721

can use cross-layer dynamic feedback to estab- 722

lish a "Macro-Micro Feedback Loop" to dynami- 723

cally realize two-way rumor detection and interven- 724

tion, providing a roadmap for applying LLM-based 725

multi-agent social simulation in rumor detection. 726
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5 Limitations727

In the future research section of this paper, we pro-728

pose a roadmap for collective intelligence-based729

rumor detection agents under the CIB framework,730

providing a comprehensive analysis of potential731

research challenges and corresponding directions.732

However, further exploration is needed to evalu-733

ate the practical application of this framework in734

large-scale social media environments. Addition-735

ally, polarized contexts or anomalous interactions736

may introduce more significant complexities. To re-737

fine and optimize the framework, we will consider738

enhancing robustness and dynamic adaptability in739

complex scenarios.740
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Amanda Askell, Andy Jones, Anna Chen, et al. 2022. 939
Measuring progress on scalable oversight for large 940
language models. arXiv preprint arXiv:2211.03540. 941

10

https://doi.org/10.18653/v1/2023.ijcnlp-main.45
https://doi.org/10.18653/v1/2023.ijcnlp-main.45
https://doi.org/10.18653/v1/2023.ijcnlp-main.45
https://doi.org/10.18653/v1/2023.ijcnlp-main.45
https://doi.org/10.18653/v1/2023.ijcnlp-main.45


Arastoo Bozorgi, Saeed Samet, Johan Kwisthout, and942
Todd Wareham. 2017. Community-based influence943
maximization in social networks under a competitive944
linear threshold model. Knowledge-Based Systems,945
134:149–158.946

Jean-Flavien Bussotti, Luca Ragazzi, Giacomo Frisoni,947
Gianluca Moro, and Paolo Papotti. 2024. Unknown948
claims: Generation of fact-checking training exam-949
ples from unstructured and structured data. In Pro-950
ceedings of the 2024 Conference on Empirical Meth-951
ods in Natural Language Processing, pages 12105–952
12122.953

Kechao Cai, Hong Xie, and John CS Lui. 2018. Infor-954
mation spreading forensics via sequential dependent955
snapshots. IEEE/ACM Transactions on Networking,956
26(1):478–491.957

Han Cao, Lingwei Wei, Mengyang Chen, Wei Zhou, and958
Songlin Hu. 2023a. Are large language models good959
fact checkers: A preliminary study. arXiv preprint960
arXiv:2311.17355.961

Rui Cao, Ming Shan Hee, Adriel Kuek, Wen-Haw962
Chong, Roy Ka-Wei Lee, and Jing Jiang. 2023b. Pro-963
cap: Leveraging a frozen vision-language model for964
hateful meme detection. In Proceedings of the 31st965
ACM International Conference on Multimedia, pages966
5244–5252.967

Rui Cao, Roy Ka-Wei Lee, Wen-Haw Chong, and968
Jing Jiang. 2023c. Prompting for multimodal969
hateful meme classification. arXiv preprint970
arXiv:2302.04156.971

Nicholas Carlini, Milad Nasr, Christopher A Choquette-972
Choo, Matthew Jagielski, Irena Gao, Pang Wei W973
Koh, Daphne Ippolito, Florian Tramer, and Ludwig974
Schmidt. 2023. Are aligned neural networks adver-975
sarially aligned? Advances in Neural Information976
Processing Systems, 36:61478–61500.977

Carlos Castillo, Marcelo Mendoza, and Barbara Poblete.978
2011. Information credibility on twitter. In Proceed-979
ings of the 20th international conference on World980
wide web, pages 675–684.981

Chi-Min Chan, Weize Chen, Yusheng Su, Jianxuan Yu,982
Wei Xue, Shanghang Zhang, Jie Fu, and Zhiyuan983
Liu. 2023. Chateval: Towards better llm-based eval-984
uators through multi-agent debate. arXiv preprint985
arXiv:2308.07201.986

Michael Chan, Francis LF Lee, and Hsuan-Ting Chen.987
2021. Examining the roles of multi-platform social988
media news use, engagement, and connections with989
news organizations and journalists on news literacy:990
A comparison of seven democracies. Digital Jour-991
nalism, 9(5):571–588.992

Samantha Chan, Pat Pataranutaporn, Aditya Suri,993
Wazeer Zulfikar, Pattie Maes, and Elizabeth F Loftus.994
2024. Conversational ai powered by large language995
models amplifies false memories in witness inter-996
views. arXiv preprint arXiv:2408.04681.997

Canyu Chen and Kai Shu. 2023. Can llm-generated 998
misinformation be detected? arXiv preprint 999
arXiv:2309.13788. 1000

Canyu Chen and Kai Shu. 2024. Combating misinfor- 1001
mation in the age of llms: Opportunities and chal- 1002
lenges. AI Magazine, 45(3):354–368. 1003

Hung-Hsuan Chen, Yan-Bin Ciou, and Shou-De Lin. 1004
2012. Information propagation game: A tool to ac- 1005
quire humanplaying data for multiplayer influence 1006
maximization on social networks. In Proceedings of 1007
the 18th ACM SIGKDD international conference on 1008
Knowledge discovery and data mining, pages 1524– 1009
1527. 1010

Junyi Chen, Leyuan Liu, and Fan Zhou. 2025. Do not 1011
wait: Preemptive rumor detection with cooperative 1012
llms and accessible social context. Information Pro- 1013
cessing & Management, 62(3):103995. 1014

Lei Chen, Guanying Li, Zhongyu Wei, Yang Yang, Bao- 1015
hua Zhou, Qi Zhang, and Xuanjing Huang. 2022. A 1016
progressive framework for role-aware rumor resolu- 1017
tion. In Proceedings of the 29th International Con- 1018
ference on Computational Linguistics, pages 2748– 1019
2758, Gyeongju, Republic of Korea. International 1020
Committee on Computational Linguistics. 1021

Sanxing Chen, Yukun Huang, and Bhuwan Dhingra. 1022
2024. Real-time fake news from adversarial feed- 1023
back. arXiv preprint arXiv:2410.14651. 1024

Weixuan Chen and Daniel McDuff. 2018. Deepphys: 1025
Video-based physiological measurement using con- 1026
volutional attention networks. In Proceedings of the 1027
european conference on computer vision (ECCV), 1028
pages 349–365. 1029

Yimin Chen, Niall J Conroy, and Victoria L Rubin. 2015. 1030
Misleading online content: recognizing clickbait as" 1031
false news". In Proceedings of the 2015 ACM on 1032
workshop on multimodal deception detection, pages 1033
15–19. 1034

Yixuan Chen, Jie Sui, Liang Hu, and Wei Gong. 2019. 1035
Attention-residual network with cnn for rumor detec- 1036
tion. In Proceedings of the 28th ACM international 1037
conference on information and knowledge manage- 1038
ment, pages 1121–1130. 1039

Le Cheng, Peican Zhu, Keke Tang, Chao Gao, and Zhen 1040
Wang. 2024. Gin-sd: source detection in graphs with 1041
incomplete nodes via positional encoding and atten- 1042
tive fusion. In Proceedings of the AAAI Conference 1043
on Artificial Intelligence, volume 38, pages 55–63. 1044

I Chern, Steffi Chern, Shiqi Chen, Weizhe Yuan, Kehua 1045
Feng, Chunting Zhou, Junxian He, Graham Neubig, 1046
Pengfei Liu, et al. 2023. Factool: Factuality detec- 1047
tion in generative ai–a tool augmented framework 1048
for multi-task and multi-domain scenarios. arXiv 1049
preprint arXiv:2307.13528. 1050

11

https://aclanthology.org/2022.coling-1.242/
https://aclanthology.org/2022.coling-1.242/
https://aclanthology.org/2022.coling-1.242/
https://aclanthology.org/2022.coling-1.242/
https://aclanthology.org/2022.coling-1.242/


Zi Chu, Steven Gianvecchio, Haining Wang, and Sushil1051
Jajodia. 2012. Detecting automation of twitter ac-1052
counts: Are you a human, bot, or cyborg? IEEE1053
Transactions on dependable and secure computing,1054
9(6):811–824.1055

Lynn Chua, Badih Ghazi, Yangsibo Huang, Pritish Ka-1056
math, Ravi Kumar, Daogao Liu, Pasin Manurangsi,1057
Amer Sinha, and Chiyuan Zhang. 2024. Mind the pri-1058
vacy unit! user-level differential privacy for language1059
model fine-tuning. arXiv preprint arXiv:2406.14322.1060

Komal Chugh, Parul Gupta, Abhinav Dhall, and Ra-1061
manathan Subramanian. 2020. Not made for each1062
other-audio-visual dissonance-based deepfake detec-1063
tion and localization. In Proceedings of the 28th1064
ACM international conference on multimedia, pages1065
439–447.1066

Thomas H Costello, Gordon Pennycook, and David G1067
Rand. 2024. Durably reducing conspiracy1068
beliefs through dialogues with ai. Science,1069
385(6714):eadq1814.1070

Chaoqun Cui and Caiyan Jia. 2024. Propagation tree1071
is not deep: Adaptive graph contrastive learning1072
approach for rumor detection. In Proceedings of1073
the AAAI Conference on Artificial Intelligence, vol-1074
ume 38, pages 73–81.1075

Jian Cui, Kwanwoo Kim, Seung Ho Na, and Seung-1076
won Shin. 2022. Meta-path-based fake news detec-1077
tion leveraging multi-level social context information.1078
In Proceedings of the 31st ACM international con-1079
ference on information & knowledge management,1080
pages 325–334.1081

Limeng Cui, Haeseung Seo, Maryam Tabar, Fenglong1082
Ma, Suhang Wang, and Dongwon Lee. 2020. Deter-1083
rent: Knowledge guided graph attention network for1084
detecting healthcare misinformation. In Proceedings1085
of the 26th ACM SIGKDD international conference1086
on knowledge discovery & data mining, pages 492–1087
502.1088

Anubrata Das, Houjiang Liu, Venelin Kovatchev, and1089
Matthew Lease. 2023. The state of human-centered1090
nlp technology for fact-checking. Information pro-1091
cessing & management, 60(2):103219.1092

Soumita Das, Ravi Kishore Devarapalli, and Anupam1093
Biswas. 2024. Leveraging cascading information for1094
community detection in social networks. Information1095
Sciences, 674:120696.1096

Luigi De Angelis, Francesco Baglivo, Guglielmo Arzilli,1097
Gaetano Pierpaolo Privitera, Paolo Ferragina, Al-1098
berto Eugenio Tozzi, and Caterina Rizzo. 2023. Chat-1099
gpt and the rise of large language models: the new1100
ai-driven infodemic threat in public health. Frontiers1101
in public health, 11:1166120.1102

Michela Del Vicario, Alessandro Bessi, Fabiana Zollo,1103
Fabio Petroni, Antonio Scala, Guido Caldarelli, H Eu-1104
gene Stanley, and Walter Quattrociocchi. 2016. The1105
spreading of misinformation online. Proceedings of1106
the national academy of Sciences, 113(3):554–559.1107

Natalia Díaz-Rodríguez, Javier Del Ser, Mark Coeck- 1108
elbergh, Marcos López de Prado, Enrique Herrera- 1109
Viedma, and Francisco Herrera. 2023. Connecting 1110
the dots in trustworthy artificial intelligence: From 1111
ai principles, ethics, and key requirements to respon- 1112
sible ai systems and regulation. Information Fusion, 1113
99:101896. 1114

Peter Sheridan Dodds, Eric M Clark, Suma Desu, 1115
Morgan R Frank, Andrew J Reagan, Jake Ryland 1116
Williams, Lewis Mitchell, Kameron Decker Harris, 1117
Isabel M Kloumann, James P Bagrow, et al. 2015. 1118
Human language reveals a universal positivity bias. 1119
Proceedings of the national academy of sciences, 1120
112(8):2389–2394. 1121

Ming Dong, Bolong Zheng, Nguyen Quoc Viet Hung, 1122
Han Su, and Guohui Li. 2019. Multiple rumor source 1123
detection with graph convolutional networks. In Pro- 1124
ceedings of the 28th ACM international conference 1125
on information and knowledge management, pages 1126
569–578. 1127

Suyalatu Dong and Yong-Chang Huang. 2018. Sis ru- 1128
mor spreading model with population dynamics in 1129
online social networks. In 2018 International Confer- 1130
ence on Wireless Communications, Signal Processing 1131
and Networking (WiSPNET), pages 1–5. IEEE. 1132

John Dougrez-Lewis, Elena Kochkina, Maria Liakata, 1133
and Yulan He. 2024. Knowledge graphs for real- 1134
world rumour verification. In Proceedings of the 1135
2024 Joint International Conference on Computa- 1136
tional Linguistics, Language Resources and Evalua- 1137
tion (LREC-COLING 2024), pages 9843–9853. 1138

Yaqian Dun, Kefei Tu, Chen Chen, Chunyan Hou, and 1139
Xiaojie Yuan. 2021. Kan: Knowledge-aware atten- 1140
tion network for fake news detection. In Proceedings 1141
of the AAAI conference on artificial intelligence, vol- 1142
ume 35, pages 81–89. 1143

Yogesh K Dwivedi, Nir Kshetri, Laurie Hughes, 1144
Emma Louise Slade, Anand Jeyaraj, Arpan Kumar 1145
Kar, Abdullah M Baabdullah, Alex Koohang, Vish- 1146
nupriya Raghavan, Manju Ahuja, et al. 2023. Opin- 1147
ion paper:“so what if chatgpt wrote it?” multidisci- 1148
plinary perspectives on opportunities, challenges and 1149
implications of generative conversational ai for re- 1150
search, practice and policy. International Journal of 1151
Information Management, 71:102642. 1152

Owain Evans, Owen Cotton-Barratt, Lukas Finnve- 1153
den, Adam Bales, Avital Balwit, Peter Wills, Luca 1154
Righetti, and William Saunders. 2021. Truthful ai: 1155
Developing and governing ai that does not lie. arXiv 1156
preprint arXiv:2110.06674. 1157

Kevin Eykholt, Ivan Evtimov, Earlence Fernandes, 1158
Bo Li, Amir Rahmati, Chaowei Xiao, Atul Prakash, 1159
Tadayoshi Kohno, and Dawn Song. 2018. Robust 1160
physical-world attacks on deep learning visual clas- 1161
sification. In Proceedings of the IEEE conference 1162
on computer vision and pattern recognition, pages 1163
1625–1634. 1164

12



Yahya H Ezzeldin, Shen Yan, Chaoyang He, Emilio1165
Ferrara, and A Salman Avestimehr. 2023. Fairfed:1166
Enabling group fairness in federated learning. In1167
Proceedings of the AAAI conference on artificial in-1168
telligence, volume 37, pages 7494–7502.1169

Lidan Fan, Zaixin Lu, Weili Wu, Bhavani Thuraising-1170
ham, Huan Ma, and Yuanjun Bi. 2013. Least cost1171
rumor blocking in social networks. In 2013 IEEE1172
33rd International Conference on Distributed Com-1173
puting Systems, pages 540–549. IEEE.1174

Mahmoud Fawzi and Walid Magdy. 2024. " pinocchio1175
had a nose, you have a network!": On characterizing1176
fake news spreaders on arabic social media. Proceed-1177
ings of the ACM on Human-Computer Interaction,1178
8(CSCW1):1–20.1179

Shangbin Feng, Zhaoxuan Tan, Herun Wan, Ningnan1180
Wang, Zilong Chen, Binchi Zhang, Qinghua Zheng,1181
Wenqian Zhang, Zhenyu Lei, Shujie Yang, et al. 2022.1182
Twibot-22: Towards graph-based twitter bot detec-1183
tion. Advances in Neural Information Processing1184
Systems, 35:35254–35269.1185

Zhangyin Feng, Xiaocheng Feng, Dezhi Zhao, Maojin1186
Yang, and Bing Qin. 2024. Retrieval-generation syn-1187
ergy augmented large language models. In ICASSP1188
2024-2024 IEEE International Conference on Acous-1189
tics, Speech and Signal Processing (ICASSP), pages1190
11661–11665. IEEE.1191

Santo Fortunato. 2010. Community detection in graphs.1192
Physics reports, 486(3-5):75–174.1193

Santo Fortunato and Marc Barthelemy. 2007. Resolu-1194
tion limit in community detection. Proceedings of1195
the national academy of sciences, 104(1):36–41.1196

Santo Fortunato and Darko Hric. 2016. Community1197
detection in networks: A user guide. Physics reports,1198
659:1–44.1199

Gabriel Freedman, Adam Dejl, Deniz Gorur, Xiang1200
Yin, Antonio Rago, and Francesca Toni. 2024. Ar-1201
gumentative large language models for explainable1202
and contestable decision-making. arXiv preprint1203
arXiv:2405.02079.1204

Jessica Fridrich, David Soukal, Jan Lukas, et al. 2003.1205
Detection of copy-move forgery in digital images. In1206
Proceedings of digital forensic research workshop,1207
volume 3, pages 652–63. Cleveland, OH.1208

Rinaldo Gagiano, Maria Myung-Hee Kim, Xi-1209
uzhen Jenny Zhang, and Jennifer Biggs. 2021. Ro-1210
bustness analysis of grover for machine-generated1211
news detection. In Proceedings of the 19th Annual1212
Workshop of the Australasian Language Technology1213
Association, pages 119–127.1214

ŁG Gajewski, Krzysztof Suchecki, and JA Hołyst. 2019.1215
Multiple propagation paths enhance locating the1216
source of diffusion in complex networks. Physica A:1217
Statistical Mechanics and its Applications, 519:34–1218
41.1219

Deep Ganguli, Liane Lovitt, Jackson Kernion, Amanda 1220
Askell, Yuntao Bai, Saurav Kadavath, Ben Mann, 1221
Ethan Perez, Nicholas Schiefer, Kamal Ndousse, 1222
et al. 2022. Red teaming language models to re- 1223
duce harms: Methods, scaling behaviors, and lessons 1224
learned. arXiv preprint arXiv:2209.07858. 1225

Maryanne Garry, Way Ming Chan, Jeffrey Foster, and 1226
Linda A Henkel. 2024. Large language models 1227
(llms) and the institutionalization of misinformation. 1228
Trends in cognitive sciences. 1229

Jiahui Geng, Fengyu Cai, Yuxia Wang, Heinz Koeppl, 1230
Preslav Nakov, and Iryna Gurevych. 2024. A sur- 1231
vey of confidence estimation and calibration in large 1232
language models. In Proceedings of the 2024 Con- 1233
ference of the North American Chapter of the Asso- 1234
ciation for Computational Linguistics: Human Lan- 1235
guage Technologies (Volume 1: Long Papers), pages 1236
6577–6595. 1237

Moumita Ghosh, Samhita Das, and Pritha Das. 2022. 1238
Dynamics and control of delayed rumor propagation 1239
through social networks. Journal of Applied Mathe- 1240
matics and Computing, pages 1–30. 1241

David Glukhov, Ilia Shumailov, Yarin Gal, Nicolas Pa- 1242
pernot, and Vardan Papyan. 2023. Llm censorship: 1243
A machine learning challenge or a computer security 1244
problem? arXiv preprint arXiv:2307.10719. 1245

Oana Goga, Howard Lei, Sree Hari Krishnan 1246
Parthasarathi, Gerald Friedland, Robin Sommer, and 1247
Renata Teixeira. 2013. Exploiting innocuous activ- 1248
ity for correlating users across sites. In Proceedings 1249
of the 22nd international conference on World Wide 1250
Web, pages 447–458. 1251

Jian Guan, Jesse Dodge, David Wadden, Minlie Huang, 1252
and Hao Peng. 2023. Language models hallucinate, 1253
but may excel at fact verification. arXiv preprint 1254
arXiv:2310.14564. 1255

David Güera and Edward J Delp. 2018. Deepfake video 1256
detection using recurrent neural networks. In 2018 1257
15th IEEE international conference on advanced 1258
video and signal based surveillance (AVSS), pages 1259
1–6. IEEE. 1260

Andrew M Guess, Michael Lerner, Benjamin Lyons, 1261
Jacob M Montgomery, Brendan Nyhan, Jason Rei- 1262
fler, and Neelanjan Sircar. 2020. A digital media 1263
literacy intervention increases discernment between 1264
mainstream and false news in the united states and 1265
india. Proceedings of the National Academy of Sci- 1266
ences, 117(27):15536–15545. 1267

Bin Guo, Yasan Ding, Lina Yao, Yunji Liang, and Zhi- 1268
wen Yu. 2020. The future of false information detec- 1269
tion on social media: New perspectives and trends. 1270
ACM Computing Surveys (CSUR), 53(4):1–36. 1271

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, 1272
Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma, 1273
Peiyi Wang, Xiao Bi, et al. 2025. Deepseek-r1: In- 1274
centivizing reasoning capability in llms via reinforce- 1275
ment learning. arXiv preprint arXiv:2501.12948. 1276

13



Qinglang Guo, Haiyong Xie, Yangyang Li, Wen Ma,1277
and Chao Zhang. 2021. Social bots detection via1278
fusing bert and graph convolutional networks. Sym-1279
metry, 14(1):30.1280

Zhijiang Guo, Michael Schlichtkrull, and Andreas Vla-1281
chos. 2022. A survey on automated fact-checking.1282
Transactions of the Association for Computational1283
Linguistics, 10:178–206.1284

Philipp Hacker. 2024. Sustainable ai regulation. Com-1285
mon Market Law Review, 61(2).1286

Philipp Hacker, Andreas Engel, and Marco Mauer. 2023.1287
Regulating chatgpt and other large generative ai mod-1288
els. In Proceedings of the 2023 ACM Conference on1289
Fairness, Accountability, and Transparency, pages1290
1112–1123.1291

Thilo Hagendorff. 2024. Deception abilities emerged in1292
large language models. Proceedings of the National1293
Academy of Sciences, 121(24):e2317967121.1294

Samar Haider, Luca Luceri, Ashok Deb, Adam Badawy,1295
Nanyun Peng, and Emilio Ferrara. 2023. Detecting1296
social media manipulation in low-resource languages.1297
In Companion Proceedings of the ACM Web Confer-1298
ence 2023, pages 1358–1364.1299

Patrick Haller, Ansar Aynetdinov, and Alan Akbik. 2023.1300
Opiniongpt: Modelling explicit biases in instruction-1301
tuned llms. arXiv preprint arXiv:2309.03876.1302

Tarek Hamdi, Hamda Slimi, Ibrahim Bounhas, and1303
Yahya Slimani. 2020. A hybrid approach for fake1304
news detection in twitter based on user features and1305
graph embedding. In Distributed Computing and1306
Internet Technology: 16th International Conference,1307
ICDCIT 2020, Bhubaneswar, India, January 9–12,1308
2020, Proceedings 16, pages 266–280. Springer.1309

Ahmed Abdeen Hamed. 2023. Improving detection of1310
chatgpt-generated fake science using real publication1311
text: Introducing xfakebibs a supervised learning1312
network algorithm.1313
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A Rumor Definition and Related Tasks2633

The core characteristic of rumors lies in their "un-2634

verified ambiguity and uncertainty," which makes2635

them highly prone to misinterpretation or misuse2636

during the dissemination process. Unlike debunked2637

false information (misinformation) (Scheufele and2638

Krause, 2019; Kumar and Geethakumari, 2014),2639

deliberately fabricated falsehoods (disinformation)2640

(Guo et al., 2020), or fake news that adopts the 2641

form of journalistic reporting to deliberately mis- 2642

lead the public (Shu et al., 2017, 2019) (Detecting 2643

fake news with NLP)], the uniqueness of rumors 2644

lies in the dynamic evolution of their verification 2645

status. Currently, rumor detection in a broad sense 2646

largely focuses on the verification of rumor verac- 2647

ity, emphasizing the description of the potential 2648

risks posed by false rumors to societal trust (Taka- 2649

hashi and Igata, 2012; Wu et al., 2015; Liang et al., 2650

2015). From a narrower perspective, studies on 2651

rumors also consider their dissemination character- 2652

istics and societal impacts (Allport, 1947; Zubiaga 2653

et al., 2015). This provides theoretical support for 2654

uncovering the deeper logic underpinning rumor 2655

propagation while laying the foundational frame- 2656

work for research in rumor detection. 2657

B Future Research Directions 2658

B.1 LLM-based Multi-agent Social 2659

Simulation in Rumor Detection 2660

While existing studies have shed light on the po- 2661

tential of rumor detection agents, there remains a 2662

lack of in-depth research into the complexities of 2663

the task. Critical gaps persist in addressing the 2664

key aspects of handling the complexity of rumor 2665

propagation, which can be summarized into the 2666

following three areas: 2667

Lack of a deep understanding of the mecha- 2668

nisms of rumor propagation. Current research 2669

often relies on shallow features to classify informa- 2670

tion but fails to account for rumor dissemination’s 2671

intricate cognitive behavioral patterns and socio- 2672

dynamic characteristics. For instance, individuals 2673

tend to process information in ways that align with 2674

their pre-existing beliefs(cognitive consistency the- 2675

ory) while exhibiting significant non-objective and 2676

selective cognitive biases (Nickerson, 1998). Emo- 2677

tional drivers (such as fear and anger)(Chan et al., 2678

2021), and social pressures (Blass, 1984) amplify 2679

the effects of rumor propagation. Moreover, some 2680

users spread false information not purely based 2681

on judgments of its truthfulness but rather due to 2682

hedonistic motives (Jiwa et al., 2023) or a sense 2683

of group identity (Lewandowsky, 2022; Wanless 2684

and Berk, 2020). Social networks’ distributed and 2685

decentralized nature further reduces individuals’ 2686

capacity to discern false information. It increases 2687

the likelihood of social cascades, forming extreme 2688

attitudes (Jamieson, 2008). This aspect has also re- 2689

ceived attention, e.g., simulating social phenomena 2690

26



like echo chambers (Wang et al., 2024c).2691

Over-simplified modeling of rumor propaga-2692

tion and intervention. Current models are often2693

restricted to static propagation roles (e.g., spread-2694

ers, bystanders, fact-checkers) and fail to compre-2695

hensively capture the dynamic changes in individ-2696

ual behaviors during the dissemination process and2697

the dynamic role shifts in group interactions. In2698

contrast, the information propagation dynamics ex-2699

tensively studied in information epidemiology of-2700

fer valuable inspiration, such as integrating com-2701

plex social variables (educational levels, forgetting2702

mechanisms) to model dynamic processes more ac-2703

curately. At the same time, intervention measures2704

also lack flexibility and dynamic optimization re-2705

garding accurate verification and influencer block-2706

ing. This limits their ability to adapt to the grad-2707

ual and complex evolution of rumor propagation,2708

which often requires intervention strategies that are2709

adaptable and sensitive to contextual changes.2710

Insufficient global modeling of the dynamic2711

attributes of rumors. Existing studies are often2712

confined to a specific dimension of rumors, such2713

as content, propagation, or interaction, without sys-2714

tematically integrating these interdependent ele-2715

ments within a logical framework. Furthermore,2716

the combined effect of multimodal information on2717

rumor dissemination and the critical role of social2718

bots as key propagation drivers have not been suffi-2719

ciently considered. Additionally, active user behav-2720

iors, such as retrieval and learning of controversial2721

information, remain underexplored. Although in-2722

dividual differences exist, such behaviors (such as2723

actively verifying the authenticity of information2724

and subsequently choosing to share, report, or ig-2725

nore it) significantly impact information perception2726

and dissemination.2727

B.1.1 Multi-Agent Systems Under the CIB2728

Framework2729

To tackle existing challenges, we propose a re-2730

search roadmap for multi-agent systems within the2731

CIB framework, as illustrated in Figure 3. This ap-2732

proach utilizes cross-layer dynamic feedback to es-2733

tablish a Macro-Micro Feedback Loop, enabling2734

the modeling of macro-level information dissemi-2735

nation based on micro-level individual cognition. It2736

facilitates dynamic, bidirectional interventions be-2737

tween macro and micro levels, fostering evolution2738

driven by deeper cognitive insights.2739

At the cognitive layer, agents can utilize LLMs2740

and multimodal analysis tools to achieve a deep se-2741

mantic understanding of text, images, videos, and 2742

other content associated with rumors, also perform- 2743

ing real-time monitoring and dynamic analysis of 2744

content flow on social media platforms. By incor- 2745

porating psychological models, agents can dynam- 2746

ically assess the authenticity of information and 2747

precisely quantify user cognitive biases (e.g., selec- 2748

tive processing or emotion-driven behaviors). For 2749

instance, agents can infer malicious intents behind 2750

false information through context-aware reason- 2751

ing and identify the potential motivations of target 2752

users for spreading such information. This enables 2753

agents to provide information support for subse- 2754

quent collaborative actions. 2755

At the interaction layer, multi-agent systems 2756

leverage sophisticated communication protocols to 2757

collaborate efficiently, simulating the diversity of 2758

user behaviors in social networks, such as infor- 2759

mation sharing, commenting, and reporting. More- 2760

over, they can also simulate external factors such 2761

as social bots, constructing dynamic environments 2762

that better reflect real-world propagation patterns. 2763

By comprehensively modeling collective knowl- 2764

edge and social interactions, these dynamic simula- 2765

tions help address critical questions, such as: How 2766

can we generate more targeted intervention strate- 2767

gies with greater accuracy? How can we improve 2768

collaborative efficiency when users participate in 2769

rumor reporting or debunking efforts? 2770

At the behavior layer, multi-agent systems can 2771

capture the nonlinear propagation paths of collec- 2772

tive behavior and dynamically generate personal- 2773

ized debunking content and intervention strategies 2774

through cognitive modeling. For example, By an- 2775

alyzing a target audience’s cognitive and behav- 2776

ioral characteristics, agents can produce debunking 2777

content that is more persuasive and tailored to the 2778

audience. In response to the dynamic evolution of 2779

rumor propagation, agents can adaptively adjust 2780

intervention models, enabling more efficient and 2781

precise countermeasures. 2782

Furthermore, in addition to modeling informa- 2783

tion dissemination of cognition to behavior, the 2784

framework enables a dynamic rumor detection and 2785

intervention mechanism in reverse. At the behavior 2786

layer, agents detect anomalous communities as ini- 2787

tial targets. Subsequently, agents at the interaction 2788

layer analyze the suspicious users and interaction 2789

structures within these communities. Building on 2790

this, agents in the cognition layer perform collec- 2791

tive knowledge analysis and social context reason- 2792

ing on suspicious conversational threads to identify 2793

27



Figure 3: The CIB framework establishes a Macro-Micro Feedback Loop that integrates cross-layer dynamic
feedback to bridge macro-level information dissemination with micro-level individual cognition. This enables
bidirectional interventions, wherein macro-level propagation dynamics inform micro-level behavior modeling,
while individual insights refine system-wide strategies. Beyond modeling the flow from cognition to behavior,
the framework supports a reverse feedback mechanism for dynamic rumor detection and intervention, driving
continuous adaptation and iterative improvement in complex, evolving misinformation environments.

critical evidence. Finally, the behavior layer inter-2794

venes promptly, generating personalized debunking2795

content tailored to the cognitive characteristics of2796

the target audience as part of belief-based inter-2797

ventions. This feedback mechanism allows rumor2798

detection and intervention models to continuously2799

improve and optimize themselves, enhancing their2800

adaptability to the dynamically evolving nature of2801

rumor propagation.2802

B.2 Cross-disciplinary Collaborative2803

Optimization2804

LLMs also face significant challenges across three2805

dimensions: content credibility, cognitive align-2806

ment, and technology adaptability (Liu et al.,2807

2024a; De Angelis et al., 2023). First, the inter-2808

twining of hallucinated content generated by LLMs2809

with malicious misinformation substantially com-2810

plicates assessing content reliability (Pan et al.,2811

2023c; Chen and Shu, 2024; Shu et al., 2021). Tech-2812

nologies such as deepfakes mislead the public and2813

stigmatize genuine content, further eroding trans-2814

parency in public discourse (e.g., real but negative2815

content dismissed as synthetic and subsequently2816

discredited (Schiff et al., 2023)). Second, limita-2817

tions in LLMs’ semantic alignment and ability to2818

perform complex reasoning may reinforce users’ 2819

preexisting cognitive biases (Xu et al., 2023; Garry 2820

et al., 2024; Hosseini et al., 2023). In complex 2821

scenes, the robustness and dynamic adaptability of 2822

the model (Carlini et al., 2023; Haller et al., 2023), 2823

as well as early benchmarks (Zhou et al., 2023; 2824

Chen and Shu, 2023), show weak performance. 2825

(He et al., 2023; Li et al., 2024b). To address these 2826

challenges, future research must promote cross- 2827

disciplinary collaborative optimization: 2828

Cognition layer: Enhancing content credibil- 2829

ity and knowledge attribution. Future research 2830

should focus on building dual mechanisms that 2831

combine technological forensics and social valida- 2832

tion to improve content credibility, particularly for 2833

attributing and explaining the trustworthiness of 2834

LLM-generated content (André et al., 2023; Ku- 2835

marage and Liu, 2023). Another area of importance 2836

is addressing "technology-amplified cognitive bi- 2837

ases" and their impact on information credibility 2838

perception and cognitive schema activation. For in- 2839

stance, The high fluency of LLM-generated content 2840

amplifies the halo effect (Augenstein et al., 2024); 2841

Multimodal synthetic content, such as deepfakes, 2842

enhances emotional infiltration, making misinfor- 2843

mation harder to detect. 2844

28



Interaction layer: strengthening cognitive2845

alignment and belief intervention in social in-2846

teractions. Integrating psychology and behavioral2847

science insights can enable belief interventions us-2848

ing LLM-generated personalized and persuasive2849

debunking content (Costello et al., 2024; Matz2850

et al., 2024). For example, Employing dynamic2851

intervention strategies, such as the "Friction Strat-2852

egy," can suppress blind adherence and impulsive2853

information sharing by increasing the cognitive pro-2854

cessing cost of user decisions; LLMs could also2855

provide real-time knowledge enhancement services2856

for low-education user groups, helping mitigate2857

the continued influence effect (Lewandowsky et al.,2858

2012; Walter and Tukachinsky, 2020) (where mis-2859

information persists even after being debunked)2860

and the recognition gap driven by educational dis-2861

parities (Afassinou, 2014; Hui et al., 2020). This2862

approach fosters a synergistic effect between educa-2863

tional compensation and behavioral interventions.2864

Behavior layer: Enhancing robustness and2865

adaptability in dynamic environments. To im-2866

prove the adaptability of LLMs in dynamic en-2867

vironments, future research can leverage LLM-2868

agent architectures that perform multi-phase rea-2869

soning chains (e.g., planning-execution-reflection),2870

enabling zero-shot automatic feature annotation2871

and latent rumor identification in real-time. Ad-2872

ditionally, a more comprehensive rumor baseline2873

assessment should be established to address the2874

evolving characteristics of misinformation in com-2875

plex environments.2876

By integrating beneficial insights from across2877

disciplines into a rumor detection framework based2878

on collective intelligence, this research line can2879

promote the development of efficient and highly2880

adaptable systems, pushing the boundaries of ru-2881

mor detection methods.2882

B.3 Information Ecosystem Governance2883

Under Multi-Multi-dimensionalraints2884

In the context of rumor governance, the synergis-2885

tic governance of legal, ethical, and technological2886

constraints emerges as a necessary approach.2887

Legal measures should focus on regulating data2888

usage while ensuring privacy protection. Privacy-2889

preserving technologies(such as differential privacy2890

(Chua et al., 2024; Mai et al., 2023) and federated2891

learning ](Kuang et al., 2024; Wu et al., 2024a;2892

Ezzeldin et al., 2023)), combined with compliance2893

frameworks(General Data Protection Regulation2894

(GDPR) and the Artificial Intelligence Act (AI Act)2895

(Parliament, 2023)), enhance model performance 2896

while safeguarding data security. These measures 2897

serve as a foundation for responsible rumor detec- 2898

tion and governance in the digital age. 2899

LLMs have been shown to possess the capa- 2900

bility of inferring psychological tendencies from 2901

user-generated texts (Peters and Matz, 2024; Perc 2902

et al., 2019), potentially influencing users’ false 2903

memories (Chan et al., 2024; Acerbi and Stubbers- 2904

field, 2023). Furthermore, LLM-generated content 2905

could be weaponized for privacy infringements, 2906

cognitive attacks, and social media manipulation 2907

(Huang and Zhu, 2023; Park et al., 2024). To 2908

address these challenges, platforms, and develop- 2909

ers should proactively disclose algorithm designs, 2910

ensure data sources and security measures, and 2911

establish transparent accountability chains to en- 2912

hance transparency and responsibility allocation 2913

(Dwivedi et al., 2023). 2914

At the social governance level, advancing multi- 2915

stakeholder collaborative mechanisms is essential. 2916

This involves building a governance ecosystem that 2917

includes developers, policymakers, and sociolo- 2918

gists, aimed at enhancing the transparency and so- 2919

cietal adaptability of LLM technologies and achiev- 2920

ing a comprehensive balance between technologi- 2921

cal efficiency and societal impact (Hu et al., 2024; 2922

Tokayev, 2023), which ensures that the governance 2923

of false information can be effectively expanded in 2924

different social and technical environments. 2925
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Figure 4: Classification of Rumor Detection Methods, Applications in the LLM Era, Challenges, and Future
Directions under the CIB Framework
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