PSMBENCH: A Benchmark and Dataset for
Evaluating LLLMs Extraction of Protocol State
Machines from RFC Specifications

Zilin Shen Xinyu Luo

Purdue University Purdue University

610 Purdue Mall, West Lafayette, IN 47907 610 Purdue Mall, West Lafayette, IN 47907
shen624Q@purdue.edu luo466Q@purdue.edu
Imtiaz Karim Elisa Bertino

University of Texas at Dallas Purdue University

800 W Campbell Rd, Richardson, TX 75080 610 Purdue Mall, West Lafayette, IN 47907
imtiaz.karim@utdallas.edu bertino@purdue.edu
Abstract

Accurately extracting protocol-state machines (PSMs) from the long, densely
written Request-for-Comments (RFC) standards that govern Internet-scale com-
munication remains a bottleneck for automated security analysis and protocol
testing. In this paper, we introduce RFC2PSM , the first large-scale dataset that
pairs 1,580 pages of cleaned RFC text with 108 manually validated states and 297
transitions covering 14 widely deployed protocols spanning the data-link, transport,
session, and application layers. Built on this corpus, we propose PSMBENCH, a
benchmark that (i) feeds chunked RFC to an LLM, (ii) prompts the model to emit a
machine-readable PSM, and (iii) scores the output with structure-aware, semantic
fuzzy-matching metrics that reward partially correct graphs.

A comprehensive baseline study of nine state-of-the-art open and commercial LLMs
reveals a persistent state—transition gap: models identify many individual states
(up to 0.82 F1) but struggle to assemble coherent transition graphs (< 0.38 F1),
highlighting challenges in long-context reasoning, alias resolution, and action/event
disambiguation. We release the dataset, evaluation code, and all model outputs
as open-source(ﬂ providing a fully reproducible starting point for future work
on reasoning over technical prose and generating executable graph structures.
RFC2PsSM and PSMBENCH aim to catalyze cross-disciplinary progress toward
LLMs that can interpret and verify the protocols that keep the Internet safe.

1 Introduction

The current generation of large language models (LLMs) shows impressive ability to convert natural-
language instructions into structured outputs, including tables, JSON records, and executable code.
The conversion of technical specifications into Protocol State Machines (PSMs) remains an unsolved
real-world challenge because PSMs serve as graph-structured abstractions for security fuzzing [|[Pham
et al., [2020, |De Ruiter and Polll, 2015]], formal verification [Cremers et al., 2017, |Beurdouche et al.,
2017]], and implementation testing of network protocols [Chen et al., 2023} [Park et al.| 2022 [Pacheco

'Our dataset and benchmark are at RFC_PSM_Benchmark repository , promoting transparency and repro-
ducibility in the community.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/Zilinlin/RFC_PSM_Benchmark

et al.,[2022a]), such as TCP [Eddy, Wesley (Ed.),|2022]] and FTP [Postel and Reynolds}|1985]]. Creating
PSMs from Request for Comments (RFC) documents through manual methods requires months of
time and specialized domain knowledge, which blocks automated security analysis [Graham and
Johnsonl |2014].

Existing approaches, such as mGPTFuzz [Ma et al., 2024], are based on manually selecting a protocol
standard’s relevant sections to generate the corresponding state machine. In addition, they are often
protocol-specific - e.g. mGPTFuzz is specific to the an Internet of Things protocol [Connectivity
Standards Alliance} 2022]]. Another approach - PROSPER [Sharma and Yegneswaran, |2023]], shows
that prompted GPT-3.5 helps to identify states and transitions in limited RFCs. However, there is a
lack of a standardized benchmark for measuring extraction quality across diverse specifications, and
a gap in the automated measurement of graph-level transition system accuracy at scale.

Consequently, there is an urgency for a standardised, diverse testbed to evaluate the ability of
the state-of-the-art LLM models OpenAll [2023]], DeepSeek-Al et al.[[2025]], DeepMind|[2024] in
reasoning over lengthy technical prose and generate executable graph structures [Pacheco et al.,
2022al]. An open-sourced comprehensive benchmark and dataset with many protocols is also critical
to evaluating the ability of LLMs to extract PSMs from a wide range of standard protocol documents.

To meet this need, we construct a comprehensive dataset, RFC2PSM , a curated corpus of 14 RFCs
spanning application, session, transport, and link-layer protocols, paired with manually validated
ground-truth PSMs. Building on this corpus, we also introduce PSMBENCH, the first benchmark that
(i) feeds chunked RFC text to an LLM, (ii) asks the model to generate a machine-readable PSM, and
(iii) scores the output with fuzzy structural and semantic metrics that reward partial but meaningful
correctness. Figure [[|summarizes the pipeline.

= g K \
g SBERT.net ;o Precsion, |
=) * - . 1 Recall, '
; o © I Fl-Score '

a0 > > !
Chunked RFC Automatically Semantic Match with Ground . ’

LLM models Y S=======
Documents Extracted PSM Truth PSM

Figure 1: A workflow of PSMBENCH pipeline. The chunked RFC documents are input to LLM
models to extract PSM automatically, and then the extracted PSM is compared with the ground truth
PSM to evaluate completeness and correctness.

Our contributions are three-fold:

* Comprehensive dataset. RFC2PsM is the first open-sourced dataset providing 1580 pages
of cleaned RFC text, 108 manually domain-experts verified states, and 297 transitions
covering 14 widely deployed protocols. This provides a dataset for LLMs on understanding
network protocol technical documents.

* New evaluation framework. PSMBENCH introduces semantic-based fuzzy graph-
alignment metrics that capture both exact matches and near-misses in extracted PSMs.
It provides a benchmark for evaluating the LLM’s capabilities in extracting complicated
graph-like structures from technical documents.

* Empirical baselines. We benchmark 9 state-of-the-art open-source and commercial LLMs,
highlighting persistent challenges such as long-range dependency tracking and state aliasing.

With this work, we aim to accelerate research in LLM-guided protocol analysis, ultimately contribut-
ing to the development of automated protocol analysis tools in the network and security community.

1.1 Background and Terminologies

Network Protocols. Network protocols define rules and conventions for data exchange across
networks. For example, the Transmission Control Protocol (TCP) [Eddy, Wesley (Ed.), 2022]
facilitates reliable internet communication, while the File Transfer Protocol (FTP) [Eddy, Wesley:
(Ed.), [2022]] standardizes file exchanges. Given their widespread use in critical applications, the
security and reliability of these protocols are paramount.

Protocol Standards. Network protocols are designed as interacting transition systems called Protocol
State Machines (PSMs) and are specified in the Request for Comments (RFCs). These RFCs
are official standards published and maintained by the Internet Engineering Task Force (IETF).
Typically written in detailed natural language, RFC documents specify the technical aspects of
protocol operation, including message formats, state transitions, and expected behaviors. Due to
their complexity and extensive length, which often spans hundreds of pages, extracting structured
information from RFCs poses significant challenges.

Protocol State Machine (PSM) A Protocol State Machine (PSM) provides a structured, formal
representation of the states and transitions that define a network protocol’s behavior in the form of
finite state machine.

Definition 1.1 (Protocol State Machine). Formally, it’s defined as a tuple [|Brand and Zafiropulo|
1983)]:
M= (szaTaS()vF)

where S is a finite set of states, representing all possible protocol states. sy € S is the initial
state, where the protocol starts. F* C S is the set of final or terminal states, representing the valid
end states of the protocol. X is a finite set of events (or inputs) that can trigger state transitions.
T CS x X xS x Ais the set of transitions.

Definition 1.2 (Transition). A transition in a PSM is defined as a directed edge between two states,
representing a valid state change triggered by an event. Formally, a transition t is a 4-tuple:
t = (s4,€,4,a), [|[Graham and Johnson| [2014]] which can be represented as:

e/a

S8; — §;

The transition indicates that the protocol can move from source state s; to destination state s; upon
receiving the event e, with action a being executed.

2 Related Work

LLM-Based PSM Extraction. Recent work has demonstrated that LLMs can automate the PSM
extraction process. For example, Sharma et al. introduced PROSPER [Sharma and Yegneswaran,
2023|], which uses GPT-3.5 with carefully engineered prompts to identify states and transitions
directly from RFC text. Ma et al. [Ma et al. 2024] further explored LLM-guided extraction by
selecting relevant sections of the IoT protocol specification [Connectivity Standards Alliance, [2022]]
and prompting an LLM to generate the corresponding state machine. However, their extraction
approach is protocol-specific and is evaluated on only a handful of examples. In summary, although
LLM-based techniques can reduce manual effort in PSM extraction, a major research gap is that there
is no general, open-source, diverse benchmark or dataset against which to evaluate their performance
across multiple protocols. Our work fills these gaps by introducing a unified dataset and benchmark
covering 14 distinct protocols.

Previously Proposed Benchmarks. PROSPER [Sharma and Yegneswaran, 2023] is an attempt that
explored PSM extraction from RFC documents. However, it has several limitations. It focuses on
fewer than 10 protocols and evaluates a single LLM (GPT-3.5). Thus, its evaluation is limited. In
contrast, our work introduces a substantially larger, publicly available dataset covering 14 distinct
protocols, providing a more comprehensive and unified benchmark. Additionally, we evaluate 9
state-of-the-art LLM models, enabling systematic comparison and testing across a diverse range of
protocols and models.

3 RFC2PsSM Dataset

We now introduce RFC2PSM , our comprehensive dataset designed to evaluate the ability of LLMs to
extract complex protocol state machines (PSMs) from technical documents like RFCs. RFC2Psm
covers 14 diverse protocols, each represented by a set of RFC document chunks as input source and
manually annotated PSMs as the ground truth as shown in Figure 2] In this section, we detail the
construction of RFC2PSM , including the protocol selection criteria, the RFC document preprocessing
methods, and the structure of the ground truth PSMs.

fies the ontrol Protocol (TCP). TCP
nsport -la n the Internet protocol

Network Protocols RFC document chunks Ground Truth PSM

I e)

- 3 3
| [Coregony: standorss mrac : active open b
| [e D 3 -
| Transassion Control Protocol (TCP) D
I : ol
| e |
| |
|

Figure 2: High-level overview of RFC2PSM , which includes 14 protocols, each protocol paired with
RFC document chunks and ground truth PSM.

3.1 Protocol Selection and Dataset Statistics

We carefully select the protocols based on their widespread adoption and diverse coverage across
different layers of the OSI (Open Systems Interconnection) model [iiso,|{1994], ensuring comprehensive
representation across multiple communication contexts. RFC2PSM includes 14 protocols spanning
the Transport, Session, Application, and Data Link layers, capturing a broad range of use cases. This
diverse collection includes general-purpose network protocols (e.g., TCP, FTP), email protocols (e.g.,
SMTP, IMAP, POP3), real-time communication protocols (e.g., RTSP, SIP), routing protocols (e.g.,
BGP-4), and IoT-related protocols (e.g., MQTT). Collectively, the dataset encompasses 108 states,
297 transitions, and spans over 1580 pages of protocol specifications, reflecting the complexity and
breadth of the selected standards. Detailed statistics, including protocol names, OSI layers, RFC
standards, and other relevant information, are presented in Table[I]in the appendix.

3.2 RFC Document Collection and Preprocessing

For each protocol, we download the official RFC files, which serve as foundational references guiding
real-world implementations. RFC documents are widely recognized within the security and network
community as standards for protocol analysis tools, making them ideal sources for extracting ground
truth PSMs in RFC2PsMm .

Next, we outline the process of collecting and preprocessing these RFC documents:

@® Each RFC document is first downloaded in plain text format from the official website of the
Internet Engineering Task Force (IETF).

@ The raw documents undergo a cleaning step to remove extra metadata, including page headers,
footers, publication years, author information, and page numbers, ensuring that these elements do not
introduce noise during LLM processing.

@ Given the token length limitations of LLMs, the cleaned RFCs are then segmented into structured,
semantically coherent text chunks. This segmentation process first partitions the document at primary
section boundaries (e.g., Sections 1, 2, 3). If a resulting chunk still exceeds the maximum token limit
(e.g., 40,000 tokens), it is further divided at secondary-level subsections (e.g., Sections 1.1, 1.2).

@ During this segmentation, we retain section titles and numbers as explicit metadata, providing
LLMs with crucial context for accurate PSM extraction.

As a result, each protocol’s RFC is processed into a collection of structured chunks, where each
chunk contains a section identifier, section title, and the corresponding text content, ensuring efficient
and context-aware LLM processing.

3.3 Ground-Truth PSM

To evaluate the performance of PSM extraction, a well-defined ground-truth PSM is essential. In
RFC2PsM , each network protocol is paired with a manually edited ground-truth PSM, capturing the
valid protocol states and the events that trigger transitions between them.

To build reliable ground-truth PSMs, we first identify canonical state machines from existing trusted
sources. Specifically, the PSM annotations for DCCP and TCP protocols are derived from prior
work [Pacheco et al.,|2022b[| and have been manually validated for correctness. For the remaining
protocols, we conduct a rigorous manual extraction process directly from the original RFC document.
This manual step requires months of careful analysis and domain expertise to ensure the completeness

and accuracy of the resulting state machines. To make this process reproducible, we followed a
systematic annotation protocol rather than relying on ad hoc effort. The annotators first established
a concise two-page guideline covering state naming, event terminology, and action description.
One author, acting as the protocol specialist, independently extracted all states and transitions from
each RFC. A second author then reviewed the extracted PSM and marked revision points. Any
differences were resolved through discussion until consensus was reached. On a 10% stratified
sample, independent pass-1/2 annotations achieved substantial agreement (x=0.82 for states and
£=0.78 for transitions) on Landis and Koch’s scale, with fewer than 6% of elements requiring
discussion in step 3. The full process averages about three days per protocol. The annotation
guideline, reconciliation logs, and raw diff data will be released in the supplementary materials.

Each manually annotated PSM in RFC2PSM adheres to the formal definition presented in Defini-
tion[I.1] To ensure flexibility and ease of integration with existing tools, we represent each PSM as a
structured JSON object, which allows flexible conversion to other widely adopted representations.
Each graph-like PSM is structured as a JSON object comprising the elements in Definition[I.T} This
structured format also facilitates the automatic generation of visual state diagrams, enhancing usabil-
ity. For example, the ground-truth PSM for the TCP protocol is shown in Figure[3]in the appendix,
illustrating the full set of protocol states and the transitions between them. In this representation,
each transition is defined by a concise label of the form "trigger_event / action," capturing both the
triggering condition and the resulting action.

4 PSMBENCH Benchmark

To systematically evaluate the ability of LLMs to understand and extract structured information from
complex technical documents, we introduce PSMBENCH. In this section, we present the overall task
definition and workflow for PSMBENCH, describing how LLMs extract PSMs from RFC chunks.
We then provide a detailed explanation of the evaluation metrics used to assess the fidelity of these
extracted PSMs, focusing on their ability to accurately capture the semantic relationships within the
protocol’s states and transitions.

PSMBENCH Workflow. The core task in PSMBENCH is to extract structured (PSMs) from RFC
documents, as illustrated in Figure[I] The inputs are the chunked protocol’s RFC sections. The
goal is for the LLM to produce a structured, graph-like PSM in JSON format, capturing both states
and transitions that accurately reflect the protocol’s intended behavior. The extracted PSM is then
compared with the ground-truth PSMs in RFC2PSM using semantic matching techniques, evaluating
the model’s ability to perform structured information extraction.

Processing RFC Chunks with LLMs. To extract a complete PSM from RFC documents, the LLM
processes the segmented chunks, each corresponding to a distinct section of the document. For
each chunk, the LLM identifies and extracts a partial PSM if it contains relevant protocol behavior
information. Formally, a partial PSM is defined as a tuple (Spartial; Tpartial)> Where Sparial represents
the set of protocol states mentioned in the section, and T},riar captures the corresponding transitions,
consistent with the transition Definition Once all sections of an RFC document are processed,
the LLM is prompted to merge the extracted partial PSMs to form a complete, global PSM. To assess
whether segmentation granularity affects extraction quality, we further conducted a sliding-window
ablation. Each RFC was re-segmented with a 4k-token window and 0.5k overlap, and the same
extraction pipeline (GPT-40-mini, identical hyper-parameters) was rerun. As detailed in Table[2]in
the appendix, seven protocols improved and seven degraded, yielding a macro-average F1 change
of +0.05, well within run-to-run variance. Because overlapping windows increase input length by
approximately 35%, we retain section-based segmentation as the default for its determinism and
efficiency.

4.1 Evaluation Metrics

The automated evaluation of PSM extraction is challenging due to the variability in phrases of
semantically equivalent states and transitions. This variability makes the syntactic comparison
inaccurate. In this subsection, we outline our approach to address this challenge through a semantic
similarity-based evaluation. We then introduce the specific metrics used to quantify the fidelity of
extracted states and transitions, providing a comprehensive framework for evaluating the structural
and semantic alignment of LLM-generated PSMs.

4.1.1 Challenge and Solution in PSM Matching

Challenge. Evaluating the fidelity of extracted PSMs is particularly challenging due to the variability
in state names, events, and actions. Direct string matching is often inaccurate, as semantically
equivalent labels can have different lexical forms (e.g., "Established” vs. "Connected"), while
superficially similar terms can have entirely distinct meanings (e.g., "ACK" and "NACK" represent
opposite concepts). This variability complicates automated comparison, as minor differences in
phrasing can significantly impact matching accuracy. Previous approaches [Pacheco et al.,|2022b|
Ma et al., 2024, Sharma and Yegneswaran, [2023]] have often relied on manual evaluation, where
experts align extracted PSMs with ground-truth references through detailed inspection. However, this
approach is time-consuming and difficult to scale, presenting a major bottleneck in large-scale PSM
evaluation. To address these challenges, automated metrics that capture semantic equivalence are
essential for effective benchmarking.

Solution. We compute semantic similarity with sentence encoders, using al1-MiniLM-L6-v2 by
default, and verified robustness across all-MPNet-base-v2 and SimCSE-RoBERTa-unsup; macro
F1 changes by at most 0.06 with 11/14 protocols shifting by < 0.15 F1 (Table[]in the appendix).
This model generates dense, context-aware embeddings for each phrase, capturing their semantic
relationships beyond syntax text similarity. Formally, the semantic similarity between two phrases p;
and p- is defined as the cosine similarity of their SentenceBERT embeddings:

€] -ey

sim(py, p2) = | (D

lex][[lez]l
where e; := SentenceBERT(p;), e := SentenceBERT(p2), e - e2 denotes the dot product, and
||e|| represents the Euclidean norm of the embedding vector. Two phrases are considered semantically
equivalent if: sim(py, p2) > 6, where 6 is a predefined threshold, selected based on empirical analysis
(e.g., 0 = 0.5 in our experiments, we set it via an ablation study [A). This threshold ensures that the
metric captures meaningful semantic matches while filtering out lexical similarities.

4.1.2 State-Level Matching

Formally, given a ground truth PSM and an extracted PSM:
M= (8%T,s0,F) and M = (5" X T sy, F)

State Set Matching. We assess the overall accuracy of state extraction, as states are fundamental to
modeling protocol behavior. we aim to identify the overlap between the state sets .S and S’ of ground
truth PSM and LLM extracted PSM. The states’ similarity is calculated by sim(s;, s;"). A state is
considered matched if the highest similarity score exceeds a threshold 6 (e.g., 0.5). This approach
captures both exact matches and semantically equivalent state names.

4.1.3 Transition-Level Matching

To assess the transition-level match, we define two kinds of matching.

Exact Transition Match. A transition is considered an exact match if all its components, including
the from state, to state, trigger event, and action, are semantically equivalent to the corresponding
transition in the ground truth PSM. Formally, a transition ¢ is considered a full match with transition
t'if: t = (si,e,85,a) and ' = (s,¢€, s}, a) satisty the following conditions:

sim(s;, s7) > 0 Asim(s;, s5) > 0 Asim(e || a,¢ || a') > 6

where s; and s; are the source states, s; and s’j are the destination states, ¢ and ¢’ are the trigger

events, and @ and o’ are the actions. The notation e || @ represents the concatenation of the event and
action, acting as a transition label in Definition[I.2]

Partial Transition Match. In cases where exact matching is too strict, we define a partial transition
match based on semantic similarity, release the restriction of event or action descriptions. A partial
match is considered valid if the semantic similarity of the source and destination states is above a
predefined threshold, and at least one of the event or action components also satisfies the similarity
requirement. Formally, a transition t = (s;, e, s;,a) and t' = (s}, €', s}, a’) are considered a partial
match if:

sim(s;, ;) > 0 A sim(s;, s7) > 0 A (sim(e, e’) > 6 Vsim(a,a’) > 0)

This approach reflects the practical observation that, while the fundamental state transitions remain
consistent, the triggers and actions can be described with a wide range of context-dependent variations,
making exact matching too restrictive.

4.1.4 Precision, Recall, and F1 Score for PSM Evaluation

To evaluate PSM extraction, we use precision, recall, and F1 score in a unified framework that can be
applied to both state-level and transition-level matching. Let (Matched) be the set of elements that
have been correctly identified by the extraction model; (Extracted) be the set of all elements produced
by the LLM model; (Ground Truth) be the set of all reference elements from the ground-truth PSM.
The evaluation metrics are then defined as:

|Correct]| Recall — |Correct| F1 Score — 2 X Precision x Recall

Precision = ———, _ —
|[Extracted| |Ground Truth| Precision + Recall

In this context, Precision quantifies the proportion of correctly identified states or transitions among
all extracted elements. Recall measures the fraction of ground-truth states or transitions that are
successfully extracted. The FI Score provides a balanced assessment, integrating both precision and
recall into a single metric, to evaluate overall model performance.

5 Experiments

We conducted extensive baseline experiments to benchmark 9 state-of-the-art LLMs on the RFC2PSM
dataset with PSMBENCH benchmark. In this section, we describe the selection of both open and
proprietary LLMs, detail the prompt design, and present parameter settings. Finally, we provide
a quantitative analysis of the results, offering insights into the strengths and limitations of current
LLMs in the context of PSM extraction.

5.1 Experiments Setting

Models. i) Proprietary LLMs: For proprietary models, we evaluate several state-of-the-art LLMs
with extensive context capabilities, including Gpt4o-Mini (gpt-4o-mini) [OpenAll 2023]], Claude3
(claude-3-7-sonnet-20250219) [|Anthropicl [2024], and Gemini2 (gemini-2.0-flash) [DeepMind, 2024].
ii) Open LLMs: We also include a diverse set of advanced open-source instruction-tuned LLMs,
including DS-RI (deepseek-R1) [DeepSeek-Al et al., 2025], DS-V3 (deepseek-V3-0324), QWQ
(qwq:32b), QWen3 (qwen3:32b), Gemma3 (gemma3:27b), and Mistral (mistral-small3.1:24b).

Prompt Design. To effectively guide LLMs in extracting PSMs from RFC documents, we adopt a
two-stage prompt design inspired by the Chain of Thought (CoT) framework [Zhang et al.,|2024]].
Given the complexity and length of RFCs, we first segment each document into manageable sections
to avoid token limits and ensure coherent extraction. This processing enables the LLM to focus on
extracting partial PSM components from each section before combining them into a complete state
machine. First, we use a Partial PSM Extraction Prompt (Appendix [B.T) to extract PSM components
(states and transitions) from individual sections. This step isolates meaningful state machine elements
without overwhelming the model with the entire document context. Next, we use a PSM Combination
Prompt (Appendix [B.2) to merge these partial PSMs into a unified global PSM, ensuring consistency
and completeness across sections.

Parameter Settings. For our experiments, we set the model temperature = 0.0, as the task of PSM
extraction relies exclusively on the provided context. This deterministic setting ensures that the
extracted state machines are consistent across runs, reflecting the contents of the RFC documents. For
the semantic similarity threshold used in state and transition matching, we chose a value of 0.5. We
determined this threshold to balance the need for flexibility in matching semantically similar phrases
while maintaining alignment with human interpretation. For instance, sim(Error,Failure) =
0.5194). From this example, we observe that a 0.5 threshold effectively captures meaningful semantic
similarities without being overly strict.

5.2 Quantitative Results

In this subsection, we present the quantitative evaluation results for both state-level and transition-
level matching, comparing LLM-extracted PSMs against their ground-truth counterparts. For each

mmm Precision
0.8 = Recall
mmm F1-Score

Overall Model Performance on State Set Matching
0

.6
0.4
- | |I|II|I|
0.0
A A A
a

Q
& & © & & Q\?‘d N °
S

Score

Models

Figure 3: Model Performance on State Set Matching. Precision, recall, and F1-score for various
models, highlighting differences in their ability to extract state sets accurately.

of the 14 protocols, we provide detailed performance tables covering state set extraction, partial
transition matching, and exact transition matching. These tables are included in the Appendix for
comprehensive reference, with an index to all detailed result tables provided in Tableﬂ

5.2.1 State-Level Matching Results

States Set Matching Results. Accurate state extraction is a critical component in reconstructing
PSMs, as states define the fundamental stages of protocol behavior. In this evaluation, we measure
the alignment between ground truth states (S) and extracted states (S”) based on semantic similarity,
as described in the metrics section. Figure [3] presents the performance of each model in terms of
total extracted states, ground truth states, matched states, and the corresponding precision, recall,
and Fl-score. Overall, DS-V3 demonstrates the strongest performance, achieving the highest F1-
score of 0.715, reflecting a balanced ability to capture both precise and diverse state representations.
In contrast, models like Gpt4o-Mini and Gemini2, while achieving high recall (0.861 and 0.731,
respectively), suffer from lower precision (0.216 and 0.319), indicating a tendency to over-extract
states, possibly due to more aggressive token matching or broader semantic interpretations. On the
other hand, QWQ and QWen3 achieved high precision (0.671 and 0.639), but with a noticeable drop
in recall, suggesting a more conservative approach to state identification that may miss relevant but
less directly phrased states, the tradeoff between precision and recall is shown in Figure da] The
numeric details are shown in Table[6]in the appendix.

5.2.2 Transition Level Matching Results

Partial Transition Match Results. Partial transition matching provides a more flexible evaluation
approach, allowing for minor variations in event and action descriptions while still requiring strong
alignment of source and destination states. Figure [fin the appendix presents the partial transition
matching results for each model. Overall, DS-V3 achieves the highest F1-score (0.381), indicating
a strong balance between precision and recall despite the relaxed matching criteria. This suggests
that DS-V3 effectively captures the essential transition structures while accommodating variations in
trigger and action descriptions. In contrast, models like Gemini2 and Gpt4o-Mini demonstrate high
recall (0.465 and 0.229, respectively) but suffer from significantly lower precision (0.138 and 0.101),
indicating a tendency to over-generate transitions, possibly capturing many loosely related state
changes. On the other hand, QWQ and QWen3, while achieving higher precision (0.239 and 0.288),
exhibit lower recall, suggesting a more conservative extraction strategy that may miss relevant but less
directly phrased transitions. The tradeoffs between recall and precision are shown in Figure[db] These
results highlight the challenges of extracting structured PSMs, where the complicated relationships
between states, triggers, and actions require both precise matching and flexible interpretation. The
detailed numeric results are shown in Table[7)in the appendix.

Exact Transition Matching Results. Exact transition matching provides a stricter evaluation,
requiring precise alignment of source state, destination state, trigger event, and action. As shown in

State Set Matching Partial Transition Matching Exact Transition MatchingD
ini 0.45 DS-R1 O S-V3

Gptdo-Mini egini)
3 DS-R1
085 @ 0.45 .‘ audes O DS-v3 o
DS-v3 -
c O 040 @imiiea
0.80 d)s-lu 0.40
0.35
0.75 Gemini2 0.35
. .Claude3 0.30
=0.70 =030 —
3 8 So2s
& 0.65 2025 .Gpmo-mini 2 .Gptao-mini
0.20
0.20
0.60
OQWen3 Gemma3 0.15 QWen3
0.55 Gemma3 015 . .QWen3 Gemma3 .
i 0.10 gmMistral 0.10 .M: ral
0.50 ‘Vllstral Ot;wo O .qwo ‘owo
0.05
0.2 0.3 0.4 0.5 0.6 0.10 0.15 0.20 0.25 0.30 0.10 0.15 0.20 0.25 0.30
Precision Precision Precision
(@) (b) ©

Figure 4: The figure presents the precision-recall distributions for (a) state set matching, (b) partial
transition matching, and (c) exact transition matching, illustrating the varying performance of models
across these metrics.

Figure[7]in the appendix, DS-V3 achieved the highest F1-score (0.378), reflecting its ability to capture
precise, context-aware transitions. In contrast, models like Mistral and Gpt4o-Mini struggled, with
F1-scores of 0.083 and 0.130, respectively, indicating challenges in accurately aligning all transition
components. These results underscore the difficulty of exact matching in PSM extraction, where even
minor variations in state or event descriptions can significantly impact overall performance. The
detailed numeric results are shown in Table[8|in the appendix.

5.3 Takeaways

The experimental results reveal several critical insights into the performance of state-of-the-art LLMs
in extracting PSMs from RFC documents:

State-Level Advantage in Extraction. First, state-level extraction is generally more accurate than
transition-level extraction across all models. This is evident from the higher F1-scores achieved
in the States Set Matching task, where models like DS-V3 (0.715) and DS-R1 (0.661) significantly
outperformed their transition-level counterparts, even under partially correct matching constraints.
This suggests that capturing discrete, isolated states is a more straightforward task for LLMs than
identifying the nuanced relationships represented by transitions, which involve multiple components.

Impact of Model Scale. Second, larger models with broader context capabilities, such as DS-RI and
DS-V3, consistently outperformed smaller models like QWQ and Mistral across all metrics, including
state and transition extraction matching. This highlights the advantage of large-scale models in
handling the extensive, semantically complex inputs typical of RFC documents. However, these
larger models also exhibited a tendency to over-extract, as reflected in their higher recall but lower
precision, indicating potential challenges in accurately filtering relevant states and transitions.

Challenges in Exact Transition Matching. Third, the exact transition matching results underscore
the difficulty of precise PSM extraction, where even the strongest models like DS-V3 and DS-RI
achieved only moderate F1-scores (0.378 and 0.314, respectively). This gap suggests that, despite
their advanced reasoning capabilities, current LLMs struggle to consistently align all transition
components accurately, reflecting the inherent complexity of protocol semantics.

6 Limitations and Future Work

While this work establishes a comprehensive benchmark PSMBENCH for PSM extraction from RFC
documents, several limitations remain. First, our prompt design is straightforward, focusing on
baseline evaluation without leveraging advanced strategies. This choice was made to provide a clear
baseline, but it may limit the performance ceiling of some models. Second, while our dataset spans a
diverse range of protocols, it primarily covers medium-sized, application-layer protocols. It excludes
more complex, lower-layer protocols like Wi-Fi, whose specifications often exceed 1000 pages,
posing significant challenges for current LLMs due to their extreme length and technical detail.

In future work, we plan to (i) extend RFC2PSM to ultra-long, lower-layer standards (e.g. Wi-Fi), (ii)
explore adaptive chunk-merging and curriculum-style prompting to narrow the transition gap, and
(iii) integrate richer graph-and-text co-evaluation metrics.

7 Conclusion

We present RFC2PSM , the first large-scale, manually validated corpus of 14 network-protocol
specifications paired with ground-truth PSM, and PSMBENCH, a principled benchmark that evaluates
LLM-driven PSM extraction through semantic, structure-aware metrics. Together they deliver a
turn-key testbed for studying how current and future language models reason over long, technical
documents and emit executable graph structures - an ability central to automated security analysis,
software verification, and protocol testing.

Our extensive baseline study across 9 leading open-source and commercial LLMs reveals a clear
state-transition gap: models achieve respectable recall on individual states yet struggle to assemble
precise, end-to-end transition graphs. These findings pinpoint long-range dependency tracking,
alias resolution, and fine-grained action/event disambiguation as open research challenges. By
open-sourcing the dataset, evaluation code, and model outputs, we provide the community with a
fully reproducible reference point and invite contributions ranging from prompt engineering and
retrieval-augmented decoding to task-specific fine-tuning.

We hope this resource sparks broader collaboration across NLP, security, and networking, ultimately
accelerating progress toward LLMs that can interpret and verify the protocols that run the Internet
safely, accurately, and at scale.

10

Acknowledgment

This work is supported by NSF Grant No. 2112471, the University of Texas System Rising STARs
Award, and the startup funding from the University of Texas at Dallas.

References

Information technology — open systems interconnection — basic reference model: The basic model. Standard
ISO/IEC 7498-1:1994, International Organization for Standardization, Geneva, Switzerland, November 1994.
URL https://www.iso.org/standard/20269.html.

Anthropic. Introducing the next generation of claude. https://www.anthropic.com/news/,
claude-3-family, 2024.

Benjamin Beurdouche, Karthikeyan Bhargavan, Antoine Delignat-Lavaud, Cédric Fournet, Markulf Kohlweiss,
Alfredo Pironti, Pierre-Yves Strub, and Jean Karim Zinzindohoue. A messy state of the union: Taming the
composite state machines of tls. Communications of the ACM, 60(2):99-107, 2017.

Daniel Brand and Pitro Zafiropulo. On communicating finite-state machines. Journal of the ACM (JACM), 30
(2):323-342, 1983.

Yi Chen, Di Tang, Yepeng Yao, Mingming Zha, XiaoFeng Wang, Xiaozhong Liu, Haixu Tang, and Baoxu
Liu. Sherlock on specs: Building {LTE} conformance tests through automated reasoning. In 32nd USENIX
Security Symposium (USENIX Security 23), pages 3529-3545, 2023.

Connectivity Standards Alliance. Matter 1.0 Core Specification. Specification Matter 1.0, Connectivity
Standards Alliance, October 2022. URL https://cdn.sparkfun.com/assets/home_page_posts/6/
2/4/6/Matter-1.0-Core-Specification.pdf.

Cas Cremers, Marko Horvat, Jonathan Hoyland, Sam Scott, and Thyla van der Merwe. A comprehensive
symbolic analysis of tls 1.3. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, CCS *17, page 1773-1788, New York, NY, USA, 2017. Association for Computing
Machinery. ISBN 9781450349468. doi: 10.1145/3133956.3134063. URL https://doi.org/10.1145/
3133956.3134063.

Joeri De Ruiter and Erik Poll. Protocol state fuzzing of {TLS} implementations. In 24th USENIX Security
Symposium (USENIX Security 15), pages 193-206, 2015.

Google DeepMind. Introducing gemini: our largest and most capable ai model. https://blog.google/
technology/ai/google-gemini-ai/, 2024.

DeepSeek-Al, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, and Deepseek-rl: Incentivizing
reasoning capability in llms via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025. URL
https://arxiv.org/abs/2501.12948|

Eddy, Wesley (Ed.). Transmission control protocol (tcp). (9293), August 2022. URL https://datatracker,
ietf.org/doc/html/rfc9293.

Robert David Graham and Peter C Johnson. Finite state machine parsing for internet protocols: Faster than you
think. In 2014 IEEE Security and Privacy Workshops, pages 185-190. IEEE, 2014.

Xiaoyue Ma, Lannan Luo, and Qiang Zeng. From one thousand pages of specification to unveiling hidden
bugs: Large language model assisted fuzzing of matter IoT devices. In 33rd USENIX Security Symposium
(USENIX Security 24), pages 4783—-4800, Philadelphia, PA, August 2024. USENIX Association. ISBN 978-
1-939133-44-1. URL https://www.usenix.org/conference/usenixsecurity24/presentation/
ma-xiaoyue.

OpenAl. GPT-4. https://openai.com/index/gpt-4/, 2023.

Maria Leonor Pacheco, Max von Hippel, Ben Weintraub, Dan Goldwasser, and Cristina Nita-Rotaru. Automated
attack synthesis by extracting finite state machines from protocol specification documents. In 2022 I[EEE
Symposium on Security and Privacy (SP), pages 51-68. IEEE, 2022a.

Maria Leonor Pacheco, Max von Hippel, Ben Weintraub, Dan Goldwasser, and Cristina Nita-Rotaru. Automated

attack synthesis by extracting finite state machines from protocol specification documents. In 2022 I[EEE
Symposium on Security and Privacy (SP), pages 51-68. IEEE, 2022b.

11

https://www.iso.org/standard/20269.html
https://www.anthropic.com/news/claude-3-family
https://www.anthropic.com/news/claude-3-family
https://cdn.sparkfun.com/assets/home_page_posts/6/2/4/6/Matter-1.0-Core-Specification.pdf
https://cdn.sparkfun.com/assets/home_page_posts/6/2/4/6/Matter-1.0-Core-Specification.pdf
https://doi.org/10.1145/3133956.3134063
https://doi.org/10.1145/3133956.3134063
https://blog.google/technology/ai/google-gemini-ai/
https://blog.google/technology/ai/google-gemini-ai/
https://arxiv.org/abs/2501.12948
https://datatracker.ietf.org/doc/html/rfc9293
https://datatracker.ietf.org/doc/html/rfc9293
https://www.usenix.org/conference/usenixsecurity24/presentation/ma-xiaoyue
https://www.usenix.org/conference/usenixsecurity24/presentation/ma-xiaoyue
https://openai.com/index/gpt-4/

CheolJun Park, Sangwook Bae, BeomSeok Oh, Jiho Lee, Eunkyu Lee, Insu Yun, and Yongdae Kim. DoLTEst:
In-depth downlink negative testing framework for LTE devices. In 31st USENIX Security Symposium (USENIX
Security 22), pages 1325-1342, Boston, MA, August 2022. USENIX Association. ISBN 978-1-939133-31-1.

URL https://www.usenix.org/conference/usenixsecurity22/presentation/park-cheoljun.

Van-Thuan Pham, Marcel Bohme, and Abhik Roychoudhury. Afinet: A greybox fuzzer for network protocols.
In 2020 IEEE 13th International Conference on Software Testing, Validation and Verification (ICST), pages
460-465. IEEE, 2020.

Jon Postel and Joyce K. Reynolds. File transfer protocol. (959), October 1985. URL https://datatracker,
ietf.org/doc/html/rfc959.

Prakhar Sharma and Vinod Yegneswaran. Prosper: Extracting protocol specifications using large language
models. In Proceedings of the 22nd ACM Workshop on Hot Topics in Networks, pages 41-47, 2023.

Xuan Zhang, Chao Du, Tianyu Pang, Qian Liu, Wei Gao, and Min Lin. Chain of preference optimization:
Improving chain-of-thought reasoning in llms. In A. Globerson, L. Mackey, D. Belgrave, A. Fan, U. Paquet,
J. Tomczak, and C. Zhang, editors, Advances in Neural Information Processing Systems, volume 37, pages 333—
356. Curran Associates, Inc., 2024. URL https://proceedings.neurips.cc/paper_files/paper/
2024/fi1e/00d80722b756de0166523a87805dd00f - Paper-Conference. pdf|

12

https://www.usenix.org/conference/usenixsecurity22/presentation/park-cheoljun
https://datatracker.ietf.org/doc/html/rfc959
https://datatracker.ietf.org/doc/html/rfc959
https://proceedings.neurips.cc/paper_files/paper/2024/file/00d80722b756de0166523a87805dd00f-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/00d80722b756de0166523a87805dd00f-Paper-Conference.pdf

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?

Answer: [Yes]
Justification: The abstract and the introduction reflect the paper’s contributions and scope.
Guidelines:

* The answer NA means that the abstract and introduction do not include the claims made in the
paper.

 The abstract and/or introduction should clearly state the claims made, including the contributions
made in the paper and important assumptions and limitations. A No or NA answer to this
question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how much the
results can be expected to generalize to other settings.

« It is fine to include aspirational goals as motivation as long as it is clear that these goals are not
attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Our work discusses limitation in section 6.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that the paper
has limitations, but those are not discussed in the paper.

¢ The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to violations of
these assumptions (e.g., independence assumptions, noiseless settings, model well-specification,
asymptotic approximations only holding locally). The authors should reflect on how these
assumptions might be violated in practice and what the implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was only tested
on a few datasets or with a few runs. In general, empirical results often depend on implicit
assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low or
images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide
closed captions for online lectures because it fails to handle technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms and how
they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to address problems
of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by reviewers
as grounds for rejection, a worse outcome might be that reviewers discover limitations that
aren’t acknowledged in the paper. The authors should use their best judgment and recognize
that individual actions in favor of transparency play an important role in developing norms that
preserve the integrity of the community. Reviewers will be specifically instructed to not penalize
honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete
(and correct) proof?

Answer: [NA]
Justification: Our work doesn’t include theoretical result.
Guidelines:
* The answer NA means that the paper does not include theoretical results.

¢ All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
¢ All assumptions should be clearly stated or referenced in the statement of any theorems.

13

* The proofs can either appear in the main paper or the supplemental material, but if they appear in
the supplemental material, the authors are encouraged to provide a short proof sketch to provide
intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental
results of the paper to the extent that it affects the main claims and/or conclusions of the paper
(regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Yeah, we have disclosed all the codes and dataset in our provided anonymous github
link.

Guidelines:

» The answer NA means that the paper does not include experiments.

« If the paper includes experiments, a No answer to this question will not be perceived well by the
reviewers: Making the paper reproducible is important, regardless of whether the code and data
are provided or not.

* If the contribution is a dataset and/or model, the authors should describe the steps taken to make
their results reproducible or verifiable.

* Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might suffice,
or if the contribution is a specific model and empirical evaluation, it may be necessary to either
make it possible for others to replicate the model with the same dataset, or provide access to
the model. In general. releasing code and data is often one good way to accomplish this, but
reproducibility can also be provided via detailed instructions for how to replicate the results,
access to a hosted model (e.g., in the case of a large language model), releasing of a model
checkpoint, or other means that are appropriate to the research performed.

* While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature of the
contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how to

reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe the
architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should either be
a way to access this model for reproducing the results or a way to reproduce the model (e.g.,
with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]
Justification: Yes, the description is in the github link readme file.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be possible,
so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless
this is central to the contribution (e.g., for a new open-source benchmark).

¢ The instructions should contain the exact command and environment needed to run to reproduce
the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

14

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

* The authors should provide instructions on data access and preparation, including how to access
the raw data, preprocessed data, intermediate data, and generated data, etc.

¢ The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state which
ones are omitted from the script and why.

¢ At submission time, to preserve anonymity, the authors should release anonymized versions (if
applicable).
* Providing as much information as possible in supplemental material (appended to the paper) is
recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]
Justification: Yes, all the used models and all the settings are in the experiment section.
Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail that is
necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate informa-
tion about the statistical significance of the experiments?

Answer: [Yes]

Justification: It’s a benchmark and dataset work, and we have noted down all the used metrics in our
work.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confidence
intervals, or statistical significance tests, at least for the experiments that support the main claims
of the paper.

» The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

* The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error of the
mean.

* Itis OK to report 1-sigma error bars, but one should state it. The authors should preferably report
a 2-sigma error bar than state that they have a 96% ClI, if the hypothesis of Normality of errors is
not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

« If error bars are reported in tables or plots, The authors should explain in the text how they were
calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer:

Justification: No, we didn’t include the computer resources in our work. Because it’s an LLM API call
to test the dataset and benchmark.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud
provider, including relevant memory and storage.

15

9.

10.

11.

* The paper should provide the amount of compute required for each of the individual experimental
runs as well as estimate the total compute.

¢ The paper should disclose whether the full research project required more compute than the
experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it into
the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the Neur[PS Code
of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: Our code is in an anonymous GitHub link.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a deviation
from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consideration due
to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts
of the work performed?

Answer: [Yes]

Justification: Yes, we have discussed how the work will benefit the LLM usage and the whole security
community.

Guidelines:

» The answer NA means that there is no societal impact of the work performed.

« If the authors answer NA or No, they should explain why their work has no societal impact or
why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses (e.g.,
disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied to particular
applications, let alone deployments. However, if there is a direct path to any negative applications,
the authors should point it out. For example, it is legitimate to point out that an improvement in
the quality of generative models could be used to generate deepfakes for disinformation. On the
other hand, it is not needed to point out that a generic algorithm for optimizing neural networks
could enable people to train models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is being used
as intended and functioning correctly, harms that could arise when the technology is being used
as intended but gives incorrect results, and harms following from (intentional or unintentional)
misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation strategies
(e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitor-
ing misuse, mechanisms to monitor how a system learns from feedback over time, improving the
efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or
scraped datasets)?

Answer: [NA]
Justification: Our work doesn’t have this risk.
Guidelines:

* The answer NA means that the paper poses no such risks.

¢ Released models that have a high risk for misuse or dual-use should be released with necessary
safeguards to allow for controlled use of the model, for example by requiring that users adhere to
usage guidelines or restrictions to access the model or implementing safety filters.

16

https://neurips.cc/public/EthicsGuidelines

12.

13.

14.

15.

» Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do not require
this, but we encourage authors to take this into account and make a best faith effort.
Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper,
properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [NA]
Justification: We don’t use existing assets.
Guidelines:

* The answer NA means that the paper does not use existing assets.

¢ The authors should cite the original paper that produced the code package or dataset.

¢ The authors should state which version of the asset is used and, if possible, include a URL.
¢ The name of the license (e.g., CC-BY 4.0) should be included for each asset.

» For scraped data from a particular source (e.g., website), the copyright and terms of service of
that source should be provided.

« If assets are released, the license, copyright information, and terms of use in the package should
be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for
some datasets. Their licensing guide can help determine the license of a dataset.

 For existing datasets that are re-packaged, both the original license and the license of the derived
asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided
alongside the assets?

Answer: [NA]
Justification: This work doesn’t release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their sub-
missions via structured templates. This includes details about training, license, limitations,
etc.

* The paper should discuss whether and how consent was obtained from people whose asset is
used.

¢ At submission time, remember to anonymize your assets (if applicable). You can either create an
anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include
the full text of instructions given to participants and screenshots, if applicable, as well as details about
compensation (if any)?

Answer: [NA]
Justification: We don’t involve research with human subjects.
Guidelines:
¢ The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.
¢ Including this information in the supplemental material is fine, but if the main contribution of the
paper involves human subjects, then as much detail as possible should be included in the main
paper.
* According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other
labor should be paid at least the minimum wage in the country of the data collector.

Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an
equivalent approval/review based on the requirements of your country or institution) were obtained?

17

paperswithcode.com/datasets

Answer: [NA]
Justification: We don’t involve research with human subjects.
Guidelines:
¢ The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent) may be
required for any human subjects research. If you obtained IRB approval, you should clearly state
this in the paper.

¢ We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for
their institution.

* For initial submissions, do not include any information that would break anonymity (if applica-
ble), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard
component of the core methods in this research? Note that if the LLM is used only for writing,
editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or
originality of the research, declaration is not required.

Answer: [Yes]
Justification: Yes, we have declared that we use LLM for writing and concept understanding.
Guidelines:

* The answer NA means that the core method development in this research does not involve LLMs
as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what
should or should not be described.

18

https://neurips.cc/Conferences/2025/LLM

Table 1: Overview of the dataset REC2PSM .

Protocol Layer RFC No. #Pages #Chunks #States #Transitions
RTSP Application (L7) RFC 7826 318 32 3 33
FTP Application (L'7) RFC 959 69 11 10 24
SIP Application (L7) RFC 3261 269 31 5 20
SMTP Application (L7) RFC 5321 95 15 7 22
DCCP Transport (L4) RFC 4340 129 22 9 25
TCP Transport (L4) RFC 9293 98 10 11 20
DHCPv4 Application (L7) RFC 2131 45 9 8 19
IMAP Application (L7) RFC 9051 163 11 5 11
POP3 Application (L7) RFC 1939 23 17 3 18
NNTP Application (L7) RFC 3977 125 14 10 16
MQTT Application (L7) RFC 9431 33 11 12 17
PPTP Session (L5) RFC 2637 57 8 9 19
BGP-4 Application (L7) RFC 4271 104 16 6 26
PPP Data Link (L2) RFC 1661 52 6 10 27
recv SYN/
passive OPEN/ send SYN, CLOSE/
create TCB ACK send FIN
CLOSE/ revRST/ 4 .

delete TCB recv|SYN/fecv ACK of receive ACK receive FIN/

CLOSE/ send SYN/ send ACK| SYN/ of FIN/ send ACK
delete TCB \ recv ACK,SYN/ v v 2
’ CLOSED SYN_SENT |—send ACK ESTAB ’ FIN_WAIT-2 ‘ CLOSING ‘
M dztrle‘:;eo'l]")g; recv FIN/ s((:elr;(?:f]\/f rccglfv]::n/\\I/CK receive ACK
send SYN send ACK § \ 4 of FIN/
receive ACK of FIN/ Crosp/ |CLOSE_WAIT TIM%
delete TCB send FIN Timeout/
delete TCB

Figure 5: A manually extracted ground-truth PSM of TCP protocol in RFC2PsSM .

A Threshold Ablation

When selecting the merge threshold, we systematically examined dozens of term pairs to balance false merges
(distinct concepts collapsed) and false splits (identical concepts separated), and therefore set §=0.50. To make
this choice explicit, Table[B]reports per—protocol F1 on the full deepseek-v3 run (14 protocols, 297 transitions)

for 6 € 0.40, 0.45,0.50, 0.55, 0.60.

These results confirm the choice: varying 6 within [0.40, 0.55] leaves macro F1 at 0.692, and even 6=0.60
yields 0.664. At §=0.50, pairs such as “Established ~ Connected” (sim = 0.77) remain cleanly separated from

“ACK vs. NACK” (sim < 0.2), so we use #=0.50 as the default.

19

Table 2: Sliding-window ablation on state-matching F1. “Section” uses section-based chunks;
“Overlap” uses a 4k window with 0.5k overlap.

Protocol Section F1 ~ Overlap F1 A F1

IMAP 0.307 0.277 —0.030
POP3 0.353 1.000 +0.647
MQTT 0.611 0.800 +0.189
PPP 0.689 0.869 +0.180
PPTP 0.414 0.485 +0.071
BGP 0.632 0.800 +0.168
SIP 0.064 0.070 +0.006
RTSP 0.120 0.079 —0.041
DCCP 0.361 0.361 +0.000
DHCP 0.842 0.800 —0.042
FTP 0.235 0.134 —0.101
NNTP 0.400 0.328 —0.072
SMTP 0.167 0.261 +0.094
TCP 0.909 0.526 —0.383
Macro Avg 0.436 0.485 +0.049

Table 3: Per—protocol F1 at different merge thresholds 6. Macro average is flat for 6 € [0.40, 0.55]
and drops slightly at 6=0.60.

Protocol F1@0.40 F1@045 F1@0.50 F1@0.55 F1@0.60

IMAP 0.889 0.889 0.889 0.889 0.889
POP3 0.750 0.750 0.750 0.750 0.750
MQTT 0.500 0.500 0.500 0.500 0.500
PPP 0.720 0.720 0.720 0.720 0.640
PPTP 0.477 0.477 0.477 0.477 0.477
BGP 1.000 1.000 1.000 1.000 1.000
SIP 0.589 0.589 0.589 0.589 0.589
RTSP 1.000 1.000 1.000 1.000 1.000
DCCP 0.857 0.857 0.857 0.857 0.857
DHCP 0.933 0.933 0.933 0.933 0.933
FTP 0.364 0.364 0.364 0.364 0.243
NNTP 0.444 0.444 0.444 0.444 0.370
SMTP 0.353 0.353 0.353 0.353 0.235
TCP 0.818 0.818 0.818 0.818 0.818
Macro avg. 0.692 0.692 0.692 0.692 0.664

Table 4: Per—protocol F1 with three sentence encoders (LLM, thresholds, and post—processing held
fixed).

Protocol MiniLM F1 MPNetF1 ~ SimCSE F1
IMAP 0.889 0.889 0.889
POP3 0.750 0.750 0.750
MQTT 0.500 0.500 0.500
PPP 0.720 0.720 0.800
PPTP 0.477 0.477 0.667
BGP 1.000 1.000 1.000
SIP 0.589 0.589 0.589
RTSP 1.000 1.000 1.000
DCCP 0.857 0.857 0.857
DHCP 0.933 0.933 0.933
FTP 0.364 0.243 0.485
NNTP 0.444 0.444 0.519
SMTP 0.353 0.470 0.706
TCP 0.818 0.909 0.818
Macro Avg. 0.692 0.699 0.751

20

Table 5: References to Detailed Protocol Evaluation Tables

Metric BGP FTP IMAP NNTP POP3 SMTP SIP

States Extraction ~ Table|9] Table Table Table Table[l6| Table Table |20
Partial Transition ~Table[23| Table[26] Table27| Table[29] Table[30] Table[35| Table|34
Exact Transition ~ Table Table 40| Table{41| Table{43| Tableid4] Table9| Table|dy
Metric TCP DCCP MQTT PPTP RTSP DHCP PPP

States Extraction ~ Table Table Table Table Table Table Table
Partial Transition Table[36] Table[24] Table[28| Table[32] Table[33| Table[25| Table|3]]
Exact Transition ~ Table[50] Table|38] Table(2| Table|d6| Table@d/| Table[39] Tabled

Table 6: Overall Model Performance on State Set Matching of Different Protocols

Model Total Extracted Total GT Matched Precision Recall F1-Score
Claude3 196 108 77 0.393 0.713 0.507
DS-R1 146 108 84 0.575 0.778 0.661
DS-V3 141 108 89 0.631 0.824 0.715
Gemini2 248 108 79 0.319 0.731 0.444
Gemma3 150 108 57 0.380 0.528 0.442
Gptd4o-Mini 431 108 93 0.216 0.861 0.345
Mistral 206 108 53 0.257 0.491 0.338
QWQ 79 108 53 0.671 0.491 0.567
QWen3 97 108 62 0.639 0.574 0.605

\\\\\\\\

Score
° o
~ w

o

o

Overall Model Performance on Partial Transition Match

Models

©

N

E
Recall
F1-score ‘
.0 L IlI I
> > 0 & > & > e
& S & &8 & S e & K
¥ 1% & & A S

<]
&

Figure 6: Model Performance on Partial Transition Matching. Precision, recall, and F1-score for
various models, highlighting differences in their ability to extract transitions accurately.

Table 7: Overall Model Performance on Partial Transition Match of Different Protocols

Model TotalExtracted TotalGT Matched Precision Recall F1-Score
Claude3 865 297 134 0.155 0.451 0.231
DS-R1 525 297 135 0.257 0.455 0.328
DS-V3 386 297 130 0.337 0.438 0.381
Gemini2 1000 297 138 0.138 0.465 0.213
Gemma3 285 297 44 0.154 0.148 0.151
Gptd4o-Mini 674 297 68 0.101 0.229 0.140
Mistral 279 297 26 0.093 0.088 0.090
QWQ 88 297 21 0.239 0.071 0.109
QWen3 132 297 38 0.288 0.128 0.177

21

Overall Model Performance on Exact Transition Matching

—precision
- recal
—F1Score
0.0 I L Ill II
> > o & > & > o
& & o")\ & & SN & Q\
N & & Q,&. A &

e
W

Score

)
N

o

Q>
& &

O
Models

Figure 7: Model Performance on Exact Transition Matching. Precision, recall, and F1-score for
various models, highlighting differences in their ability to extract transitions accurately.

Table 8: Overall Model Performance on Exact Transition Matching of Different Protocols

Model TotalExtracted Total GT Matched Precision Recall F1-Score
Claude3 865 297 112 0.129 0.377 0.193
DS-R1 525 297 129 0.246 0.434 0.314
DS-V3 386 297 129 0.334 0.434 0.378
Gemini2 1000 297 117 0.117 0.394 0.180
Gemma3 285 297 34 0.119 0.114 0.117
Gptd4o-Mini 674 297 63 0.093 0.212 0.130
Mistral 279 297 24 0.086 0.081 0.083
QWQ 88 297 18 0.205 0.061 0.094
QWen3 132 297 37 0.280 0.125 0.172

22

B Prompts Design

B.1 Partial PSM Extraction Prompt

Partial PSM Extraction Prompt

You will be given the section "section_title" of an RFC document for protocol "protocol_name".

RESPONSE FORMAT (MANDATORY)

- Your reply must consist **exclusively** of the JSON object representing the state machine.

- That JSON must be wrapped in <json> and </json> tags.

- Do **not** include any extra text, explanation, code fences, or formatting.

<section> section_text </section>

Steps:

1. Determine if this section has any FSM-related information (states, transitions, diagrams, reply codes,
sequences).

2. If **none**, reply exactly:

<json>None</json>

3. If there is FSM information, extract it and return a structured JSON in the following format (strictly):

{{

"states": ["statel", "state2", "state3"],
"transitions": [
{{
"from": "statel",
"event": "recvCommand",
"action": "replCcode",
"to": "statel2"
1
]
1}
FESM Field Constraints:
"states"‘:

List of all states appearing in “"from"* or “"to"* fields.

Each state must: Be 1 to 3 words (max 30 characters) Use ‘CamelCase‘ or ‘snake_case‘ Describe
a protocol phase, status, or role (e.g., ‘Authenticated‘, ‘WaitingForReply ‘) Contain no punctuation,
spaces, or free-form descriptions

Good: “"AwaitingPassword"*, ‘"transfer_in_progress"*

Bad: “"State 1"¢, “"waiting for command"‘, ‘"cmd?"*

"from" / "to":

- Same naming rules as above

"event":

- Describes the trigger that causes the transition

- Maybe begin with a fixed prefix:

- “"receive " for received command - ‘"send
"* for internal condition - or other words
Examples: "receive USER", "send 230", "timeout 5s", "cond valid_credentials
- Describes what the system does in response

- It’s best start with an action verb from this fixed set or other verbs if needed: ‘reply‘, ‘send, ‘set‘,
‘log*, ‘reset‘, ‘close’, *collect’, ‘open‘, 'record’, ’stop’

- Followed by one or two short arguments (max 4 words total) Examples: ‘"reply 230"‘, ‘"log failure"*,
set authenticated true"

Important:

- Do not generate free-text descriptions in any field.

- Each transition must contain **exactly**: ‘from‘, ‘event’, ‘action’, ‘to°.

- Do not invent vague or inconsistent state or event names.

OQUTPUT RULES:

- Wrap the JSON in **<json>. .. </json>** only.

- Do not include Markdown, explanations, comments, or extra text.

- If nothing is found, return exactly ‘<json>None</json>".

ne ne o

for sent response - “"timeout "* for timing event - ‘"cond

non

action"‘:

o

23

B.2 PSM Combination Prompt

Partial PSM Combination

You will be provided with multiple **partial protocol state machines** extracted from different sections
of an RFC. Each partial state machine is a JSON object with the following fields:

- "states": list of state names

- "transitions": list of transition objects with these required fields:

- "from": source state name

- "event": trigger (e.g., received command, condition)

- "action": response or internal action

- "to": target state name

Each partial is wrapped in ‘<partial>...</partial>‘. Some may be ‘<json>None</json>‘ — ignore those.
— Your task is to **merge all valid partial FSMs into one global FSM** and return a single well-
structured JSON object in the following format (wrapped in ‘<json>...</json>‘):

<json>
{{
"states": ["statel", "state2", ...],
"initial_state ": "stateX",
"final_states ": ["stateY", ...],
"transitions ": [
{{
"from": "statel",
"event": "recv COMMAND",
"action": "reply CODE",
"to": "statel2"
1
]
1}
</json>

— FSM Construction Constraints **State Naming (‘states‘, ‘from°, ‘to‘)**:

- Must be concise, meaningful, and consistent

- Format: 1 to 3 words, ‘CamelCase* or ‘snake_case‘, no spaces or punctuation
- Examples: ‘"Authenticated"‘, ‘"AwaitingPassword"‘, ‘" TransferReady"*
Events (‘event):

- Format: 1 to 3 words

- Maybe begin with: ‘receive‘, ‘send, ‘timeout‘, or ‘cond*

- Examples: ‘"receive USER"‘, “"timeout 10s"*, ‘"cond valid_credentials"*
*#*Actions (‘action®)**:

- Start with a verb from this list: ‘reply, ‘send’, ‘set, ‘log*, ‘reset’, ‘close‘, *collect’, ‘open°, record’,
’stop’ or other verbs if needed

Followed by a short phrase (less than 4 words)

- Examples: “"reply 230"‘, ‘"set authenticated true"‘, ‘"log failure"*

FSM Merging Rules

1. **Unify states**: Standardize naming (e.g., merge ‘"Init"‘ and ‘"Initialization"* into one state).

2. **Remove duplicates™**: Transitions that differ only in phrasing should be merged.

3. **Preserve meaning**: If two similar states clearly serve different roles, retain both.

4. **Determine**:

- “"initial_state"‘: The state with **no incoming transitions**

- “"final_states"‘: All states with **no outgoing transitions**

Please return **only** the merged FSM in the required format, wrapped inside ‘<json>...</json>‘. Do

*#*not** include explanations, commentary, or Markdown.

Here are the partial FSMs to merge:
partials_block

24

Table 9: BGP Protocol States Extraction Metrics

Protocol Model Total Extracted Total GT Matched Precision Recall F1-Score
BGP DS-R1 6 6 6 1.000 1.000 1.000
BGP Gptd4o-Mini 13 6 6 0.462 1.000 0.632
BGP Claude3 8 6 6 0.750 1.000 0.857
BGP Gemini2 9 6 6 0.667 1.000 0.800
BGP DS-V3 6 6 6 1.000 1.000 1.000
BGP QwWQ 6 6 6 1.000 1.000 1.000
BGP QWen3 6 6 6 1.000 1.000 1.000
BGP Gemma3 7 6 6 0.857 1.000 0.923
BGP Mistral 10 6 3 0.300 0.500 0.375
Table 10: DCCP Protocol States Extraction Metrics
Protocol Model Total Extracted Total GT Matched Precision Recall F1-Score
DCCP DS-R1 12 9 9 0.750 1.000 0.857
DCCP Gptd4o-Mini 41 9 9 0.220 1.000 0.361
DCCP Claude3 12 9 9 0.750 1.000 0.857
DCCP Gemini2 20 9 9 0.450 1.000 0.621
DCCP DS-V3 12 9 9 0.750 1.000 0.857
DCCP QWQ 4 9 6 1.500 0.667 0.923
DCCP QWen3 11 9 8 0.727 0.889 0.800
DCCP Gemma3 10 9 7 0.700 0.778 0.737
DCCP Mistral 10 9 2 0.200 0.222 0.210
Table 11: DHCP Protocol States Extraction Metrics
Protocol Model Total Extracted Total GT Matched Precision Recall F1-Score
DHCP DS-R1 8 1.000 1.000 1.000
DHCP Gptd4o-Mini 11 0.727 1.000 0.842

DHCP Claude3
DHCP Gemini2
DHCP DS-V3
DHCP QWQ
DHCP QWen3
DHCP Gemma3
DHCP Mistral

1.000 1.000 1.000
0.667 0.500 0.572
1.143 1.000 1.067
1.250 0.625 0.833
1.250 0.625 0.833
1.250 0.625 0.833
1.333 0.500 0.727

WA AR ®©
OO0 OO0 OO0 OO0 OO0 OO0 OO OO OO
B~ o 00 00 0

Table 12: FTP Protocol States Extraction Metrics

Protocol Model Total Extracted Total GT Matched Precision Recall F1-Score
FTP DS-R1 14 10 5 0.357 0.500 0.417
FTP Gptdo-Mini 41 10 6 0.146 0.600 0.235
FTP Claude3 14 10 2 0.143 0.200 0.167
FTP Gemini2 15 10 6 0.400 0.600 0.480
FTP DS-V3 23 10 8 0.348 0.800 0.485
FTP QWQ 6 10 5 0.833 0.500 0.625
FTP QWen3 11 10 2 0.182 0.200 0.191
FTP Gemma3 15 10 5 0.333 0.500 0.400
FTP Mistral 20 10 4 0.200 0.400 0.267

25

Table 13: IMAP Protocol States Extraction Metrics

Protocol Model Total Extracted Total GT Matched Precision Recall F1-Score
IMAP DS-R1 9 5 4 0.444 0.800 0.571
IMAP Gptd4o-Mini 21 5 4 0.190 0.800 0.307
IMAP Claude3 11 5 4 0.364 0.800 0.500
IMAP Gemini2 12 5 4 0.333 0.800 0.470
IMAP DS-V3 4 5 4 1.000 0.800 0.889
IMAP QwWQ 4 5 4 1.000 0.800 0.889
IMAP QWen3 4 5 3 0.750 0.600 0.667
IMAP Gemma3 10 5 4 0.400 0.800 0.533
IMAP Mistral 10 5 4 0.400 0.800 0.533
Table 14: MQTT Protocol States Extraction Metrics
Protocol Model Total Extracted Total GT Matched Precision Recall F1-Score
MQTT DS-R1 7 12 8 1.143 0.667 0.842
MQTT Gptd4o-Mini 24 12 11 0.458 0917 0.611
MQTT Claude3 11 12 5 0.455 0.417 0.435
MQTT Gemini2 26 12 10 0.385 0.833 0.527
MQTT DS-V3 4 12 5 1.250 0.417 0.625
MQTT QWQ 14 12 8 0.571 0.667 0.615
MQTT QWen3 7 12 5 0.714 0.417 0.527
MQTT Gemma3 11 12 5 0.455 0.417 0.435
MQTT Mistral 20 12 11 0.550 0917 0.688
Table 15: NNTP Protocol States Extraction Metrics
Protocol Model Total Extracted Total GT Matched Precision Recall F1-Score
NNTP DS-R1 12 10 3 0.250 0.300 0.273
NNTP Gptd4o-Mini 40 10 10 0.250 1.000 0.400
NNTP Claude3 13 10 6 0.462 0.600 0.522
NNTP Gemini2 29 10 7 0.241 0.700 0.359
NNTP DS-V3 17 10 7 0412 0.700 0.519
NNTP QWQ 3 10 0 0.000 0.000 0.000
NNTP QWen3 4 10 0 0.000 0.000 0.000
NNTP Gemma3 9 10 3 0.333 0.300 0.316
NNTP Mistral 3 10 0 0.000 0.000 0.000
Table 16: POP3 Protocol States Extraction Metrics
Protocol Model Total Extracted Total GT Matched Precision Recall F1-Score
POP3 DS-R1 4 3 3 0.750 1.000 0.857
POP3 Gpt4o-Mini 14 3 3 0.214 1.000 0.353
POP3 Claude3 5 3 3 0.600 1.000 0.750
POP3 Gemini2 4 3 3 0.750 1.000 0.857
POP3 DS-V3 5 3 3 0.600 1.000 0.750
POP3 QWQ 4 3 1 0.250 0.333 0.286
POP3 QWen3 4 3 3 0.750 1.000 0.857
POP3 Gemma3 17 3 3 0.176 1.000 0.299
POP3 Mistral 12 3 3 0.250 1.000 0.400

26

Table 17: PPP Protocol States Extraction Metrics

Protocol Model Total Extracted Total GT Matched Precision Recall F1-Score
PPP DS-R1 15 10 10 0.667 1.000 0.800
PPP Gptd4o-Mini 19 10 10 0.526 1.000 0.689
PPP Claude3 15 10 10 0.667 1.000 0.800
PPP Gemini2 13 10 10 0.769 1.000 0.869
PPP DS-V3 15 10 10 0.667 1.000 0.800
PPP QWQ 5 10 3 0.600 0.300 0.400
PPP QWen3 11 10 6 0.545 0.600 0.571
PPP Gemma3 6 10 2 0.333 0.200 0.250
PPP Mistral 9 10 2 0.222 0.200 0.210

Table 18: PPTP Protocol States Extraction Metrics

Protocol Model Total Extracted Total GT Matched Precision Recall F1-Score
PPTP DS-R1 8 9 8 1.000 0.889 0.941
PPTP Gptd4o-Mini 20 9 6 0.300 0.667 0.414
PPTP Claude3 15 9 5 0.333 0.556 0.417
PPTP Gemini2 11 9 0 0.000 0.000 0.000
PPTP DS-V3 12 9 8 0.667 0.889 0.762
PPTP QWQ 3 9 5 1.667 0.556 0.834
PPTP QWen3 4 9 8 2.000 0.889 1.231
PPTP Gemma3 4 9 6 1.500 0.667 0.923
PPTP Mistral 6 9 6 1.000 0.667 0.800

Table 19: RTSP Protocol States Extraction Metrics

Protocol Model Total Extracted Total GT Matched Precision Recall F1-Score
RTSP DS-R1 5 3 3 0.600 1.000 0.750
RTSP Gptd4o-Mini 47 3 3 0.064 1.000 0.120
RTSP Claude3 20 3 2 0.100 0.667 0.174
RTSP Gemini2 17 3 2 0.118 0.667 0.201
RTSP DS-V3 3 3 3 1.000 1.000 1.000
RTSP QWQ 3 3 0 0.000 0.000 0.000
RTSP QWen3 3 3 3 1.000 1.000 1.000
RTSP Gemma3 14 3 3 0.214 1.000 0.353
RTSP Mistral 22 3 1 0.045 0.333 0.079

Table 20: SIP Protocol States Extraction Metrics

Protocol Model Total Extracted Total GT Matched Precision Recall F1-Score
SIP DS-R1 25 5 5 0.200 1.000 0.333
SIP Gptdo-Mini 88 5 3 0.034 0.600 0.064
SIP Claude3 43 5 5 0.116 1.000 0.208
SIP Gemini2 65 5 5 0.077 1.000 0.143
SIP DS-V3 12 5 5 0.417 1.000 0.589
SIP QWQ 7 5 0 0.000 0.000 0.000
SIP QWen3 11 5 2 0.182 0.400 0.250
SIP Gemma3 27 5 2 0.074 0.400 0.125
SIP Mistral 32 5 1 0.031 0.200 0.054

27

Table 21: SMTP Protocol States Extraction Metrics

Protocol Model Total Extracted Total GT Matched Precision Recall F1-Score
SMTP DS-R1 10 7 2 0.200 0.286 0.235
SMTP Gptd4o-Mini 41 7 4 0.098 0.571 0.167
SMTP Claude3 10 7 2 0.200 0.286 0.235
SMTP Gemini2 10 7 4 0.400 0.571 0.470
SMTP DS-V3 10 7 3 0.300 0.429 0.353
SMTP QwWQ 7 7 1 0.143 0.143 0.143
SMTP QWen3 8 7 2 0.250 0.286 0.267
SMTP Gemma3 7 7 0 0.000 0.000 0.000
SMTP Mistral 38 7 3 0.079 0.429 0.133
Table 22: TCP Protocol States Extraction Metrics
Protocol Model Total Extracted Total GT Matched Precision Recall F1-Score
TCP DS-R1 11 11 10 0.909 0.909 0.909
TCP Gptd4o-Mini 11 11 10 0.909 0.909 0.909
TCP Claude3 11 11 10 0.909 0.909 0.909
TCP Gemini2 11 11 9 0.818 0.818 0.818
TCP DS-V3 11 11 10 0.909 0.909 0.909
TCP QWQ 9 11 9 1.000 0.818 0.900
TCP QWen3 9 11 9 1.000 0.818 0.900
TCP Gemma3 9 11 6 0.667 0.545 0.600
TCP Mistral 11 11 9 0.818 0.818 0.818
Table 23: BGP Partially Correct Transition Extraction Metrics
Protocol Model TotalExtracted TotalGT Matched Precision Recall F1-Score
BGP DS-R1 20 26 14 0.700 0.538 0.609
BGP Gptd4o-Mini 25 26 7 0.280 0.269 0.275
BGP Claude3 60 26 23 0.383 0.885 0.535
BGP Gemini2 101 26 26 0.257 1.000 0.409
BGP DS-V3 32 26 15 0.469 0.577 0.517
BGP QWQ 7 26 3 0.429 0.115 0.182
BGP QWen3 11 26 4 0.364 0.154 0.216
BGP Gemma3 21 26 3 0.143 0.115 0.128
BGP Mistral 9 26 0 0.000 0.000 0.000
Table 24: DCCP Partially Correct Transition Extraction Metrics

Protocol Model TotalExtracted TotalGT Matched Precision Recall F1-Score
DCCP DS-R1 29 25 18 0.621 0.720 0.667
DCCP Gpt4o-Mini 55 25 8 0.145 0.320 0.200
DCCP Claude3 40 25 19 0.475 0.760 0.585
DCCP Gemini2 44 25 16 0.364 0.640 0.464
DCCP DS-V3 28 25 14 0.500 0.560 0.528
DCCP QWQ 4 25 1 0.250 0.040 0.069
DCCP QWen3 15 25 5 0.333 0.200 0.250
DCCP Gemma3 18 25 6 0.333 0.240 0.279
DCCP Mistral 9 25 0 0.000 0.000 0.000

28

Table 25: DHCP Partially Correct Transition Extraction Metrics

Protocol Model TotalExtracted TotalGT Matched Precision Recall F1-Score
DHCP DS-R1 20 19 12 0.600 0.632 0.615
DHCP Gptd4o-Mini 26 19 9 0.346 0.474 0.400
DHCP Claude3 18 19 14 0.778 0.737 0.757
DHCP Gemini2 27 19 7 0.259 0.368 0.304
DHCP DS-V3 15 19 10 0.667 0.526 0.588
DHCP QwWQ 6 19 4 0.667 0.211 0.320
DHCP QWen3 4 19 2 0.500 0.105 0.174
DHCP Gemma3 10 19 2 0.200 0.105 0.138
DHCP Mistral 5 19 2 0.400 0.105 0.167
Table 26: FTP Partially Correct Transition Extraction Metrics
Protocol Model TotalExtracted TotalGT Matched Precision Recall F1-Score
FTP DS-R1 23 24 5 0.217 0.208 0.213
FTP Gptd4o-Mini 53 24 4 0.075 0.167 0.104
FTP Claude3 46 24 4 0.087 0.167 0.114
FTP Gemini2 51 24 6 0.118 0.250 0.160
FTP DS-V3 77 24 7 0.091 0.292 0.139
FTP QWQ 7 24 3 0.429 0.125 0.194
FTP QWen3 14 24 1 0.071 0.042 0.053
FTP Gemma3 42 24 5 0.119 0.208 0.152
FTP Mistral 33 24 3 0.091 0.125 0.105
Table 27: IMAP Partially Correct Transition Extraction Metrics
Protocol Model TotalExtracted TotalGT Matched Precision Recall F1-Score
IMAP DS-R1 35 11 6 0.171 0.545 0.261
IMAP Gptd4o-Mini 56 11 5 0.089 0.455 0.149
IMAP Claude3 48 11 7 0.146 0.636 0.237
IMAP Gemini2 90 11 7 0.078 0.636 0.139
IMAP DS-V3 16 11 6 0.375 0.545 0.444
IMAP QWQ 4 11 3 0.750 0.273 0.400
IMAP QWen3 4 11 2 0.500 0.182 0.267
IMAP Gemma3 17 11 5 0.294 0.455 0.357
IMAP Mistral 20 11 6 0.300 0.545 0.387
Table 28: MQTT Partially Correct Transition Extraction Metrics
Protocol Model TotalExtracted TotalGT Matched Precision Recall F1-Score
MQTT DS-R1 16 17 2 0.125 0.118 0.121
MQTT Gpt4o-Mini 37 17 3 0.081 0.176 0.111
MQTT Claude3 45 17 2 0.044 0.118 0.065
MQTT Gemini2 48 17 2 0.042 0.118 0.062
MQTT DS-V3 6 17 0 0.000 0.000 0.000
MQTT QWQ 18 17 1 0.056 0.059 0.057
MQTT QWen3 6 17 1 0.167 0.059 0.087
MQTT Gemma3 19 17 1 0.053 0.059 0.056
MQTT Mistral 37 17 3 0.081 0.176 0.111

29

Table 29: NNTP Partially Correct Transition Extraction Metrics

Protocol Model TotalExtracted TotalGT Matched Precision Recall F1-Score
NNTP DS-R1 73 16 2 0.027 0.125 0.045
NNTP Gptd4o-Mini 68 16 0 0.000 0.000 0.000
NNTP Claude3 75 16 0 0.000 0.000 0.000
NNTP Gemini2 116 16 2 0.017 0.125 0.030
NNTP DS-V3 25 16 2 0.080 0.125 0.098
NNTP QwWQ 3 16 0 0.000 0.000 0.000
NNTP QWen3 6 16 0 0.000 0.000 0.000
NNTP Gemma3 14 16 0 0.000 0.000 0.000
NNTP Mistral 4 16 0 0.000 0.000 0.000
Table 30: POP3 Partially Correct Transition Extraction Metrics
Protocol Model TotalExtracted TotalGT Matched Precision Recall F1-Score
POP3 DS-R1 21 18 12 0.571 0.667 0.615
POP3 Gptd4o-Mini 33 18 12 0.364 0.667 0.471
POP3 Claude3 26 18 9 0.346 0.500 0.409
POP3 Gemini2 39 18 13 0.333 0.722 0.456
POP3 DS-V3 20 18 10 0.500 0.556 0.526
POP3 QWQ 5 18 1 0.200 0.056 0.087
POP3 QWen3 8 18 4 0.500 0.222 0.308
POP3 Gemma3 38 18 10 0.263 0.556 0.357
POP3 Mistral 29 18 9 0.310 0.500 0.383
Table 31: PPP Partially Correct Transition Extraction Metrics
Protocol Model TotalExtracted TotalGT Matched Precision Recall F1-Score
PPP DS-R1 111 27 10 0.090 0.370 0.145
PPP Gptd4o-Mini 33 27 5 0.152 0.185 0.167
PPP Claude3 138 27 18 0.130 0.667 0.218
PPP Gemini2 126 27 20 0.159 0.741 0.261
PPP DS-V3 21 27 3 0.143 0.111 0.125
PPP QWQ 5 27 0 0.000 0.000 0.000
PPP QWen3 21 27 1 0.048 0.037 0.042
PPP Gemma3 9 27 0 0.000 0.000 0.000
PPP Mistral 12 27 0 0.000 0.000 0.000
Table 32: PPTP Partially Correct Transition Extraction Metrics
Protocol Model TotalExtracted TotalGT Matched Precision Recall F1-Score
PPTP DS-R1 18 19 12 0.667 0.632 0.649
PPTP Gpt4o-Mini 29 19 1 0.034 0.053 0.042
PPTP Claude3 56 19 4 0.071 0.211 0.107
PPTP Gemini2 23 19 0 0.000 0.000 0.000
PPTP DS-V3 34 19 11 0.324 0.579 0.415
PPTP QWQ 2 19 0 0.000 0.000 0.000
PPTP QWen3 6 19 4 0.667 0.211 0.320
PPTP Gemma3 6 19 2 0.333 0.105 0.160
PPTP Mistral 12 19 1 0.083 0.053 0.065

30

Table 33: RTSP Partially Correct Transition Extraction Metrics

Protocol Model TotalExtracted TotalGT Matched Precision Recall F1-Score
RTSP DS-R1 41 33 19 0.463 0.576 0.514
RTSP Gptd4o-Mini 70 33 0 0.000 0.000 0.000
RTSP Claude3 89 33 19 0.213 0.576 0.311
RTSP Gemini2 78 33 12 0.154 0.364 0.216
RTSP DS-V3 39 33 30 0.769 0.909 0.833
RTSP QwWQ 2 33 0 0.000 0.000 0.000
RTSP QWen3 10 33 6 0.600 0.182 0.279
RTSP Gemma3 24 33 4 0.167 0.121 0.140
RTSP Mistral 33 33 0 0.000 0.000 0.000
Table 34: SIP Partially Correct Transition Extraction Metrics
Protocol Model TotalExtracted TotalGT Matched Precision Recall F1-Score
SIP DS-R1 58 20 12 0.207 0.600 0.308
SIP Gptd4o-Mini 127 20 10 0.079 0.500 0.136
SIP Claude3 164 20 2 0.012 0.100 0.022
SIP Gemini2 180 20 20 0.111 1.000 0.200
SIP DS-V3 43 20 14 0.326 0.700 0.444
SIP QWQ 5 20 0 0.000 0.000 0.000
SIP QWen3 11 20 3 0.273 0.150 0.194
SIP Gemma3 47 20 2 0.043 0.100 0.060
SIP Mistral 30 20 0 0.000 0.000 0.000
Table 35: SMTP Partially Correct Transition Extraction Metrics
Protocol Model TotalExtracted TotalGT Matched Precision Recall F1-Score
SMTP DS-R1 45 22 0 0.000 0.000 0.000
SMTP Gptd4o-Mini 52 22 0 0.000 0.000 0.000
SMTP Claude3 40 22 0 0.000 0.000 0.000
SMTP Gemini2 32 22 2 0.062 0.091 0.074
SMTP DS-V3 18 22 1 0.056 0.045 0.050
SMTP QWQ 11 22 0 0.000 0.000 0.000
SMTP QWen3 7 22 0 0.000 0.000 0.000
SMTP Gemma3 6 22 0 0.000 0.000 0.000
SMTP Mistral 35 22 0 0.000 0.000 0.000
Table 36: TCP Partially Correct Transition Extraction Metrics
Protocol Model TotalExtracted TotalGT Matched Precision Recall F1-Score
TCP DS-R1 15 20 11 0.733 0.550 0.629
TCP Gpt4o-Mini 10 20 4 0.400 0.200 0.267
TCP Claude3 20 20 13 0.650 0.650 0.650
TCP Gemini2 45 20 5 0.111 0.250 0.154
TCP DS-V3 12 20 7 0.583 0.350 0.438
TCP QWQ 9 20 5 0.556 0.250 0.345
TCP QWen3 9 20 5 0.556 0.250 0.345
TCP Gemma3 14 20 4 0.286 0.200 0.235
TCP Mistral 11 20 2 0.182 0.100 0.129

31

Table 37: BGP Exact Transition Match Metrics

Protocol Model TotalExtracted TotalGT Matched Precision Recall F1-Score
BGP DS-R1 20 26 14 0.700 0.538 0.609
BGP Gptd4o-Mini 25 26 8 0.320 0.308 0.314
BGP Claude3 60 26 20 0.333 0.769 0.465
BGP Gemini2 101 26 25 0.248 0.962 0.394
BGP DS-V3 32 26 14 0.438 0.538 0.483
BGP QWQ 7 26 2 0.286 0.077 0.121
BGP QWen3 11 26 5 0.455 0.192 0.270
BGP Gemma3 21 26 5 0.238 0.192 0.213
BGP Mistral 9 26 0 0.000 0.000 0.000

Table 38: DCCP Exact Transition Match Metrics

Protocol Model TotalExtracted TotalGT Matched Precision Recall F1-Score
DCCP DS-R1 29 25 11 0.379 0.440 0.407
DCCP Gptd4o-Mini 55 25 4 0.073 0.160 0.100
DCCP Claude3 40 25 14 0.350 0.560 0.431
DCCP Gemini2 44 25 9 0.205 0.360 0.261
DCCP DS-V3 28 25 12 0.429 0.480 0.453
DCCP QWQ 4 25 1 0.250 0.040 0.069
DCCP QWen3 15 25 5 0.333 0.200 0.250
DCCP Gemma3 18 25 4 0.222 0.160 0.186
DCCP Mistral 9 25 0 0.000 0.000 0.000

Table 39: DHCP Exact Transition Match Metrics

Protocol Model TotalExtracted TotalGT Matched Precision Recall F1-Score
DHCP DS-R1 20 19 13 0.650 0.684 0.667
DHCP Gptd4o-Mini 26 19 9 0.346 0.474 0.400
DHCP Claude3 18 19 14 0.778 0.737 0.757
DHCP Gemini2 27 19 6 0.222 0.316 0.261
DHCP DS-V3 15 19 11 0.733 0.579 0.647
DHCP QWQ 6 19 4 0.667 0.211 0.320
DHCP QWen3 4 19 0 0.000 0.000 0.000
DHCP Gemma3 10 19 0 0.000 0.000 0.000
DHCP Mistral 5 19 2 0.400 0.105 0.167

Table 40: FTP Exact Transition Match Metrics

Protocol Model TotalExtracted TotalGT Matched Precision Recall F1-Score
FTP DS-R1 23 24 5 0.217 0.208 0.213
FTP Gptdo-Mini 53 24 3 0.057 0.125 0.078
FTP Claude3 46 24 4 0.087 0.167 0.114
FTP Gemini2 51 24 6 0.118 0.250 0.160
FTP DS-V3 77 24 7 0.091 0.292 0.139
FTP QWQ 7 24 3 0.429 0.125 0.194
FTP QWen3 14 24 1 0.071 0.042 0.053
FTP Gemma3 42 24 5 0.119 0.208 0.152
FTP Mistral 33 24 3 0.091 0.125 0.105

32

Table 41: IMAP Exact Transition Match Metrics

Protocol Model TotalExtracted TotalGT Matched Precision Recall F1-Score
IMAP DS-R1 35 11 4 0.114 0.364 0.174
IMAP Gptd4o-Mini 56 11 3 0.054 0.273 0.090
IMAP Claude3 48 11 4 0.083 0.364 0.136
IMAP Gemini2 90 11 6 0.067 0.545 0.119
IMAP DS-V3 16 11 6 0.375 0.545 0.444
IMAP QWQ 4 11 3 0.750 0.273 0.400
IMAP QWen3 4 11 2 0.500 0.182 0.267
IMAP Gemma3 17 11 3 0.176 0.273 0.214
IMAP Mistral 20 11 5 0.250 0.455 0.323

Table 42: MQTT Exact Transition Match Metrics

Protocol Model TotalExtracted TotalGT Matched Precision Recall F1-Score
MQTT DS-R1 16 17 1 0.062 0.059 0.061
MQTT Gptd4o-Mini 37 17 2 0.054 0.118 0.074
MQTT Claude3 45 17 2 0.044 0.118 0.065
MQTT Gemini2 48 17 2 0.042 0.118 0.062
MQTT DS-V3 6 17 1 0.167 0.059 0.087
MQTT QWQ 18 17 1 0.056 0.059 0.057
MQTT QWen3 6 17 1 0.167 0.059 0.087
MQTT Gemma3 19 17 1 0.053 0.059 0.056
MQTT Mistral 37 17 2 0.054 0.118 0.074

Table 43: NNTP Exact Transition Match Metrics

Protocol Model TotalExtracted TotalGT Matched Precision Recall F1-Score
NNTP DS-R1 73 16 1 0.014 0.062 0.022
NNTP Gptd4o-Mini 68 16 3 0.044 0.188 0.071
NNTP Claude3 75 16 2 0.027 0.125 0.044
NNTP Gemini2 116 16 2 0.017 0.125 0.030
NNTP DS-V3 25 16 1 0.040 0.062 0.049
NNTP QWQ 3 16 0 0.000 0.000 0.000
NNTP QWen3 6 16 0 0.000 0.000 0.000
NNTP Gemma3 14 16 0 0.000 0.000 0.000
NNTP Mistral 4 16 0 0.000 0.000 0.000

Table 44: POP3 Exact Transition Match Metrics

Protocol Model TotalExtracted TotalGT Matched Precision Recall F1-Score
POP3 DS-R1 21 18 8 0.381 0.444 0.410
POP3 Gptdo-Mini 33 18 10 0.303 0.556 0.392
POP3 Claude3 26 18 8 0.308 0.444 0.364
POP3 Gemini2 39 18 9 0.231 0.500 0.316
POP3 DS-V3 20 18 9 0.450 0.500 0.474
POP3 QWQ 5 18 1 0.200 0.056 0.087
POP3 QWen3 8 18 4 0.500 0.222 0.308
POP3 Gemma3 38 18 6 0.158 0.333 0.214
POP3 Mistral 29 18 9 0.310 0.500 0.383

33

Table 45: PPP Exact Transition Match Metrics

Protocol Model TotalExtracted TotalGT Matched Precision Recall F1-Score
PPP DS-R1 111 27 10 0.090 0.370 0.145
PPP Gptd4o-Mini 33 27 4 0.121 0.148 0.133
PPP Claude3 138 27 9 0.065 0.333 0.109
PPP Gemini2 126 27 19 0.151 0.704 0.248
PPP DS-V3 21 27 3 0.143 0.111 0.125
PPP QWQ 5 27 0 0.000 0.000 0.000
PPP QWen3 21 27 1 0.048 0.037 0.042
PPP Gemma3 9 27 0 0.000 0.000 0.000
PPP Mistral 12 27 0 0.000 0.000 0.000

Table 46: PPTP Exact Transition Match Metrics

Protocol Model TotalExtracted TotalGT Matched Precision Recall F1-Score
PPTP DS-R1 18 19 12 0.667 0.632 0.649
PPTP Gptd4o-Mini 29 19 2 0.069 0.105 0.083
PPTP Claude3 56 19 3 0.054 0.158 0.080
PPTP Gemini2 23 19 0 0.000 0.000 0.000
PPTP DS-V3 34 19 12 0.353 0.632 0.453
PPTP QWQ 2 19 0 0.000 0.000 0.000
PPTP QWen3 6 19 3 0.500 0.158 0.240
PPTP Gemma3 6 19 0 0.000 0.000 0.000
PPTP Mistral 12 19 1 0.083 0.053 0.065

Table 47: RTSP Exact Transition Match Metrics

Protocol Model TotalExtracted TotalGT Matched Precision Recall F1-Score
RTSP DS-R1 41 33 29 0.707 0.879 0.784
RTSP Gptd4o-Mini 70 33 2 0.029 0.061 0.039
RTSP Claude3 89 33 20 0.225 0.606 0.328
RTSP Gemini2 78 33 13 0.167 0.394 0.234
RTSP DS-V3 39 33 32 0.821 0.970 0.889
RTSP QWQ 2 33 0 0.000 0.000 0.000
RTSP QWen3 10 33 8 0.800 0.242 0.372
RTSP Gemma3 24 33 5 0.208 0.152 0.175
RTSP Mistral 33 33 0 0.000 0.000 0.000

Table 48: SIP Exact Transition Match Metrics

Protocol Model TotalExtracted TotalGT Matched Precision Recall F1-Score
SIP DS-R1 58 20 12 0.207 0.600 0.308
SIP Gpt4o-Mini 127 20 9 0.071 0.450 0.122
SIP Claude3 164 20 0 0.000 0.000 0.000
SIP Gemini2 180 20 18 0.100 0.900 0.180
SIP DS-V3 43 20 13 0.302 0.650 0.413
SIP QWQ 5 20 0 0.000 0.000 0.000
SIP QWen3 11 20 3 0.273 0.150 0.194
SIP Gemma3 47 20 2 0.043 0.100 0.060
SIP Mistral 30 20 0 0.000 0.000 0.000

34

Table 49: SMTP Exact Transition Match Metrics

Protocol Model TotalExtracted TotalGT Matched Precision Recall F1-Score
SMTP DS-R1 45 22 0 0.000 0.000 0.000
SMTP Gpt4o-Mini 52 22 0 0.000 0.000 0.000
SMTP Claude3 40 22 0 0.000 0.000 0.000
SMTP Gemini2 32 22 1 0.031 0.045 0.037
SMTP DS-V3 18 22 1 0.056 0.045 0.050
SMTP QWQ 11 22 0 0.000 0.000 0.000
SMTP QWen3 7 22 0 0.000 0.000 0.000
SMTP Gemma3 6 22 0 0.000 0.000 0.000
SMTP Mistral 35 22 0 0.000 0.000 0.000

Table 50: TCP Exact Transition Match Metrics

Protocol Model TotalExtracted TotalGT Matched Precision Recall F1-Score
TCP DS-R1 15 20 9 0.600 0.450 0.514
TCP Gptd4o-Mini 10 20 4 0.400 0.200 0.267
TCP Claude3 20 20 12 0.600 0.600 0.600
TCP Gemini2 45 20 1 0.022 0.050 0.031
TCP DS-V3 12 20 7 0.583 0.350 0.438
TCP QWQ 9 20 3 0.333 0.150 0.207
TCP QWen3 9 20 4 0.444 0.200 0.276
TCP Gemma3 14 20 3 0.214 0.150 0.176
TCP Mistral 11 20 2 0.182 0.100 0.129

35

	Introduction
	Background and Terminologies

	Related Work
	Rfc2Psm Dataset
	Protocol Selection and Dataset Statistics
	RFC Document Collection and Preprocessing
	Ground-Truth PSM

	PsmBench Benchmark
	Evaluation Metrics
	Challenge and Solution in PSM Matching
	State-Level Matching
	Transition-Level Matching
	Precision, Recall, and F1 Score for PSM Evaluation

	Experiments
	Experiments Setting
	Quantitative Results
	State-Level Matching Results
	Transition Level Matching Results

	Takeaways

	Limitations and Future Work
	Conclusion
	Threshold Ablation
	Prompts Design
	Partial PSM Extraction Prompt
	PSM Combination Prompt

