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ABSTRACT

We introduce a manifold analysis and mapping technique for quantifying the
discrepancy between two representation spaces. Normalized Space Alignment
(NSA) aims to compare pairwise distances between two point clouds. Uniquely
positioned as both an analytical tool and a differentiable loss function, NSA pro-
vides a robust means of comparing and aligning representations across different
layers and models. We show that our technique acts as a pseudometric, satisfies
the properties of a similarity metric, and is continuous and differentiable. NSA
can serve as an auxiliary loss function in neural networks to preserve representa-
tion structure. NSA is not only computationally efficient but it also can effectively
approximate the global structural discrepancy during mini-batching, facilitating
its use in large neural network training paradigms. Output representations gener-
ated by an NSA enhanced neural network are shown to be effective in multiple
downstream tasks. Its versatility extends to robustness analysis and various neural
network training and representation learning applications, highlighting its wide
applicability and potential to enhance the performance of neural networks.

1 INTRODUCTION

Deep learning and representation learning have rapidly emerged as cornerstones of modern artificial
intelligence, revolutionizing how machines interpret complex data. At the heart of this evolution
is the ability of deep learning models to learn efficient representations from vast amounts of un-
structured data, transforming it into a format where patterns become discernible and actionable.
This capability has unlocked unprecedented achievements in fields ranging from computer vision
to natural language processing. As these models delve deeper into learning intricate structures and
relationships within data, the necessity for advanced metrics that can accurately assess and preserve
the integrity of these learned representations becomes increasingly evident. The ability to preserve
embedding structure would enhance the performance, interpretability and robustness (Finn et al.,
2017) of these models.

Although existing methods have been pivotal in achieving state-of-the-art results in several deep
learning domains, they do not attempt to minimize the global structural discrepancy between spaces,
instead focusing on improving relative positions of similar embeddings (Chen et al., 2020; Schroff
et al., 2015). How to quantify global structural similarity of representations is an unsolved problem.
Early proposed measures were based on variants of “Canonical Correlation Analysis (CCA)” (Mor-
cos et al., 2018; Raghu et al., 2017), and “Centered Kernel Alignment (CKA)” (Kornblith et al.,
2019). Recently Barannikov et al. (2022) proposed methods for comparing two data representations
using “Representation Topology Divergence (RTD)” that measures the dissimilarity in multi-scale
topology between two point clouds of equal size with a one-to-one correspondence between points.

There exists a compelling need for a novel approach that bridges the gap between two distinct yet
essential attributes: computational complexity and differentiability. While CKA offer an efficient
means of assessing similarity, it has been proven to be lacking on several fronts (Davari et al., 2023;
Williams et al., 2021; Ding et al., 2021). On the other hand, metrics like RTD provide differentiabil-
ity but at the expense of computational complexity, making them impractical for large-scale datasets.
Addressing this need for a similarity metric that marries the computational efficiency of CKA with
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the differentiability of RTD is crucial. Such a metric not only empowers practitioners to navigate
high-dimensional spaces with ease but also facilitates the seamless integration of similarity-based
techniques into gradient-based optimization pipelines, thereby unlocking new frontiers in machine
learning and data analysis.

We present a distance preserving similarity metric called “Normalized Space Alignment (NSA).”
NSA measures the work done to align all the points in one representation space P to another Q
when both spaces are normalized to lie in unit space. Both representations can lie in different
ambient spaces as long as there is a one to one mapping between the data points. The work done is
measured as the difference between the normalized distance of a point to all other points in the two
representations. When computed for all the points in the space, the mean of the absolute work done
defines the NSA between P and Q.

The efficiency and representativeness of metrics are crucial for practical applicability. A viable
metric must be computationally efficient to facilitate its use in large-scale datasets and real-time
training scenarios. Equally important is the metric’s ability to reflect global structural discrepancies,
even when applied in mini-batching contexts. Metrics that scale efficiently with data size and can
approximate the global discrepancy through batched analysis prove indispensable in neural network
training, where they enable accurate minimization of structural discrepancies between representation
spaces. We prove that NSA not only satisfies these conditions, but is currently the only metric that
manages to do so. Our contributions are summarized below:

• NSA is proposed and established as pseudometric and a similarity index. NSA’s quadratic
computational complexity (in the number of points) is much better than some of the existing
measures (e.g., cubic in the number of simplices for RTD). NSA is shown to be continuous
and differentiable, facilitating its use as a loss function in neural networks. The calculation
of NSA over a subset of the data is shown to be representative of the global NSA value.

• NSA’s performance as a loss function is evaluated in Section 4. NSA is used as a sup-
plementary loss in autoencoders for dimensionality reduction. Results on several datasets
show that NSA can better preserve structural characteristics of the original data compared
to its competitors. Further downstream task analyses shows that the latent embeddings ob-
tained from NSA better preserve semantic relationships between the data. NSA’s ability to
map geodesic distances when reducing representations to their manifold dimension is also
explored.

• NSA’s performance is evaluated on several popular empirical tests, designed to determine
if a similarity index is performing as expected (Section 5). Derived from the experiments
published by Kornblith et al. (2019), NSA is shown to achieve exceptional performance on
the similarity index sanity test, show a strong correlation to test accuracy of data, predict
convergence and provide insights on similarity across architectures and downstream tasks.

• NSA can capture structural discrepancies that result from adversarial attacks (Section 6).
NSA’s performance on global poisoning and evasion attacks on several GNN architectures
is evaluated. NSA shows a high correlation with misclassification rate across different
degrees of perturbation. Nodewise NSA can also provide insights on node vulnerability
and the inner workings of popular defense methods. Furthermore, it can also rank different
architectures. Simple tests with NSA can provide insights on par with other works that
review and investigate the robustness of GNNs (Mujkanovic et al., 2022; Jin et al., 2020a).

2 RELATED WORK

Representation Similarity Measures: Centered Kernel Alignment (CKA) and Representation
Topology Divergence (RTD) are two notable representation similarity measures in neural network
analysis. CKA, utilizing a Representational Similarity Matrix (RSM) approach with mean-centered
representations and a linear kernel, focuses on measuring similarity invariant to scaling and rotation,
though it lacks sensitivity to certain representational changes (Ding et al., 2021) and does not satisfy
the triangle inequality (Williams et al., 2021). RTD, on the other hand, approximates representation
manifolds using simplices to compare topological feature discrepancies between representations,
offering better correlation with model prediction disagreements than CKA. However, RTD’s high
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computational complexity and limited practicality for larger sample sizes constrain its wider appli-
cation.

Dimensionality Reduction: Recent research in dimensionality reduction (Trofimov et al., 2023;
Moor et al., 2020; Rudolph et al., 2019) addresses the challenges of high-dimensional data. Classi-
cal methods like PCA and MDS, as well as local structure-preserving approaches like t-SNE (van der
Maaten & Hinton, 2008), UMAP (McInnes et al., 2018), and PaCMAP (Wang et al., 2021), remain
popular. However, these methods are less practical for large real-world datasets due to high com-
putational demands. Autoencoders (Hinton & Salakhutdinov, 2006) and variational autoencoders
(Kingma & Welling, 2022) offer interpretable low-dimensional representations but may not preserve
the initial data’s topology. Topological autoencoders (Moor et al., 2020) introduced an additional
loss term to maintain topological characteristics in latent representations. Similarly, RTD-AE (Trofi-
mov et al., 2023) enhanced autoencoders with their topology-preserving metric RTD and outper-
formed TopoAE and classical techniques, establishing itself as the state-of-the-art in dimensionality
reduction.

3 NORMALIZED SPACE ALIGNMENT

NSA comes under a category of similarity metrics called Representational Similarity Matrix-Based
(RSM) Measures (Klabunde et al., 2023). Given a representation R : N × D, all RSM based
measures generate a matrix of instance wise similarities D ∈ RN×N where Di,j := d(Ri, Rj).
Now for two representations R and R′, we obtain two RSMs which we can operate upon to compute
a similarity measure. Kornblith et al. (2019); Székely et al. (2007); Kriegeskorte et al. (2008); Chen
(2022) are popular examples of RSM based similarity measures.

3.1 DEFINITION

The following formula is used to compute the NSA between two point clouds X = {x⃗1, . . . , x⃗N}
and Y = {y⃗1, . . . , y⃗N}. d(·, ·) denotes a differentiable distance measure between two vectors.

NSA(X,Y, i) =
1

N

∑
1≤j≤N

∣∣∣∣∣ d(x⃗i, x⃗j)

maxx⃗∈X d(x⃗, 0⃗)
− d(y⃗i, y⃗j)

maxy⃗∈Y d(y⃗, 0⃗)

∣∣∣∣∣ .1
NSA(X,Y ) =

1

N

∑
1≤i≤N

NSA(X,Y, i).

Throughout the paper, we use d(·, ·) to denote the euclidean distance (unless specified otherwise).

Essentially, we compute the differences of normalized distances (L1-norm) of a point to all other
points in the two representations, and then take the average of all these differences.

3.2 NSA AS A PSEUDOMETRIC

We show that NSA is a psuedometric by proving the necessary properties in the Appendix: •
NSA(X,X) = 0 (lemma 1), • Symmetry (lemma 2), • Non-negativity (lemma 3), • Triangle In-
equality (lemma 4).

3.3 NSA AS A SIMILARITY METRIC

We adopt the necessary conditions of Invariance to Isotropic Scaling, Invariance to Orthogonal
Transformation, and (Not) Invariance to Invertible Linear Transformation (ILT) as proposed by Ko-
rnblith et al. (2019) for a similarity metric. We establish these condition in Appendix B: lemma 7),
lemma 9, and B.3. These conditions ensure that the similarity metric would be unaffected by rotation
or rescaling of the representation space. Kornblith et al. (2019) proved that Invariance to ILT for a
similarity metric gives the same result for any representation having width greater than or equal to

10⃗ denotes a vector (of appropriate size) containing all 0s.
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the dataset size. They also discuss other scenarios wherein Invariance to ILT would be detrimental
to similarity indices.

3.4 COMPLEXITY ANALYSIS

NSA’s computational complexity is given by O(N2D) where N is the number of datapoints and
D is max(D(R), D(R′)) where R and R′ are the two representation spaces and D(·) is the di-
mensionality of the space. In practice, NSA’s computation is rapid as we use torch.cdist to compute
pairwise distances on the GPU. CKA has similar complexity to NSA. While RTD also starts off with
O(N2D) operations to generate pairwise distances, the barcode computation is cubic in the number
of simplices involved which could be significantly more than the number of points. Running times
of NSA-AE are given in Table 3. NSA-AE is several times faster than RTD-AE and it can run on
much larger batch sizes.

3.5 IMPROVING ROBUSTNESS OF NSA

Formally, NSA is normalized by the point that is furthest away from the origin for the representation
space. In practice, NSA tends to yield more robust results and exhibits reduced susceptibility to
outliers when distances are normalized by scaling relative to a quantile of the distances measured
from the origin (e.g., 0.98 quantile). This quantile-based approach ensures that the distances are
adjusted proportionally, taking into account the spread of values among the points with respect to
their distances from the origin. It also ensures that any outliers do not affect the rescaling of the
point cloud to the unit space.

4 NSA AS A LOSS FUNCTION

The viability of NSA as a loss function is estabilished by demonstrating its non-negativity (lemma 3),
nullity (lemma 1) and continuity, and by developing a differentiation scheme. Proofs for all 4 prop-
erties are presented in the Appendix C.We also demonstrate that the expectation of NSA over a
minibatch is equal to the NSA of the whole dataset, cementing its feasibility as a loss function in
Appendix D.

4.1 DEFINING NSA-AE: AUTOENCODER USING NSA

To evaluate the efficacy of NSA as a structural discrepancy minimization metric, we take inspira-
tion from TopoAE and RTD-AE, and use NSA as loss function in autoencoders for dimensionality
reduction, thus defining NSA-AE. A normal autoencoder aims to minimize the MSE loss between
the original X and reconstructed embedding X̂ . We add NSA Loss as an additional loss term that
aims to minimize the discrepancy in representation structure between the original embedding space
X and the latent embedding space Z. The autoencoder is built as a compression autoencoder where
the encoder attempts to reduce the original data to a latent dimension and the decoder attempts to re-
construct the original embedding. Since NSA can be used in autoencoders with mini-batch training,
NSA-AE runs almost as fast as a regular autoencoder. We compare the performance of NSA-AE
against PCA, UMAP, a regular autoencoder, TopoAE and RTD-AE on four real world datasets.

The performance of NSA-AE is evaluated on the structural and topological similarity between the
input data X and the latent data Z. In order to evaluate the performance, we use: (1) linear cor-
relation of pairwise distances, (2) triplet distance ranking accuracy (Wang et al., 2021), (3) RTD,
(4) triplet distance ranking accuracy between cluster centers, and (5) NSA. As seen in Table 1,
NSA-AE has better correlation between the original data and the latent data compared to the other
models. NSA-AE outperforms the other approaches on all metrics but RTD, where it ranks just
below RTD-AE. NSA-AE achieves MSE and running times similar to a normal autoencoder while
previous works are several times slower, as shown in Table 3 in the Appendix.

4.2 DOWNSTREAM TASK ANALYSIS

We demonstrate that NSA-AE effectively preserves the structural integrity between the original data
and the latent space. However, it is imperative to note that such preservation does not inherently
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Quality measure
Dataset Method L. C. T. A. RTD T. A. C.C NSA
MNIST PCA 0.910 0.871± 0.008 6.69± 0.21 0.986± 0.117 0.0817± 0.0025

UMAP 0.424 0.620± 0.013 18.06± 0.48 0.824± 0.381 0.2305± 0.0031
AE 0.801 0.778± 0.007 7.47± 0.20 0.828± 0.377 0.0571± 0.0011
TopoAE 0.765 0.771± 0.010 6.16± 0.23 0.886± 0.318 0.0477± 0.0011
RTD-AE 0.837 0.811± 0.004 4.26± 0.14 0.842± 0.365 0.1694± 0.0024
NSA-AE 0.942 0.885± 0.006 5.44± 0.12 0.944± 0.230 0.0198± 0.0001

F-MNIST PCA 0.978 0.951± 0.006 5.91± 0.12 1.000± 0.0 0.1722± 0.0038
UMAP 0.592 0.734± 0.012 12.16± 0.39 0.916± 0.277 0.1420± 0.0011
AE 0.872 0.850± 0.008 5.60± 0.21 0.926± 0.262 0.0527± 0.0028
TopoAE 0.875 0.854± 0.009 4.27± 0.15 0.946± 0.226 0.111± 0.0027
RTD-AE 0.949 0.902± 0.004 3.05± 0.12 0.972± 0.165 0.0349± 0.0015
NSA-AE 0.987 0.952± 0.002 4.11± 0.21 0.992± 0.089 0.0091± 0.0001

CIFAR-10 PCA 0.972 0.926± 0.009 4.99± 0.16 0.994± 0.077 0.1809± 0.0046
UMAP 0.756 0.786± 0.010 12.21± 0.22 0.956± 0.205 0.1316± 0.0026
AE 0.834 0.836± 0.006 4.07± 0.28 0.920± 0.271 0.0616± 0.0019
TopoAE 0.889 0.854± 0.007 3.89± 0.11 0.942± 0.234 0.0625± 0.0014
RTD-AE 0.971 0.922± 0.002 2.95± 0.08 0.976± 0.153 0.0113± 0.0003
NSA-AE 0.985 0.936± 0.004 3.07± 0.11 0.984± 0.125 0.0077± 0.0001

COIL-20 PCA 0.966 0.932± 0.005 6.49± 0.23 0.992± 0.090 0.2204± 0.0
UMAP 0.274 0.567± 0.016 15.50± 0.67 0.669± 0.471 0.1104± 0.0
AE 0.850 0.836± 0.008 9.57± 0.27 0.889± 0.314 0.0758± 0.0
TopoAE 0.804 0.805± 0.011 7.33± 0.21 0.885± 0.319 0.0676± 0.0
RTD-AE 0.908 0.871± 0.005 5.89± 0.10 0.891± 0.311 0.0523± 0.0
NSA-AE 0.955 0.919± 0.004 7.46± 0.23 0.939± 0.240 0.0157± 0.0

Table 1: Autoencoder results. NSA-AE outperforms or almost matches all other approaches on
all the evaluation metrics. RTD-AE, which explicitly minimizes on RTD has a slightly lower RTD
value while PCA has marginally higher Triplet Ranking Accuracy on Cluster Centers.

ensure the utility of the resultant latent embeddings. Metrics like NSA, which focus on global
structure preservation, excel in scenarios where the preservation of semantic relationships between
data points holds paramount importance.

Link prediction is an ideal task to demonstrate NSA’s structure preserving ability. Successful link
prediction mandates a global consistency within the embedding space, necessitating that nodes with
likely connections are proximate while dissimilar nodes are distant. Any form of clustering or local-
ized alterations to the representation structure can disrupt node interrelationships. In our study, we
employ a Graph Convolutional Network (GCN) to train link prediction models across four distinct
graph datasets. The original GCN embedding space encompasses 256 dimensions. This space is
subsequently processed through NSA-AE, resulting in a reduced-dimensional representation. No-
tably, the latent embeddings produced by NSA-AE exhibit superior performance when compared to
both a conventional autoencoder and RTD-AE as shown in Table 2. Additionally, we present results
showcasing the effectiveness of semantic textual similarity matching using Word2Vec embeddings
in the Appendix M.

4.3 APPROXIMATING THE MANIFOLD OF A REPRESENTATION SPACE

Incorporating a structure-preserving metric with Mean Squared Error (MSE) in an autoencoder,
NSA minimizes the Euclidean distance between points in a representation space to reduce data
dimensionality while maintaining structure. High-dimensional data typically resides in a lower-
dimensional manifold, where the Euclidean distance approximates the geodesic distance. This prop-
erty is exploited in NSA to interpret data with misleading ambient distances.

Consequently, when armed with knowledge pertaining to the manifold dimension of the input data
and the geodesic distances between data points, NSA-AE can be trained to minimize the Euclidean
distance between these points. This optimization process effectively results in the reduction of
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Dataset
Method Latent Dim Amazon Comp Cora Citeseer Pubmed

256* 97.56 97.89 97.25 97.61
128 50.478 50.0 50.0 51.17

AE 64 50.56 50.0 50.0 50.03
32 59.63 49.84 49.80 52.78
256* 95.81 97.23 97.53 97.58
128 94.63 86.52 90.54 91.80

RTD-AE 64 91.63 82.38 89.23 97.26
32 88.34 83.13 57.18 87.05
256* 96.12 96.31 98.77 97.57
128 95.74 96.04 97.18 97.31

NSA-AE 64 95.90 95.54 96.85 96.40
32 96.01 95.37 94.25 97.53

Table 2: Downstream task analysis with Link Prediction. The output embeddings from a GCN
trained on link prediction are passed through all 3 autoencoder architectures. Latent embeddings
are obtained at various dimensions and ROC-AUC scores are calculated on the latent embeddings.
The first row for every architecture shows the ROC-AUC score for the reconstructed embeddings,
proving that none of the architectures compensate on reconstruction accuracy and work well with
MSE Loss. The other rows show the scores for the latent embeddings. NSA-AE outperforms both a
regular autoencoder and RTD-AE across all datasets and all latent dimensions.

the input data to its intrinsic manifold shape. We show the results of mnimizing for euclidean
distance and geodesic distance for the Swiss Roll Dataset in Figure 1. Conversely, in cases where
the manifold dimension of the input data remains unknown, the latent dimension at which NSA
minimization becomes optimal inherently corresponds to the manifold dimension of the data. This
observation underscores the practical significance of understanding the manifold dimension when
leveraging NSA for dimensionality reduction within an autoencoder framework.

(a) (b) (c)

Figure 1: Results of NSA-AE on the Swiss Roll Dataset. (a) The original Swiss Roll Dataset in 3D.
(b) Result of dimensionality reduction to 2D using NSA-AE when minimizing euclidean distance.
(c) Result of dimensionality reduction to 2D using NSA-AE when minimizing geodesic distance

5 EMPIRICAL ANALYSIS OF NSA

Empirical Analysis of intermediate representations with similarity measures can help uncover the
intricate workings of various neural network architectures. Historically, much of this empirical
scrutiny has been directed towards Convolutional Neural Networks (CNNs) Kornblith et al. (2019);
Barannikov et al. (2022) leaving analysis of other domains untouched. Graph Neural Networks
(GNNs), in particular, present a unique and relatively unexplored territory. Modeling graphs has
been particularly challenging because of impossibility results on isometric embeddings (no mat-
ter how many target dimensions) and bounds on distortions of their embedding into Euclidean
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spaces Bourgain (1985); Linial et al. (1994). GNNs, with their inherent complexity, provide a robust
testing ground for NSA. NSA is designed to measure ’dissimilarity’ between two embedding spaces
as long as a one to one mapping exists between the points in both embedding spaces, regardless of
their originating architecture or dimensionality.

5.1 COMPARING DIFFERENT INITIALIZATIONS

GCN GSAGE GAT CGCN

RTD

NSA

Figure 2: Sanity Tests for Node Classification (Amazon Computers Dataset). The heatmaps show
layer-wise dissimilarity values for two different initialization of the same dataset on four different
GNN architectures. The first row shows the RTD values and the second row shows the NSA values.
NSA shows a stronger layer-wise correlation. Results for CKA’ are in Appendix Q

We conduct a basic sanity test for evaluating similarity metrics as suggested by Kornblith et al.
(2019). When two networks that are structurally identical but trained from different initial condi-
tions are compared, we expect that, for each layer’s intermediate representation, the most similar
representation in the other model should be the corresponding layer that matches in structure. We
perform the tests when the models are trained on Node Classification on the Amazon Computers
dataset (Shchur et al., 2019) in Figure 2. At the end of training, the intermediate embeddings of
the input data at each layer are extracted and utilized to compute the similarity between two layers.
Barannikov et al. (2022) and Chen (2022) show that similarity indices can capture the structure of
an embedding space with just a subset of the entire data. We use a sample of 4000-9000 data points
to compute the NSA between two representation spaces and the recommended sample size of 400
points for RTD.

We utilize four different GNN architectures; Graph Convolution Networks (Kipf & Welling, 2017),
GraphSAGE (Hamilton et al., 2017), Graph Attention Networks (Veličković et al., 2018) and Clus-
terGCN (Chiang et al., 2019) for our experiments. We also showcase the results of CKA’ and RTD
to empirically demonstrate that NSA is more nuanced than RTD and CKA’, and is capable of iden-
tifying patterns that are expected based on the design of the architectures. Both NSA and RTD
compare dissimilarity while CKA compares similarity. For ease of comparison between the metrics,
throughout this paper we use 1 − CKA to show the performance of CKA and label it CKA′. For
further details on the architectures, model setup and hyperparameters, please refer to Appendix N.

5.2 CONVERGENCE TESTS

We examine epoch-wise convergence by comparing representations between the current and final
epochs. Figure 3 illustrates our results for GAT and CGCN when trained on the Amazon Dataset on
node classification. We observe that NSA’s convergence corresponds with the test accuracy conver-
gence of the model. This shows that NSA can be used as an early stopping measure during neural
network training, stopping the weight updates once the structure of your intermediate representa-
tions stabilize. We show results for other architectures on node classification and link prediction
with GCN and GraphSAGE in Figure 17.
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(a) GAT Epochwise Convergence Heatmap (b) CGCN Epochwise Convergence Heatmap

(c) Test Accuracy (d) Test Accuracy

Figure 3: Convergence Tests for Node Classification on the Amazon Computers Dataset. The rep-
resentation for each layer is compared epochwise against that layer’s final epoch representation.
NSA’s convergence corresponds strongly with the test accuracy convergence for both models. The
red line shows the point at which the model’s intermediate representations converge

6 ANALYZING ADVERSARIAL ATTACKS WITH NSA

Addressing the issue of adversarial attacks in machine learning models, particularly in the context of
Graph Neural Networks (GNNs), is of paramount importance. Adversarial attacks pose a significant
threat in various domains, including social networks, recommendation systems, and cybersecurity,
where GNNs are extensively employed. To fortify GNNs against adversarial attacks, the incorpo-
ration of a structure-preserving minimization term in the training process is a promising approach.
Such a term enforces the preservation of key structural characteristics within the data, reducing the
model’s susceptibility to perturbations. However, the efficacy of this approach greatly hinges on the
availability of a similarity metric capable of discerning perturbations in the representation space.

In this experimental study, we subject five distinct Graph Neural Network (GNN) architectures to
both poisoning and evasion adversarial attacks using projected gradient descent (Xu et al., 2019).
We use the regular GCN along with four robust GNN variants; SVD-GCN (Entezari et al., 2020),
GNNGuard (Zhang & Zitnik, 2020), GRAND (Chamberlain et al., 2021) and ProGNN (Jin et al.,
2020b). To assess the vulnerability of these architectures, we manipulated the initial adjacency
matrices by introducing perturbations ranging from 5% to 25%. The objective was to gauge the
impact of these perturbations on the misclassification rates of the GNN models and to see if NSA
shows a strong correlation to the misclassification rates over different perturbation rates.

NSA was computed at each stage by comparing the clean graph’s output representations with those
from the perturbed graph. Our experiments revealed that NSA’s variation over different perturbation
rates mirrors the misclassification trends of various GNN architectures during poisoning attacks and
NSA’s ranking is in line with previous works (Jin et al., 2020a; Mujkanovic et al., 2022). However,
in evasion attacks, SVD-GCN stood out with its NSA scores significantly deviating from its misclas-
sification rates. To elucidate this anomaly, Figure 5 examines the boundary nodes of different GNN
architectures. Post-attack, SVD-GCN showed a substantial increase in boundary nodes—defined by
low classification confidence and proximity to the decision boundary—accompanied by a general
decline in classification confidence. This surge, coupled with SVD-GCN’s highest pointwise NSA
values among all tested architectures, potentially accounts for its high NSA scores and heightened
vulnerability. It also this vulnerability in structure, that is exploited by Mujkanovic et al. (2022) with
adaptive adversarial attacks, to cause a catastrophic failure in SVD-GCN. This detailed analysis un-
derpins our assertion that NSA, through simple empirical analysis, can unveil concealed weaknesses
in defense methods not immediately apparent from conventional metrics.
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(a) (b) (c) (d)

Figure 4: Robustness tests with NSA. (a) Variation of Misclassification Rate against Data Perturba-
tion Rate for GNN architectures under global evasion attack. (b) NSA against perturbation rate for
GNN architectures under global evasion attack. (c) Variation of Misclassification Rate against Data
Perturbation Rate for GNN architectures under global poisoning attack. (b) NSA against perturba-
tion rate for GNN architectures under global poisoning attack

(a) (b) (c)

Figure 5: Analyzing node vulnerability with NSA. (a) Nodewise NSA of the 50 nodes with the
greatest decline in Classification Confidence. SVD-GCN has the highest nodewise NSA variations.
(b) Classification Confidence of all the nodes after an evasion attack. (c) Increase in number of
boundary nodes for each model post attack and its correlation with the NSA of the boundary nodes.

7 DISCUSSION AND CONCLUSION

In conclusion, we have demonstrated that the proposed measure of NSA is simple, efficient, and
useful across many aspects of analysis and synthesis of representation spaces: robustness across
initializations, convergence across epochs, autoencoders, adversarial attacks, and effects of down-
stream tasks across architectures. Its computational efficiency and the ability to converge to its
global value in mini batches should allow it to be useful in many applications and generalizations
where scalability is desired.

One possibility for future research would be to combine NSA with measures of intrinsic dimension-
ality (Camastra & Staiano, 2016; Campadelli et al., 2015). This is motivated by the observation that
real-world data presented in a high-dimensional space usually lies along a manifold of much lower
dimension (Goodfellow et al., 2016). A challenge here would be ensuring that the resulting measure
does not add much of a computational overhead to NSA.

Empirical findings by Kornblith et al. (2019) have indicated minimal improvement with the RBF
variant of the Centered Kernel Alignment (CKA) over the linear kernel CKA. However, it is crucial
to recognize that in high-dimensional spaces, the Euclidean distance metric may not be particularly
effective, as highlighted by theoretical works such as Bellman’s ”The Curse of Dimensionality”
(Bellman, 1961). Despite this, Euclidean distance remains prevalent in various domains, including
contrastive (Chen et al., 2020) or triplet losses (Schroff et al., 2015), style transfer (Johnson et al.,
2016) and similarity indices, often yielding successful empirical results. Our future investigations
intend to explore alternative distance measures, potentially considering non-linear options such as
geodesic distance and assessing their viability.

Finally, on the question of structural similarity and functional similarity, Davari et al. (2023) high-
light CKA’s susceptibility to subset translations and situations where CKA changes while functional
behavior remains consistent. While NSA is more tuned to structural similarity, we plan to carry out
a similar analysis in the future.

9



Under review as a conference paper at ICLR 2024

8 REPRODUCIBILITY STATEMENT

Our code is anonymously available at https://anonymous.4open.science/r/NSA. The code includes
notebooks with instructions to reproduce all the experiments presented in this paper. To reproduce
Table 1 and Table 3 you will access the NSA AE folder. The hyperparameter setup to reproduce
the autoencoder results are in Table 4. To reproduce all the heatmaps in the paper, you will need
to access the GNN analysis folder. The hyperparameter setup to reproduce these results is given in
Table 6. To reproduce the results in Section 6, you will access the Adversarial Analysis folder. No
hyperparameter setup is necessary to run the notebooks in this section.
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A PROOFS FOR NSA AS A PSEUDOMETRIC

A.1 NSA(X,X) = 0

Lemma 1 (Identity). Let X be a point cloud over some space, then NSA(X,X) = 0.

Proof. Let X = {x1, . . . , xN}. Let maxx∈X(d(x, 0)) = D. Then

NSA(X,X) =
1

N2

∑
1≤i,j≤N

∣∣∣∣d(xi, xj)

D
− d(xi, xj)

D

∣∣∣∣ .
Simplifying, we get

NSA(X,X) =
1

N2D

∑
1≤i,j≤N

|d(xi, xj)− d(xi, xj)| = 0.

Lemma 2 (Symmetry). Let X,Y be two point clouds of the same size, then NSA(X,Y ) =
NSA(Y,X).

Proof. Let X = {x1, . . . , xN} and Y = {y1, . . . , yN}. Let maxx∈X(d(x, 0)) = DX and
maxy∈Y (d(y, 0)) = DY . Then

NSA(X,Y ) =
1

N2

∑
1≤i,j≤N

∣∣∣∣d(xi, xj)

DX
− d(yi, yj)

DY

∣∣∣∣ .
Since |a− b| = |b− a|,

NSA(X,Y ) =
1

N2

∑
1≤i,j≤N

∣∣∣∣d(yi, yj)DY
− d(xi, xj)

DX

∣∣∣∣ .
Hence, NSA(X,Y ) = NSA(Y,X).

Lemma 3 (Non-negativity). Let X,Y be two point clouds of the same size, then NSA(X,Y ) ≥ 0.

Proof. Let X = {x1, . . . , xN} and Y = {y1, . . . , yN}. Let maxx∈X(d(x, 0)) = DX and
maxy∈Y (d(y, 0)) = DY . Then

NSA(X,Y ) =
1

N2

∑
1≤i,j≤N

∣∣∣∣d(xi, xj)

DX
− d(yi, yj)

DY

∣∣∣∣ .
Since, for all i, j, ∣∣∣∣d(xi, xj)

DX
− d(yi, yj)

DY

∣∣∣∣ ≥ 0,

we get NSA(X,Y ) ≥ 0.

Lemma 4 (Triangle inequality). Let X,Y and Z be three point clouds of the same size, then
NSA(X,Z) ≤ NSA(X,Y ) + NSA(Y,Z).

Proof. Let X = {x1, . . . , xN}, Y = {y1, . . . , yN} and Z = {z1, . . . , zN}. Let
maxx∈X(d(x, 0)) = DX , maxy∈Y (d(y, 0)) = DY and maxz∈Z(d(z, 0)) = DZ . Then

NSA(X,Z) =
1

N2

∑
1≤i,j≤N

∣∣∣∣d(xi, xj)

DX
− d(zi, zj)

DZ

∣∣∣∣ .
For each i, j, add and subtract d(yi,yj)

DY
, then

NSA(X,Z) =
1

N2

∑
1≤i,j≤N

∣∣∣∣(d(xi, xj)

DX
− d(yi, yj)

DY

)
+

(
d(yi, yj)

DY
− d(zi, zj)

DZ

)∣∣∣∣ .
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Since |a+ b| ≤ |a|+ |b|,

NSA(X,Z) ≤ 1

N2

∑
1≤i,j≤N

(∣∣∣∣d(xi, xj)

DX
− d(yi, yj)

DY

∣∣∣∣+ ∣∣∣∣d(yi, yj)DY
− d(zi, zj)

DZ

∣∣∣∣) .

Hence,

NSA(X,Z) ≤ 1

N2

∑
1≤i,j≤N

∣∣∣∣d(xi, xj)

DX
− d(yi, yj)

DY

∣∣∣∣+ 1

N2

∑
1≤i,j≤N

∣∣∣∣d(yi, yj)DY
− d(zi, zj)

DZ

∣∣∣∣ ,
or NSA(X,Z) ≤ NSA(X,Y ) + NSA(Y, Z).

From Lemma 1, Lemma 2, Lemma 3 and Lemma 4, we see that NSA is a psuedometric over the
space of point clouds.

B PROOFS FOR NSA AS A SIMILARITY METRIC

B.1 INVARIANCE TO ISOTROPIC SCALING

Lemma 5 (Invariance to Isotropic scaling in the first coordinate). Let X and Y be two point clouds
of the same size. Let c ∈ R and c ̸= 0, Xc be the point cloud with each point in X scaled by a factor
of c, then NSA(X,Y ) = NSA(Xc, Y ).

Proof. Let X = {x1, . . . , xN} and Y = {y1, . . . , yN}, then Xc = {cx1, . . . , cxN}. Let
maxx∈X(d(x, 0)) = DX , maxy∈Y (d(y, 0)) = DY and maxx∈Xc(d(x, 0)) = DXc . Since, each
point in Xc is the c times each point in X . Then, we can write DXc = maxx∈X(d(cx, 0)). Since, for
any two points, x1 and x2, d(cx1, cx2) = |c|d(x1, x2), then DXc

= |c|maxx∈X(d(x, 0)). Hence,
Dxc

= |c|DX . From the definition of NSA,

NSA(Xc, Y ) =
1

N2

∑
1≤i,j≤N

∣∣∣∣(d(cxi, cxj)

DXc

− d(yi, yj)

DY

)∣∣∣∣ .
Again, using d(cxi, cxj) = |c|d(xi, xj) and DXc

= |c|DX ,

NSA(Xc, Y ) =
1

N2

∑
1≤i,j≤N

∣∣∣∣( |c|d(xi, xj)

|c|DX
− d(yi, yj)

DY

)∣∣∣∣ .
Simplifying,

NSA(Xc, Y ) =
1

N2

∑
1≤i,j≤N

∣∣∣∣(d(xi, xj)

DX
− d(yi, yj)

DY

)∣∣∣∣ .
Hence, NSA(Xc, Y ) = NSA(X,Y ).

By Lemma 2, we can see that this gives us invariance to isotropic scaling in the second coordinate
as well.

Lemma 6 (Invariance to Isotropic scaling in the second coordinate). Let X and Y be two point
clouds of the same size. Let c ∈ R and c ̸= 0, Yc be the point cloud with each point in Y scaled by
a factor of c, then NSA(X,Y ) = NSA(X,Yc).

Combining Lemma 5 and Lemma 6, we get the required lemma.

Lemma 7 (Invariance to Isotropic scaling). Let X and Y be two point clouds of the same size. Let
c1, c2 ∈ R, c1 ̸= 0 and c2 ̸= 0, Xc1 be the point cloud with each point in X scaled by a factor
of c1 and Yc2 be the point cloud with each point in Y scaled by a factor of c2, then NSA(X,Y ) =
NSA(Xc1 , Yc2).
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B.2 INVARIANCE TO ORTHOGONAL TRANSFORMATION

Lemma 8 (Invariance to Orthogonal transformation in the first coordinate). Let X and Y be two
point clouds of the same size. Let U be an orthogonal transformation on the point space of X , XU

be the point cloud with each point in X transformed using U , then NSA(X,Y ) = NSA(XU , Y ).

Proof. Let X = {x1, . . . , xN} and Y = {y1, . . . , yN}, then XU = {Ux1, . . . , UxN}. Let
maxx∈X(d(x, 0)) = DX , maxy∈Y (d(y, 0)) = DY and maxx∈XU

(d(x, 0)) = DXU
. Since, each

point in XU is the U times each point in X . Then, we can write DXU
= maxx∈X(d(Ux, 0)).

Since, for any two points, x1 and x2, d(Ux1, x2) = d(x1, U
Tx2), and UT 0 = 0, then DXc

=
maxx∈X(d(x, 0)). Hence, Dxc

= DX . From the definition of NSA,

NSA(XU , Y ) =
1

N2

∑
1≤i,j≤N

∣∣∣∣(d(Uxi, Uxj)

DXc

− d(yi, yj)

DY

)∣∣∣∣ .
Again, using d(Uxi, Uxj) = d(xi, U

TUxj), and UTU = I ,

NSA(XU , Y ) =
1

N2

∑
1≤i,j≤N

∣∣∣∣(d(xi, xj)

DX
− d(yi, yj)

DY

)∣∣∣∣ .
Hence, NSA(XU , Y ) = NSA(X,Y ).

By Lemma 2, we get invariance to orthogonal transformation in the second coordinate too and
combining, we get the required lemma.
Lemma 9 (Invariance to Orthogonal transformation). Let X and Y be two point clouds of the same
size. Let U1 be an orthogonal transformation on the point space of X , XU1 be the point cloud
with each point in X transformed using U1. Similarly, let U2 be an orthogonal transformation
on the point space of Y , YU2 be the point cloud with each point in Y transformed using U2, then
NSA(X,Y ) = NSA(XU1

, YU2
).

B.3 NOT INVARIANT UNDER INVERTIBLE LINEAR TRANSFORMATION (ILT)

We can easily see this with a counter example. Let X = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}. Let Y =
{(1, 1, 0), (1, 0, 1), (0, 1, 1)}. Define A to be an invertible linear map such that A(1, 0, 0) = (2, 0, 0),
A(0, 1, 0) = (0, 1, 0) and A(0, 0, 1) = (0, 0, 1). Let XA be the point cloud with each point
in X transformed using A. Then from some calculation, we can see that NSA(X,Y ) = 0 but
NSA(XA, Y ) = 1

9 . Hence, we can see that NSA is not invariant under Invertible Linear Transfor-
mations.

C PROOFS FOR NSA AS A LOSS FUNCTION

C.1 DIFFERENTIABILITY OF NSA

To derive the sub-gradient ∂NSA(X,Y )
∂xi

, we first define the following notation. Let I : {T, F} →
{0, 1} be a function that takes as input some condition and outputs 0 or 1 such that I(T ) = 1 and
I(F ) = 0. Let DX = maxx∈X(d(x, 0)). Then it is easy to see that

∂DX

∂xi
=

xi

d(xi, 0)
I{argmax

x∈X
(d(x, 0)) = i}.

Also, notice that ∂d(xi,xj)
xi

=
xi−xj

d(xi,xj)
, and that for j ̸= i and k ̸= i, ∂d(xj ,xk)

xi
= 0.

Let mi,j
X =

d(xi,xj)
DX

and mi,j
Y =

d(yi,yj)
DY

. Hence, combining, we get

∂mj,k
X

∂xi
=

∂d(xj ,xk)
∂xi

DX
−

d(xj , xk)
∂DX

∂xi

(DX)2
, where these partial differentials are derived above.

Lastly, notice that
∂|mj,k

X −mj,k
Y |

∂mj,k
X

= (−1)I(m
j,k
Y >mj,k

X ).
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Combining all the above, we get

∂NSA(X,Y )

∂xi
=

1

N2

∑
1≤j,k≤N

∂
∣∣∣mj,k

X −mj,k
Y

∣∣∣
∂mj,k

X

∂mj,k
X

∂xi
=

1

N2

∑
1≤j,k≤N

(−1)I(m
j,k
Y >mj,k

X ) ∂m
j,k
X

∂xi
.

Sub-gradients ∂NSA(X,Y )
∂yi

can be similarly derived.

C.2 CONTINUITY

We prove the continuity of NSA by showing that NSA is a composition of continuous functions
(Carothers, 2000, Theorem 5.10). Let

fi,j(X,Y ) =

∣∣∣∣ d(xi, xj)

maxx∈X(d(x, 0))
− d(yi, yj)

maxy∈Y (d(y, 0))

∣∣∣∣ .
It’s easy to see that NSA(X,Y ) =

1

N2

∑
1≤i,j≤N

fi,j(X,Y ).

Since a sum of continuous functions is continuous, all we need to show is that fi,j(X,Y ) is con-
tinuous for all 1 ≤ i, j ≤ N . This is easy to see because fi,j(X,Y ) can be seen as a composition
of d(·, ·) and max(·), along with the algebraic operations of subtraction, division and taking the
absolute value. All the above operations are continuous everywhere2, we get that their composition
is also continuous everywhere. Hence, NSA(·, ·) is continuous.

D CONVERGENCE OF SUBSET NSA

In the following section, we show that NSA corresponds well to minibatching and hence can be used
as a loss term. In particular, Lemma lemma 10 proves theoretically that in expectation, NSA over a
minibatch is equal to NSA of the whole dataset. Figure 6 shows that NSA over a large number of
trials approximates the NSA of the entire dataset while RTD fails to do so. The experiment is run on
the output embeddings of a GCN trained on node classification for the Cora Dataset. We compare
the convergence with a batch size of 200 and 500.

Lemma 10 (Subset NSA convergence). Let X,Y be two point clouds of the same size N such that
X = {x1, . . . , xN} and Y = {y1, . . . , yN}. Let X̃ be some randomly sampled s sized subsets of X
(for some s ≤ N ). Define Ỹ ⊂ Y as yi ∈ Ỹ iff xi ∈ X̃ . Then the following holds true

Ẽ
X,Ỹ

[
NSA(X̃, Ỹ )

]
= NSA(X,Y ).

Proof. Let maxx∈X(d(x, 0)) = DX and maxy∈Y (d(y, 0)) = DY . Then

NSA(X,Y ) =
1

N2

∑
1≤i,j≤N

∣∣∣∣d(xi, xj)

DX
− d(yi, yj)

DY

∣∣∣∣ .
Define IX̃ (xi) as

IX̃ (xi) =

{
1 if xi ∈ X̃,

0 otherwise.

Then we can see that

NSA(X̃, Ỹ ) =
1

s2

∑
1≤i,j≤N

∣∣∣∣d(xi, xj)

DX
− d(yi, yj)

DY

∣∣∣∣ IX̃ (xi) IX̃ (xj) .

2Note that division is not continuous when the denominator goes to zero. Since, the denominators are
maxx∈X(d(x, 0)) and maxy∈Y (d(y, 0)), as long as neither of the representations is all zero, the denominator
does not go to zero.
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Hence, taking expectation over X̃, Ỹ , we get

Ẽ
X,Ỹ

[
NSA(X̃, Ỹ )

]
=

1

s2
Ẽ

X,Ỹ

 ∑
1≤i,j≤N

∣∣∣∣d(xi, xj)

DX
− d(yi, yj)

DY

∣∣∣∣ IX̃ (xi) IX̃ (xj)

 .

By linearity of expectation, we get

Ẽ
X,Ỹ

[
NSA(X̃, Ỹ )

]
=

1

s2

∑
1≤i,j≤N

∣∣∣∣d(xi, xj)

DX
− d(yi, yj)

DY

∣∣∣∣ Ẽ
X,Ỹ

[IX̃ (xi) IX̃ (xj)] .

Assuming s >> 1, each xi is independently in X̃ with probability s/N , hence, we get

Ẽ
X,Ỹ

[
NSA(X̃, Ỹ )

]
=

1

s2

∑
1≤i,j≤N

∣∣∣∣d(xi, xj)

DX
− d(yi, yj)

DY

∣∣∣∣ s

N

s

N
.

Hence, we have
Ẽ

X,Ỹ

[
NSA(X̃, Ỹ )

]
= NSA(X,Y ).

(a) (b)

Figure 6: Expectation of subset metrics over a large number of trials. (a) Mean subset NSA variation
as the number of trials are increased. (b) Mean subset RTD variation as the number of trials are
increased.

E ARE GNNS TASK SPECIFIC LEARNERS?

We use NSA to investigate whether representations produced by GNNs are specific to the down-
stream task. For this, we explored the similarity of representations of different GNN architectures
when trained on the same task versus their similarity when trained on different downstream tasks.

E.1 CROSS ARCHITECTURE TESTS ON THE SAME DOWNSTREAM TASK

We tested layerwise representational similarity on the task of node classification (on the Amazon
Computers Dataset) across different GNN architectures: GCN, ClusterGCN (CGCN), GraphSAGE,
and GAT. Just like in the sanity tests, models that are similar in architecture or training paradigms
have a higher layerwise similarity: this implies that the highest similarity is between GCN and
ClusterGCN that differ only in their training paradigms. We also observe (a less pronounced) linear
relationship between the other pairs of architectures. These results are shown in Figure 7.
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NSA

(a) GCN vs CGCN (b) GraphSAGE vs GAT (c) GCN vs CGCN (d) GCN vs GSAGE

Figure 7: Cross Architecture Tests using NSA on the Amazon Computers Dataset. (a) Layerwise
NSA values between GCN and ClusterGCN on Node Classification (b) Layerwise NSA values be-
tween GraphSAGE and GAT on Node Classification (c) Layerwise NSA values between GCN and
ClusterGCN on Link Prediction (d) Layerwise NSA values between GCN and GSAGE on Link Pre-
diction. Similar architectures showcase a layerwise pattern when trained on the same task.

E.2 ARCHITECTURE TESTS ON DIFFERENT DOWNSTREAM TASKS

GCN GSAGE GAT CGCN

NSA

Figure 8: Effect of Downstream Task on Representations Achieved by the Same Architecture (Ama-
zon Computers Dataset). The layerwise dissimilarity of four GNN architectures is compared on two
different downstream tasks: Node Classification and Link Prediction. There is no observable corre-
lation across layers suggesting that the GNNs generate different representation spaces for the same
dataset on different downstream tasks.

We conducted experiments with different downstream tasks to assess layerwise similarity between
two models, both of which shared structural identity except for disparities in their final layers.
Specifically, we employed node classification and link prediction as the two downstream tasks for
our investigations. We present our findings in Figure 8. They reveal that there is little relationship
across layers for any of the four architectures.

The results presented in this section indicate that that different GNN architectures have similar rep-
resentation spaces when trained on the same downstream task and conversely, similar architectures
have different representation spaces when trained on different downstream tasks. Extending this
idea further, it should be possible to train Graph Neural Networks to conform to a task specific rep-
resentation template. This structural template will be agnostic of GNN architectures and provide a
high degree of functional similarity. If we train GNNs to minimize discrepancy loss with such a task
specific template, we could train more directly and without adding downstream layers of tasks.

F SANITY TESTS FOR LINK PREDICTION

We show the results for link prediction across GNN architectures for all three similarity metrics. We
observe that although all 3 metrics pass the sanity test, NSA shows the best gradient in similarity
across adjacent layers of some models like GAT and CGCN. The heatmaps for the sanity tests for
Link Prediction are given in Figure 9
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GCN GSAGE GAT CGCN

CKA’

RTD

NSA

Figure 9: Sanity Tests for Link Prediction

G CROSS ARCHITECTURE TESTS ON AMAZON DATASET

G.1 CROSS ARCHITECTURE TESTS WITH NSA

The cross architecture test results for NSA on link prediction and node classification for the architec-
tures not shown in Figure 7 are given in Figure 10 and Figure 11. These are architectures with low
degree of similarity hence the we do not observe a strong linear relationship across layers with NSA.

NSA

(a) GCN vs GAT (b) GCN vs GSAGE (c) GAT vs ClusterGCN (d) GSAGE vs CGCN

Figure 10: Cross Architecture Tests using Normalized Space Alignment for Node Classification for
the remaining architectures

NSA

(a) GCN vs GAT (b) GraphSAGE vs GAT (c) GAT vs ClusterGCN (d) GSAGE vs CGCN

Figure 11: Cross Architecture Tests using Normalized Space Alignment for Link Prediction for the
remaining four architectures
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G.2 CROSS ARCHITECTURE TESTS WITH RTD AND CKA′ ON NODE CLASSIFICATION

The cross architecture test results for CKA’ and RTD on Node Classification are shown in Figure 12
and Figure 13

Centered
Kernel

Alignment’ (a) GCN vs ClusterGCN (b) GraphSAGE vs GAT (c) GCN vs GAT

(d) GCN vs GraphSAGE (e) GAT vs ClusterGCN (f) GSAGE vs CGCN

Figure 12: Cross Architecture Tests using Centered Kernel Alignment’ for Node Classification

Representation
Topology

Divergence (a) GCN vs ClusterGCN (b) GraphSAGE vs GAT (c) GCN vs GAT

(d) GCN vs GraphSAGE (e) GAT vs ClusterGCN (f) GSAGE vs CGCN

Figure 13: Cross Architecture Tests using Representation Topology Divergence for Node Classifi-
cation

G.3 CROSS ARCHITECTURE TESTS WITH RTD AND CKA’ ON LINK PREDICTION

The cross architecture test results for CKA’ and RTD on Link Prediction are shown in Figure 14 and
Figure 15. We observe that CKA’ and RTD do not show a layerwise pattern as well as NSA does.
We can observe that RTD manages to capture the low dissimilarity between corresponding layers of
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GCN and ClusterGCN and for some other models but CKA’ fails to capture the layerwise similarity
for any architecture combination.

Centered
Kernel

Alignment’ (a) GCN vs ClusterGCN (b) GraphSAGE vs GAT (c) GCN vs GAT

(d) GCN vs GraphSAGE (e) GAT vs ClusterGCN (f) GSAGE vs CGCN

Figure 14: Cross Architecture Tests using Centered Kernel Alignment’ for Link Prediction

Representation
Topology

Divergence (a) GCN vs ClusterGCN (b) GraphSAGE vs GAT (c) GCN vs GAT

(d) GCN vs GraphSAGE (e) GAT vs ClusterGCN (f) GSAGE vs CGCN

Figure 15: Cross Architecture Tests using Representation Topology Divergence for Link Prediction

H CROSS DOWNSTREAM TASK FOR CKA′ AND RTD

We show the performance of CKA’ and RTD when we test how GNN architectures compare across
different downstream tasks. Similar to NSA, CKA’ and RTD fail to show any noticeable pattern
across layers. The heatmaps for cross downstream tasks with CKA’ and RTD are given in Figure 16
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GCN GSAGE GAT CGCN

RTD

CKA’

Figure 16: Cross Downstream Task Tests CKA′ and RTD

I ADDITIONAL CONVERGENCE TESTS ON AMAZON DATASET

We show the convergence tests with GCN and GraphSAGE on Node Classification and Link Pre-
diction in Figure 17. Link Prediction models were trained for 200 epochs and show similar patterns
to the ones observed with node classification. All convergence tests are performed with NSA only.

J RUNNING TIME AND RECONSTRUCTION LOSS FOR AUTOENCODER

We show the results in Table 3

Metric
Dataset Method Time per epoch Train MSE Test MSE

MNIST AE 2.344 7.64e-3 8.62e-3
TopoAE 39.168 6.89e-3 8.16e-3
RTD-AE 51.608 9.36e-3 1.07e-2
NSA-AE 5.816 8.75e-3 1.00e-2

F-MNIST AE 6.436 8.99e-03 9.79e-03
TopoAE 37.26 8.94-03 9.83e-03
RTD-AE 59.94 1.12e-02 1.24e-02
NSA-AE 5.764 9.49e-03 1.04e-02

CIFAR-10 AE 5.16 1.56e-02 1.65e-02
TopoAE 58.664 1.54e-02 1.68e-02
RTD-AE 56.172 1.60e-02 1.91e-02
NSA-AE 6.996 1.58e-02 1.71e-02

COIL-20 AE 2.012 1.67e-02 -
TopoAE 4.876 1.09e-02 -
RTD-AE 16.404 1.90e-02 -
NSA-AE 8.716 1.80e-02 -

Table 3: Reconstruction Loss and Time Per Epoch for different Autoencoder architectures. All
architectures were trained for 250 epochs with the auxiliary loss (TopoLoss, RTD, NSA) kicking in
after 60 epochs.
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(a) GCN NC Epochwise Convergence Heatmap (b) SAGE NC Epochwise Convergence Heatmap

(c) Test Accuracy (d) Test Accuracy

(e) GCN LP Epochwise Convergence Heatmap (f) SAGE LP Epochwise Convergence Heatmap

(g) Test Accuracy (h) Test Accuracy

Figure 17: Convergence Tests on Graph Convolution Network and GraphSAGE

K AUTOENCODER HYPERPARAMETERS

The hyperparameter setup for all the autoencoder architectures is detailed in Table 4. All autoen-
coder architectures are trained using pytorch-lightning and the input data is normalized using a
MinMaxScaler.

Dataset Name Batch Size LR Hidden Dim Layers Epochs Metric Start Epoch

MNIST 256 10−4 512 3 250 60

F-MNIST 256 10−4 512 3 250 60

CIFAR-10 256 10−4 512 3 250 60

COIL-20 256 10−4 512 3 250 60

Table 4: Autoencoder Hyperparameters. All four architectures used the same hyperparameters. To
ensure similarity of testing conditions we replicate the hyperparameter setup from Trofimov et al.
(2023)
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L VISUALIZING THE LATENT EMBEDDINGS FROM AUTOENCODERS

We use t-SNE(van der Maaten & Hinton, 2008) to reduce the latent embeddings obtained from
all 4 datasets used in Table 1 to reduce their dimension from 16 to 3. The results are presented
in Figure 18. We observe that t-SNE generates similar clusters across all three architectures; the
basic Autoencoder, RTD-Autoencoder and NSA-Autoencoder. The T-SNE algorithm used default
parameters to reduce the latent embeddings to 3D.

(a) F-MNIST on AutoEncoder (b) MNIST on AutoEncoder (c) COIL-20 on AutoEncoder

(d) F-MNIST on RTD-AE (e) MNIST on RTD-AE (f) COIL-20 on RTD-AE

(g) F-MNIST on NSA-AE (h) MNIST on NSA-AE (i) COIL-20 on NSA-AE

Figure 18: Visualizing the latent representations of the autoencoders. All latent embeddings are in
16 dimensions before being reduced to 3 by tSNE

M DOWNSTREAM TASK ANALYSIS WITH THE STS DATASET

We assess the performance of embeddings derived from NSA-AE in the context of the Semantic Text
Similarity (STS) Task. We employ Google’s Word2Vec word vectors as the initial dataset, process-
ing these 300-dimensional vectors through both a standard autoencoder and the NSA-Autoencoder
to achieve reduced dimensions of 128 and 64. The efficacy of these dimensionality-reduced embed-
dings is then evaluated using the STS Multi EN dataset (Cer et al., 2017). This evaluation aims to
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determine if the word vectors, once dimensionally reduced, maintain their alignment, as evidenced
by a strong positive correlation in similarity scores on the STS dataset. The comparative results, as
detailed in Table 5, demonstrate that the NSA-Autoencoder outperforms the traditional autoencoder
in preserving semantic accuracy at both 128 and 64 dimensions.

Latent Dimension Basic AutoEncoder NSA AutoEncoder

128 -0.518 0.7632

64 0.567 0.7619

Table 5: Pearson Correlation between the similarities output from the original embeddings and the
similarities output from the reduced embeddings. NSA-AE shows a much higher correlation with
the similarity outputs obtained by evaluating the original word2vec embeddings on the STS multi
EN dataset

N GNN HYPERPARAMETERS

The hyperparameter setup for all the GNN architectures is detailed in Table 6

Architecture Layers Hidden Dim LR Epochs Additional Info

GCN 4 128 0.001 200 -

GraphSAGE 4 128 0.001 200 Mean Aggregation

GAT 4 128 0.001 200 8 heads with Hid Dim 8 each

CGCN 4 128 0.001 200 8 subgraphs

Table 6: GNN Architecture Information

O GNN METRICS

The test accuracy for node classification and the ROC AUC value for link prediction is detailed in
Table 7

Architecture Accuracy (NC) ROC AUC (LP)

GCN 0.8257 0.8638

GraphSAGE 0.8800 0.8068

GAT 0.8273 0.7997

CGCN 0.8200 0.8716

Table 7: GNN Metric Data on Amazon Computer Dataset. Test Accuracy is for Node Classification
and ROC AUC Score is for Link Prediction

P DATASETS

We report the statistics of the datasets used for the empirical analysis of GNNs in Table 8. We report
the exact statistics of the autoencoder datasets in Table 9.

P.1 GRAPH DATASETS

The Amazon computers dataset is a subset of the Amazon co-purchase graph (Shchur et al., 2019).
The nodes represent products on amazon and the edges indicate that two products are frequently
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bought together. The node features are the product reviews encoded in bag-of-words format. The
class labels represent the product category. We also use the Flickr, Cora, Citeseer and Pubmed
dataset in additional experiments.

Dataset Amazon Computer Flickr Cora Citeseer Pubmed

Number of Nodes 13752 89250 2708 3327 19717

Number of Edges 491722 899756 10556 9104 88648

Average Degree 35.76 10.08 3.90 2.74 4.50

Node Features 767 500 1433 3703 500

Labels 10 7 7 6 3

Table 8: Dataset Statistics for Graph

P.2 AUTOENCODER DATASETS

Four diverse real-world datasets were utilized for our experiments: MNIST (LeCun et al., 2010),
Fashion-MNIST (F-MNIST) (Xiao et al., 2017), COIL-20 (Nene et al., 1996), and CIFAR-10
(Krizhevsky & Hinton, 2009), to comprehensively evaluate the performance of our autoencoder
model. MNIST, comprising 28x28 grayscale images of handwritten digits, serves as a foundational
benchmark for image classification and feature extraction tasks. Fashion-MNIST extends this by
offering a similar format but with 10 classes of clothing items, making it an ideal choice for fashion-
related image analysis. COIL-20 presents a unique challenge, with 20 object categories, where each
category consists of 72 128x128 color images captured from varying viewpoints, offering a more
complex 3D object recognition scenario. Lastly, CIFAR-10 introduces color and additional com-
plexity, featuring 60,000 32x32 color images across 10 object classes, catering to real-world image
analysis and deep learning challenges. Our experimentation across these datasets provides valuable
insights into the versatility and effectiveness of our autoencoder approach for diverse tasks.

Dataset Classes Train Size Test Size Image Size Data Type

MNIST 10 60,000 10,000 28x28 (784) Grayscale

Fashion-MNIST (F-MNIST) 10 60,000 10,000 28x28 (784) Grayscale

COIL-20 20 1,440 - 128x128 (16384) Color

CIFAR-10 10 60,000 10,000 32x32*3 (3072) Color

Table 9: Dataset Statistics for AE

Q SANITY TESTS FOR NODE CLASSIFICATION ON AMAZON DATASET

We show the results for node classification across GNN architectures for CKA’.

GCN GSAGE GAT CGCN

CKA’

Figure 19: Sanity Tests for Node Classification for CKA′ on Amazon Computers Dataset
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R EMPIRICAL ANALYSIS ON ADDITIONAL DATASETS

We utilize the Amazon Computers Dataset as our primary dataset throughout the empirical analyses
conducted in the main text. In this section we evaluate the performance of NSA on other popular
datasets. We evaluate with Sanity Tests, Cross Architecture Tests and Downstream Task tests. We
utilize the Cora (McCallum et al., 2000), Citeseer (Giles et al., 1998), Pubmed (Sen et al., 2008) and
Flickr (Zeng et al., 2020) Dataset for our experiments.

R.1 SANITY TESTS

The sanity test compares the intermediate representations obtained from each layer of the Graph
Neural Network against all the other layers of another GNN with the exact same architecture but
trained with a different initialization. we expect that, for each layer’s intermediate representation,
the most similar intermediate representation in the other model should be the corresponding layer
that matches in structure. We only demonstrate the performance of NSA for both Node Classification
and Link Prediction.

R.1.1 NODE CLASSIFICATION

GCN GSAGE GAT CGCN

Cora

Citeseer

Pubmed

Flickr

Figure 20: Sanity Tests for Node Classification on all 4 datasets. The heatmaps show layer-wise
dissimilarity values for two different initialization of the same dataset on four different GNN archi-
tectures.
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R.1.2 LINK PREDICTION

GCN GSAGE GAT CGCN

Cora

Citeseer

Pubmed

Figure 21: Sanity Tests for Link Prediction on 3 datasets. The heatmaps show layer-wise dissimi-
larity values for two different initialization of the same dataset on four different GNN architectures.

R.2 CROSS ARCHITECTURE TESTS

In this section we evaluate the similarity in representations across architectures for the three Plane-
toid datasets; Cora, Citeseer and Pubmed on Node Classification and Link Prediction.

R.2.1 NODE CLASSIFICATION

Normalized
Space

Alignment (a) GCN vs ClusterGCN (b) GraphSAGE vs GAT (c) GCN vs GAT

(d) GCN vs GraphSAGE (e) GAT vs ClusterGCN (f) GSAGE vs CGCN

Figure 22: Cross Architecture Tests using NSA for Node Classification on the Cora Dataset
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Normalized
Space

Alignment (a) GCN vs ClusterGCN (b) GraphSAGE vs GAT (c) GCN vs GAT

(d) GCN vs GraphSAGE (e) GAT vs ClusterGCN (f) GSAGE vs CGCN

Figure 23: Cross Architecture Tests using NSA for Node Classification on the Citeseer Dataset

Normalized
Space

Alignment (a) GCN vs ClusterGCN (b) GraphSAGE vs GAT (c) GCN vs GAT

(d) GCN vs GraphSAGE (e) GAT vs ClusterGCN (f) GSAGE vs CGCN

Figure 24: Cross Architecture Tests using NSA for Node Classification on the Pubmed Dataset
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R.2.2 LINK PREDICTION

Normalized
Space

Alignment (a) GCN vs ClusterGCN (b) GraphSAGE vs GAT (c) GCN vs GAT

(d) GCN vs GraphSAGE (e) GAT vs ClusterGCN (f) GSAGE vs CGCN

Figure 25: Cross Architecture Tests using NSA for Link Prediction on the Cora Dataset

Normalized
Space

Alignment (a) GCN vs ClusterGCN (b) GraphSAGE vs GAT (c) GCN vs GAT

(d) GCN vs GraphSAGE (e) GAT vs ClusterGCN (f) GSAGE vs CGCN

Figure 26: Cross Architecture Tests using NSA for Link Prediction on the Citeseer Dataset
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Normalized
Space

Alignment (a) GCN vs ClusterGCN (b) GraphSAGE vs GAT (c) GCN vs GAT

(d) GCN vs GraphSAGE (e) GAT vs ClusterGCN (f) GSAGE vs CGCN

Figure 27: Cross Architecture Tests using NSA for Link Prediction on the Pubmed Dataset

R.3 CROSS DOWNSTREAM TASK TESTS

Similar to our experiments with the Amazon dataset, we compare the similarity in the intermediate
representations between those trained on Node Classification and Link Prediction on the same ar-
chitecture. We use the Cora, Citeseer and Pubmed dataset for these experiments and evaluate the
similarity with NSA.
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Figure 28: Cross Downstream Task Tests with NSA on the Cora, Citeseer and Pubmed Datasets
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