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Abstract

As Large Language Models (LLMs) scale to million-token contexts, traditional
Mechanistic Interpretability techniques for analyzing attention scale quadratically
with context length, demanding terabytes of memory beyond 100,000 tokens.
We introduce SPARSE TRACING, a novel technique that leverages dynamic sparse
attention to efficiently analyze long context attention patterns. We present STREAM,
a compilable hierarchical pruning algorithm that estimates per-head sparse attention
masks in near-linear time O(T log T ) and linear space O(T ), enabling one-pass
interpretability at scale. STREAM performs a binary-search-style refinement to
retain only the top-k key blocks per query while preserving the model’s next-
token behavior. We apply STREAM to long chain-of-thought reasoning traces
and identify thought anchors while pruning 97-99% of token interactions. On the
RULER benchmark, STREAM preserves critical retrieval paths while discarding
90-96% of interactions and exposes layer-wise routes from the needle to output.
Our method offers a practical drop-in tool for analyzing attention patterns and
tracing information flow without terabytes of caches. By making long context
interpretability feasible on consumer GPUs, SPARSE TRACING helps democratize
chain-of-thought monitoring. Code is available at https://github.com/spoti
fy-research/stream-mechinterp/.

1 Introduction

Extending the context length of Large Language Models (LLMs) has become a major research focus
with frontier models providing 1M token context length as standard [5, 38, 26, 10]. For complex tasks,
longer contexts enable longer chain-of-thoughts in reasoning models which can improve performance
[18]. In RAG applications, longer context lengths complement retrieval mechanisms, allowing models
to consume larger numbers of documents at inference time [21].

Mechanistic interpretability seeks to reverse engineer neural networks such as LLMs, often by
studying smaller toy models such as GPT-2, or decomposing larger models into simpler units that can
be analyzed independently [27]. However, these common techniques such as those introduced by
Lindsey et al. [22] and Nanda [27] face scaling challenges when applied to long context scenarios.
First, meaningful signals become increasingly diffuse as they spread across extended contexts, making
it difficult to isolate and detect interpretable patterns.
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Figure 1: Illustration of the STREAM hierarchical attention pruning algorithm. Starting from the full
causally masked attention scores (QKT ∗ C), the pattern is recursively divided into branches and
refined over successive iterations. At each step, less relevant regions are discarded, converging on a
sparse mask M that preserves only the top-k most relevant key-query interactions. The algorithm
produces a final pruned attention score pattern (QKT ∗C ∗M ), achieving near-linear time complexity
O(T logT ) and linear space complexity O(T ).

Second, the attention mechanism’s quadratic scaling - O(T 2) in both computational time and memory
usage - creates prohibitive resource demands, requiring terabytes of memory to cache all attention
patterns for contexts with 100,000 tokens or more.

Scaling efforts in mechanistic interpretability have predominantly focused on accommodating larger
model parameters, while the impact of extended context lengths remains significantly underexplored.
Many recent studies explicitly defer interpretability analysis of contexts exceeding 100 tokens to
future work [28, 22, 33], highlighting this critical gap in the field. This paper directly addresses
these scalability challenges by introducing an interpretability technique that seamlessly scales to
contexts of 100,000 tokens on consumer-grade GPUs, helping democratize long context mechanistic
interpretability in realistic settings.

Our key contributions are listed as follows:

• Scalable long context interpretability. We introduce SPARSE TRACING, the first frame-
work designed to analyze million-token contexts with its instantiation achieving near-linear
time O(T log T ) and linear memory O(T ), reducing resource costs by up to four orders of
magnitude compared to dense methods.

• Stream: an efficient and flexible algorithm. We propose STREAM, a compilable hierar-
chical pruning algorithm that dynamically estimates sparse attention masks while allowing
fine-grained control over interpretability resolution (e.g. sentence-level vs. paragraph-level).

• Broad validation and impact. Through chain-of-thought reasoning and RULER bench-
marks, we show that STREAM prunes 90-99% of attention links while highlighting critical
thought anchors and retrieval paths, enabling long-context mechanistic interpretability on
consumer-grade GPUs.

2 Background

Extending the context length of LLMs. The standard vanilla self-attention computation on current
hardware accelerators is memory-bound, scaling with O(T 2) where T is context length. For example,
consider a standard LLM using bfloat16 quantization and context length of 100,000 tokens. A
single attention pattern would require 20GB of VRAM to realize. Caching all attention patterns
across the 34 layers and 8 heads in Gemma 3 4B [32] would require 3.84TB.

FlashAttention [11] is an exact attention algorithm that is computationally equivalent to vanilla
attention but achieves O(T ) complexity by chunking the T × T attention pattern into blocks and
computing them sequentially. Other approaches achieve sub-quadratic memory complexity by only
computing a subset of each attention pattern, applying a sparse mask in three different ways: (1)
the popular static sliding window patterns seen in LLMs designed for long context [5, 38, 32], (2)
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natively trainable sparse attention (NSA) [37] and (3) dynamically generated sparse attention at
inference time [20, 39].

A lesser challenge LLMs face as context lengths increase is the quadratically scaled memory footprint
of the Key-Value (KV) cache during inference. Grouped-Query Attention (GQA) [1] allows multiple
query heads to share a single key and value head, significantly compressing the cache size with
minimal impact on performance. As such, this is often not the bottleneck as context lengths increase.
Additionally, long context LLMs are often pretrained on shorter contexts and Rotary Positional
Embeddings (RoPE) [31] extensions such as YaRN [29], NTK-Aware interpolation [30] and position
interpolation [9] are used to extend their context length with no impact on time and space complexity
[41].

Hierarchically Pruned Attention (HiP) Attention. Lee et al. [20] introduce Hierarchically Pruned
(HiP) Attention to address the quadratic scaling challenges introduced by vanilla attention. The
transformer’s self-attention layer computes a dense score matrix:

S = QK⊤, P = softmax(S), O = PV, (1)

with query, key, and value matrices Q,K, V ∈ RT×d for a context of length T . Because S contains
all T 2 pairwise interactions, both memory use and runtime scale quadratically, quickly becoming the
bottleneck for long contexts. The HiP attention algorithm dynamically generates a sparse attention
mask at inference time that retains only the top-k keys per query:

M = top_k_mask(QK⊤), S̃ = maskM (QK⊤), P̃ = softmax(S̃), O = P̃ V. (2)

Here M ∈ {0, 1}T×T is a binary mask with exactly k ones in every row. With only kT non-zeros,
the softmax and context projection drop to O(T logT ) time and O(T ) memory complexity. Important
hyper-parameters are the sparsity level k and the query and key block sizes (bq, bk) that balance
locality and throughput. The full HiP attention mask estimation algorithm is provided in Appendix B
for reference.

3 Method

SPARSE TRACING; a new technique. In this paper we introduce SPARSE TRACING, a technique
comprising a set of mechanistic interpretability algorithms that leverage sparse attention to efficiently
analyze attention patterns in long context scenarios. Sparse attention methods reduce computational
complexity of the attention computation by computing only the most relevant portions of attention
patterns. We hypothesize this may be a useful method of identifying parts of the model related
to the model output. Additionally, we observe that the same computational bottlenecks that affect
attention computation during inference also hinder interpretability analysis. Additionally, many
mechanistic interpretability techniques scale linearly with the number of model components being
explored, or require multiple forward and/or backwards passes [27, 19, 25]. Our technique explores
all components at once, and requires only a single forward pass when the desired sparsity constant k
is known, and ⌊log2k⌋ forward passes otherwise, where the wall clock time of a single forward pass
with our chosen SPARSE TRACING algorithm is less than two forward passes without hooks.

STREAM; a new algorithm. We introduce STREAM, our specific SPARSE TRACING algorithm
based heavily on HiP attention [20]. STREAM is visualized in Figure 1 and the algorithm is provided
in full in Appendix C. HiP attention is a compilable, dynamic sparse attention algorithm that achieves
O(T log T ) time complexity and O(T ) space complexity and allows the granularity of the attention
computation to be tuned. STREAM is heavily based on HiP attention and operates via the same
hierarchical search process that efficiently identifies the most relevant blocks of keys for each block
of queries.

The algorithm begins by dividing the pattern into blocks of size bq for queries and bk for keys, then
uses a binary search-inspired approach to progressively narrow down to the top-k most relevant key
blocks. The pruning process works in iterations, where each iteration refines the search space by
half. Initially, STREAM divides the entire key pattern into k equally-sized branches. The algorithm
then identifies which valid branches contain the highest-scoring attention patterns and discards
the less relevant regions. In subsequent iterations, STREAM recursively subdivides the remaining
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promising branches, continuing this hierarchical refinement until it converges on the final set of k
key blocks of dimension bq × bk that exhibit the strongest attention relationships with each query
block. The behavior of STREAM is governed by the 3 key parameters: the query block size bq, the
key block size bk, and the sparsity constant k. Figure 10 illustrates how varying these parameters
changes the structure of the resulting sparse attention mask. The granularity of STREAM can be
adjusted semantically by setting block sizes to approximate linguistic units (e.g., bq = bk = 32
for sentence-level attention, bq = bk = 128 for paragraph-level attention). The sparsity level is

controlled by setting the sparsity constant k ∈ [1,
⌊

T
bk

⌋
] which controls the level of pruning. Our

SPARSE TRACING method STREAM generates sparse masks for each attention head across all layers.
For a given input, we:

1. Compute hierarchical sparse attention masks using STREAM with specified parameters
(bq, bk, k).

2. Apply these masks to the full attention patterns to identify the most relevant attention
connections.

3. Perform binary search over sparsity constant k to find the lowest k that preserves nmatch = 2
original output tokens, ensuring the sparse pattern captures behaviorally relevant attention.

Our criteria of nmatch = 2 matching tokens generated in a row is a proxy for perplexity and model
performance. We ablate this choice in Appendix A.2. Lee et al. [20] advise against replacing the first
few decoder layers ld of the transformer with their sparse HiP attention as they found that the first
few layers have substantially denser attention patterns and pruning these can degrade performance
severely. Through ablation studies they recommend ld = 3 which we ablate in Appendix A.1.

4 Case Studies

4.1 Case Study 1: Thought Anchors

Bogdan et al. [6] introduce black-box and white-box approaches to interpreting long context chain-
of-thought reasoning traces by aggregating attention patterns between pairs of sentences rather than
between pairs of tokens. They coin the term “thought anchors”, which are steps in the reasoning
trace that have a disproportionately large influence on the remainder of the trace. In this case study,
we validate SPARSE TRACING as a highly scalable method - in both time and space complexity - of
identifying thought anchors.

Experimental Setup. We follow the experimental setup of Bogdan et al. [6]. STREAM can be
applied to any LLM that implements attention, and for this case study we report results on DeepSeek
R1-Distill Qwen-1.5B [14, 36] a small reasoning in model in the same family as Bogdan et al. [6]’s
prior work. Matching Bogdan et al. [6], we use a temperature of 0.6 and a top-p value of 0.95 to
generate responses to problems in the MATH-500 dataset [15]. In a similar manner to Bogdan et al.
[6], we use the results of running the model on 500 problems, 10 times each to identify 10 questions
that the model correctly solves 25-75% of the time. Venhoff et al. [34] identifies a selection of
reasoning behaviors exhibited by DeepSeek-R1-Distill models that can be controlled using steering
vectors. Based on this framework, Bogdan et al. [6] prompt an LLM to label sentences as one of 8
distinct categories. These categories are (1) problem setup, (2) plan generation, (3) fact retrieval, (4)
active computation, (5) uncertainty management, (6) result consolidation, (7) self-checking and (8)
final answer emission. In our experiments, instead of splitting the reasoning trace into sentences,
we split the traces into 32 token chunks to match the query block size (bq) in STREAM. We prompt
OpenAI GPT-4o (April-May, 2025) [17] to label each sentence using an almost identical prompt
given by Bogdan et al. [6] which we provide in Appendix D.1.

4.1.1 Receiver Heads

Bogdan et al. [6] suggest that “thought anchors” attract higher attention from later parts of the text.
In SPARSE TRACING, we adopt a similar idea: salient query blocks should focus on a small, highly
relevant set of key blocks. Formally, let

Qi = Q i:i+bq−1, Kj = K j:j+bk−1 (3)
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Figure 2: This figure displays attention patterns for three different context lengths (3,000, 6000, and
10000 tokens) using three different approaches: Full Attention Pattern (first column), Mean Averaged
[6] with b = 32 (second column), and STREAM with by = bk = 32 (third and fourth column).

be the ith query and jth key blocks of sizes bq and bk. If

α(Qi,Kj) = max
u∈Qi,v∈Kj

⟨u, v⟩ (4)

is the maximum token-level dot product, then

Pr
[
α(Qi,Kj) ranks in top-k

]
∝ salience(Qi) (5)

That is, more salient queries appear more often among top-k pairs. To detect such anchors, we look
for attention heads with high kurtosis, meaning a few parts of the context receive much stronger
attention than the rest. Following Bogdan et al. [6], we call these receiver heads. They concentrate
attention on specific blocks instead of spreading it broadly. Instead of aggregating attention to the
sentence level, we compute block-level averages over bq×bk spans, yielding the “block mean” pattern
(Figure 2). We select potential receiver heads by measuring the maximum vertical kurtosis of these
block means at multiple context lengths. For each candidate head, we generate sparse masks with
STREAM, both binary and score-weighted, and visualize them in Figure 2.

Discussion. Across reasoning traces of length 3000, 6000, and 10,000 tokens, SPARSE TRACING
consistently prunes 97-99% of attention links while preserving the model’s output for two consecutive
tokens. This makes the sparse masks 28,000-68,000× more memory efficient than storing dense
patterns, with complexity scaling linearly in context length (see Appendix A.3). Crucially, the
peaks in the vertical attention distributions reveal potential thought anchors: specific blocks that
disproportionately attract attention from downstream queries. These anchors remain visible despite
aggressive pruning, showing that SPARSE TRACING highlights the same key structures as the dense
patterns but at far lower cost.

4.1.2 Sentence Category Importance

In Figure 3, we compare the sentence category importance based on vertical attention scores, compar-
ing Bogdan et al. [6]’s approach and STREAM.

Discussion. Figure 3 matches the peaks in the vertical scores to identifiable reasoning categories.
We observe that problem setup and final answer emission blocks consistently receive the strongest
downstream focus, likely due to attention sinks at the beginning and strong diagonal effects near
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Figure 3: In this figure we plot the vertical attention scores for each 32 token block for three different
context lengths (1,000, 10000, and 20,000 tokens).

the end of context. In longer traces, receiver heads also peak around plan generation, uncertainty
management, and self-checking, while in shorter traces, active computation dominates instead.
Overall, we found receiver heads harder to identify as context scales - reporting different heads at
different context lengths - and indicating a need for future research to support our results.

4.2 Case Study 2: Needle in a Haystack

In this case study, we explore the scalability of STREAM by applying it to the RULER needle in a
haystack benchmark [16]. STREAM can be applied to any LLM that implements attention, and we
validate the transferability of our method by applying it to a different LLM, namely Gemma 3 1B
[32].

Experimental Setup. The experimental data was prepared using the RULER benchmark’s [16]
synthetic data generation pipeline, which creates structured evaluation samples with controllable
context lengths and needle placement positions. For each evaluation instance, we employed a binary
search algorithm to determine the optimal sparsity parameter k - the minimum number of key-value
blocks required for the sparse attention mechanism to successfully retrieve two consecutive tokens
from the needle (see Appendix A.2 for ablations).

4.2.1 Sparse Tracing Needles

In Figure 4 we visualize the needle at 3 different context lengths (1000, 10000 and 20000 tokens).
We extract the full attention patterns from a Gemma 3 1B model at the layer and attention head with
highest block mean kurtosis.

Discussion. The resulting sparse masks are strikingly structured: despite discarding over 90-96%
of attention links, the critical path to the needle remains intact and is clearly visible in the pruned
attention maps. This demonstrates STREAM’s ability to aggressively reduce computational complexity
while still preserving the essential signal required for successful retrieval, even as context length
scales by an order of magnitude.
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Figure 4: Visualization of sparse attention masks generated by STREAM on the RULER needle-in-a-
haystack benchmark [16] at three context lengths (1k, 10k, and 20k tokens). The needle is marked
using a red vertical line in the Attention Pattern plots.

Figure 5: Figure showing needle retrieval success as a function of context length (x-axis), needle
depth (y-axis) and effective sparsity s (subplots-axis). The parameter s ∈ (0, 1) controls the effective
pruning of the attention pattern via k with larger s corresponding to higher pruning.

4.2.2 Exploring the effect of Needle Depth

In needle-in-a-haystack tasks, models often show a U-shaped retrieval curve [23]: they are relatively
good at retrieving needles near the start of the context (due to over-squashing) and near the end (as
those positions are directly learned), but struggle in the middle. By introducing the effective sparsity
s such that:

k =

⌊
1 +

(
T

bq
− 1

)
· s
⌋

such that 1 ≤ k ≤
⌊
T

bq

⌋
and 0 < s < 1 (6)

The larger the s, the higher the pruning of the attention pattern. Figure 5 visualizes successful needle
retrieval as s, context length and needle depth vary. We see that the retrieval of needles earlier in the
context is more robust as context length scales.

Discussion. Instead of the characteristic U-shape, we find that STREAM’s attention pruning weakens
needle retrieval towards the end of longer contexts with effective sparsity s ≥ 0.1, leading to failures
above 8000 tokens. The lower triangular nature of causal attention patterns results in a larger number
of valid candidate key blocks per query towards the bottom of the pattern. This leads to a higher level
of pruning at constant k, which would be resolved by implementing variable k in future research.
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Figure 6: Attention flow paths distinguishing successful and unsuccessful retrieval in the needle-in-a-
haystack task (T = 1000, nd ≈ 0.5). Each node represents a hidden state block of size bq = bk = 32.
Red edges trace paths carrying needle information to the output, while blue edges denote other
attention flows. Paths are weighted by block scores of ksuccess, and obtained by subtracting the sparse
masks of kfail = 3 from ksuccess = 6.

4.2.3 Exploring Information Flow

Existing methods for tracing information flow in transformers [13, 27, 19, 25] scale quadratically
with context length. To our knowledge, STREAM is the first such technique with linear scaling,
making it feasible for tasks like indirect object identification and needle-in-a-haystack. For the latter,
we report sparse patterns at T = 1000, needle depth nd ≈ 0.5, bq = bk = 32, with ksuccess = 6
(successful retrieval) and kfail = 3 (unsuccessful retrieval). Subtracting the kfail masks from ksuccess
across layers and heads isolates the connections that enable retrieval. Figure 6 visualizes these paths,
weighted by block scores: red edges trace needle-to-output flows, while blue edges denote other
attention routes. We restrict analysis to attention paths, leaving residual and MLP components for
future SPARSE TRACING extensions. Full patterns for ksuccess and kfail are shown in Appendix E.1.

Discussion. We see that the needle information appears to travel along two paths to the output,
through hidden state blocks 18 and 19, and through the final few blocks. We also see attention sink
behavior - high attention to earlier tokens in the context - when needle information passes to the
output block, which may be preventing over-mixing, a form of rank collapse [4]. This would aid
in preserving the information from the needle through the layers of the network. This experiment
consolidates the use of STREAM as an empirical tool to explore theoretical claims.

5 Related Work

Chain-of-Thought White-box Monitoring. Reasoning models produce a long chain of thought
before responding to the user, with the aim of increasing their performance on complex tasks [18]. A
growing branch of Mechanistic Interpretability research seeks to understand model internals during
chain-of-thought processes [6, 8, 7, 12, 34]. Brinkmann et al. [7] demonstrate that transformers
can implement interpretable backward chaining algorithms for pathfinding, while Dutta et al. [12]
extend this understanding to production-scale models, revealing multiple parallel pathways for answer
generation. Venhoff et al. [34] show these reasoning behaviors can be controlled through steering
vectors. Cabannes et al. [8] find identifiable computational structures that enable iterative algorithms,
and Bogdan et al. [6] take black-box and white-box approaches to identify "thought anchors" - the
most critical parts of the reasoning trace. In our work, we use our SPARSE TRACING methodology to
scalably identify "thought anchors" in longer contexts.

Why LLMs struggle with Long Context. Other work examines how LLMs process extended
contexts and the mechanisms underlying their successes and failures [35, 23, 3, 2, 24]. Wu et al.
[35] identify "retrieval heads" - a sparse set of attention heads (3-6%) specifically responsible for
copying information from arbitrary locations in long contexts, providing a mechanistic explanation
for factual retrieval capabilities. This work builds on Liu et al. [23]’s empirical finding that models
perform poorly when relevant information appears in the middle of long contexts. Barbero et al. [2]
provide theoretical grounding for these limitations, proving that decoder-only transformers suffer
from "information over-squashing" where distinct input contexts become indistinguishable in final
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token representations. Their companion work [3] reveals how rotary positional embeddings can
mitigate some issues by using different frequency components for positional versus semantic attention.
Our work introduces STREAM, which builds highly scalable computation graphs for information
propagation research into Geometric Deep Learning metrics such as over-smoothing, over-squashing
and under-reaching.

Scaling Mechanistic Interpretability. Tooling has been built for conducting Mechanistic Inter-
pretability research as model size, complexity and context lengths scale [27, 19, 13, 40]. Nanda [27]
introduces attribution patching, enabling activation patching experiments on large models through
gradient-based approximations. Kramár et al. [19] address failure modes in this approach, proposing
AtP*. Ferrando and Voita [13] develop automated methods for discovering information flow routes
without requiring human-designed counterfactuals, while Zheng et al. [40] provide systematic frame-
works for understanding attention head functions. Paulo et al. [28] address the scalability challenge of
interpreting sparse autoencoder (SAE) features by developing an automated pipeline that can generate
and evaluate natural language explanations for millions of features. Templeton et al. [33] successfully
scale SAEs to Claude 3 Sonnet extracting millions of interpretable features. We introduce the first
Mechanistic Interpretability tool designed to run on consumer hardware that scales to long context.

6 Limitations

(1) STREAM focuses on the attention mechanism and makes no causal claims. Residual connections
and MLP layers also play crucial roles in computation, and STREAM does not currently account
for these. (2) The method’s success is defined by a proxy metric, specifically maintaining two
consecutive correct tokens in the output. This is a practical heuristic but may not fully capture the
nuance of model performance or the complete causal path. (3) While STREAM achieves impressive
computational complexity which holds as contexts scale, our current implementation has not been
optimized for specific hardware and therefore runs slower than desired. (4) The pruning algorithm is
more aggressive towards the bottom of the attention pattern, which could be resolved by implementing
a variable sparsity constant k. (5) Future work introducing a novel discovery made by STREAM
would truly validate our method’s applicability.

7 Conclusion

Our work introduces SPARSE TRACING and its instantiation, STREAM, as scalable tools for mech-
anistic interpretability in long context LLMs. These methods address a key limitation of existing
interpretability techniques: the quadratic complexity of attention, which makes direct analysis of
million-token contexts practically infeasible. By leveraging hierarchical pruning, STREAM achieves
near-linear O(T log T ) time and linear O(T ) space complexity while preserving salient attention
pathways, enabling experiments previously restricted to short contexts. We apply STREAM to both
reasoning (DeepSeek R1-Distill Qwen-1.5B) and non-reasoning models (Gemma 3 1B) and through
5 experiments and 3 ablations, we validate the widespread applicability of our method. In chain-of-
thought reasoning at 10,000 token context, SPARSE TRACING prunes 99% of the attention pattern
and identifies influential “thought anchors” requiring 60,000× less memory than caching the full
patterns. In needle-in-a-haystack tasks, STREAM highlights the sparse structures required for needle
retrieval, pruning the pattern by 96% at 20,000 token context.

Future Work. (1) Future work should incorporate MLP layers and residual stream analysis into the
SPARSE TRACING framework providing a more complete picture of information flow. (2) Establishing
theoretical guarantees about what types of circuits and information pathways are preserved under
different sparsity levels would strengthen confidence in sparse interpretability results. (3) STREAM
opens new possibilities for studying long context phenomena like information over-squashing, over-
smoothing, and under-reaching. (4) Further work could also explore the effect of aligning block sizes
with semantic units such as sentences or paragraphs and extend STREAM to further case studies.
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A Ablations

A.1 Ablation Study of Dense Layers

To validate ld = 3 , we perform a similar ablation study as in Appendix D.5 in Lee et al. [20]’s study
and we report results in Figure 7.

Figure 7: Ablation of dense layers. Left: best sparsity constant k as a function of layer depth. Right:
perplexity at the corresponding best k. Results support the choice of leaving the first ld = 3 layers
dense, where attention patterns are less sparse and pruning leads to degraded performance.

A.2 Ablation Study of Number of Consecutive Tokens Matching as a Proxy for Perplexity

To maximize pruning efficiency, we aim to select the smallest sparsity constant k that still preserves
model performance. Directly measuring degradation via average perplexity is impractical, since it is
unclear at what threshold perplexity becomes unacceptable. Instead, we adopt a behavioral proxy:
running the model with sparse masks for varying k and checking when it can no longer reproduce
the same output. We define performance preservation as generating at least nmatch = 2 consecutive
matching tokens, and report ablations for this criterion in Figure 8. Notably, in the middle and right
plots, we observe that once k or average perplexity is large enough to achieve nmatch = 2, at any k
higher the model typically recovers the entire output sequence, suggesting that this threshold is a
reliable indicator of stable performance.

Figure 8: Ablation of sparsity constant k search. Left: average perplexity decreases with increasing k.
Middle: number of consecutive matching tokens improves with larger k, with nmatch = 2 serving as
our performance threshold. Once this threshold is met, the model typically produces the full correct
output. Right: trade-off between perplexity and matching tokens highlights the balance between
pruning aggressiveness and output fidelity.

A.3 Ablation Study of Time and Space Complexity

In Figure 9 we report the GPU Memory Usage and Wall Clock Time as they vary with sparsity level
k, context length and block size (bq , bk).
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Figure 9: GPU memory usage (linear fits, mean R2 = 0.9308) and wall clock time (T log T fits, mean
R2 = 0.7282) versus context length for varying block sizes (bq , bk) and sparsity levels k.

B HiP Attention Algorithm

In Algorithm 1 we provide the full Hierarchical Sparse Attention Mask Estimation algorithm as
presented by Lee et al. [20].

Algorithm 1: Hierarchical Sparse Attention Mask Estimation

Input: Queries Q ∈ RT×d, Keys K ∈ RT×d, Sparsity constant k, Query block size bq , Key
block size bk, Top-r approximation constant r

Output: Estimated attention mask M̂ ∈ {0, 1}T×T which is represented by an array of indices
I ∈ [1 : T ]T/bq×k/bk

1 Q,K = reshapeT/bq×bq×d[Q], reshapeT/bk×bk×d[K];
2 nit = ⌈log(T/bk)⌉;
// Number of iterations

3 for each query block index q = 1 .. T/bq do
4

(
f
(1)
qj , l

(1)
qj

)
=

(
⌊j · Tk ⌋, ⌊(j + 1) · Tk ⌋ − 1

)
for j = 1 .. k;

// Set k nodes’ initial start and end indices
5 for each iteration i = 1 .. nit do
6 for each node index j = 1 .. k do
7 m

(i)
qj = ⌊(f (i)

qj + l
(i)
qj )/2⌋;

8
(
B(i)q,2j−1,B

(i)
q,2j

)
=

(
(f

(i)
qj : m

(i)
qj − 1), (m

(i)
qj : l

(i)
qj )

)
;

9 for each branch index h = 1 .. 2k do
10 Pick a first index r

(i)
qh from the range B(i)qh ;

11 Compute score s
(i)
qh = maxm,n

(
Q⊤

q,m,:Kr
(i)
qh ,n,:

)
;

12 Pick top-k indices {t1, . . . , tk} of the sequence s
(i)
q,1, . . . , s

(i)
q,2k;

13 Update nodes (f (i+1)
qj : l

(i+1)
qj ) := B(i)tj for j = 1 .. k;

14 Set mask indices Iqj = f
(nit)
qj for j = 1 .. k;

C STREAM Algorithm

We provide the full STREAM algorithm in Algorithm 2. In Figure 10 we visualize the effect of bq , bk
and k on the final sparse attention mask.
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Figure 10: Effect of block and sparsity parameters on sparse attention masks. Increasing bq and bk
coarsens the mask by aggregating larger query and key spans, while higher values of k preserve more
key blocks, yielding denser masks.

Algorithm 2: STREAM

Input: Queries Q∈RT×d, Keys K∈RT×d, Attention mask C∈{0, 1}T×T , Sparsity k, Query
block bq , Key block bk, Top-r constant r

Output: M̂ ∈{0, 1}T×T via indices I ∈ [1 : T ]T/bq×k/bk

1 ℓ← lcm(bq, bk);
2 Tp ← ⌈T/ℓ⌉ · ℓ;
3 extra← Tp − T ;
4 T ← Tp;
5 Q← pad(Q, ((0, extra), (0, 0))), K ← pad(K, ((0, extra), (0, 0)));
6 C ← pad(C, ((0, extra), (0, extra)))
7 Q,K = reshapeT/bq×bq×d[Q], reshapeT/bk×bk×d[K];
8 C = reshapeT/bq×bq×T/bk×bk

[C];
9 Cblk ∈ {0, 1}T/bq×T/bk , Cblk[q, r] = maxm≤bq,n≤bk C[q,m, r, n];

10 nit = ⌈log(T/bk)⌉;
11 for q = 1 .. T/bq do
12

(
f
(1)
qj , l

(1)
qj

)
=

(
⌊j T

k ⌋, ⌊(j + 1)Tk ⌋ − 1
)

for j = 1 .. k;
13 for i = 1 .. nit do
14 for j = 1 .. k do
15 m

(i)
qj = ⌊(f (i)

qj + l
(i)
qj )/2⌋;

16
(
B(i)q,2j−1,B

(i)
q,2j

)
=

(
(f

(i)
qj : m

(i)
qj − 1), (m

(i)
qj : l

(i)
qj )

)
;

17 for h = 1 .. 2k do
18 ω

(i)
qh = max

r∈B(i)
qh

Cblk[q, r];

19 if ω(i)
qh = 0 then

20 set s(i)qh = −∞ and continue
21 Pick first r(i)qh ∈ B

(i)
qh with Cblk[q, r

(i)
qh ] = 1;

22 Compute s
(i)
qh = max

m≤bq, n≤bk

C[q,m,r
(i)
qh ,n]=1

Q⊤
q,m,:Kr

(i)
qh ,n,:

;

23 Pick top-k indices {t1, . . . , tk} of s(i)q,1, . . . , s
(i)
q,2k;

24 Update (f
(i+1)
qj : l

(i+1)
qj ) := B(i)tj for j = 1 .. k;

25 Set Iqj = first r ∈ (f
(nit)
qj : l

(nit)
qj ) with Cblk[q, r] = 1; if none, leave Iqj empty;
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D Thought Anchors: Additional Results

D.1 Sentence Labelling Prompt

Here we repeat the prompt provided by Bogdan et al. [6] to label sentences, with minor modifications.

You are an expert in interpreting how language models solve math problems
using multi-step reasoning. Your task is to analyze a Chain-of-Thought
(CoT) reasoning trace, broken into discrete text chunks, and label each
chunk with the single best **function_tag** that describes what the chunk
is doing.

–-

### Function Tags (you may only assign one per chunk):

1. ‘problem_setup‘: Parsing or rephrasing the problem (initial reading or
comprehension).

2. ‘plan_generation‘: Stating or deciding on a plan of action (often
meta-reasoning).

3. ‘fact_retrieval‘: Recalling facts, formulas, problem details (without
immediate computation).

4. ‘active_computation‘: Performing algebra, calculations, manipulations
toward the answer.

5. ‘result_consolidation‘: Aggregating intermediate results, summarizing,
or preparing final answer.

6. ‘uncertainty_management‘: Expressing confusion, re-evaluating,
proposing alternative plans (includes backtracking).

7. ‘final_answer_emission‘: Explicit statement of the final boxed answer
or earlier chunks that contain the final answer.

8. ‘self_checking‘: Verifying previous steps, Pythagorean checking,
re-confirmations.

9. ‘unknown‘: Use only if the chunk does not fit any of the above tags or
is purely stylistic or semantic.

–-

### Output Format:

Return a single dictionary with one entry per chunk, where each entry has:
- the chunk index (as the key, converted to a string), - a string with the
tag

Here’s the expected format:

“‘language=json
{
"0": "plan_generation"
"1": "fact_retrieval"
"2": "active_computation"
"3": "self_checking"
"4": "final_answer_emission"
...
}
“‘
Here is the math problem:

[PROBLEM]
{problem_text}
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Here is the full Chain of Thought, broken into chunks:

[CHUNKS]
{full_chunked_text}

Now label each chunk with function tags only.

D.2 Full Attention Comparison

We extend Figure 2 and include the vertical attention scores for block mean, sparse mask and score
mask for the receiver head.

Figure 11: Extending Figure 2 to include the vertical attentions score plots.

D.3 Sentence Category Distribution

We report a similar sentence category distribution to Bogdan et al. [6] as shown in Figure 12.
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Figure 12: Sentence category vs counts across all experiments.

E Needle-In-A-Haystack: Additional Results

E.1 Information Flow Full Plots

We report the information flow for a successful needle retrieval in Figure 13 and unsuccessful retrieval
in Figure 14.

Figure 13: All information paths for a successful needle retrieval (k = 6). We plot paths from the
needle block to the output in red and the rest in blue.
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Figure 14: All information paths for a unsuccessful needle retrieval (k = 3). We plot paths from the
needle block to the output in red and the rest in blue.
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