
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

TEACHING LLMS ACCORDING TO THEIR APTITUDE:
ADAPTIVE SWITCHING BETWEEN COT AND TIR FOR
MATHEMATICAL PROBLEM SOLVING

Anonymous authors
Paper under double-blind review

ABSTRACT

Existing supervised fine-tuning (SFT) approaches to enhance the mathematical
reasoning of large language models (LLMs) rely either on Chain-of-Thought (CoT)
for generalizability or Tool-Integrated Reasoning (TIR) for precise computation.
While efforts have been made to combine these methods, they primarily rely on
post-selection or predefined strategies, leaving an open question: Could we endow
LLMs with the ability to adaptively determine whether to use CoT or TIR based
on the math problems at hand before decoding? In this work, we propose TATA
(Teaching LLMs According to Their Aptitude), an adaptive framework that enables
LLMs to personalize their reasoning strategy for different problems spontaneously,
aligning it with their intrinsic aptitude. TATA incorporates base-LLM-aware data
selection during SFT to tailor training data to the model’s unique abilities, which
equips LLMs to autonomously determine and apply the effective reasoning strategy
at test time. Empirical results demonstrate that TATA effectively combines the
complementary strengths of CoT and TIR, achieving superior or comparable
performance with improved inference efficiency compared to existing methods.
Further analysis highlights the crucial role of aptitude-aware data selection in
enabling LLMs to make informed and adaptive reasoning decisions, aligning
reasoning strategies with model capabilities.

1 INTRODUCTION

Previous SFT methods for mathematical reasoning (Tong et al., 2024; Shao et al., 2024; Yan et al.,
2024; Gou et al., 2023; Wang et al., 2023; Lu et al., 2024) predominantly adopt one of the following
two distinct reasoning paradigms: Chain-of-Thought (CoT) reasoning (Wei et al., 2022) or Tool-
Integrated Reasoning (TIR) (Chen et al., 2022; Gao et al., 2023). CoT employs natural language
(NL) to articulate intermediate reasoning steps, whereas TIR integrates NL with Python code blocks
in an interleaved manner (see Section 3.2). While CoT offers computational efficiency, it may
compromise the numerical accuracy of complex calculations. In contrast, TIR’s structured execution
of code ensures precise computation but incurs significant computational overhead. Notably, recent
studies (Zhao et al., 2023; Yang et al., 2024b) have empirically demonstrated that CoT and TIR
exhibit complementary strengths: CoT demonstrates superior performance on problems demanding
sophisticated logical deduction with minimal numerical computation, whereas TIR excels in scenarios
requiring intensive numerical calculations with relatively simpler logical flow.

This complementary nature suggests potential benefits to integrate these two reasoning patterns. Zhao
et al. (2023) proposes an auxiliary LLM-based selector to dynamically choose between paradigms via
prompt-based routing (Figure 1 (a)). MAmmoTH (Yue et al., 2023) switches to CoT reasoning if TIR
encounters execution errors or timeouts (Figure 1 (b)). Yang et al. (2024b) employs different inference
prompts to elicit respective reasoning capabilities (Figure 1 (c)). Despite these advancements, existing
approaches predominantly rely on either external selectors (as in Zhao et al. (2023)) or predefined
heuristics (as in MAmmoTH and Qwen-2.5-Math) rather than endowing LLMs with the intrinsic
capability to autonomously recognize appropriate reasoning strategies. However, the potential for
LLMs themselves to dynamically adapt reasoning paradigms (CoT or TIR) remains underexplored.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Problem

TIR Solution

CoT Solution

CoT

(a) Using Another LLM to Select

Problem

TIR Solution

CoT Solution

(b) If TIR fails, then use CoT

Syntax Error or

Execution Timeout

Problem

TIR Solution

CoT Solution

(c) Intentionally Chosen by human

Use TIR Prompt

Use CoT Prompt

Problem (d) Adaptive Reasoning by LLMs

TIR Solution

CoT Solution
TIR or CoT?

Figure 1: Illustration of our research question. (a)
Zhao et al. (2023) post-select between CoT and
TIR by another LLM. (b) Yue et al. (2023) choose
CoT if TIR fails due to syntax error or execution
timeout. (c) Yang et al. (2024a) controls selec-
tion between CoT and TIR by predefined inference
prompts. (d) We aim to teach LLMs to choose the
appropriate one before decoding.

To bridge this gap, we propose Teaching LLMs
According to Their Aptitude (TATA), an adap-
tive framework that enables LLMs to sponta-
neously select between CoT and TIR for math
problem solving. Instead of adopting a fixed
strategy for all training queries, TATA adaptively
tailors the training data selection process by con-
sidering both the query characteristics and the
base LLM’s aptitude. This ensures that the re-
sulting model is equipped to select a suitable
reasoning strategy (CoT or TIR) for different
queries at test time, facilitating aptitude-driven
reasoning. As a result, TATA preserves and en-
hances the generalizability of the model, partic-
ularly for out-of-domain tasks.

Concretely, we begin with a dataset D, which
consists of N triplets, each containing a query,
a CoT solution, and a TIR solution. We then
construct an anchor set, Danchor, to evaluate the
model’s performance. For each training query
in D, we assess the LLM’s accuracy on Danchor
by providing either the CoT or TIR solution
of the query as a one-shot example. Based on
the model’s performance on the Danchor in each
setting, we select the most effective reasoning
paradigm for training queries and use it to con-
struct the SFT data, DSFT. We endow the base
LLMs with the ability to adaptively switch be-
tween CoT and TIR by training of personalized
training set DSFT. To assess TATA’s effective-
ness, we conduct extensive evaluations across six math reasoning benchmarks, utilizing both general-
purpose LLMs (e.g. Llama-3-8B (AI@Meta, 2024)) and math-specialized LLMs (e.g. Qwen2.5-
Math-7B) as base models. Experiments show that TATA successfully leads to better performance
across various models and benchmarks.

To summarize, our contributions are as follows:

1. We propose TATA, an adaptive framework that enables LLMs to spontaneously select between
CoT and TIR for adaptive mathematical reasoning based on their inherent aptitudes.

2. Extensive experiments demonstrate that TATA effectively combines the strengths of both CoT and
TIR, achieving comparable or even superior performance while offering higher inference efficiency
compared to TIR.

3. Comprehensive analyses highlight the critical role of base-LLM-aware data selection for CoT and
TIR, which is the core of our TATA framework.

2 RELATED WORK

Math Reasoning with CoT and TIR CoT and TIR are two widely recognized approaches for
reasoning with LLMs. CoT offers interpretability and generalizability, while TIR can provide precise
calculation results. Previous work on mathematical SFT has primarily focused on either CoT (Yu
et al., 2023; Tong et al., 2024; Shao et al., 2024; Yan et al., 2024) or TIR (Yue et al., 2023; Gou
et al., 2023; Wang et al., 2023; Yin et al., 2024), with a few efforts to integrate both (Yue et al., 2023;
Beeching et al., 2024; Yang et al., 2024b). For instance, MAmmoTH (Yue et al., 2023) mainly adopts
TIR but switches to CoT when code execution fails due to errors or timeouts. However, it relies on
separate prompts and manual inference controls to switch between them. Recent work has explored
automatic selection between CoT and TIR (Zhao et al., 2023; Yue et al., 2024; Yu et al., 2024), such
as using an auxiliary LLM to determine CoT/TIR (Zhao et al., 2023). However, these methods rely

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

on external planners to select CoT/TIR, not by LLMs themselves. In contrast, our work seeks to
enable LLMs to spontaneously select the appropriate reasoning strategy without relying on external
planners or manual interventions.

Data Selection Data selection plays a crucial role in training LLMs (Albalak et al., 2024). Various
methods have been developed to optimize data usage at different stages of model training, ranging
from pretraining (Brown et al., 2020; Wettig et al., 2024; Lin et al., 2025) to supervised fine-tuning
(SFT) (Li et al., 2023; Pan et al., 2024; Xia et al., 2024; Zhou et al., 2023b). Our work focuses
specifically on data selection between CoT and TIR given a math problem and a base LLM.

Test-Time Scaling Recent efforts in scaling test-time computation have explored refinement
strategies (Snell et al., 2024; Xu et al., 2024b; Hou et al., 2025; Lee et al., 2025), which iteratively
build on previous outputs, and MCTS-based approaches (Zhou et al., 2023a; Liu et al., 2024; Wu
et al., 2024). The roles of SFT and RL have also been actively discussed (Chu et al., 2025). For
example, OpenAI (2024); DeepSeek-AI et al. (2025) use RL to train LLMs for generating longer
CoT reasoning, while Muennighoff et al. (2025); Ye et al. (2025) leverage SFT for scaling test-time
computation. This work focuses on enabling adaptive mathematical reasoning in LLMs primarily
through data selection during the SFT stage, with discussions on the potential use of RL in Section 6.3.
While existing test-time scaling methods mainly target CoT, exploring adaptive selection between
CoT and TIR could be an orthogonal direction.

3 BACKGROUND

3.1 REJECTION FINE-TUNING

Rejection fine-tuning (RFT) is a widely-adopted approach to enhance math reasoning abilities by
augmenting the original training set using rejection sampling (Yuan et al., 2023). Suppose that the
original training set Dorig = {(xi, yi)}Ni=1 consists of N pairs of data points (xi, yi). For each query
xi, M responses are generated by a teacher model (e.g., GPT-4): {xi, y

j
i }Mj=1. If yji ̸= yi, then the

response yji is discarded, leading to the augmented training set Daug = {(xi, y
j
i)}Ni=1

Mi

j=1, where
Mi ≤ M is the number of correct responses for query xi. More details are given in Appendix A.1.

3.2 TIR INFERENCE PIPELINE

Tool-Integrated Reasoning (TIR) (Gou et al., 2023) combines natural language reasoning with Python
code execution in an interleaved manner. When a Python code block is encountered, it is executed
using a Python interpreter, and the resulting output, along with the previous context, is fed back into
the LLM to facilitate further reasoning (see Algorithm 1). Solving math problems with TIR often
requires multiple iterations of these interactions, which typically results in higher computational
costs compared to CoT. However, TIR offers more reliable results by leveraging external tools for
computation. The whole inference pipeline of TIR is provided in Appendix A.2.

3.3 IMPLICIT INSTRUCTION TUNING

In-Context Learning (ICL) can be viewed as implicit instruction tuning (IIT), i.e., “fine-tune” the
demonstration implicitly (Li et al., 2023). Let Xins,Xtest ∈ Rdin be the few-shot demonstration
inputs and the test input, respectively. Suppose WK ,WV ,WQ ∈ Rdout×din are projection matrices
to compute the attention queries, keys, and values. The self-attention is formulated as follows:

WV [Xins∥Xtest]Softmax
(
WK [Xins∥Xtest]

⊤Q√
din

)
≈ [WV Xtest(WKXtest)

⊤︸ ︷︷ ︸
Only test input.

+WV Xins(WKXins)
⊤︸ ︷︷ ︸

Only instruction sample.

]Q,

where ∥ denotes concatenation. The first term only involves the test input Xtest, and the second term
is related to few-shot exemplars, which can be interpreted as an IIT to the model parameters (Dai
et al., 2022; Yang et al., 2023) (see Appendix A.3).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

1. Data Construction

Rejection Sampling rewriting CoT -> TIR SFT data selection

2. Anchor Construction

clustering

Anchor Set Question 1: 𝑞1

Anchor Set Question 2: 𝑞2

Anchor Set Question 3: 𝑞3

Anchor Set Question A: 𝑞𝐴

Answer 1: 𝑎1

Answer 2: 𝑎2

Answer 3: 𝑎3

Answer A: 𝑎𝐴

4. Data Selection

The anchor set

of size A.

3. Contribution Quantification

𝑞1

𝑞2

𝑞3

𝑞𝐴

Figure 2: Overview of our Teaching LLMs According to Their Aptitude (TATA) framework. Here,
Dorig denotes the original training set, Daug represents the augmented training set obtained through
rejection sampling with CoT only, and D refers to the candidate set consisting of (query, CoT, TIR)
triplets. Danchor is the anchor set of size A. Sk

CoT and Sk
TIR are scores calculated based on the LLMs’

aptitude on the anchor set, elicited using 1-shot prompts. Finally, H represents the SFT data selection
process. Fine-tuning on the resulting SFT data enables LLMs to spontaneously select between
CoT and TIR at test time according to their aptitude.

4 THE TATA FRAMEWORK

4.1 PROBLEM SETTING

In this section, we formally formulate our problem setting, including our data structure and objective.

Data Structure Suppose we have a candidate dataset D = {(xi, y
j
i , z

j
i)}Ni=1

Mi

j=1 consisting of

triplets in the form (xi, y
j
i , z

j
i) for the i-th training example, where 1 ≤ j ≤ Mi. Here, xi represents

the i-th training problem, while yji and zji denote the j-th CoT solution and TIR solution to this
problem, respectively. Notably, the TIR solution zji is adapted from yji , meaning both solutions
follow the same steps to solve the mathematical problem xi, but differ in their reasoning formats:
yji relies exclusively on natural language reasoning, whereas zji incorporates Python code blocks to
perform calculations for certain reasoning steps.

Objective Our objective is to construct an SFT dataset from the candidate dataset D =

{(xi, y
j
i , z

j
i)}Ni=1

Mi

j=1 by incorporating suitable reasoning patterns for different training queries. Specif-

ically, for each problem xi in D = {(xi, y
j
i , z

j
i)}Ni=1

Mi

j=1, we need to decide whether to include its
CoT solutions or TIR solutions in the SFT dataset. Formally, this involves determining whether
{(xi, y

j
i)}

Mi
j=1 ⊆ DSFT or {(xi, z

j
i)}

Mi
j=1 ⊆ DSFT.1 For example, CoT-only SFT (Xu et al., 2024c)

constructs the dataset such that {(xi, y
j
i)}

Mi
j=1 ⊆ DSFT, ∀i. In contrast, TIR-only SFT (Gou et al.,

2023) selects {(xi, z
j
i)}

Mi
j=1 ⊆ DSFT, ∀i. Unlike these static selection approaches, TATA aims to

dynamically tailor the most suitable reasoning paradigm for different training queries and base LLMs.

1We also consider scenarios where both CoT and TIR solutions for a query are included in the SFT dataset.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

4.2 TATA OVERVIEW

“Teach according to students’ aptitude.” — Confucius

Motivation Intuitively, if an LLM demonstrates improved performance on certain queries when fine-
tuned with CoT solutions instead of TIR solutions, it suggests its inclination toward CoT reasoning in
those cases. This preference can be extrapolated to new cases, where the model is expected to favor
CoT for similar problems during testing. The same principle applies to TIR-based reasoning. Inspired
by IIT theory (see Section 3.3), LLMs can be indirectly “fine-tuned” with CoT or TIR examples
through one-shot learning, thereby replacing the need for actual SFT.

Overview As depicted in Figure 2, our proposed framework, TATA, comprises four main steps:
data construction, anchor construction, contribution quantification, and data selection. In the data
construction stage, we adapt an original training set, Dorig, containing CoT solutions, to form the

candidate set D = {(xi, y
j
i , z

j
i)}Ni=1

Mi

j=1. This candidate set includes triplets of queries, a CoT
solution, and corresponding TIR solution. Next, during the anchor construction stage, a representative
anchor set of size A is generated from the original training set by clustering. In the contribution
quantification stage, we compute two scores, Sk

CoT and Sk
TIR, for each query qk in the candidate

set D = {(xi, y
j
i , z

j
i)}Ni=1

Mi

j=1. These scores indicate the impact of CoT and TIR solutions on the
performance of LLMs using IIT (see Section 3.3). The data selection step formulates a decision based
on Sk

CoT and Sk
TIR, determining whether to include CoT or TIR solutions for queries in D. Finally,

SFT is performed on this curated training set.

4.3 TATA DETAILS

Data Construction We start with an original math training set (e.g., MATH (Hendrycks et al., 2021)
training set), denoted as Dorig = {(xi, yi)}Ni=1, which consists of N training examples, where the i-th
problem is represented as xi with its corresponding golden answer yi. To further enhance the training
set, we apply RFT (see Section 3.1), resulting in an augmented dataset, Daug = {(xi, y

j
i)}Ni=1

Mi

j=1,

where yji denotes the j-th augmented CoT solution for the i-th training problem xi. Next, we convert
each CoT solution yji into the TIR format zji by prompting a strong LLM (e.g., GPT-4o). During this
process, the original logic in yji is preserved, while Python blocks are introduced to handle necessary

computations. This transformation produces a candidate dataset D = {(xi, y
j
i , z

j
i)}Ni=1

Mi

j=1, which is
required for our problem setting (see Section 4.1).

Anchor Construction To evaluate the impact of specific CoT or TIR solutions on the performance
of LLMs, we construct an anchor set, denoted by Danchor = {(qi, ai)}Ai=1, where A is the size of the
anchor set, qi, ai is the i-th question and corresponding ground-truth answer in Danchor. We expect
Danchor to be diverse, ensuring that accuracy on this set fairly reflects the LLMs’ overall performance.
To achieve this, we first encode all queries from Dorig into vector representations using an embedding
model (e.g., text-embedding-ada-002) and then cluster them into A distinct groups. The
center of each cluster is selected to Danchor. This approach takes the semantic diversity of questions
into account, making Danchor a reliable indicator of LLMs’ performance. To put it simply, one can
treat this Danchor as a validation set to validate the performance of a base model in different settings.

Contribution Quantification To quantify the contribution of CoT and TIR for each triplet
(xk, y

j
k, z

j
k) in D to the LLMs’ math reasoning abilities, we implicitly "fine-tune" the LLMs us-

ing CoT and TIR formats separately through one-shot learning (see Section 3.3). In this case, the
performance of the base model under one-shot ICL approximates the accuracy achieved by a model
that is finetuned from the same base model using the same one-shot example. For the k-th query xk

and its corresponding CoT solutions yjk (1 ≤ j ≤ Mk), we compute a CoT score, denoted as Sk
CoT, as

follows:

Sk
CoT =

1

Mk

Mk∑
j=1

1

A

A∑
i=1

I
(
ai,G(· | xk, y

j
k︸ ︷︷ ︸

1-shot prompt

, qi)
)
,

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 1: The accuracies (%) of our TATA framework, comparing with various baselines. The best
accuracies within each group are shown in bold. “ID AVG”, “OOD AVG”, and “AVG” denote the
averages of these metrics across in-domain, out-of-domain, and all six benchmarks.

Model Method In-Domain Out-of-Domain AVG
GSM8K MATH ID AVG MAWPS SVAMP College Olympiad OOD AVG

Qwen2.5-0.5B

hybrid 49.3 37.7 43.5 84.5 55.0 27.5 7.9 43.7 43.6
ensemble 47.1 34.8 41.0 83.4 53.8 25.6 7.7 42.6 42.1
GPT-Select 45.6 31.6 38.6 80.4 52.6 24.4 7.1 41.1 40.3
TATA 52.8 36.6 44.7 85.9 59.4 26.9 8.6 45.2 45.0

Qwen2.5-1.5B

hybrid 71.3 54.7 63.0 91.8 80.4 36.8 19.7 57.2 59.1
ensemble 71.1 54.3 62.7 91.5 79.6 36.6 18.8 56.6 58.7
GPT-Select 72.5 47.3 59.9 91.8 81.8 35.0 14.8 55.8 57.2
TATA 77.6 53.8 65.7 94.2 80.7 37.0 18.8 57.7 60.4

Qwen2.5-3B

hybrid 80.9 61.9 71.4 90.2 79.8 41.6 24.4 59.0 63.1
ensemble 81.3 60.3 70.8 95.3 86.2 42.9 23.1 61.9 64.8
GPT-Select 81.4 53.6 67.5 86.2 79.0 38.9 17.3 33.8 45.0
TATA 84.0 61.3 72.6 94.7 85.3 41.6 24.9 61.6 65.3

Qwen2.5-7B

hybrid 87.0 67.5 77.3 92.1 84.3 44.2 31.7 63.1 67.8
ensemble 87.1 63.0 75.0 91.5 82.0 43.0 30.2 61.7 66.1
GPT-Select 88.3 59.0 73.7 91.4 83.4 42.7 23.3 60.2 64.7
TATA 89.5 66.8 78.2 94.2 86.2 43.4 31.1 63.7 68.5

Qwen2.5-14B

hybrid 91.4 71.7 81.5 93.8 84.5 45.8 35.3 64.8 70.4
ensemble 90.1 66.9 78.5 92.2 82.8 46.1 32.3 63.3 68.4
GPT-Select 90.7 61.5 76.1 86.2 79.1 44.1 23.0 58.1 64.1
TATA 92.1 71.7 81.9 96.5 88.4 46.4 35.3 66.7 71.7

LLaMA-3-8B

hybrid 82.0 56.1 69.1 88.0 78.0 30.8 21.3 54.5 59.4
ensemble 84.0 46.9 65.4 88.6 79.3 29.6 15.3 53.2 57.3
GPT-Select 83.2 47.2 65.2 85.3 77.5 30.6 13.9 51.8 56.3
TATA 84.0 55.1 69.6 91.8 82.7 34.2 21.5 57.6 61.5

Qwen2.5Math-1.5B

hybrid 82.6 66.3 74.4 92.7 83.6 43.1 26.2 61.4 65.7
ensemble 81.5 64.7 73.1 91.8 83.9 44.1 27.4 61.8 65.6
GPT-Select 79.4 56.9 68.1 92.7 83.7 41.8 20.6 59.7 62.5
TATA 83.2 62.8 73.0 94.0 85.6 43.9 26.8 62.6 66.0

Qwen2.5Math-7B

hybrid 89.2 73.4 81.3 95.4 89.5 47.1 34.4 66.6 71.5
ensemble 89.1 67.7 78.4 93.4 84.5 46.7 30.8 63.9 68.8
GPT-Select 89.8 63.0 76.4 89.4 85.1 44.4 24.6 60.7 65.9
TATA 89.8 73.0 81.4 95.2 88.1 48.3 35.9 66.9 71.7

where xk and yjk serve as the one-shot prompt for the LLM G to generate a response for the question
qi in the anchor set, and I is an indicator function that returns 1 if the model’s generated answer
matches the ground-truth answer ai of question qi, and 0 otherwise. Sk

CoT represents the average
accuracy on the anchor set Danchor when using CoT format as the one-shot prompt, averaged over all
CoT solutions yjk (1 ≤ j ≤ Mk) for query xk. Similarly, the TIR score, Sk

TIR, is defined as:

Sk
TIR =

1

Mk

Mk∑
j=1

1

A

A∑
i=1

I
(
ai,G(· | xk, z

j
k︸ ︷︷ ︸

1-shot prompt

, qi)
)
.

The only difference is that the TIR format zjk is used as the one-shot example instead of CoT.

Data Selection Currently, two scores, Sk
CoT and Sk

TIR, are associated with the k-th query qk in the
candidate set D. The next step is to determine whether to include the CoT or the TIR solutions
for this specific query qk in D. Specifically, the goal is to decide between {(xk, y

j
k)}

Mk
j=1 ⊆ DSFT

or {(xk, z
j
k)}

Mk
j=1 ⊆ DSFT. We formalize this decision process with a decision function Hk =

(Sk
CoT, S

k
TIR), where the final decision is represented as a series of decisions H = {Hk}Nk=1, where

N is the number of queries in candidate set D. For instance, a simple decision function Hk could
involve consistently choosing CoT solutions, i.e., {(xk, y

j
k)}

Mk
j=1 ⊆ DSFT for all k. This corresponds

to performing SFT exclusively on CoT data.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 2: Ablation of Contribution Quantification.

Model Method In-Domain Out-of-Domain AVG
GSM8K MATH ID AVG MAWPS SVAMP College Olympiad OOD AVG

Qwen2.5-0.5B

hybrid 49.3 37.7 43.5 84.5 55.0 27.5 7.9 43.7 43.6
ensemble 47.1 34.8 41.0 83.4 53.8 25.6 7.7 42.6 42.1
GPT-Select 45.6 31.6 38.6 80.4 52.6 24.4 7.1 41.1 40.3
CoT+TIR 51.5 33.5 42.5 85.8 58.6 25.7 7.9 44.4 43.8
TATA - random 100 50.6 34.6 42.6 85.7 57.6 26.2 6.2 43.9 43.5
TATA - A 200 52.6 36.8 44.7 85.1 59.6 27.4 8.4 45.1 45.0
TATA 52.8 36.6 44.7 85.9 59.4 26.9 8.6 45.2 45.0

5 EXPERIMENTAL RESULTS

5.1 EXPERIMENTAL SETUP

TATA Implementation We select the training sets from GSM8K (Cobbe et al., 2021) and Math
(Hendrycks et al., 2021) as Dorig. For Daug, we use the DART-Math-Hard dataset (Tong et al., 2024).
We employ GPT-4o to rewrite CoT solutions into TIR format using carefully curated prompts and
filter out triplets with anomalous TIR responses (e.g., those that lack a definitive conclusion regarding
the final answer). For embedding, we use text-embedding-ada-002 to encode all queries in
D into 1,536-dimensional vectors. We set the size of Danchor to 100 for both the GSM8K and Math.
To save computational cost, we randomly sample one pair of CoT and TIR solutions per candidate
query, leading to a new candidate set, D∗ = {(xi, y

∗
i , z

∗
i)}Ni=1. For the decision function H, we

determine selection criteria based on two quantiles of the distribution of (SCoT − STIR). More details
are provided in Appendix B.1.

Evaluation Benchmarks We evaluate our approach using six benchmarks for both in-domain
and out-of-domain (OOD) assessment. Specifically, we use the GSM8K and MATH test sets for
in-domain evaluation. For OOD evaluation, we include the SVAMP (Patel et al., 2021), MAWPS
(Koncel-Kedziorski et al., 2016), CollegeMath (Tang et al., 2024), and OlympiadBench-Math (He
et al., 2024) (details in Appendix B.2)

Evaluation Metrics In addition to measuring accuracy on various benchmarks, we evaluate the
generation time cost using the average number of total tokens per generation and quantify the cost of
invoking Python interpreters by the average number of code executions (see Appendix B.3).

Baselines We include the following methods as our baselines: 1) Hybrid (Yue et al., 2023):
Primarily uses TIR but falls back to CoT upon code execution errors or timeouts (Figure 1 (b)). 2)
Ensemble (Zhao et al., 2023): Post-selects between TIR and CoT outputs using an additional LLM
(Figure 1 (a)). In our implementation, we use the same 8-shot prompt as Zhao et al. (2023) with the
base LLM as the selector for consistency. 3) GPT-Select: Uses GPT-4o during data selection to
choose CoT or TIR per query, testing whether a strong external LLM can effectively select reasoning
paradigms regardless of the base LLM’s aptitude.

Additional details, including the SFT setup and evaluation setup, are provided in Appendix B.4.

5.2 MAIN RESULTS

Effectiveness of TATA Results presented in Table 1 demonstrate the effectiveness of our proposed
TATA framework. Across various base models, model sizes, and benchmarks, TATA consistently
achieves competitive or superior performance compared to all the other baselines, highlighting its
ability to leverage the complementary advantages of both methods. Additionally, TATA achieves
significantly better performance than the “GPT-Select” baseline. While “GPT-Select” leverages
a much stronger LLM to select between CoT and TIR for different queries, it demonstrates that
this approach may not be suitable for all base LLMs. This highlights the critical importance of
base-LLM-aware selection in optimizing performance.

Inference efficiency The results in Table 3 demonstrate that our TATA not only improves accuracy
but also enhances inference efficiency compared to standalone CoT and TIR methods. Across all

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

model sizes, TATA achieves higher accuracy while maintaining lower token usage and fewer code
executions than TIR, and it significantly reduces computational overhead compared to TIR without
sacrificing the benefits of tool integration. For instance, with Qwen2.5-7B, TATA achieves a 2.3%
accuracy improvement over CoT while using 9.1 fewer tokens per generation and only 1.4 code
executions, compared to TIR’s 2.63 code executions. This balance between accuracy and efficiency
highlights TATA’s ability to streamline reasoning processes, making it a computationally effective
solution for mathematical reasoning tasks. The “hybrid” and “ensemble” approaches incur even
higher inference costs compared to our proposed TATA. Specifically, "hybrid" requires decoding via
TIR and selectively switching to CoT execution for specific cases; “ensemble” generates both CoT
and TIR outputs during testing and incurs additional costs for selection between the two.

5.3 ABLATION

Table 4: TATA is not sensitive to quantiles. * denotes the quantiles we choose for Qwen2.5Math-0.5B.

Quantiles 50, 60 40, 60 30, 60 30, 65∗ 30, 70

AVG 44.8 44.8 44.9 45.0 44.8

Table 3: Results of inference costs. The three met-
rics, “Acc”, “Token”, and “# Code” represent the
average accuracy (%), total tokens per generation,
and number of code executions.

Model Method Acc↑ Token↓ # Code↓

Qwen2.5-3B
TATA 65.3 383.4 1.43
CoT 62.9−2.4 385.2+1.8 0−1.43

TIR 62.9−2.4 411.3+27.9 2.8+1.37

Qwen2.5-7B
TATA 68.5 369.1 1.4
CoT 66.2−2.3 378.2+9.1 0−1.40

TIR 67.8−0.7 393.2+24.1 2.63+1.23

LLaMA-3-8B
TATA 61.5 371.7 1.32
CoT 58−3.5 386+14.3 0−1.32

TIR 59.3−2.2 392.5+20.8 2.66+1.34

Qwen2.5Math-1.5B
TATA 66.0 405.4 1.08
CoT 63.4−2.6 388.5+16.9 0−1.08

TIR 64.8−1.2 460.1+54.7 3.23+2.15

Qwen2.5Math-7B
TATA 71.7 393.8 1.26
CoT 67.5−4.2 379.9+13.9 0−1.26

TIR 71.6−0.1 417.8+24.0 2.68+1.42

Quantile selection As mentioned in Sec-
tion 5.1, the data selection function H is de-
termined using two quantiles of the distribution
(Sk

CoT−Sk
TIR) (see Appendix B). These quantiles

are selected through the grid search. As shown
in Table 4, the performance of TATA is not very
sensitive to the choice of these quantiles (see
Appendix B).

Anchor set & Others Table 2 includes results
for several other ablation studies: 1) “CoT +
TIR”: This method includes all CoT and TIR
solutions for each query without any data selec-
tion. 2) Anchor set construction with random
sampling ("TATA - random 100"): Replacing
k-means clustering with random selection while
keeping the anchor set size constant. 3) Larger
anchor set size ("TATA - A=200"): Increasing
the anchor set size to 200. From Table 2, we
observe that TATA achieves the highest overall
accuracy. Naively including all CoT and TIR
solutions (i.e., “CoT + TIR”) results in a notice-
able decline in performance, despite the larger size of the DSFT dataset. Random anchor set selection
("TATA - random 100") critically degrades performance, highlighting the importance of a representa-
tive anchor set over size alone. Increasing the anchor set size shows diminishing returns, indicating
that A = 100 is enough for model evaluation in our SFT data curation.

6 ANALYSIS AND DISCUSSION

6.1 ANALYSIS OF COT SCORES AND TIR SCORES

To further investigate how different LLMs exhibit varying reasoning patterns, we analyze the distri-
bution of Sk

CoT and Sk
TIR. As illustrated in Figure 3 (see also Appendix C.2), different base LLMs

display distinct distributions of (Sk
CoT − Sk

TIR), indicating varying inclinations towards CoT and TIR
reasoning for queries in the candidate set D∗ = {(xi, y

∗
i , z

∗
i)}Ni=1. Interestingly, even base LLMs

from the same family can demonstrate different tendencies towards CoT and TIR (e.g., Qwen2.5-0.5B
vs. Qwen2.5-7B). Notably, Qwen2.5-7B exhibits a stronger preference for CoT on GSM8K and for
TIR on MATH, compared to Qwen2.5-0.5B.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0.6 0.4 0.2 0.0 0.2 0.4 0.6
0

200

400

600

800

1000

1200

1400

1600

C
ou

nt

GSM8K
MATH

0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
0

250

500

750

1000

1250

1500

1750

2000

C
ou

nt

GSM8K
MATH

0.6 0.4 0.2 0.0 0.2 0.4
0

250

500

750

1000

1250

1500

1750

2000

C
ou

nt

GSM8K
MATH

Figure 3: The distribution of (Sk
CoT −Sk

TIR) for GSM8K (red) and MATH (blue): Qwen2.5-0.5B (left),
Qwen2.5-7B (middle), LLaMA-3-8B (right).

6.2 TRANSFERABILITY OF DATA SELECTION BETWEEN DIFFERENT LLMS

To evaluate whether data selected by one LLM can benefit another LLM, we conducted additional
experiments using Qwen2.5-0.5B to assess this type of transferability. Specifically, we fine-tuned
Qwen2.5-0.5B on data selected by Qwen2.5-7B and LLaMA-3-8B, with the results in Table 5.
As expected, compared to fine-tuning Qwen2.5-0.5B on its own selected data, fine-tuning on data
selected by another LLM leads to a decline in TATA performance. This finding suggests that our
TATA approach is base model-aware, emphasizing the principle of "teaching LLMs according to
their aptitude." Interestingly, using data selected by LLMs within the same family (e.g., Qwen2.5-7B)
yields more consistent performance compared to data selected by LLMs from a different family
(LLaMA-3-8B). Complete results are in Appendix C.3.

6.3 EXPLORING REINFORCEMENT LEARNING

Recent advancements in RL (OpenAI, 2024; DeepSeek-AI et al., 2025) have demonstrated promising
results in enhancing long CoT reasoning. To explore the role of RL in the spontaneous selection
between CoT and TIR, we employ Direct Preference Optimization (DPO) to LLMs fine-tuned with
our TATA framework (Rafailov et al., 2023) by constructing preference pairs based on the CoT
and TIR scores of queries in the new candidate set D∗ = {(xi, y

∗
i , z

∗
i)}Ni=1. Detailed experimental

setup and methodologies are provided in Appendix C.4. As shown in Table 6, DPO achieves results
comparable to those of TATA. The complete results are provided in Table C.4. This suggests that
the original data has already been effectively learned by the base LLM during the SFT stage, and
applying additional DPO on the same dataset yields minor improvement. This observation aligns
with LIMO (Ye et al., 2025), which argues that the capabilities of pretrained LLMs are latent, with
both SFT and RL serving as different methods to elicit these inherent abilities.

Table 5: The best results (%) are bold, second-best
underlined.

Selected by ID AVG OOD AVG AVG

TATA 44.7 45.2 45.0
LLaMA-3-8B 43.8 44.2 44.1
Qwen2.5-7B 44.5 44.6 44.6

Table 6: DPO Results. Best results in bold.

Model Method Acc Token # Code

LLaMA-3-8B TATA 61.5 371.7 1.32
+DPO 61.6 365.4 1.34

Qwen2.5Math-7B TATA 71.7 393.8 1.26
+DPO 71.7 395.2 1.32

7 CONCLUSION

We propose TATA, a novel and effective framework for mathematical reasoning with LLMs that en-
ables models to dynamically align their reasoning strategies, CoT or TIR, with their intrinsic strengths.
By incorporating base-LLM-aware data selection during SFT, TATA tailors reasoning strategies to
each model, empowering them to select an appropriate paradigm for inference autonomously. Exten-
sive experiments demonstrate that TATA achieves superior or comparable performance across both
in-domain and OOD benchmarks while significantly improving inference efficiency compared to
method based on TIR alone. Moreover, our analysis underscores the importance of aptitude-aware
data selection in unlocking the potential of LLMs to make autonomous and effective reasoning
decisions, paving the way for further advancements in reasoning capabilities of LLMs.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

All implementation details of our TATA framework are provided in Section 5.1 and Appendix B.
Dataset curation procedures are described in Appendix B.1, while evaluation benchmarks are pre-
sented in Appendix B.2. The evaluation metrics are defined in Appendix B.3, and complete training
details, including hyperparameters and model configurations, are given in Appendix B.4. We will
release our code, training data, and models upon acceptance.

REFERENCES

AI@Meta. Llama 3 model card. 2024. URL https://github.com/meta-llama/llama3/
blob/main/MODEL_CARD.md.

Alon Albalak, Yanai Elazar, Sang Michael Xie, Shayne Longpre, Nathan Lambert, Xinyi Wang,
Niklas Muennighoff, Bairu Hou, Liangming Pan, Haewon Jeong, et al. A survey on data selection
for language models. ArXiv preprint, abs/2402.16827, 2024. URL https://arxiv.org/
abs/2402.16827.

Edward Beeching, Shengyi Costa Huang, Albert Jiang, Jia Li, Benjamin Lipkin, Zihan Qina, Kashif
Rasul, Ziju Shen, Roman Soletskyi, and Lewis Tunstall. Numinamath 7b cot. https://
huggingface.co/AI-MO/NuminaMath-7B-CoT, 2024.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agar-
wal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler,
Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCan-
dlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot
learners. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan,
and Hsuan-Tien Lin (eds.), Advances in Neural Information Processing Systems 33: Annual
Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and William W Cohen. Program of thoughts prompt-
ing: Disentangling computation from reasoning for numerical reasoning tasks. ArXiv preprint,
abs/2211.12588, 2022. URL https://arxiv.org/abs/2211.12588.

Tianzhe Chu, Yuexiang Zhai, Jihan Yang, Shengbang Tong, Saining Xie, Dale Schuurmans, Quoc V
Le, Sergey Levine, and Yi Ma. Sft memorizes, rl generalizes: A comparative study of foundation
model post-training. ArXiv preprint, abs/2501.17161, 2025. URL https://arxiv.org/
abs/2501.17161.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. ArXiv preprint, abs/2110.14168, 2021. URL https://arxiv.org/
abs/2110.14168.

Damai Dai, Yutao Sun, Li Dong, Yaru Hao, Shuming Ma, Zhifang Sui, and Furu Wei. Why can gpt
learn in-context? language models implicitly perform gradient descent as meta-optimizers. ArXiv
preprint, abs/2212.10559, 2022. URL https://arxiv.org/abs/2212.10559.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong,
Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao,

10

https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://arxiv.org/abs/2402.16827
https://arxiv.org/abs/2402.16827
https://huggingface.co/AI-MO/NuminaMath-7B-CoT
https://huggingface.co/AI-MO/NuminaMath-7B-CoT
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://arxiv.org/abs/2211.12588
https://arxiv.org/abs/2501.17161
https://arxiv.org/abs/2501.17161
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2212.10559

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang, Minghui Tang,
Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang,
Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L.
Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu Wang,
Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing Wu, Shengfeng
Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu, Wenfeng
Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan
Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xinyu Yang,
Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xiaosha Chen,
Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia Shan, Y. K. Li,
Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Wang,
Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang, Yixuan Tan,
Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia
He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong
Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying Tang, Yukun Zha,
Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda Xie, Zhengyan Zhang,
Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li,
Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu Zhang, and Zhen
Zhang. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning, 2025.
URL https://arxiv.org/abs/2501.12948.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan, and
Graham Neubig. PAL: program-aided language models. In Andreas Krause, Emma Brunskill,
Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), International
Conference on Machine Learning, ICML 2023, 23-29 July 2023, Honolulu, Hawaii, USA, volume
202 of Proceedings of Machine Learning Research, pp. 10764–10799. PMLR, 2023. URL
https://proceedings.mlr.press/v202/gao23f.html.

Zhibin Gou, Zhihong Shao, Yeyun Gong, Yujiu Yang, Minlie Huang, Nan Duan, Weizhu Chen,
et al. Tora: A tool-integrated reasoning agent for mathematical problem solving. ArXiv preprint,
abs/2309.17452, 2023. URL https://arxiv.org/abs/2309.17452.

Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Leng Thai, Junhao Shen, Jinyi Hu,
Xu Han, Yujie Huang, Yuxiang Zhang, et al. Olympiadbench: A challenging benchmark for
promoting agi with olympiad-level bilingual multimodal scientific problems. ArXiv preprint,
abs/2402.14008, 2024. URL https://arxiv.org/abs/2402.14008.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. ArXiv
preprint, abs/2103.03874, 2021. URL https://arxiv.org/abs/2103.03874.

Zhenyu Hou, Xin Lv, Rui Lu, Jiajie Zhang, Yujiang Li, Zijun Yao, Juanzi Li, Jie Tang, and Yuxiao
Dong. Advancing language model reasoning through reinforcement learning and inference scaling.
ArXiv preprint, abs/2501.11651, 2025. URL https://arxiv.org/abs/2501.11651.

Jian Hu, Xibin Wu, Zilin Zhu, Xianyu, Weixun Wang, Dehao Zhang, and Yu Cao. Openrlhf: An
easy-to-use, scalable and high-performance rlhf framework. ArXiv preprint, abs/2405.11143, 2024.
URL https://arxiv.org/abs/2405.11143.

Kazuki Irie, Róbert Csordás, and Jürgen Schmidhuber. The dual form of neural networks revisited:
Connecting test time predictions to training patterns via spotlights of attention. In Kamalika
Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvári, Gang Niu, and Sivan Sabato (eds.),
International Conference on Machine Learning, ICML 2022, 17-23 July 2022, Baltimore, Maryland,
USA, volume 162 of Proceedings of Machine Learning Research, pp. 9639–9659. PMLR, 2022.
URL https://proceedings.mlr.press/v162/irie22a.html.

Rik Koncel-Kedziorski, Subhro Roy, Aida Amini, Nate Kushman, and Hannaneh Hajishirzi. MAWPS:
A math word problem repository. In Kevin Knight, Ani Nenkova, and Owen Rambow (eds.),
Proceedings of the 2016 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, pp. 1152–1157, San Diego, Cal-
ifornia, 2016. Association for Computational Linguistics. doi: 10.18653/v1/N16-1136. URL
https://aclanthology.org/N16-1136.

11

https://arxiv.org/abs/2501.12948
https://proceedings.mlr.press/v202/gao23f.html
https://arxiv.org/abs/2309.17452
https://arxiv.org/abs/2402.14008
https://arxiv.org/abs/2103.03874
https://arxiv.org/abs/2501.11651
https://arxiv.org/abs/2405.11143
https://proceedings.mlr.press/v162/irie22a.html
https://aclanthology.org/N16-1136

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Kuang-Huei Lee, Ian Fischer, Yueh-Hua Wu, Dave Marwood, Shumeet Baluja, Dale Schuurmans,
and Xinyun Chen. Evolving deeper llm thinking. ArXiv preprint, abs/2501.09891, 2025. URL
https://arxiv.org/abs/2501.09891.

Yunshui Li, Binyuan Hui, Xiaobo Xia, Jiaxi Yang, Min Yang, Lei Zhang, Shuzheng Si, Junhao
Liu, Tongliang Liu, Fei Huang, et al. One shot learning as instruction data prospector for large
language models. ArXiv preprint, abs/2312.10302, 2023. URL https://arxiv.org/abs/
2312.10302.

Zhenghao Lin, Zhibin Gou, Yeyun Gong, Xiao Liu, Ruochen Xu, Chen Lin, Yujiu Yang, Jian Jiao,
Nan Duan, Weizhu Chen, et al. Not all tokens are what you need for pretraining. Advances in
Neural Information Processing Systems, 37:29029–29063, 2025.

Jiacheng Liu, Andrew Cohen, Ramakanth Pasunuru, Yejin Choi, Hannaneh Hajishirzi, and Asli
Celikyilmaz. Don’t throw away your value model! generating more preferable text with value-
guided monte-carlo tree search decoding. In First Conference on Language Modeling, 2024.

Zimu Lu, Aojun Zhou, Ke Wang, Houxing Ren, Weikang Shi, Junting Pan, Mingjie Zhan, and
Hongsheng Li. Mathcoder2: Better math reasoning from continued pretraining on model-translated
mathematical code. ArXiv preprint, abs/2410.08196, 2024. URL https://arxiv.org/abs/
2410.08196.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1: Simple test-time
scaling, 2025. URL https://arxiv.org/abs/2501.19393.

OpenAI. Learning to reason with llms. https://openai.com/index/
learning-to-reason-with-llms/, 2024. Accessed: 2024-09-23.

Xingyuan Pan, Luyang Huang, Liyan Kang, Zhicheng Liu, Yu Lu, and Shanbo Cheng. G-dig:
Towards gradient-based diverse and high-quality instruction data selection for machine translation.
ArXiv preprint, abs/2405.12915, 2024. URL https://arxiv.org/abs/2405.12915.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal. Are NLP models really able to solve sim-
ple math word problems? In Kristina Toutanova, Anna Rumshisky, Luke Zettlemoyer, Dilek
Hakkani-Tur, Iz Beltagy, Steven Bethard, Ryan Cotterell, Tanmoy Chakraborty, and Yichao
Zhou (eds.), Proceedings of the 2021 Conference of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Language Technologies, pp. 2080–2094, Online,
2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.naacl-main.168. URL
https://aclanthology.org/2021.naacl-main.168.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D. Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. In
Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine
(eds.), Advances in Neural Information Processing Systems 36: Annual Conference on Neural
Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 -
16, 2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Mingchuan Zhang, YK Li, Y Wu,
and Daya Guo. Deepseekmath: Pushing the limits of mathematical reasoning in open language
models. ArXiv preprint, abs/2402.03300, 2024. URL https://arxiv.org/abs/2402.
03300.

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally
can be more effective than scaling model parameters. ArXiv preprint, abs/2408.03314, 2024. URL
https://arxiv.org/abs/2408.03314.

Zhengyang Tang, Xingxing Zhang, Benyou Wan, and Furu Wei. Mathscale: Scaling instruction
tuning for mathematical reasoning. ArXiv preprint, abs/2403.02884, 2024. URL https://
arxiv.org/abs/2403.02884.

12

https://arxiv.org/abs/2501.09891
https://arxiv.org/abs/2312.10302
https://arxiv.org/abs/2312.10302
https://arxiv.org/abs/2410.08196
https://arxiv.org/abs/2410.08196
https://arxiv.org/abs/2501.19393
https://openai.com/index/learning-to-reason-with-llms/
https://openai.com/index/learning-to-reason-with-llms/
https://arxiv.org/abs/2405.12915
https://aclanthology.org/2021.naacl-main.168
http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2408.03314
https://arxiv.org/abs/2403.02884
https://arxiv.org/abs/2403.02884

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Yuxuan Tong, Xiwen Zhang, Rui Wang, Ruidong Wu, and Junxian He. Dart-math: Difficulty-aware
rejection tuning for mathematical problem-solving. ArXiv preprint, abs/2407.13690, 2024. URL
https://arxiv.org/abs/2407.13690.

Ke Wang, Houxing Ren, Aojun Zhou, Zimu Lu, Sichun Luo, Weikang Shi, Renrui Zhang, Linqi Song,
Mingjie Zhan, and Hongsheng Li. Mathcoder: Seamless code integration in llms for enhanced
mathematical reasoning. ArXiv preprint, abs/2310.03731, 2023. URL https://arxiv.org/
abs/2310.03731.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi,
Quoc V. Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language
models. In Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh (eds.),
Advances in Neural Information Processing Systems 35: Annual Conference on Neural Information
Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December
9, 2022, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/
9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html.

Alexander Wettig, Aatmik Gupta, Saumya Malik, and Danqi Chen. Qurating: Selecting high-
quality data for training language models. ArXiv preprint, abs/2402.09739, 2024. URL https:
//arxiv.org/abs/2402.09739.

Yangzhen Wu, Zhiqing Sun, Shanda Li, Sean Welleck, and Yiming Yang. Inference scaling laws:
An empirical analysis of compute-optimal inference for problem-solving with language models.
ArXiv preprint, abs/2408.00724, 2024. URL https://arxiv.org/abs/2408.00724.

Mengzhou Xia, Sadhika Malladi, Suchin Gururangan, Sanjeev Arora, and Danqi Chen. Less:
Selecting influential data for targeted instruction tuning. ArXiv preprint, abs/2402.04333, 2024.
URL https://arxiv.org/abs/2402.04333.

Ruijie Xu, Zengzhi Wang, Run-Ze Fan, and Pengfei Liu. Benchmarking benchmark leakage in large
language models. ArXiv preprint, abs/2404.18824, 2024a. URL https://arxiv.org/abs/
2404.18824.

Xin Xu, Shizhe Diao, Can Yang, and Yang Wang. Can we verify step by step for incorrect answer
detection? ArXiv preprint, abs/2402.10528, 2024b. URL https://arxiv.org/abs/2402.
10528.

Xin Xu, Tong Xiao, Zitong Chao, Zhenya Huang, Can Yang, and Yang Wang. Can llms solve
longer math word problems better? ArXiv preprint, abs/2405.14804, 2024c. URL https:
//arxiv.org/abs/2405.14804.

Yuchen Yan, Jin Jiang, Yang Liu, Yixin Cao, Xin Xu, Xunliang Cai, Jian Shao, et al. S3 c-math:
Spontaneous step-level self-correction makes large language models better mathematical reasoners.
ArXiv preprint, abs/2409.01524, 2024. URL https://arxiv.org/abs/2409.01524.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Dayi-
heng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. ArXiv preprint, abs/2412.15115,
2024a. URL https://arxiv.org/abs/2412.15115.

An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu,
Jianhong Tu, Jingren Zhou, Junyang Lin, et al. Qwen2. 5-math technical report: Toward math-
ematical expert model via self-improvement. ArXiv preprint, abs/2409.12122, 2024b. URL
https://arxiv.org/abs/2409.12122.

Jiaxi Yang, Binyuan Hui, Min Yang, Bailin Wang, Bowen Li, Binhua Li, Fei Huang, and Yongbin
Li. Iterative forward tuning boosts in-context learning in language models. ArXiv preprint,
abs/2305.13016, 2023. URL https://arxiv.org/abs/2305.13016.

Yixin Ye, Zhen Huang, Yang Xiao, Ethan Chern, Shijie Xia, and Pengfei Liu. Limo: Less is more for
reasoning, 2025. URL https://arxiv.org/abs/2502.03387.

Shuo Yin, Weihao You, Zhilong Ji, Guoqiang Zhong, and Jinfeng Bai. Mumath-code: Combining tool-
use large language models with multi-perspective data augmentation for mathematical reasoning.
ArXiv preprint, abs/2405.07551, 2024. URL https://arxiv.org/abs/2405.07551.

13

https://arxiv.org/abs/2407.13690
https://arxiv.org/abs/2310.03731
https://arxiv.org/abs/2310.03731
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
https://arxiv.org/abs/2402.09739
https://arxiv.org/abs/2402.09739
https://arxiv.org/abs/2408.00724
https://arxiv.org/abs/2402.04333
https://arxiv.org/abs/2404.18824
https://arxiv.org/abs/2404.18824
https://arxiv.org/abs/2402.10528
https://arxiv.org/abs/2402.10528
https://arxiv.org/abs/2405.14804
https://arxiv.org/abs/2405.14804
https://arxiv.org/abs/2409.01524
https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/2409.12122
https://arxiv.org/abs/2305.13016
https://arxiv.org/abs/2502.03387
https://arxiv.org/abs/2405.07551

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Dian Yu, Yuheng Zhang, Jiahao Xu, Tian Liang, Linfeng Song, Zhaopeng Tu, Haitao Mi, and
Dong Yu. Teaching llms to refine with tools. ArXiv preprint, abs/2412.16871, 2024. URL
https://arxiv.org/abs/2412.16871.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, Zhengying Liu, Yu Zhang, James T Kwok,
Zhenguo Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical
questions for large language models. ArXiv preprint, abs/2309.12284, 2023. URL https:
//arxiv.org/abs/2309.12284.

Zheng Yuan, Hongyi Yuan, Chengpeng Li, Guanting Dong, Chuanqi Tan, and Chang Zhou. Scaling
relationship on learning mathematical reasoning with large language models. ArXiv preprint,
abs/2308.01825, 2023. URL https://arxiv.org/abs/2308.01825.

Murong Yue, Wenlin Yao, Haitao Mi, Dian Yu, Ziyu Yao, and Dong Yu. Dots: Learning to reason
dynamically in llms via optimal reasoning trajectories search. ArXiv preprint, abs/2410.03864,
2024. URL https://arxiv.org/abs/2410.03864.

Xiang Yue, Xingwei Qu, Ge Zhang, Yao Fu, Wenhao Huang, Huan Sun, Yu Su, and Wenhu Chen.
Mammoth: Building math generalist models through hybrid instruction tuning. ArXiv preprint,
abs/2309.05653, 2023. URL https://arxiv.org/abs/2309.05653.

James Zhao, Yuxi Xie, Kenji Kawaguchi, Junxian He, and Michael Xie. Automatic model selection
with large language models for reasoning. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.),
Findings of the Association for Computational Linguistics: EMNLP 2023, pp. 758–783, Singapore,
2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.findings-emnlp.55. URL
https://aclanthology.org/2023.findings-emnlp.55.

Andy Zhou, Kai Yan, Michal Shlapentokh-Rothman, Haohan Wang, and Yu-Xiong Wang. Language
agent tree search unifies reasoning acting and planning in language models. ArXiv preprint,
abs/2310.04406, 2023a. URL https://arxiv.org/abs/2310.04406.

Chunting Zhou, Pengfei Liu, Puxin Xu, Srinivasan Iyer, Jiao Sun, Yuning Mao, Xuezhe
Ma, Avia Efrat, Ping Yu, Lili Yu, Susan Zhang, Gargi Ghosh, Mike Lewis, Luke Zettle-
moyer, and Omer Levy. LIMA: less is more for alignment. In Alice Oh, Tristan Nau-
mann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.), Advances
in Neural Information Processing Systems 36: Annual Conference on Neural Informa-
tion Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16,
2023, 2023b. URL http://papers.nips.cc/paper_files/paper/2023/hash/
ac662d74829e4407ce1d126477f4a03a-Abstract-Conference.html.

A PRELIMINARIES

A.1 REJECTION FINE-TUNING

For training LLMs, the original training datasets are often insufficient. To mitigate this issue, many
studies adopt Rejection Fine-Tuning (RFT) (Yuan et al., 2023; Yu et al., 2023; Tong et al., 2024)
to augment the original dataset, thereby increasing the training data size and improving model
performance. RFT is a fine-tuning approach that uses synthesized data generated via rejection
sampling (Yuan et al., 2023).

Suppose the original training set is Dorig = {xi, yi}Ni=1, consisting of N data pairs (xi, yi). The
rejection sampling process works as follows: for each query xi, a teacher model (e.g., GPT-4)
generates M responses, resulting in {xi, y

j
i }Mj=1, where M is a predefined number (e.g., M = 10 in

Yu et al. (2023)). This yields N ·M response examples in total. A filtering process is then applied: if
a response yji ̸= yi, it is discarded. T he result is the augmented training set Daug = {xi, yi}Ni=1

Mi

j=1,
where Mi ≤ M represents the number of correct responses for query xi. Notably, Mi is often larger
for simpler queries xi, as these are more likely to produce correct responses.

RFT is widely employed for improving mathematical reasoning in LLMs (Yu et al., 2023; Tong et al.,
2024; Xu et al., 2024c). Typically, the queries remain unchanged (Tong et al., 2024) or are altered in
a controlled way (Yu et al., 2023). This is because the filtering stage of the rejection sampling process
relies on the availability of ground-truth outputs.

14

https://arxiv.org/abs/2412.16871
https://arxiv.org/abs/2309.12284
https://arxiv.org/abs/2309.12284
https://arxiv.org/abs/2308.01825
https://arxiv.org/abs/2410.03864
https://arxiv.org/abs/2309.05653
https://aclanthology.org/2023.findings-emnlp.55
https://arxiv.org/abs/2310.04406
http://papers.nips.cc/paper_files/paper/2023/hash/ac662d74829e4407ce1d126477f4a03a-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/ac662d74829e4407ce1d126477f4a03a-Abstract-Conference.html

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A.2 TIR INFERENCE PIPELINE

Tool-Integrated Reasoning (TIR) addresses mathematical problems by intertwining natural language
reasoning with the execution of Python code. The process is initiated with gernerating a natural
language reasoning step, denoted as r1. When it is more advantageous to utilize programmatic
tools, such as complex calculations, a Python code block, a1, is created as guided by r1. This code
block is then run, and its result, o1, is fed back into the model for further generation. This cycle
is repeated until the maximal number of code blocks is reached or until the model concludes its
answer within “\boxed{}.” The entire reasoning path unfolds as τ = r1a1o1 . . . rn−1an−1on−1rn,
where ri is the i-th natural language reasoning step, ai denotes the corresponding Python code
block, and oi represents the output from executing the code. The complete inference workflow is
detailed in Algorithm 1 (from Gou et al. (2023)). From Algorithm 1, TIR usually requires multiple
generations based on previous reasoning paths and outputs returned by Python interpreter, which
is more computationally expensive than CoT. However, TIR can provide more precise calculation
results than CoT.

Algorithm 1 Inference of TIR
Require: problem q, model G, prompt p, external tools E , stop condition Stop(·), maximum iteration rounds n
1: τ0 ← "" ▷ Trajectory Initialization
2: for i← 1 to n do
3: ri ∼ PG(·|p⊕ q ⊕ τi−1) ▷ Rationale Generation
4: if Stop(ri) then ▷ Stopping Criteria
5: return τi−1 ⊕ ri
6: end if
7: ai ∼ PG(·|p⊕ q ⊕ τi−1 ⊕ ri) ▷ Program Generation
8: oi ← E(ai) ▷ Tool Execution
9: τi ← τi−1 ⊕ ri ⊕ ai ⊕ oi ▷ Trajectory Update

10: end for
11: return τn

A.3 IMPLICIT INSTRUCTION TUNING

In-Context Learning (ICL) can be interpreted as a form of implicit instruction tuning, where the
model is effectively "fine-tuned" using the given demonstrations in an implicit manner (Dai et al.,
2022; Yang et al., 2023; Irie et al., 2022; Li et al., 2023). Let Xins,Xtest ∈ Rdin represent the few-
shot demonstration inputs and the test input, respectively. We define the attention query vector as
Q = WQX

⊤
test, while the attention key and value vectors are given by K = WK [Xins∥Xtest] and

V = WV [Xins∥Xtest], where ∥ denotes concatenation. The projection matrices WK ,WV ,WQ ∈
Rdout×din are used to compute the attention queries, keys, and values. The self-attention mechanism
for a single attention head in any given layer is formulated as follows:

Attention(K,V,Q) =

WV [Xins∥Xtest]Softmax
(
WK [Xins∥Xtest]

⊤Q√
din

)
.

Applying an approximation, this can be rewritten as:

WV [Xins∥Xtest] (WK [Xins∥Xtest])
⊤ Q.

By expanding this expression, we obtain:

WV Xtest(WKXtest)
⊤︸ ︷︷ ︸

Only test input.

Q +WV Xins(WKXins)
⊤︸ ︷︷ ︸

Only demonstration samples.

Q.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

The whole approximation process can be given as follows:

Attention(K,V,Q)

= WV [Xins∥Xtest]Softmax
(
WK [Xins∥Xtest]

⊤Q√
din

)
≈WV [Xins∥Xtest] (WK [Xins∥Xtest])

⊤ Q

= WV Xtest(WKXtest)
⊤︸ ︷︷ ︸

Only test input.

Q +WV Xins(WKXins)
⊤︸ ︷︷ ︸

Only instruction sample.

Q

= [WV Xtest(WKXtest)
⊤︸ ︷︷ ︸

Only test input.

+WV Xins(WKXins)
⊤︸ ︷︷ ︸

Only instruction sample.

]Q,

where the constant
√
din acts as a scaling factor. The first term, WV Xtest(WKXtest)

⊤, corresponds
to a zero-shot learning scenario where no demonstration samples are involved, and only the test
input is considered. Meanwhile, the second term, WV Xins(WKXins)

⊤, can be interpreted as an
implicit adjustment to the model parameters. This adjustment is achieved through the meta-gradient
mechanism (Dai et al., 2022; Yang et al., 2023; Irie et al., 2022), meaning the few-shot examples
influence the model as if performing implicit instruction tuning.

B EXPERIMENTAL SETUP

B.1 TATA IMPLEMENTATION DETAILS

In this appendix, we give the implementation details of our TATA framework.

Data Construction For the original training set, denoted as Dorig = {(xi, yi)}Ni=1, we utilize the
training sets of GSM8K (Cobbe et al., 2021) and MATH (Hendrycks et al., 2021). The GSM8K
training set comprises 7,473 examples, while the MATH training set includes 7,500 examples. For
simplicity, we directly adopt the DART-MATH-Hard dataset (Tong et al., 2024) as our Daug. DART-
MATH-Hard, which is an augmented dataset derived from the GSM8K and MATH training sets
through rejection sampling, contains approximately 0.6M examples in total. Notably, the number
of responses varies across different training queries. To convert CoT solutions into TIR format,
we use GPT-4o-2024-08-06 with a carefully designed prompt, as described in Table 7. While
most CoT solutions are successfully transformed into TIR format, we observe some anomalies. For
instance, some rewritten TIRs fail to conclude with a final answer, while some TIRs produce code
with syntax errors. To address these issues, we filter out ill-formed TIRs using rule-based matching.
After filtering, we obtain a candidate dataset containing approximately 483K examples.

Anchor Construction For the embedding, we use text-embedding-ada-002 to encode all
queries in our candidate set D into 1,536-dimensional vectors. We then cluster these representations
by K-means algorithm. We set the number of clusters to be 100 for both GSM8K and MATH (cluster
separately). That is to say, the size of the anchor set is A = 100.

Contribution Quantification To compute the CoT and TIR scores, we use a new candidate set,
denoted as D∗ = {(xi, y

∗
i , z

∗
i)}Ni=1. This new candidate set is constructed by randomly selecting

one pair of CoT and TIR solutions for each training query from the original candidate set, thereby
reducing computational costs. The CoT score is then simplified to:

Sk
CoT =

1

A

A∑
i=1

I
(
ai,G(· | xk, y

∗︸ ︷︷ ︸
1-shot prompt

, qi)
)
,

A similar formulation is used for the TIR score.

Data Selection The distributions of (Sk
CoT − Sk

TIR) on GSM8K and MATH reveal distinct patterns
(see Section 6.1 and Appendix C.2): all base LLMs demonstrate a tendency to rely more on CoT
for GSM8K queries, while preferring TIR for MATH queries. As a result, it is reasonable to select

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Rewriting Prompt Template
You are a helpful mathematical assistant. A problem will be presented after “Problem:”, followed by a
reference solution after “Original Solution:”. Your task is to rewrite the original solution. During rewriting,
you tend to leverage Python (sympy is preferred) to facilitate solving the problem with step-by-step reasoning,
especially for calculation and simplification. The specific requirements are as follows:

1. Analyze the problem and write functions to solve it, ensuring that the functions do not require any
arguments.
2. Present the final result in LATEX using a ANS without any units.
3. Utilize the ‘pi’ symbol and ‘Rational’ from Sympy for π and fractions, and simplify all fractions and
square roots without converting them to decimal values.
4. Avoid using sentences like “Reasoning step in natural language:”, “Reasoning in Python codes:”, and
other similar phrases.
5. Combine multiple calculation steps with Python code blocks where appropriate, avoiding unnecessary
separate blocks. Limit the number of Python code blocks to fewer than 5 and use them wisely.
6. The new solution format should be as follows:

“Reasoning step 1 in natural language without specific calculations
“‘python
Python code block 1 for calculation and simplification, please print out the final output using print
“‘
“‘output
The output for code block 1
“‘
......
Reasoning step N in natural language without specific calculations
“‘python
Python code block N for calculation and simplification, please print out the final output using print
“‘
“‘output
The output for code block N
“‘
Conclude the final answer.”

Problem: {problem}

Original Solution: {raw_answer}

New Solution:

Table 7: The prompt for transforming CoT to TIR.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

different decision functions, H, for GSM8K and MATH. Specifically, for GSM8K, the dataset for
supervised fine-tuning (DSFT) is defined as:

DSFT =

N⋃
k=1

{(xk, y
j
k)}

Mk
j=1 ∪

⋃
k∈A

{(xk, z
j
k)}

Mk
j=1,

where the index set A = {k : Sk
CoT − Sk

TIR < quantile1}.

For MATH, DSFT is defined as:

DSFT =

N⋃
k=1

{(xk, z
j
k)}

Mk
j=1 ∪

⋃
k∈B

{(xk, y
j
k)}

Mk
j=1,

where the index set B = {k : Sk
CoT − Sk

TIR > quantile2}.

The thresholds quantile1 and quantile2 are determined through grid search. Notably, the performance
of TATA is not sensitive to these quantiles (see Section 5.3 and Table 10). Additionally, we explored
alternative decision functions H in our ablation study, with further details provided in Section 5.3
and Appendix C.1.

Model Quantiles Metric In-Domain Out-of-Domain AVG
GSM8K MATH ID AVG MAWPS SVAMP College Olympiad OOD AVG

Qwen2.5-0.5B

50, 60
Acc 52.2 37.2 44.7 86.4 55.7 27.5 9.9 44.9 44.8
Token 313.5 503.1 408.3 224.3 304.7 496.1 748.2 443.3 431.7
Code 0.2 2.62 1.41 0.63 0.32 2.85 3.03 1.71 1.61

40, 60
Acc 53.5 36.4 45.0 85.9 57.9 26.4 8.4 44.7 44.8
Token 307.2 504.2 405.7 217.7 290.6 486.8 715.2 427.6 420.3
Code 0.24 2.5 1.37 0.56 0.3 2.7 2.84 1.6 1.52

30, 60
Acc 53.1 37.0 45.0 86.2 56.3 26.7 10.2 44.8 44.9
Token 312.7 507.5 410.1 218.6 298.1 482.4 720.6 429.9 423.3
Code 0.21 2.49 1.35 0.49 0.29 2.73 2.81 1.58 1.50

30, 65∗
Acc 52.8 36.6 44.7 85.9 59.4 26.9 8.6 45.2 45.0
Token 309.7 508.7 409.2 217.3 292.9 500.9 743.0 438.5 428.8
Code 0.19 2.63 1.41 0.52 0.33 2.82 3.06 1.68 1.59

30, 70
Acc 52.2 37.1 44.7 86.4 55.7 27.6 9.9 44.9 44.8
Token 313.5 503.1 408.3 224.3 304.7 496.1 748.2 443.3 431.7
Code 0.2 2.62 1.41 0.63 0.32 2.85 3.03 1.71 1.61

Table 8: Performance across different quantiles using Qwen2.5-0.5B. The best accuracies within
each group are shown in bold. The three metrics, “Acc”, “Token”, and “# Code” represent the
average accuracy, total tokens per generation, and number of code executions. “Acc” is reported
in %. “ID AVG”, “OOD AVG”, and “AVG” denote the averages of these metrics across in-domain,
out-of-domain, and all six benchmarks. The two numbers in the “Quantiles” are the quantile of
GSM8K and MATH, respectively. * denote our chosen quantiles.

B.2 EVALUATION BENCHMARKS

We give a brief introduction of evaluated benchmarks mentioned in Section 5.1.

• GSM8K (Cobbe et al., 2021) is a grade-school math benchmark, consisting of 7,473 training
examples and 1,319 test examples. It is available at this link, and under MIT License.

• MATH (Hendrycks et al., 2021) is a competition-level math dataset, including 5,000 test
examples and 7,500 training examples. It is available at this link, and under MIT License.

• MAWPS (Koncel-Kedziorski et al., 2016) is a benchmark of math word problems
(MWPs), incorporating 238 test examples. It is under MIT License and can be found
at https://github.com/LYH-YF/MWPToolkit.

• SVAMP (Patel et al., 2021) includes 1,000 simple MWPs, which is available at
https://github.com/LYH-YF/MWPToolkit. It is under MIT License.

• CollegeMath (Tang et al., 2024): This dataset comprises 2818 college-grade mathematical
questions sourced from 9 different textbooks, covering 7 fields including linear algebra and
differential equations. It is designed to evaluate generalization in intricate mathematical
reasoning across various domains. It is available at this link.

18

https://huggingface.co/datasets/openai/gsm8k
https://lbesson.mit-license.org/
https://huggingface.co/datasets/hendrycks/competition_math
https://lbesson.mit-license.org/
https://lbesson.mit-license.org/
https://github.com/LYH-YF/MWPToolkit
https://github.com/LYH-YF/MWPToolkit
https://lbesson.mit-license.org/
https://github.com/microsoft/unilm/tree/master/mathscale

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

• OlympiadBench-Math (He et al., 2024): This collection comprises 675 high-level Olympiad
mathematical problems selected from various competitions and represents a text-only En-
glish fraction of OlympiadBench. It is available at this link.

B.3 EVALUATION METRICS

In addition to evaluating accuracy across the six benchmarks mentioned in Section 5.1, we also assess
the computational costs associated with interacting with external Python interpreters. As described
in Algorithm 1, TIR involves multiple interactions with Python interpreters. The associated time
costs can be divided into two categories: the time required to execute Python code blocks and the
increased generation costs caused by progressively longer input sequences. The first type of time cost
is reflected in the number of interactions with Python interpreters, i.e., the number of code executions.
The second type can be approximated by the number of generated tokens, which includes both input
and output tokens. Since the number of generations is equivalent to the number of code executions,
we use the average total tokens per generation to evaluate this cost. Naturally, TIR incurs a higher
number of generated tokens due to multiple generations with progressively longer contexts.

B.4 SFT AND EVALUATION SETUP

SFT Setup In our experiments, we utilize various base LLMs, including general-purpose models
(e.g., LLaMA-3-8B (AI@Meta, 2024)) and math-specialized models (e.g., Qwen2.5-Math (Yang
et al., 2024b)). The details of these base LLMs are outlined below:

• Llama-3 (AI@Meta, 2024): LLaMA 3 Community License. We use Llama-3-8B as the
base LLM in our experiments.

• Qwen2.5 (Yang et al., 2024a): Qwen2.5 series are developed with dedication to math and
coding. We used 0.5B, 1.5B, 3B, and, 7B models. They are licensed under Apache 2.0.

• Qwen2.5-Math (Yang et al., 2024b): Qwen2.5-Math is a series of specialized math language
models built upon the Qwen2.5 LLMs. We use 3B and 7B variants. They are under the same
license as the Qwen2.5 series.

We set the maximum input length for all base models to be 4,096. During SFT, we employ the Adam
optimizer with a learning rate of 2× 10−5 and set batch size to 64, conducting training over three
epochs. Unlike Beeching et al. (2024); Yang et al. (2024b), we use the same training prompt for both
CoT and TIR. The prompt is provided in Table 9.

Training and Inference Prompt Template
Below is an instruction that describes a task. Write a response that appropriately completes the request.

Instruction:
{instruction}

Response:

Table 9: Training prompt for base LLMs.

Evaluation Setup For evaluation, we adopt the same prompt used during SFT, as recommended
by Tong et al. (2024). For TIR inference, please refer to Algorithm 1, where the maximum number
of interactions is set to n = 6. CoT inference can be viewed as a special case of Algorithm 1 with
n = 1.

19

https://github.com/OpenBMB/OlympiadBench
https://www.llama.com/llama3/license/
https://www.apache.org/licenses/LICENSE-2.0

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

C MORE FINE-GRAINED RESULTS

C.1 ABLATION STUDY

As detailed in Appendix B, we use different decision function H for GSM8K and MATH. Specifically,
for GSM8K, the dataset for supervised fine-tuning (DSFT) is defined as:

DSFT =

N⋃
k=1

{(xk, y
j
k)}

Mk
j=1 ∪

⋃
k∈A

{(xk, z
j
k)}

Mk
j=1,

where the index set A = {k : Sk
CoT − Sk

TIR < quantile1}.

For MATH, DSFT is defined as:

DSFT =

N⋃
k=1

{(xk, z
j
k)}

Mk
j=1 ∪

⋃
k∈B

{(xk, y
j
k)}

Mk
j=1,

where the index set B = {k : Sk
CoT − Sk

TIR > quantile2}. We consider this as the default choice of
our TATA (i.e., TATA in Table 10).

We present the results of the H ablation study in Table 10. The variants of H evaluated are described
as follows:

Random The key difference between “Random” and “TATA” lies in the selection of the index sets
A and B. In the “Random” variant, we randomly select the index sets A and B while ensuring that
|A| and |B| match those in the default TATA configuration. It is important to note that this is not
purely a random selection, the number of queries using TIR or CoT is still determined by the default
settings of TATA, making “Random” a strong baseline.

CoT + TIR In this variant, we include all CoT and TIR solutions in DSFT, doubling the number of
training examples compared to using only CoT or TIR individually. Formally, the dataset is defined
as:

DSFT =

N⋃
k=1

{(xk, y
j
k)}

Mk
j=1 ∪

N⋃
k=1

{(xk, z
j
k)}

Mk
j=1.

TATA− The TATA− variant differs from the original TATA in that it uses a single quantile for
selection. The dataset is formally defined as:

DSFT =
⋃
k∈A

{(xk, y
j
k)}

Mk
j=1 ∪

⋃
k∈B

{(xk, z
j
k)}

Mk
j=1,

where the index set A = {k : Sk
CoT − Sk

TIR > quantile}, and B = Ac. In this setup, each query in the
candidate set D∗ = {(xi, y

∗
i , z

∗
i)}Ni=1 includes either CoT or TIR solutions but not both.

From Table 10, the selection function H in our TATA gains the best results.

C.2 ANALYSIS OF COT SCORES AND TIR SCORES

In Section 6.1, we presented representative results analyzing CoT and TIR scores. Here, we further
provide the distributions of Sk

CoT, Sk
TIR, and (Sk

CoT − Sk
TIR) for various base LLMs in Figures 4, 5, 6,

7, 8, 9, and 10. From these figures, we have the following observations: 1. Different base LLMs
exhibit varying tendencies towards CoT or TIR responding to the same candidate set queries. 2.
Math-specialized LLMs (e.g., Qwen2.5Math) demonstrate higher CoT and TIR scores compared to
their general-purpose counterparts (e.g., Qwen2.5). This may be attributed to the inclusion of similar
CoT and TIR data in their pretraining process. 3. Notably, Qwen2.5Math-7B achieves TIR scores
approaching 0.8 accuracy on the MATH anchor set using only a 1-shot prompt from the candidate set,
as shown in Figure 10 (middle). This suggests the potential for anchor set contamination (Xu et al.,
2024a).

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Model Method Metric In-Domain Out-of-Domain AVG
GSM8K MATH ID AVG MAWPS SVAMP College Olympiad OOD AVG

LLaMA-3-8B

CoT
Acc 84.7 46.5 65.6 91.6 81.6 30.2 13.3 54.2 58.0
Token 246.4 471.0 358.7 173.3 236.8 511.7 676.7 399.6 386.0
Code 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

TIR
Acc 81.7 56.2 69.0 87.8 77.8 30.5 21.9 54.5 59.3
Token 299.0 457.5 378.2 240.9 269.1 437.9 650.8 399.7 392.5
Code 2.96 2.51 2.74 2.42 2.64 2.69 2.76 2.63 2.66

Random
Acc 83.1 56.4 69.8 91.8 81.3 31.3 21.8 56.6 61.0
Token 271.6 472.0 371.8 203.7 251.0 453.4 695.5 400.9 391.2
Code 0.21 2.35 1.28 0.36 0.33 2.44 2.83 1.49 1.42

CoT + TIR
Acc 83.1 48.4 65.8 91.2 78.7 30.8 16.7 54.4 58.2
Token 278.0 497.4 387.7 208.6 281.2 507.3 707.3 421.1 410.0
Code 0.83 0.51 0.67 0.68 0.95 0.51 1.09 0.81 0.76

TATA−
Acc 83.1 54.7 68.9 91.2 80.6 31.9 19.6 55.8 60.2
Token 285.4 472.1 378.8 226.7 253.9 474.3 692.2 411.8 400.8
Code 1.4 2.31 1.86 1.23 1.2 2.34 2.49 1.81 1.83

TATA
Acc 84.0 55.1 69.6 91.8 82.7 34.2 21.5 57.6 61.5
Token 248.2 461.1 354.6 191.1 222.5 449.5 657.7 380.2 371.7
Code 0.12 2.33 1.23 0.27 0.21 2.39 2.6 1.37 1.32

Table 10: Ablation Study using LLaMA-3-8B. The best accuracies within each group are shown in
bold. The three metrics, “Acc”, “Token”, and “# Code” represent the average accuracy, total tokens
per generation, and number of code executions. “Acc” is reported in %. “ID AVG”, “OOD AVG”, and
“AVG” denote the averages of these metrics across in-domain, out-of-domain, and all six benchmarks.

0.0 0.1 0.2 0.3 0.4 0.5 0.6
0

250

500

750

1000

1250

1500

1750

C
ou

nt

cot
pot

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
0

250

500

750

1000

1250

1500

1750

C
ou

nt

cot
pot

0.6 0.4 0.2 0.0 0.2 0.4
0

250

500

750

1000

1250

1500

1750

2000

C
ou

nt

GSM8K
MATH

Figure 4: The distribution of Sk
CoT (left), Sk

TIR (middle), and (Sk
CoT − Sk

TIR) (right) for LLaMA-3-8B.

0.0 0.1 0.2 0.3 0.4 0.5 0.6
0

250

500

750

1000

1250

1500

1750

2000

C
ou

nt

cot
pot

0.0 0.1 0.2 0.3 0.4
0

500

1000

1500

2000

2500

C
ou

nt

cot
pot

0.6 0.4 0.2 0.0 0.2 0.4 0.6
0

200

400

600

800

1000

1200

1400

1600

C
ou

nt

GSM8K
MATH

Figure 5: The distribution of Sk
CoT (left), Sk

TIR (middle), and (Sk
CoT − Sk

TIR) (right) for Qwen2.5-0.5B.

0.0 0.2 0.4 0.6 0.8
0

500

1000

1500

2000

2500

C
ou

nt

cot
pot

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

500

1000

1500

2000

2500

3000

C
ou

nt

cot
pot

0.75 0.50 0.25 0.00 0.25 0.50 0.75
0

250

500

750

1000

1250

1500

1750

C
ou

nt

GSM8K
MATH

Figure 6: The distribution of Sk
CoT (left), Sk

TIR (middle), and (Sk
CoT − Sk

TIR) (right) for Qwen2.5-1.5B.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

0.0 0.2 0.4 0.6 0.8 1.0
0

500

1000

1500

2000

2500
C

ou
nt

cot
pot

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

500

1000

1500

2000

2500

3000

C
ou

nt

cot
pot

0.75 0.50 0.25 0.00 0.25 0.50 0.75
0

200

400

600

800

1000

1200

1400

1600

C
ou

nt

GSM8K
MATH

Figure 7: The distribution of Sk
CoT (left), Sk

TIR (middle), and (Sk
CoT − Sk

TIR) (right) for Qwen2.5-3B.

0.0 0.2 0.4 0.6 0.8 1.0
0

500

1000

1500

2000

2500

C
ou

nt

cot
pot

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

500

1000

1500

2000

C
ou

nt

cot
pot

0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
0

250

500

750

1000

1250

1500

1750

2000

C
ou

nt

GSM8K
MATH

Figure 8: The distribution of Sk
CoT (left), Sk

TIR (middle), and (Sk
CoT − Sk

TIR) (right) for Qwen2.5-7B.

0.0 0.2 0.4 0.6 0.8 1.0
0

500

1000

1500

2000

2500

C
ou

nt

cot
pot

0.0 0.2 0.4 0.6 0.8
0

500

1000

1500

2000

2500

3000

3500

C
ou

nt

cot
pot

1.0 0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6
0

500

1000

1500

2000

2500

3000

C
ou

nt

GSM8K
MATH

Figure 9: The distribution of Sk
CoT (left), Sk

TIR (middle), and (Sk
CoT − Sk

TIR) (right) for Qwen2.5Math-
1.5B.

0.0 0.2 0.4 0.6 0.8 1.0
0

250

500

750

1000

1250

1500

1750

2000

C
ou

nt

cot
pot

0.0 0.2 0.4 0.6 0.8
0

500

1000

1500

2000

2500

3000

C
ou

nt

cot
pot

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75
0

250

500

750

1000

1250

1500

1750

2000

C
ou

nt

GSM8K
MATH

Figure 10: The distribution of Sk
CoT (left), Sk

TIR (middle), and (Sk
CoT − Sk

TIR) (right) for Qwen2.5Math-
7B.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

C.3 TRANSFERABILITY RESULTS

The complete results of transferability results are given in Table 11.

Model Select By Metric In-Domain Out-of-Domain AVG
GSM8K MATH ID AVG MAWPS SVAMP College Olympiad OOD AVG

Qwen2.5-0.5B

Qwen2.5-0.5B
Acc 52.8 36.6 44.7 85.9 59.4 26.9 8.6 45.2 45.0
Token 309.7 508.7 409.2 217.3 292.9 500.9 743.0 438.5 428.8
Code 0.19 2.63 1.41 0.52 0.33 2.82 3.06 1.68 1.59

LLaMA-3-8B
Acc 51.3 36.3 43.8 86.2 55.9 26.5 8.1 44.2 44.1
Token 318.2 507.7 413.0 216.9 298.9 485.4 732.8 433.5 426.6
Code 0.28 2.49 1.39 0.52 0.52 2.45 2.73 1.56 1.5

Qwen2.5-7B
Acc 52.2 36.8 44.5 86.7 57.6 26.7 7.4 44.6 44.6
Token 312.5 499.4 406.0 228.6 308.2 489.3 744.5 442.6 430.4
Code 0.4 2.53 1.46 0.85 0.68 2.75 2.94 1.81 1.69

Table 11: Detailed results of transferability experiments using Qwen2.5-0.5B. The best accuracies
within each group are shown in bold. The three metrics, “Acc”, “Token”, and “# Code” represent
the average accuracy, total tokens per generation, and number of code executions. “Acc” is reported
in %. “ID AVG”, “OOD AVG”, and “AVG” denote the averages of these metrics across in-domain,
out-of-domain, and all six benchmarks.

C.4 DPO RESULTS

The detailed settings of DPO are as follows:

Preference Data Construction The construction of the preference dataset used in DPO is guided
by CoT and TIR scores, following a similar approach to the construction of DSFT. Specifically, two
separate quantiles are used to select preference pairs for the GSM8K and MATH datasets. The
preference dataset, Dpre, is selected from the newly defined candidate set, D∗ = {(xi, y

∗
i , z

∗
i)}Ni=1,

and is formally defined as:
Dpre = {(xk, ck, rk)}k∈A,

where ck is the chosen (preferred) response for the query xk, and rk is the rejected response.

The index set A is defined as:

A = {k : Sk
TIR − Sk

CoT < quantile
′

1 or

Sk
CoT − Sk

TIR > quantile
′

2},

where quantile
′

1 and quantile
′

2 are two quantiles optimized via grid search.

The rules for determining ck (chosen response) and rk (rejected response) are as follows:

ck =

{
yk if Sk

CoT − Sk
TIR > quantile

′

2,

zk if Sk
TIR − Sk

CoT < quantile
′

1,

and

rk =

{
yk if Sk

TIR − Sk
CoT < quantile

′

1,

zk if Sk
CoT − Sk

TIR > quantile
′

2.

This preference selection process ensures that the dataset Dpre contains meaningful comparisons
between CoT and TIR responses based on their relative scores.

DPO Hyperparameters We utilize OpenRLHF (Hu et al., 2024) to implement DPO. The maximum
token length is set to 4,096, consistent with the SFT stage. The training process adopts a learning rate
of 5×10−7, a batch size of 256, and runs for one epoch. We use LLaMA-3-8B and Qwen2.5Math-7B,
fine-tuned with TATA, as the starting point for DPO.

The complete results are presented in Table 12. As shown, DPO achieves comparable results with
LLMs fine-tuned with TATA.

23

https://github.com/OpenRLHF/OpenRLHF

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Model Method Metric In-Domain Out-of-Domain AVG
GSM8K MATH ID AVG MAWPS SVAMP College Olympiad OOD AVG

LLaMA-3-8B

CoT
Acc 84.7 46.5 65.6 91.6 81.6 30.2 13.3 54.2 58.0
Token 246.4 471.0 358.7 173.3 236.8 511.7 676.7 399.6 386.0
Code 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

TIR
Acc 81.7 56.2 69.0 87.8 77.8 30.5 21.9 54.5 59.3
Token 299.0 457.5 378.2 240.9 269.1 437.9 650.8 399.7 392.5
Code 2.96 2.51 2.74 2.42 2.64 2.69 2.76 2.63 2.66

TATA
Acc 84.0 55.1 69.6 91.8 82.7 34.2 21.5 57.6 61.5
Token 248.2 461.1 354.6 191.1 222.5 449.5 657.7 380.2 371.7
Code 0.12 2.33 1.23 0.27 0.21 2.39 2.6 1.37 1.32

+DPO
Acc 84.0 55.2 69.6 91.8 82.7 34.0 21.8 57.6 61.6
Token 250.8 453.6 352.2 185.0 219.1 435.9 647.9 372.0 365.4
Code 0.14 2.38 1.26 0.25 0.17 2.42 2.7 1.38 1.34

Qwen2.5Math-7B

CoT
Acc 91.0 61.5 76.2 94.8 87.9 45.7 23.9 63.1 67.5
Token 254.7 470.6 362.6 177.0 223.5 484.1 669.2 388.5 379.9
Code 0.0 0.0 0.0 0.0 0.0 0.0 0.01 0.0 0.0

TIR
Acc 88.9 73.6 81.2 95.4 89.4 47.1 35.3 66.8 71.6
Token 311.8 490.9 401.4 261.2 272.2 456.8 713.7 426.0 417.8
Code 3.04 2.56 2.8 2.58 2.51 2.65 2.75 2.62 2.68

TATA
Acc 89.8 73.0 81.4 95.2 88.1 48.3 35.9 66.9 71.7
Token 264.7 487.2 376.0 193.7 229.7 476.9 710.6 402.7 393.8
Code 0.25 2.14 1.2 0.33 0.24 2.02 2.59 1.3 1.26

+DPO
Acc 89.8 73.1 81.4 95.2 88.1 48.4 35.4 66.8 71.7
Token 267.0 487.2 377.1 193.8 229.4 474.8 718.9 404.2 395.2
Code 0.3 2.18 1.24 0.39 0.27 2.08 2.67 1.35 1.32

Table 12: Detailed DPO results. The best accuracies within each group are shown in bold. The three
metrics, “Acc”, “Token”, and “# Code” represent the average accuracy, total tokens per generation,
and number of code executions. “Acc” is reported in %. “ID AVG”, “OOD AVG”, and “AVG” denote
the averages of these metrics across in-domain, out-of-domain, and all six benchmarks.

D THE LLM USAGE DECLARATION

In this work, we employ GPT-4o to transform CoT answers into the TIR format, as described in
Section 4. As one of our baselines, we also use GPT-4o for SFT data selection, denoted as “GPT-
Select” in Table 1. In addition, we incorporate several base models for our SFT experiments. Finally,
we utilize GPT-5 to assist in refining our writing.

24

	Introduction
	Related Work
	Background
	Rejection Fine-Tuning
	TIR Inference Pipeline
	Implicit Instruction Tuning

	The TATA Framework
	Problem Setting
	TATA Overview
	TATA Details

	Experimental Results
	Experimental Setup
	Main Results
	Ablation

	Analysis and Discussion
	Analysis of CoT scores and TIR scores
	Transferability of Data Selection between Different LLMs
	Exploring Reinforcement Learning

	Conclusion
	Preliminaries
	Rejection Fine-Tuning
	TIR Inference Pipeline
	Implicit Instruction Tuning

	Experimental Setup
	TATA Implementation Details
	Evaluation Benchmarks
	Evaluation Metrics
	SFT and Evaluation Setup

	More Fine-grained Results
	Ablation Study
	Analysis of CoT scores and TIR scores
	Transferability Results
	DPO Results

	The LLM Usage Declaration

