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ABSTRACT

Existing supervised fine-tuning (SFT) approaches to enhance the mathematical
reasoning of large language models (LLMs) rely either on Chain-of-Thought (CoT)
for generalizability or Tool-Integrated Reasoning (TIR) for precise computation.
While efforts have been made to combine these methods, they primarily rely on
post-selection or predefined strategies, leaving an open question: Could we endow
LLMs with the ability to adaptively determine whether to use CoT or TIR based
on the math problems at hand before decoding? In this work, we propose TATA
(Teaching LLMs According to Their Aptitude), an adaptive framework that enables
LLMs to personalize their reasoning strategy for different problems spontaneously,
aligning it with their intrinsic aptitude. TATA incorporates base-LLM-aware data
selection during SFT to tailor training data to the model’s unique abilities, which
equips LLMs to autonomously determine and apply the effective reasoning strategy
at test time. Empirical results demonstrate that TATA effectively combines the
complementary strengths of CoT and TIR, achieving superior or comparable
performance with improved inference efficiency compared to existing methods.
Further analysis highlights the crucial role of aptitude-aware data selection in
enabling LLMs to make informed and adaptive reasoning decisions, aligning
reasoning strategies with model capabilities.

1 INTRODUCTION

Previous SFT methods for mathematical reasoning (Tong et al., 2024; Shao et al., 2024; Yan et al.,
2024; Gou et al., 2023; Wang et al., 2023; Lu et al., 2024) predominantly adopt one of the following
two distinct reasoning paradigms: Chain-of-Thought (CoT) reasoning (Wei et al., 2022) or Tool-
Integrated Reasoning (TIR) (Chen et al., 2022; Gao et al., 2023). CoT employs natural language
(NL) to articulate intermediate reasoning steps, whereas TIR integrates NL with Python code blocks
in an interleaved manner (see Section 3.2). While CoT offers computational efficiency, it may
compromise the numerical accuracy of complex calculations. In contrast, TIR’s structured execution
of code ensures precise computation but incurs significant computational overhead. Notably, recent
studies (Zhao et al., 2023; Yang et al., 2024b) have empirically demonstrated that CoT and TIR
exhibit complementary strengths: CoT demonstrates superior performance on problems demanding
sophisticated logical deduction with minimal numerical computation, whereas TIR excels in scenarios
requiring intensive numerical calculations with relatively simpler logical flow.

This complementary nature suggests potential benefits to integrate these two reasoning patterns. Zhao
et al. (2023) proposes an auxiliary LLM-based selector to dynamically choose between paradigms via
prompt-based routing (Figure 1 (a)). MAmmoTH (Yue et al., 2023) switches to CoT reasoning if TIR
encounters execution errors or timeouts (Figure 1 (b)). Yang et al. (2024b) employs different inference
prompts to elicit respective reasoning capabilities (Figure 1 (c)). Despite these advancements, existing
approaches predominantly rely on either external selectors (as in Zhao et al. (2023)) or predefined
heuristics (as in MAmmoTH and Qwen-2.5-Math) rather than endowing LLMs with the intrinsic
capability to autonomously recognize appropriate reasoning strategies. However, the potential for
LLMs themselves to dynamically adapt reasoning paradigms (CoT or TIR) remains underexplored.
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Problem 

TIR Solution

CoT Solution

CoT

(a) Using Another LLM to Select

Problem 

TIR Solution

CoT Solution

(b) If TIR fails, then use CoT

Syntax Error or

Execution Timeout

Problem 

TIR Solution

CoT Solution

(c) Intentionally Chosen by human

Use TIR Prompt

Use CoT Prompt

Problem (d) Adaptive Reasoning by LLMs

TIR Solution

CoT Solution
TIR or CoT?

Figure 1: Illustration of our research question. (a)
Zhao et al. (2023) post-select between CoT and
TIR by another LLM. (b) Yue et al. (2023) choose
CoT if TIR fails due to syntax error or execution
timeout. (c) Yang et al. (2024a) controls selec-
tion between CoT and TIR by predefined inference
prompts. (d) We aim to teach LLMs to choose the
appropriate one before decoding.

To bridge this gap, we propose Teaching LLMs
According to Their Aptitude (TATA), an adap-
tive framework that enables LLMs to sponta-
neously select between CoT and TIR for math
problem solving. Instead of adopting a fixed
strategy for all training queries, TATA adaptively
tailors the training data selection process by con-
sidering both the query characteristics and the
base LLM’s aptitude. This ensures that the re-
sulting model is equipped to select a suitable
reasoning strategy (CoT or TIR) for different
queries at test time, facilitating aptitude-driven
reasoning. As a result, TATA preserves and en-
hances the generalizability of the model, partic-
ularly for out-of-domain tasks.

Concretely, we begin with a dataset D, which
consists of N triplets, each containing a query,
a CoT solution, and a TIR solution. We then
construct an anchor set, Danchor, to evaluate the
model’s performance. For each training query
in D, we assess the LLM’s accuracy on Danchor
by providing either the CoT or TIR solution
of the query as a one-shot example. Based on
the model’s performance on the Danchor in each
setting, we select the most effective reasoning
paradigm for training queries and use it to con-
struct the SFT data, DSFT. We endow the base
LLMs with the ability to adaptively switch be-
tween CoT and TIR by training of personalized
training set DSFT. To assess TATA’s effective-
ness, we conduct extensive evaluations across six math reasoning benchmarks, utilizing both general-
purpose LLMs (e.g. Llama-3-8B (AI@Meta, 2024)) and math-specialized LLMs (e.g. Qwen2.5-
Math-7B) as base models. Experiments show that TATA successfully leads to better performance
across various models and benchmarks.

To summarize, our contributions are as follows:

1. We propose TATA, an adaptive framework that enables LLMs to spontaneously select between
CoT and TIR for adaptive mathematical reasoning based on their inherent aptitudes.

2. Extensive experiments demonstrate that TATA effectively combines the strengths of both CoT and
TIR, achieving comparable or even superior performance while offering higher inference efficiency
compared to TIR.

3. Comprehensive analyses highlight the critical role of base-LLM-aware data selection for CoT and
TIR, which is the core of our TATA framework.

2 RELATED WORK

Math Reasoning with CoT and TIR CoT and TIR are two widely recognized approaches for
reasoning with LLMs. CoT offers interpretability and generalizability, while TIR can provide precise
calculation results. Previous work on mathematical SFT has primarily focused on either CoT (Yu
et al., 2023; Tong et al., 2024; Shao et al., 2024; Yan et al., 2024) or TIR (Yue et al., 2023; Gou
et al., 2023; Wang et al., 2023; Yin et al., 2024), with a few efforts to integrate both (Yue et al., 2023;
Beeching et al., 2024; Yang et al., 2024b). For instance, MAmmoTH (Yue et al., 2023) mainly adopts
TIR but switches to CoT when code execution fails due to errors or timeouts. However, it relies on
separate prompts and manual inference controls to switch between them. Recent work has explored
automatic selection between CoT and TIR (Zhao et al., 2023; Yue et al., 2024; Yu et al., 2024), such
as using an auxiliary LLM to determine CoT/TIR (Zhao et al., 2023). However, these methods rely
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on external planners to select CoT/TIR, not by LLMs themselves. In contrast, our work seeks to
enable LLMs to spontaneously select the appropriate reasoning strategy without relying on external
planners or manual interventions.

Data Selection Data selection plays a crucial role in training LLMs (Albalak et al., 2024). Various
methods have been developed to optimize data usage at different stages of model training, ranging
from pretraining (Brown et al., 2020; Wettig et al., 2024; Lin et al., 2025) to supervised fine-tuning
(SFT) (Li et al., 2023; Pan et al., 2024; Xia et al., 2024; Zhou et al., 2023b). Our work focuses
specifically on data selection between CoT and TIR given a math problem and a base LLM.

Test-Time Scaling Recent efforts in scaling test-time computation have explored refinement
strategies (Snell et al., 2024; Xu et al., 2024b; Hou et al., 2025; Lee et al., 2025), which iteratively
build on previous outputs, and MCTS-based approaches (Zhou et al., 2023a; Liu et al., 2024; Wu
et al., 2024). The roles of SFT and RL have also been actively discussed (Chu et al., 2025). For
example, OpenAI (2024); DeepSeek-AI et al. (2025) use RL to train LLMs for generating longer
CoT reasoning, while Muennighoff et al. (2025); Ye et al. (2025) leverage SFT for scaling test-time
computation. This work focuses on enabling adaptive mathematical reasoning in LLMs primarily
through data selection during the SFT stage, with discussions on the potential use of RL in Section 6.3.
While existing test-time scaling methods mainly target CoT, exploring adaptive selection between
CoT and TIR could be an orthogonal direction.

3 BACKGROUND

3.1 REJECTION FINE-TUNING

Rejection fine-tuning (RFT) is a widely-adopted approach to enhance math reasoning abilities by
augmenting the original training set using rejection sampling (Yuan et al., 2023). Suppose that the
original training set Dorig = {(xi, yi)}Ni=1 consists of N pairs of data points (xi, yi). For each query
xi, M responses are generated by a teacher model (e.g., GPT-4): {xi, y

j
i }Mj=1. If yji ̸= yi, then the

response yji is discarded, leading to the augmented training set Daug = {(xi, y
j
i )}Ni=1

Mi

j=1, where
Mi ≤ M is the number of correct responses for query xi. More details are given in Appendix A.1.

3.2 TIR INFERENCE PIPELINE

Tool-Integrated Reasoning (TIR) (Gou et al., 2023) combines natural language reasoning with Python
code execution in an interleaved manner. When a Python code block is encountered, it is executed
using a Python interpreter, and the resulting output, along with the previous context, is fed back into
the LLM to facilitate further reasoning (see Algorithm 1). Solving math problems with TIR often
requires multiple iterations of these interactions, which typically results in higher computational
costs compared to CoT. However, TIR offers more reliable results by leveraging external tools for
computation. The whole inference pipeline of TIR is provided in Appendix A.2.

3.3 IMPLICIT INSTRUCTION TUNING

In-Context Learning (ICL) can be viewed as implicit instruction tuning (IIT), i.e., “fine-tune” the
demonstration implicitly (Li et al., 2023). Let Xins,Xtest ∈ Rdin be the few-shot demonstration
inputs and the test input, respectively. Suppose WK ,WV ,WQ ∈ Rdout×din are projection matrices
to compute the attention queries, keys, and values. The self-attention is formulated as follows:

WV [Xins∥Xtest]Softmax
(
WK [Xins∥Xtest]

⊤Q√
din

)
≈ [WV Xtest(WKXtest)

⊤︸ ︷︷ ︸
Only test input.

+WV Xins(WKXins)
⊤︸ ︷︷ ︸

Only instruction sample.

]Q,

where ∥ denotes concatenation. The first term only involves the test input Xtest, and the second term
is related to few-shot exemplars, which can be interpreted as an IIT to the model parameters (Dai
et al., 2022; Yang et al., 2023) (see Appendix A.3).
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1. Data Construction

Rejection Sampling rewriting CoT -> TIR SFT data selection

2. Anchor Construction

clustering

Anchor Set Question 1: 𝑞1

Anchor Set Question 2: 𝑞2

Anchor Set Question 3: 𝑞3

Anchor Set Question A: 𝑞𝐴

Answer 1: 𝑎1

Answer 2: 𝑎2

Answer 3: 𝑎3

Answer A: 𝑎𝐴

4. Data Selection

The anchor set 

of size A.

3. Contribution Quantification

𝑞1

𝑞2

𝑞3

𝑞𝐴

Figure 2: Overview of our Teaching LLMs According to Their Aptitude (TATA) framework. Here,
Dorig denotes the original training set, Daug represents the augmented training set obtained through
rejection sampling with CoT only, and D refers to the candidate set consisting of (query, CoT, TIR)
triplets. Danchor is the anchor set of size A. Sk

CoT and Sk
TIR are scores calculated based on the LLMs’

aptitude on the anchor set, elicited using 1-shot prompts. Finally, H represents the SFT data selection
process. Fine-tuning on the resulting SFT data enables LLMs to spontaneously select between
CoT and TIR at test time according to their aptitude.

4 THE TATA FRAMEWORK

4.1 PROBLEM SETTING

In this section, we formally formulate our problem setting, including our data structure and objective.

Data Structure Suppose we have a candidate dataset D = {(xi, y
j
i , z

j
i )}Ni=1

Mi

j=1 consisting of

triplets in the form (xi, y
j
i , z

j
i ) for the i-th training example, where 1 ≤ j ≤ Mi. Here, xi represents

the i-th training problem, while yji and zji denote the j-th CoT solution and TIR solution to this
problem, respectively. Notably, the TIR solution zji is adapted from yji , meaning both solutions
follow the same steps to solve the mathematical problem xi, but differ in their reasoning formats:
yji relies exclusively on natural language reasoning, whereas zji incorporates Python code blocks to
perform calculations for certain reasoning steps.

Objective Our objective is to construct an SFT dataset from the candidate dataset D =

{(xi, y
j
i , z

j
i )}Ni=1

Mi

j=1 by incorporating suitable reasoning patterns for different training queries. Specif-

ically, for each problem xi in D = {(xi, y
j
i , z

j
i )}Ni=1

Mi

j=1, we need to decide whether to include its
CoT solutions or TIR solutions in the SFT dataset. Formally, this involves determining whether
{(xi, y

j
i )}

Mi
j=1 ⊆ DSFT or {(xi, z

j
i )}

Mi
j=1 ⊆ DSFT.1 For example, CoT-only SFT (Xu et al., 2024c)

constructs the dataset such that {(xi, y
j
i )}

Mi
j=1 ⊆ DSFT, ∀i. In contrast, TIR-only SFT (Gou et al.,

2023) selects {(xi, z
j
i )}

Mi
j=1 ⊆ DSFT, ∀i. Unlike these static selection approaches, TATA aims to

dynamically tailor the most suitable reasoning paradigm for different training queries and base LLMs.

1We also consider scenarios where both CoT and TIR solutions for a query are included in the SFT dataset.
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4.2 TATA OVERVIEW

“Teach according to students’ aptitude.” — Confucius

Motivation Intuitively, if an LLM demonstrates improved performance on certain queries when fine-
tuned with CoT solutions instead of TIR solutions, it suggests its inclination toward CoT reasoning in
those cases. This preference can be extrapolated to new cases, where the model is expected to favor
CoT for similar problems during testing. The same principle applies to TIR-based reasoning. Inspired
by IIT theory (see Section 3.3), LLMs can be indirectly “fine-tuned” with CoT or TIR examples
through one-shot learning, thereby replacing the need for actual SFT.

Overview As depicted in Figure 2, our proposed framework, TATA, comprises four main steps:
data construction, anchor construction, contribution quantification, and data selection. In the data
construction stage, we adapt an original training set, Dorig, containing CoT solutions, to form the

candidate set D = {(xi, y
j
i , z

j
i )}Ni=1

Mi

j=1. This candidate set includes triplets of queries, a CoT
solution, and corresponding TIR solution. Next, during the anchor construction stage, a representative
anchor set of size A is generated from the original training set by clustering. In the contribution
quantification stage, we compute two scores, Sk

CoT and Sk
TIR, for each query qk in the candidate

set D = {(xi, y
j
i , z

j
i )}Ni=1

Mi

j=1. These scores indicate the impact of CoT and TIR solutions on the
performance of LLMs using IIT (see Section 3.3). The data selection step formulates a decision based
on Sk

CoT and Sk
TIR, determining whether to include CoT or TIR solutions for queries in D. Finally,

SFT is performed on this curated training set.

4.3 TATA DETAILS

Data Construction We start with an original math training set (e.g., MATH (Hendrycks et al., 2021)
training set), denoted as Dorig = {(xi, yi)}Ni=1, which consists of N training examples, where the i-th
problem is represented as xi with its corresponding golden answer yi. To further enhance the training
set, we apply RFT (see Section 3.1), resulting in an augmented dataset, Daug = {(xi, y

j
i )}Ni=1

Mi

j=1,

where yji denotes the j-th augmented CoT solution for the i-th training problem xi. Next, we convert
each CoT solution yji into the TIR format zji by prompting a strong LLM (e.g., GPT-4o). During this
process, the original logic in yji is preserved, while Python blocks are introduced to handle necessary

computations. This transformation produces a candidate dataset D = {(xi, y
j
i , z

j
i )}Ni=1

Mi

j=1, which is
required for our problem setting (see Section 4.1).

Anchor Construction To evaluate the impact of specific CoT or TIR solutions on the performance
of LLMs, we construct an anchor set, denoted by Danchor = {(qi, ai)}Ai=1, where A is the size of the
anchor set, qi, ai is the i-th question and corresponding ground-truth answer in Danchor. We expect
Danchor to be diverse, ensuring that accuracy on this set fairly reflects the LLMs’ overall performance.
To achieve this, we first encode all queries from Dorig into vector representations using an embedding
model (e.g., text-embedding-ada-002) and then cluster them into A distinct groups. The
center of each cluster is selected to Danchor. This approach takes the semantic diversity of questions
into account, making Danchor a reliable indicator of LLMs’ performance. To put it simply, one can
treat this Danchor as a validation set to validate the performance of a base model in different settings.

Contribution Quantification To quantify the contribution of CoT and TIR for each triplet
(xk, y

j
k, z

j
k) in D to the LLMs’ math reasoning abilities, we implicitly "fine-tune" the LLMs us-

ing CoT and TIR formats separately through one-shot learning (see Section 3.3). In this case, the
performance of the base model under one-shot ICL approximates the accuracy achieved by a model
that is finetuned from the same base model using the same one-shot example. For the k-th query xk

and its corresponding CoT solutions yjk (1 ≤ j ≤ Mk), we compute a CoT score, denoted as Sk
CoT, as

follows:

Sk
CoT =

1

Mk

Mk∑
j=1

1

A

A∑
i=1

I
(
ai,G(· | xk, y

j
k︸ ︷︷ ︸

1-shot prompt

, qi)
)
,

5
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Table 1: The accuracies (%) of our TATA framework, comparing with various baselines. The best
accuracies within each group are shown in bold. “ID AVG”, “OOD AVG”, and “AVG” denote the
averages of these metrics across in-domain, out-of-domain, and all six benchmarks.

Model Method In-Domain Out-of-Domain AVG
GSM8K MATH ID AVG MAWPS SVAMP College Olympiad OOD AVG

Qwen2.5-0.5B

hybrid 49.3 37.7 43.5 84.5 55.0 27.5 7.9 43.7 43.6
ensemble 47.1 34.8 41.0 83.4 53.8 25.6 7.7 42.6 42.1
GPT-Select 45.6 31.6 38.6 80.4 52.6 24.4 7.1 41.1 40.3
TATA 52.8 36.6 44.7 85.9 59.4 26.9 8.6 45.2 45.0

Qwen2.5-1.5B

hybrid 71.3 54.7 63.0 91.8 80.4 36.8 19.7 57.2 59.1
ensemble 71.1 54.3 62.7 91.5 79.6 36.6 18.8 56.6 58.7
GPT-Select 72.5 47.3 59.9 91.8 81.8 35.0 14.8 55.8 57.2
TATA 77.6 53.8 65.7 94.2 80.7 37.0 18.8 57.7 60.4

Qwen2.5-3B

hybrid 80.9 61.9 71.4 90.2 79.8 41.6 24.4 59.0 63.1
ensemble 81.3 60.3 70.8 95.3 86.2 42.9 23.1 61.9 64.8
GPT-Select 81.4 53.6 67.5 86.2 79.0 38.9 17.3 33.8 45.0
TATA 84.0 61.3 72.6 94.7 85.3 41.6 24.9 61.6 65.3

Qwen2.5-7B

hybrid 87.0 67.5 77.3 92.1 84.3 44.2 31.7 63.1 67.8
ensemble 87.1 63.0 75.0 91.5 82.0 43.0 30.2 61.7 66.1
GPT-Select 88.3 59.0 73.7 91.4 83.4 42.7 23.3 60.2 64.7
TATA 89.5 66.8 78.2 94.2 86.2 43.4 31.1 63.7 68.5

Qwen2.5-14B

hybrid 91.4 71.7 81.5 93.8 84.5 45.8 35.3 64.8 70.4
ensemble 90.1 66.9 78.5 92.2 82.8 46.1 32.3 63.3 68.4
GPT-Select 90.7 61.5 76.1 86.2 79.1 44.1 23.0 58.1 64.1
TATA 92.1 71.7 81.9 96.5 88.4 46.4 35.3 66.7 71.7

LLaMA-3-8B

hybrid 82.0 56.1 69.1 88.0 78.0 30.8 21.3 54.5 59.4
ensemble 84.0 46.9 65.4 88.6 79.3 29.6 15.3 53.2 57.3
GPT-Select 83.2 47.2 65.2 85.3 77.5 30.6 13.9 51.8 56.3
TATA 84.0 55.1 69.6 91.8 82.7 34.2 21.5 57.6 61.5

Qwen2.5Math-1.5B

hybrid 82.6 66.3 74.4 92.7 83.6 43.1 26.2 61.4 65.7
ensemble 81.5 64.7 73.1 91.8 83.9 44.1 27.4 61.8 65.6
GPT-Select 79.4 56.9 68.1 92.7 83.7 41.8 20.6 59.7 62.5
TATA 83.2 62.8 73.0 94.0 85.6 43.9 26.8 62.6 66.0

Qwen2.5Math-7B

hybrid 89.2 73.4 81.3 95.4 89.5 47.1 34.4 66.6 71.5
ensemble 89.1 67.7 78.4 93.4 84.5 46.7 30.8 63.9 68.8
GPT-Select 89.8 63.0 76.4 89.4 85.1 44.4 24.6 60.7 65.9
TATA 89.8 73.0 81.4 95.2 88.1 48.3 35.9 66.9 71.7

where xk and yjk serve as the one-shot prompt for the LLM G to generate a response for the question
qi in the anchor set, and I is an indicator function that returns 1 if the model’s generated answer
matches the ground-truth answer ai of question qi, and 0 otherwise. Sk

CoT represents the average
accuracy on the anchor set Danchor when using CoT format as the one-shot prompt, averaged over all
CoT solutions yjk (1 ≤ j ≤ Mk) for query xk. Similarly, the TIR score, Sk

TIR, is defined as:

Sk
TIR =

1

Mk

Mk∑
j=1

1

A

A∑
i=1

I
(
ai,G(· | xk, z

j
k︸ ︷︷ ︸

1-shot prompt

, qi)
)
.

The only difference is that the TIR format zjk is used as the one-shot example instead of CoT.

Data Selection Currently, two scores, Sk
CoT and Sk

TIR, are associated with the k-th query qk in the
candidate set D. The next step is to determine whether to include the CoT or the TIR solutions
for this specific query qk in D. Specifically, the goal is to decide between {(xk, y

j
k)}

Mk
j=1 ⊆ DSFT

or {(xk, z
j
k)}

Mk
j=1 ⊆ DSFT. We formalize this decision process with a decision function Hk =

(Sk
CoT, S

k
TIR), where the final decision is represented as a series of decisions H = {Hk}Nk=1, where

N is the number of queries in candidate set D. For instance, a simple decision function Hk could
involve consistently choosing CoT solutions, i.e., {(xk, y

j
k)}

Mk
j=1 ⊆ DSFT for all k. This corresponds

to performing SFT exclusively on CoT data.

6
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Table 2: Ablation of Contribution Quantification.

Model Method In-Domain Out-of-Domain AVG
GSM8K MATH ID AVG MAWPS SVAMP College Olympiad OOD AVG

Qwen2.5-0.5B

hybrid 49.3 37.7 43.5 84.5 55.0 27.5 7.9 43.7 43.6
ensemble 47.1 34.8 41.0 83.4 53.8 25.6 7.7 42.6 42.1
GPT-Select 45.6 31.6 38.6 80.4 52.6 24.4 7.1 41.1 40.3
CoT+TIR 51.5 33.5 42.5 85.8 58.6 25.7 7.9 44.4 43.8
TATA - random 100 50.6 34.6 42.6 85.7 57.6 26.2 6.2 43.9 43.5
TATA - A 200 52.6 36.8 44.7 85.1 59.6 27.4 8.4 45.1 45.0
TATA 52.8 36.6 44.7 85.9 59.4 26.9 8.6 45.2 45.0

5 EXPERIMENTAL RESULTS

5.1 EXPERIMENTAL SETUP

TATA Implementation We select the training sets from GSM8K (Cobbe et al., 2021) and Math
(Hendrycks et al., 2021) as Dorig. For Daug, we use the DART-Math-Hard dataset (Tong et al., 2024).
We employ GPT-4o to rewrite CoT solutions into TIR format using carefully curated prompts and
filter out triplets with anomalous TIR responses (e.g., those that lack a definitive conclusion regarding
the final answer). For embedding, we use text-embedding-ada-002 to encode all queries in
D into 1,536-dimensional vectors. We set the size of Danchor to 100 for both the GSM8K and Math.
To save computational cost, we randomly sample one pair of CoT and TIR solutions per candidate
query, leading to a new candidate set, D∗ = {(xi, y

∗
i , z

∗
i )}Ni=1. For the decision function H, we

determine selection criteria based on two quantiles of the distribution of (SCoT − STIR). More details
are provided in Appendix B.1.

Evaluation Benchmarks We evaluate our approach using six benchmarks for both in-domain
and out-of-domain (OOD) assessment. Specifically, we use the GSM8K and MATH test sets for
in-domain evaluation. For OOD evaluation, we include the SVAMP (Patel et al., 2021), MAWPS
(Koncel-Kedziorski et al., 2016), CollegeMath (Tang et al., 2024), and OlympiadBench-Math (He
et al., 2024) (details in Appendix B.2)

Evaluation Metrics In addition to measuring accuracy on various benchmarks, we evaluate the
generation time cost using the average number of total tokens per generation and quantify the cost of
invoking Python interpreters by the average number of code executions (see Appendix B.3).

Baselines We include the following methods as our baselines: 1) Hybrid (Yue et al., 2023):
Primarily uses TIR but falls back to CoT upon code execution errors or timeouts (Figure 1 (b)). 2)
Ensemble (Zhao et al., 2023): Post-selects between TIR and CoT outputs using an additional LLM
(Figure 1 (a)). In our implementation, we use the same 8-shot prompt as Zhao et al. (2023) with the
base LLM as the selector for consistency. 3) GPT-Select: Uses GPT-4o during data selection to
choose CoT or TIR per query, testing whether a strong external LLM can effectively select reasoning
paradigms regardless of the base LLM’s aptitude.

Additional details, including the SFT setup and evaluation setup, are provided in Appendix B.4.

5.2 MAIN RESULTS

Effectiveness of TATA Results presented in Table 1 demonstrate the effectiveness of our proposed
TATA framework. Across various base models, model sizes, and benchmarks, TATA consistently
achieves competitive or superior performance compared to all the other baselines, highlighting its
ability to leverage the complementary advantages of both methods. Additionally, TATA achieves
significantly better performance than the “GPT-Select” baseline. While “GPT-Select” leverages
a much stronger LLM to select between CoT and TIR for different queries, it demonstrates that
this approach may not be suitable for all base LLMs. This highlights the critical importance of
base-LLM-aware selection in optimizing performance.

Inference efficiency The results in Table 3 demonstrate that our TATA not only improves accuracy
but also enhances inference efficiency compared to standalone CoT and TIR methods. Across all
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model sizes, TATA achieves higher accuracy while maintaining lower token usage and fewer code
executions than TIR, and it significantly reduces computational overhead compared to TIR without
sacrificing the benefits of tool integration. For instance, with Qwen2.5-7B, TATA achieves a 2.3%
accuracy improvement over CoT while using 9.1 fewer tokens per generation and only 1.4 code
executions, compared to TIR’s 2.63 code executions. This balance between accuracy and efficiency
highlights TATA’s ability to streamline reasoning processes, making it a computationally effective
solution for mathematical reasoning tasks. The “hybrid” and “ensemble” approaches incur even
higher inference costs compared to our proposed TATA. Specifically, "hybrid" requires decoding via
TIR and selectively switching to CoT execution for specific cases; “ensemble” generates both CoT
and TIR outputs during testing and incurs additional costs for selection between the two.

5.3 ABLATION

Table 4: TATA is not sensitive to quantiles. * denotes the quantiles we choose for Qwen2.5Math-0.5B.

Quantiles 50, 60 40, 60 30, 60 30, 65∗ 30, 70

AVG 44.8 44.8 44.9 45.0 44.8

Table 3: Results of inference costs. The three met-
rics, “Acc”, “Token”, and “# Code” represent the
average accuracy (%), total tokens per generation,
and number of code executions.

Model Method Acc↑ Token↓ # Code↓

Qwen2.5-3B
TATA 65.3 383.4 1.43
CoT 62.9−2.4 385.2+1.8 0−1.43

TIR 62.9−2.4 411.3+27.9 2.8+1.37

Qwen2.5-7B
TATA 68.5 369.1 1.4
CoT 66.2−2.3 378.2+9.1 0−1.40

TIR 67.8−0.7 393.2+24.1 2.63+1.23

LLaMA-3-8B
TATA 61.5 371.7 1.32
CoT 58−3.5 386+14.3 0−1.32

TIR 59.3−2.2 392.5+20.8 2.66+1.34

Qwen2.5Math-1.5B
TATA 66.0 405.4 1.08
CoT 63.4−2.6 388.5+16.9 0−1.08

TIR 64.8−1.2 460.1+54.7 3.23+2.15

Qwen2.5Math-7B
TATA 71.7 393.8 1.26
CoT 67.5−4.2 379.9+13.9 0−1.26

TIR 71.6−0.1 417.8+24.0 2.68+1.42

Quantile selection As mentioned in Sec-
tion 5.1, the data selection function H is de-
termined using two quantiles of the distribution
(Sk

CoT−Sk
TIR) (see Appendix B). These quantiles

are selected through the grid search. As shown
in Table 4, the performance of TATA is not very
sensitive to the choice of these quantiles (see
Appendix B).

Anchor set & Others Table 2 includes results
for several other ablation studies: 1) “CoT +
TIR”: This method includes all CoT and TIR
solutions for each query without any data selec-
tion. 2) Anchor set construction with random
sampling ("TATA - random 100"): Replacing
k-means clustering with random selection while
keeping the anchor set size constant. 3) Larger
anchor set size ("TATA - A=200"): Increasing
the anchor set size to 200. From Table 2, we
observe that TATA achieves the highest overall
accuracy. Naively including all CoT and TIR
solutions (i.e., “CoT + TIR”) results in a notice-
able decline in performance, despite the larger size of the DSFT dataset. Random anchor set selection
("TATA - random 100") critically degrades performance, highlighting the importance of a representa-
tive anchor set over size alone. Increasing the anchor set size shows diminishing returns, indicating
that A = 100 is enough for model evaluation in our SFT data curation.

6 ANALYSIS AND DISCUSSION

6.1 ANALYSIS OF COT SCORES AND TIR SCORES

To further investigate how different LLMs exhibit varying reasoning patterns, we analyze the distri-
bution of Sk

CoT and Sk
TIR. As illustrated in Figure 3 (see also Appendix C.2), different base LLMs

display distinct distributions of (Sk
CoT − Sk

TIR), indicating varying inclinations towards CoT and TIR
reasoning for queries in the candidate set D∗ = {(xi, y

∗
i , z

∗
i )}Ni=1. Interestingly, even base LLMs

from the same family can demonstrate different tendencies towards CoT and TIR (e.g., Qwen2.5-0.5B
vs. Qwen2.5-7B). Notably, Qwen2.5-7B exhibits a stronger preference for CoT on GSM8K and for
TIR on MATH, compared to Qwen2.5-0.5B.
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Figure 3: The distribution of (Sk
CoT −Sk

TIR) for GSM8K (red) and MATH (blue): Qwen2.5-0.5B (left),
Qwen2.5-7B (middle), LLaMA-3-8B (right).

6.2 TRANSFERABILITY OF DATA SELECTION BETWEEN DIFFERENT LLMS

To evaluate whether data selected by one LLM can benefit another LLM, we conducted additional
experiments using Qwen2.5-0.5B to assess this type of transferability. Specifically, we fine-tuned
Qwen2.5-0.5B on data selected by Qwen2.5-7B and LLaMA-3-8B, with the results in Table 5.
As expected, compared to fine-tuning Qwen2.5-0.5B on its own selected data, fine-tuning on data
selected by another LLM leads to a decline in TATA performance. This finding suggests that our
TATA approach is base model-aware, emphasizing the principle of "teaching LLMs according to
their aptitude." Interestingly, using data selected by LLMs within the same family (e.g., Qwen2.5-7B)
yields more consistent performance compared to data selected by LLMs from a different family
(LLaMA-3-8B). Complete results are in Appendix C.3.

6.3 EXPLORING REINFORCEMENT LEARNING

Recent advancements in RL (OpenAI, 2024; DeepSeek-AI et al., 2025) have demonstrated promising
results in enhancing long CoT reasoning. To explore the role of RL in the spontaneous selection
between CoT and TIR, we employ Direct Preference Optimization (DPO) to LLMs fine-tuned with
our TATA framework (Rafailov et al., 2023) by constructing preference pairs based on the CoT
and TIR scores of queries in the new candidate set D∗ = {(xi, y

∗
i , z

∗
i )}Ni=1. Detailed experimental

setup and methodologies are provided in Appendix C.4. As shown in Table 6, DPO achieves results
comparable to those of TATA. The complete results are provided in Table C.4. This suggests that
the original data has already been effectively learned by the base LLM during the SFT stage, and
applying additional DPO on the same dataset yields minor improvement. This observation aligns
with LIMO (Ye et al., 2025), which argues that the capabilities of pretrained LLMs are latent, with
both SFT and RL serving as different methods to elicit these inherent abilities.

Table 5: The best results (%) are bold, second-best
underlined.

Selected by ID AVG OOD AVG AVG

TATA 44.7 45.2 45.0
LLaMA-3-8B 43.8 44.2 44.1
Qwen2.5-7B 44.5 44.6 44.6

Table 6: DPO Results. Best results in bold.

Model Method Acc Token # Code

LLaMA-3-8B TATA 61.5 371.7 1.32
+DPO 61.6 365.4 1.34

Qwen2.5Math-7B TATA 71.7 393.8 1.26
+DPO 71.7 395.2 1.32

7 CONCLUSION

We propose TATA, a novel and effective framework for mathematical reasoning with LLMs that en-
ables models to dynamically align their reasoning strategies, CoT or TIR, with their intrinsic strengths.
By incorporating base-LLM-aware data selection during SFT, TATA tailors reasoning strategies to
each model, empowering them to select an appropriate paradigm for inference autonomously. Exten-
sive experiments demonstrate that TATA achieves superior or comparable performance across both
in-domain and OOD benchmarks while significantly improving inference efficiency compared to
method based on TIR alone. Moreover, our analysis underscores the importance of aptitude-aware
data selection in unlocking the potential of LLMs to make autonomous and effective reasoning
decisions, paving the way for further advancements in reasoning capabilities of LLMs.
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REPRODUCIBILITY STATEMENT

All implementation details of our TATA framework are provided in Section 5.1 and Appendix B.
Dataset curation procedures are described in Appendix B.1, while evaluation benchmarks are pre-
sented in Appendix B.2. The evaluation metrics are defined in Appendix B.3, and complete training
details, including hyperparameters and model configurations, are given in Appendix B.4. We will
release our code, training data, and models upon acceptance.
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A PRELIMINARIES

A.1 REJECTION FINE-TUNING

For training LLMs, the original training datasets are often insufficient. To mitigate this issue, many
studies adopt Rejection Fine-Tuning (RFT) (Yuan et al., 2023; Yu et al., 2023; Tong et al., 2024)
to augment the original dataset, thereby increasing the training data size and improving model
performance. RFT is a fine-tuning approach that uses synthesized data generated via rejection
sampling (Yuan et al., 2023).

Suppose the original training set is Dorig = {xi, yi}Ni=1, consisting of N data pairs (xi, yi). The
rejection sampling process works as follows: for each query xi, a teacher model (e.g., GPT-4)
generates M responses, resulting in {xi, y

j
i }Mj=1, where M is a predefined number (e.g., M = 10 in

Yu et al. (2023)). This yields N ·M response examples in total. A filtering process is then applied: if
a response yji ̸= yi, it is discarded. T he result is the augmented training set Daug = {xi, yi}Ni=1

Mi

j=1,
where Mi ≤ M represents the number of correct responses for query xi. Notably, Mi is often larger
for simpler queries xi, as these are more likely to produce correct responses.

RFT is widely employed for improving mathematical reasoning in LLMs (Yu et al., 2023; Tong et al.,
2024; Xu et al., 2024c). Typically, the queries remain unchanged (Tong et al., 2024) or are altered in
a controlled way (Yu et al., 2023). This is because the filtering stage of the rejection sampling process
relies on the availability of ground-truth outputs.
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A.2 TIR INFERENCE PIPELINE

Tool-Integrated Reasoning (TIR) addresses mathematical problems by intertwining natural language
reasoning with the execution of Python code. The process is initiated with gernerating a natural
language reasoning step, denoted as r1. When it is more advantageous to utilize programmatic
tools, such as complex calculations, a Python code block, a1, is created as guided by r1. This code
block is then run, and its result, o1, is fed back into the model for further generation. This cycle
is repeated until the maximal number of code blocks is reached or until the model concludes its
answer within “\boxed{}.” The entire reasoning path unfolds as τ = r1a1o1 . . . rn−1an−1on−1rn,
where ri is the i-th natural language reasoning step, ai denotes the corresponding Python code
block, and oi represents the output from executing the code. The complete inference workflow is
detailed in Algorithm 1 (from Gou et al. (2023)). From Algorithm 1, TIR usually requires multiple
generations based on previous reasoning paths and outputs returned by Python interpreter, which
is more computationally expensive than CoT. However, TIR can provide more precise calculation
results than CoT.

Algorithm 1 Inference of TIR
Require: problem q, model G, prompt p, external tools E , stop condition Stop(·), maximum iteration rounds n
1: τ0 ← "" ▷ Trajectory Initialization
2: for i← 1 to n do
3: ri ∼ PG(·|p⊕ q ⊕ τi−1) ▷ Rationale Generation
4: if Stop(ri) then ▷ Stopping Criteria
5: return τi−1 ⊕ ri
6: end if
7: ai ∼ PG(·|p⊕ q ⊕ τi−1 ⊕ ri) ▷ Program Generation
8: oi ← E(ai) ▷ Tool Execution
9: τi ← τi−1 ⊕ ri ⊕ ai ⊕ oi ▷ Trajectory Update

10: end for
11: return τn

A.3 IMPLICIT INSTRUCTION TUNING

In-Context Learning (ICL) can be interpreted as a form of implicit instruction tuning, where the
model is effectively "fine-tuned" using the given demonstrations in an implicit manner (Dai et al.,
2022; Yang et al., 2023; Irie et al., 2022; Li et al., 2023). Let Xins,Xtest ∈ Rdin represent the few-
shot demonstration inputs and the test input, respectively. We define the attention query vector as
Q = WQX

⊤
test, while the attention key and value vectors are given by K = WK [Xins∥Xtest] and

V = WV [Xins∥Xtest], where ∥ denotes concatenation. The projection matrices WK ,WV ,WQ ∈
Rdout×din are used to compute the attention queries, keys, and values. The self-attention mechanism
for a single attention head in any given layer is formulated as follows:

Attention(K,V,Q) =

WV [Xins∥Xtest]Softmax
(
WK [Xins∥Xtest]

⊤Q√
din

)
.

Applying an approximation, this can be rewritten as:

WV [Xins∥Xtest] (WK [Xins∥Xtest])
⊤ Q.

By expanding this expression, we obtain:

WV Xtest(WKXtest)
⊤︸ ︷︷ ︸

Only test input.

Q +WV Xins(WKXins)
⊤︸ ︷︷ ︸

Only demonstration samples.

Q.
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The whole approximation process can be given as follows:

Attention(K,V,Q)

= WV [Xins∥Xtest]Softmax
(
WK [Xins∥Xtest]

⊤Q√
din

)
≈WV [Xins∥Xtest] (WK [Xins∥Xtest])

⊤ Q

= WV Xtest(WKXtest)
⊤︸ ︷︷ ︸

Only test input.

Q +WV Xins(WKXins)
⊤︸ ︷︷ ︸

Only instruction sample.

Q

= [WV Xtest(WKXtest)
⊤︸ ︷︷ ︸

Only test input.

+WV Xins(WKXins)
⊤︸ ︷︷ ︸

Only instruction sample.

]Q,

where the constant
√
din acts as a scaling factor. The first term, WV Xtest(WKXtest)

⊤, corresponds
to a zero-shot learning scenario where no demonstration samples are involved, and only the test
input is considered. Meanwhile, the second term, WV Xins(WKXins)

⊤, can be interpreted as an
implicit adjustment to the model parameters. This adjustment is achieved through the meta-gradient
mechanism (Dai et al., 2022; Yang et al., 2023; Irie et al., 2022), meaning the few-shot examples
influence the model as if performing implicit instruction tuning.

B EXPERIMENTAL SETUP

B.1 TATA IMPLEMENTATION DETAILS

In this appendix, we give the implementation details of our TATA framework.

Data Construction For the original training set, denoted as Dorig = {(xi, yi)}Ni=1, we utilize the
training sets of GSM8K (Cobbe et al., 2021) and MATH (Hendrycks et al., 2021). The GSM8K
training set comprises 7,473 examples, while the MATH training set includes 7,500 examples. For
simplicity, we directly adopt the DART-MATH-Hard dataset (Tong et al., 2024) as our Daug. DART-
MATH-Hard, which is an augmented dataset derived from the GSM8K and MATH training sets
through rejection sampling, contains approximately 0.6M examples in total. Notably, the number
of responses varies across different training queries. To convert CoT solutions into TIR format,
we use GPT-4o-2024-08-06 with a carefully designed prompt, as described in Table 7. While
most CoT solutions are successfully transformed into TIR format, we observe some anomalies. For
instance, some rewritten TIRs fail to conclude with a final answer, while some TIRs produce code
with syntax errors. To address these issues, we filter out ill-formed TIRs using rule-based matching.
After filtering, we obtain a candidate dataset containing approximately 483K examples.

Anchor Construction For the embedding, we use text-embedding-ada-002 to encode all
queries in our candidate set D into 1,536-dimensional vectors. We then cluster these representations
by K-means algorithm. We set the number of clusters to be 100 for both GSM8K and MATH (cluster
separately). That is to say, the size of the anchor set is A = 100.

Contribution Quantification To compute the CoT and TIR scores, we use a new candidate set,
denoted as D∗ = {(xi, y

∗
i , z

∗
i )}Ni=1. This new candidate set is constructed by randomly selecting

one pair of CoT and TIR solutions for each training query from the original candidate set, thereby
reducing computational costs. The CoT score is then simplified to:

Sk
CoT =

1

A

A∑
i=1

I
(
ai,G(· | xk, y

∗︸ ︷︷ ︸
1-shot prompt

, qi)
)
,

A similar formulation is used for the TIR score.

Data Selection The distributions of (Sk
CoT − Sk

TIR) on GSM8K and MATH reveal distinct patterns
(see Section 6.1 and Appendix C.2): all base LLMs demonstrate a tendency to rely more on CoT
for GSM8K queries, while preferring TIR for MATH queries. As a result, it is reasonable to select
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Rewriting Prompt Template
You are a helpful mathematical assistant. A problem will be presented after “Problem:”, followed by a
reference solution after “Original Solution:”. Your task is to rewrite the original solution. During rewriting,
you tend to leverage Python (sympy is preferred) to facilitate solving the problem with step-by-step reasoning,
especially for calculation and simplification. The specific requirements are as follows:

1. Analyze the problem and write functions to solve it, ensuring that the functions do not require any
arguments.
2. Present the final result in LATEX using a ANS without any units.
3. Utilize the ‘pi’ symbol and ‘Rational’ from Sympy for π and fractions, and simplify all fractions and
square roots without converting them to decimal values.
4. Avoid using sentences like “Reasoning step in natural language:”, “Reasoning in Python codes:”, and
other similar phrases.
5. Combine multiple calculation steps with Python code blocks where appropriate, avoiding unnecessary
separate blocks. Limit the number of Python code blocks to fewer than 5 and use them wisely.
6. The new solution format should be as follows:

“Reasoning step 1 in natural language without specific calculations
“‘python
Python code block 1 for calculation and simplification, please print out the final output using print
“‘
“‘output
The output for code block 1
“‘
......
Reasoning step N in natural language without specific calculations
“‘python
Python code block N for calculation and simplification, please print out the final output using print
“‘
“‘output
The output for code block N
“‘
Conclude the final answer.”

Problem: {problem}

Original Solution: {raw_answer}

New Solution:

Table 7: The prompt for transforming CoT to TIR.
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different decision functions, H, for GSM8K and MATH. Specifically, for GSM8K, the dataset for
supervised fine-tuning (DSFT) is defined as:

DSFT =

N⋃
k=1

{(xk, y
j
k)}

Mk
j=1 ∪

⋃
k∈A

{(xk, z
j
k)}

Mk
j=1,

where the index set A = {k : Sk
CoT − Sk

TIR < quantile1}.

For MATH, DSFT is defined as:

DSFT =

N⋃
k=1

{(xk, z
j
k)}

Mk
j=1 ∪

⋃
k∈B

{(xk, y
j
k)}

Mk
j=1,

where the index set B = {k : Sk
CoT − Sk

TIR > quantile2}.

The thresholds quantile1 and quantile2 are determined through grid search. Notably, the performance
of TATA is not sensitive to these quantiles (see Section 5.3 and Table 10). Additionally, we explored
alternative decision functions H in our ablation study, with further details provided in Section 5.3
and Appendix C.1.

Model Quantiles Metric In-Domain Out-of-Domain AVG
GSM8K MATH ID AVG MAWPS SVAMP College Olympiad OOD AVG

Qwen2.5-0.5B

50, 60
Acc 52.2 37.2 44.7 86.4 55.7 27.5 9.9 44.9 44.8
Token 313.5 503.1 408.3 224.3 304.7 496.1 748.2 443.3 431.7
# Code 0.2 2.62 1.41 0.63 0.32 2.85 3.03 1.71 1.61

40, 60
Acc 53.5 36.4 45.0 85.9 57.9 26.4 8.4 44.7 44.8
Token 307.2 504.2 405.7 217.7 290.6 486.8 715.2 427.6 420.3
# Code 0.24 2.5 1.37 0.56 0.3 2.7 2.84 1.6 1.52

30, 60
Acc 53.1 37.0 45.0 86.2 56.3 26.7 10.2 44.8 44.9
Token 312.7 507.5 410.1 218.6 298.1 482.4 720.6 429.9 423.3
# Code 0.21 2.49 1.35 0.49 0.29 2.73 2.81 1.58 1.50

30, 65∗
Acc 52.8 36.6 44.7 85.9 59.4 26.9 8.6 45.2 45.0
Token 309.7 508.7 409.2 217.3 292.9 500.9 743.0 438.5 428.8
# Code 0.19 2.63 1.41 0.52 0.33 2.82 3.06 1.68 1.59

30, 70
Acc 52.2 37.1 44.7 86.4 55.7 27.6 9.9 44.9 44.8
Token 313.5 503.1 408.3 224.3 304.7 496.1 748.2 443.3 431.7
# Code 0.2 2.62 1.41 0.63 0.32 2.85 3.03 1.71 1.61

Table 8: Performance across different quantiles using Qwen2.5-0.5B. The best accuracies within
each group are shown in bold. The three metrics, “Acc”, “Token”, and “# Code” represent the
average accuracy, total tokens per generation, and number of code executions. “Acc” is reported
in %. “ID AVG”, “OOD AVG”, and “AVG” denote the averages of these metrics across in-domain,
out-of-domain, and all six benchmarks. The two numbers in the “Quantiles” are the quantile of
GSM8K and MATH, respectively. * denote our chosen quantiles.

B.2 EVALUATION BENCHMARKS

We give a brief introduction of evaluated benchmarks mentioned in Section 5.1.

• GSM8K (Cobbe et al., 2021) is a grade-school math benchmark, consisting of 7,473 training
examples and 1,319 test examples. It is available at this link, and under MIT License.

• MATH (Hendrycks et al., 2021) is a competition-level math dataset, including 5,000 test
examples and 7,500 training examples. It is available at this link, and under MIT License.

• MAWPS (Koncel-Kedziorski et al., 2016) is a benchmark of math word problems
(MWPs), incorporating 238 test examples. It is under MIT License and can be found
at https://github.com/LYH-YF/MWPToolkit.

• SVAMP (Patel et al., 2021) includes 1,000 simple MWPs, which is available at
https://github.com/LYH-YF/MWPToolkit. It is under MIT License.

• CollegeMath (Tang et al., 2024): This dataset comprises 2818 college-grade mathematical
questions sourced from 9 different textbooks, covering 7 fields including linear algebra and
differential equations. It is designed to evaluate generalization in intricate mathematical
reasoning across various domains. It is available at this link.
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• OlympiadBench-Math (He et al., 2024): This collection comprises 675 high-level Olympiad
mathematical problems selected from various competitions and represents a text-only En-
glish fraction of OlympiadBench. It is available at this link.

B.3 EVALUATION METRICS

In addition to evaluating accuracy across the six benchmarks mentioned in Section 5.1, we also assess
the computational costs associated with interacting with external Python interpreters. As described
in Algorithm 1, TIR involves multiple interactions with Python interpreters. The associated time
costs can be divided into two categories: the time required to execute Python code blocks and the
increased generation costs caused by progressively longer input sequences. The first type of time cost
is reflected in the number of interactions with Python interpreters, i.e., the number of code executions.
The second type can be approximated by the number of generated tokens, which includes both input
and output tokens. Since the number of generations is equivalent to the number of code executions,
we use the average total tokens per generation to evaluate this cost. Naturally, TIR incurs a higher
number of generated tokens due to multiple generations with progressively longer contexts.

B.4 SFT AND EVALUATION SETUP

SFT Setup In our experiments, we utilize various base LLMs, including general-purpose models
(e.g., LLaMA-3-8B (AI@Meta, 2024)) and math-specialized models (e.g., Qwen2.5-Math (Yang
et al., 2024b)). The details of these base LLMs are outlined below:

• Llama-3 (AI@Meta, 2024): LLaMA 3 Community License. We use Llama-3-8B as the
base LLM in our experiments.

• Qwen2.5 (Yang et al., 2024a): Qwen2.5 series are developed with dedication to math and
coding. We used 0.5B, 1.5B, 3B, and, 7B models. They are licensed under Apache 2.0.

• Qwen2.5-Math (Yang et al., 2024b): Qwen2.5-Math is a series of specialized math language
models built upon the Qwen2.5 LLMs. We use 3B and 7B variants. They are under the same
license as the Qwen2.5 series.

We set the maximum input length for all base models to be 4,096. During SFT, we employ the Adam
optimizer with a learning rate of 2× 10−5 and set batch size to 64, conducting training over three
epochs. Unlike Beeching et al. (2024); Yang et al. (2024b), we use the same training prompt for both
CoT and TIR. The prompt is provided in Table 9.

Training and Inference Prompt Template
Below is an instruction that describes a task. Write a response that appropriately completes the request.

### Instruction:
{instruction}

### Response:

Table 9: Training prompt for base LLMs.

Evaluation Setup For evaluation, we adopt the same prompt used during SFT, as recommended
by Tong et al. (2024). For TIR inference, please refer to Algorithm 1, where the maximum number
of interactions is set to n = 6. CoT inference can be viewed as a special case of Algorithm 1 with
n = 1.
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C MORE FINE-GRAINED RESULTS

C.1 ABLATION STUDY

As detailed in Appendix B, we use different decision function H for GSM8K and MATH. Specifically,
for GSM8K, the dataset for supervised fine-tuning (DSFT) is defined as:

DSFT =

N⋃
k=1

{(xk, y
j
k)}

Mk
j=1 ∪

⋃
k∈A

{(xk, z
j
k)}

Mk
j=1,

where the index set A = {k : Sk
CoT − Sk

TIR < quantile1}.

For MATH, DSFT is defined as:

DSFT =

N⋃
k=1

{(xk, z
j
k)}

Mk
j=1 ∪

⋃
k∈B

{(xk, y
j
k)}

Mk
j=1,

where the index set B = {k : Sk
CoT − Sk

TIR > quantile2}. We consider this as the default choice of
our TATA (i.e., TATA in Table 10).

We present the results of the H ablation study in Table 10. The variants of H evaluated are described
as follows:

Random The key difference between “Random” and “TATA” lies in the selection of the index sets
A and B. In the “Random” variant, we randomly select the index sets A and B while ensuring that
|A| and |B| match those in the default TATA configuration. It is important to note that this is not
purely a random selection, the number of queries using TIR or CoT is still determined by the default
settings of TATA, making “Random” a strong baseline.

CoT + TIR In this variant, we include all CoT and TIR solutions in DSFT, doubling the number of
training examples compared to using only CoT or TIR individually. Formally, the dataset is defined
as:

DSFT =

N⋃
k=1

{(xk, y
j
k)}

Mk
j=1 ∪

N⋃
k=1

{(xk, z
j
k)}

Mk
j=1.

TATA− The TATA− variant differs from the original TATA in that it uses a single quantile for
selection. The dataset is formally defined as:

DSFT =
⋃
k∈A

{(xk, y
j
k)}

Mk
j=1 ∪

⋃
k∈B

{(xk, z
j
k)}

Mk
j=1,

where the index set A = {k : Sk
CoT − Sk

TIR > quantile}, and B = Ac. In this setup, each query in the
candidate set D∗ = {(xi, y

∗
i , z

∗
i )}Ni=1 includes either CoT or TIR solutions but not both.

From Table 10, the selection function H in our TATA gains the best results.

C.2 ANALYSIS OF COT SCORES AND TIR SCORES

In Section 6.1, we presented representative results analyzing CoT and TIR scores. Here, we further
provide the distributions of Sk

CoT, Sk
TIR, and (Sk

CoT − Sk
TIR) for various base LLMs in Figures 4, 5, 6,

7, 8, 9, and 10. From these figures, we have the following observations: 1. Different base LLMs
exhibit varying tendencies towards CoT or TIR responding to the same candidate set queries. 2.
Math-specialized LLMs (e.g., Qwen2.5Math) demonstrate higher CoT and TIR scores compared to
their general-purpose counterparts (e.g., Qwen2.5). This may be attributed to the inclusion of similar
CoT and TIR data in their pretraining process. 3. Notably, Qwen2.5Math-7B achieves TIR scores
approaching 0.8 accuracy on the MATH anchor set using only a 1-shot prompt from the candidate set,
as shown in Figure 10 (middle). This suggests the potential for anchor set contamination (Xu et al.,
2024a).
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Model Method Metric In-Domain Out-of-Domain AVG
GSM8K MATH ID AVG MAWPS SVAMP College Olympiad OOD AVG

LLaMA-3-8B

CoT
Acc 84.7 46.5 65.6 91.6 81.6 30.2 13.3 54.2 58.0
Token 246.4 471.0 358.7 173.3 236.8 511.7 676.7 399.6 386.0
# Code 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

TIR
Acc 81.7 56.2 69.0 87.8 77.8 30.5 21.9 54.5 59.3
Token 299.0 457.5 378.2 240.9 269.1 437.9 650.8 399.7 392.5
# Code 2.96 2.51 2.74 2.42 2.64 2.69 2.76 2.63 2.66

Random
Acc 83.1 56.4 69.8 91.8 81.3 31.3 21.8 56.6 61.0
Token 271.6 472.0 371.8 203.7 251.0 453.4 695.5 400.9 391.2
# Code 0.21 2.35 1.28 0.36 0.33 2.44 2.83 1.49 1.42

CoT + TIR
Acc 83.1 48.4 65.8 91.2 78.7 30.8 16.7 54.4 58.2
Token 278.0 497.4 387.7 208.6 281.2 507.3 707.3 421.1 410.0
# Code 0.83 0.51 0.67 0.68 0.95 0.51 1.09 0.81 0.76

TATA−
Acc 83.1 54.7 68.9 91.2 80.6 31.9 19.6 55.8 60.2
Token 285.4 472.1 378.8 226.7 253.9 474.3 692.2 411.8 400.8
# Code 1.4 2.31 1.86 1.23 1.2 2.34 2.49 1.81 1.83

TATA
Acc 84.0 55.1 69.6 91.8 82.7 34.2 21.5 57.6 61.5
Token 248.2 461.1 354.6 191.1 222.5 449.5 657.7 380.2 371.7
# Code 0.12 2.33 1.23 0.27 0.21 2.39 2.6 1.37 1.32

Table 10: Ablation Study using LLaMA-3-8B. The best accuracies within each group are shown in
bold. The three metrics, “Acc”, “Token”, and “# Code” represent the average accuracy, total tokens
per generation, and number of code executions. “Acc” is reported in %. “ID AVG”, “OOD AVG”, and
“AVG” denote the averages of these metrics across in-domain, out-of-domain, and all six benchmarks.

0.0 0.1 0.2 0.3 0.4 0.5 0.6
0

250

500

750

1000

1250

1500

1750

C
ou

nt

cot
pot

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
0

250

500

750

1000

1250

1500

1750

C
ou

nt

cot
pot

0.6 0.4 0.2 0.0 0.2 0.4
0

250

500

750

1000

1250

1500

1750

2000

C
ou

nt

GSM8K
MATH
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TIR) (right) for LLaMA-3-8B.
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TIR) (right) for Qwen2.5-3B.
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TIR (middle), and (Sk
CoT − Sk

TIR) (right) for Qwen2.5-7B.
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C.3 TRANSFERABILITY RESULTS

The complete results of transferability results are given in Table 11.

Model Select By Metric In-Domain Out-of-Domain AVG
GSM8K MATH ID AVG MAWPS SVAMP College Olympiad OOD AVG

Qwen2.5-0.5B

Qwen2.5-0.5B
Acc 52.8 36.6 44.7 85.9 59.4 26.9 8.6 45.2 45.0
Token 309.7 508.7 409.2 217.3 292.9 500.9 743.0 438.5 428.8
# Code 0.19 2.63 1.41 0.52 0.33 2.82 3.06 1.68 1.59

LLaMA-3-8B
Acc 51.3 36.3 43.8 86.2 55.9 26.5 8.1 44.2 44.1
Token 318.2 507.7 413.0 216.9 298.9 485.4 732.8 433.5 426.6
# Code 0.28 2.49 1.39 0.52 0.52 2.45 2.73 1.56 1.5

Qwen2.5-7B
Acc 52.2 36.8 44.5 86.7 57.6 26.7 7.4 44.6 44.6
Token 312.5 499.4 406.0 228.6 308.2 489.3 744.5 442.6 430.4
# Code 0.4 2.53 1.46 0.85 0.68 2.75 2.94 1.81 1.69

Table 11: Detailed results of transferability experiments using Qwen2.5-0.5B. The best accuracies
within each group are shown in bold. The three metrics, “Acc”, “Token”, and “# Code” represent
the average accuracy, total tokens per generation, and number of code executions. “Acc” is reported
in %. “ID AVG”, “OOD AVG”, and “AVG” denote the averages of these metrics across in-domain,
out-of-domain, and all six benchmarks.

C.4 DPO RESULTS

The detailed settings of DPO are as follows:

Preference Data Construction The construction of the preference dataset used in DPO is guided
by CoT and TIR scores, following a similar approach to the construction of DSFT. Specifically, two
separate quantiles are used to select preference pairs for the GSM8K and MATH datasets. The
preference dataset, Dpre, is selected from the newly defined candidate set, D∗ = {(xi, y

∗
i , z

∗
i )}Ni=1,

and is formally defined as:
Dpre = {(xk, ck, rk)}k∈A,

where ck is the chosen (preferred) response for the query xk, and rk is the rejected response.

The index set A is defined as:

A = {k : Sk
TIR − Sk

CoT < quantile
′

1 or

Sk
CoT − Sk

TIR > quantile
′

2},

where quantile
′

1 and quantile
′

2 are two quantiles optimized via grid search.

The rules for determining ck (chosen response) and rk (rejected response) are as follows:

ck =

{
yk if Sk

CoT − Sk
TIR > quantile

′

2,

zk if Sk
TIR − Sk

CoT < quantile
′

1,

and

rk =

{
yk if Sk

TIR − Sk
CoT < quantile

′

1,

zk if Sk
CoT − Sk

TIR > quantile
′

2.

This preference selection process ensures that the dataset Dpre contains meaningful comparisons
between CoT and TIR responses based on their relative scores.

DPO Hyperparameters We utilize OpenRLHF (Hu et al., 2024) to implement DPO. The maximum
token length is set to 4,096, consistent with the SFT stage. The training process adopts a learning rate
of 5×10−7, a batch size of 256, and runs for one epoch. We use LLaMA-3-8B and Qwen2.5Math-7B,
fine-tuned with TATA, as the starting point for DPO.

The complete results are presented in Table 12. As shown, DPO achieves comparable results with
LLMs fine-tuned with TATA.
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Model Method Metric In-Domain Out-of-Domain AVG
GSM8K MATH ID AVG MAWPS SVAMP College Olympiad OOD AVG

LLaMA-3-8B

CoT
Acc 84.7 46.5 65.6 91.6 81.6 30.2 13.3 54.2 58.0
Token 246.4 471.0 358.7 173.3 236.8 511.7 676.7 399.6 386.0
# Code 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

TIR
Acc 81.7 56.2 69.0 87.8 77.8 30.5 21.9 54.5 59.3
Token 299.0 457.5 378.2 240.9 269.1 437.9 650.8 399.7 392.5
# Code 2.96 2.51 2.74 2.42 2.64 2.69 2.76 2.63 2.66

TATA
Acc 84.0 55.1 69.6 91.8 82.7 34.2 21.5 57.6 61.5
Token 248.2 461.1 354.6 191.1 222.5 449.5 657.7 380.2 371.7
# Code 0.12 2.33 1.23 0.27 0.21 2.39 2.6 1.37 1.32

+DPO
Acc 84.0 55.2 69.6 91.8 82.7 34.0 21.8 57.6 61.6
Token 250.8 453.6 352.2 185.0 219.1 435.9 647.9 372.0 365.4
# Code 0.14 2.38 1.26 0.25 0.17 2.42 2.7 1.38 1.34

Qwen2.5Math-7B

CoT
Acc 91.0 61.5 76.2 94.8 87.9 45.7 23.9 63.1 67.5
Token 254.7 470.6 362.6 177.0 223.5 484.1 669.2 388.5 379.9
# Code 0.0 0.0 0.0 0.0 0.0 0.0 0.01 0.0 0.0

TIR
Acc 88.9 73.6 81.2 95.4 89.4 47.1 35.3 66.8 71.6
Token 311.8 490.9 401.4 261.2 272.2 456.8 713.7 426.0 417.8
# Code 3.04 2.56 2.8 2.58 2.51 2.65 2.75 2.62 2.68

TATA
Acc 89.8 73.0 81.4 95.2 88.1 48.3 35.9 66.9 71.7
Token 264.7 487.2 376.0 193.7 229.7 476.9 710.6 402.7 393.8
# Code 0.25 2.14 1.2 0.33 0.24 2.02 2.59 1.3 1.26

+DPO
Acc 89.8 73.1 81.4 95.2 88.1 48.4 35.4 66.8 71.7
Token 267.0 487.2 377.1 193.8 229.4 474.8 718.9 404.2 395.2
# Code 0.3 2.18 1.24 0.39 0.27 2.08 2.67 1.35 1.32

Table 12: Detailed DPO results. The best accuracies within each group are shown in bold. The three
metrics, “Acc”, “Token”, and “# Code” represent the average accuracy, total tokens per generation,
and number of code executions. “Acc” is reported in %. “ID AVG”, “OOD AVG”, and “AVG” denote
the averages of these metrics across in-domain, out-of-domain, and all six benchmarks.

D THE LLM USAGE DECLARATION

In this work, we employ GPT-4o to transform CoT answers into the TIR format, as described in
Section 4. As one of our baselines, we also use GPT-4o for SFT data selection, denoted as “GPT-
Select” in Table 1. In addition, we incorporate several base models for our SFT experiments. Finally,
we utilize GPT-5 to assist in refining our writing.
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