Under review as a conference paper at ICLR 2026

TEACHING LILLMS ACCORDING TO THEIR APTITUDE;:
ADAPTIVE SWITCHING BETWEEN COT AND TIR FOR
MATHEMATICAL PROBLEM SOLVING

Anonymous authors
Paper under double-blind review

ABSTRACT

Existing supervised fine-tuning (SFT) approaches to enhance the mathematical
reasoning of large language models (LLMs) rely either on Chain-of-Thought (CoT)
for generalizability or Tool-Integrated Reasoning (TIR) for precise computation.
While efforts have been made to combine these methods, they primarily rely on
post-selection or predefined strategies, leaving an open question: Could we endow
LLMs with the ability to adaptively determine whether to use CoT or TIR based
on the math problems at hand before decoding? In this work, we propose TATA
(Teaching LLMs According to Their Aptitude), an adaptive framework that enables
LLMs to personalize their reasoning strategy for different problems spontaneously,
aligning it with their intrinsic aptitude. TATA incorporates base-LLM-aware data
selection during SFT to tailor training data to the model’s unique abilities, which
equips LLMs to autonomously determine and apply the effective reasoning strategy
at test time. Empirical results demonstrate that TATA effectively combines the
complementary strengths of CoT and TIR, achieving superior or comparable
performance with improved inference efficiency compared to existing methods.
Further analysis highlights the crucial role of aptitude-aware data selection in
enabling LLMs to make informed and adaptive reasoning decisions, aligning
reasoning strategies with model capabilities.

1 INTRODUCTION

Previous SFT methods for mathematical reasoning (Tong et al.,[2024; |Shao et al., [2024; |Yan et al.,
2024;|Gou et al., 2023; Wang et al.} 2023; [Lu et al.} 2024) predominantly adopt one of the following
two distinct reasoning paradigms: Chain-of-Thought (CoT) reasoning (Wei et al., 2022)) or Tool-
Integrated Reasoning (TIR) (Chen et al., [2022; |Gao et al., 2023). CoT employs natural language
(NL) to articulate intermediate reasoning steps, whereas TIR integrates NL with Python code blocks
in an interleaved manner (see Section [3.2). While CoT offers computational efficiency, it may
compromise the numerical accuracy of complex calculations. In contrast, TIR’s structured execution
of code ensures precise computation but incurs significant computational overhead. Notably, recent
studies (Zhao et al., 2023}, [Yang et al., 2024b) have empirically demonstrated that CoT and TIR
exhibit complementary strengths: CoT demonstrates superior performance on problems demanding
sophisticated logical deduction with minimal numerical computation, whereas TIR excels in scenarios
requiring intensive numerical calculations with relatively simpler logical flow.

This complementary nature suggests potential benefits to integrate these two reasoning patterns. |[Zhao
et al.| (2023) proposes an auxiliary LLM-based selector to dynamically choose between paradigms via
prompt-based routing (Figure (a)). MAmmoTH (Yue et al., [2023) switches to CoT reasoning if TIR
encounters execution errors or timeouts (Figure[T|(b)). Yang et al.|(2024b) employs different inference
prompts to elicit respective reasoning capabilities (Figure[I](c)). Despite these advancements, existing
approaches predominantly rely on either external selectors (as in|Zhao et al.| (2023))) or predefined
heuristics (as in MAmmoTH and Qwen-2.5-Math) rather than endowing LLMs with the intrinsic
capability to autonomously recognize appropriate reasoning strategies. However, the potential for
LLMs themselves to dynamically adapt reasoning paradigms (CoT or TIR) remains underexplored.

Under review as a conference paper at ICLR 2026

To bridge this gap, we propose Teaching LLMs
According to Their Aptitude (TATA), an adap-
tive framework that enables LLMs to sponta-
neously select between CoT and TIR for math
problem solving. Instead of adopting a fixed

Problem

Ve l
_— TIR Solution

50— cot
w\ CoT Solution e L

(a) Using Another LLM to Select

strategy for all training queries, TATA adaptively Problem (b) If TIR fails, then use CoT

tailors the training data selection process by con- 7\

sidering both the query characteristics and the O’O _— TIR Solution 3¢ Syntax Error or
base LLM’s aptitude. This ensures that the re- W CoT Solution gQ Execution Timeout
sulting model is equipped to select a suitable ~~ " "7~ TT 77T T TETEEm
reasoning strategy (CoT or TIR) for different P}’bllem (¢) Intentionally Chosen by human
queries at test time, facilitating aptitude-driven -1 .+ Use TIR Prompt— TIR Solution

reasoning. As a result, TATA preserves and en-
hances the generalizability of the model, partic-
ularly for out-of-domain tasks.

Problem (d) Adaptive Reasoning by LLMs
Concretely, we begin with a dataset D, which
consists of N triplets, each containing a query,
a CoT solution, and a TIR solution. We then
construct an anchor set, D,ychor, t0 €valuate the
model’s performance. For each training query
in D, we assess the LLM’s accuracy on Dypcnor
by providing either the CoT or TIR solution
of the query as a one-shot example. Based on
the model’s performance on the D,epor in €ach
setting, we select the most effective reasoning
paradigm for training queries and use it to con-
struct the SFT data, Dspr. We endow the base
LLMs with the ability to adaptively switch be-
tween CoT and TIR by training of personalized
training set Dggr. To assess TATA’s effective-
ness, we conduct extensive evaluations across six math reasoning benchmarks, utilizing both general-
purpose LLMs (e.g. Llama-3-8B (Al@Meta, |2024))) and math-specialized LLMs (e.g. Qwen2.5-
Math-7B) as base models. Experiments show that TATA successfully leads to better performance
across various models and benchmarks.

B _ D .- » TIR Solution

0.0 TIR or CoT?
U# ‘g} CoT Solution

Figure 1: Illustration of our research question. (a)
Zhao et al| (2023) post-select between CoT and
TIR by another LLM. (b)|Yue et al.[(2023)) choose
CoT if TIR fails due to syntax error or execution
timeout. (c) Yang et al|(2024a) controls selec-
tion between CoT and TIR by predefined inference
prompts. (d) We aim to teach LLMs to choose the
appropriate one before decoding.

To summarize, our contributions are as follows:

1. We propose TATA, an adaptive framework that enables LLMs to spontaneously select between
CoT and TIR for adaptive mathematical reasoning based on their inherent aptitudes.

2. Extensive experiments demonstrate that TATA effectively combines the strengths of both CoT and
TIR, achieving comparable or even superior performance while offering higher inference efficiency
compared to TIR.

3. Comprehensive analyses highlight the critical role of base-LLM-aware data selection for CoT and
TIR, which is the core of our TATA framework.

2 RELATED WORK

Math Reasoning with CoT and TIR CoT and TIR are two widely recognized approaches for
reasoning with LLMs. CoT offers interpretability and generalizability, while TIR can provide precise
calculation results. Previous work on mathematical SFT has primarily focused on either CoT (Yu
et al., 2023} [Tong et al., 2024} [Shao et al., 2024; |Yan et al., 2024)) or TIR (Yue et al., 2023} \Gou
et al., [2023] [Wang et al.l 2023;Yin et al.| 2024), with a few efforts to integrate both (Yue et al., [2023]
Beeching et al}[2024; |Yang et al.,2024b)). For instance, MAmmoTH (Yue et al.|[2023) mainly adopts
TIR but switches to CoT when code execution fails due to errors or timeouts. However, it relies on
separate prompts and manual inference controls to switch between them. Recent work has explored
automatic selection between CoT and TIR (Zhao et al.| 2023} [Yue et al., 2024; Yu et al.| 2024), such
as using an auxiliary LLM to determine CoT/TIR (Zhao et al.,|2023)). However, these methods rely

Under review as a conference paper at ICLR 2026

on external planners to select CoT/TIR, not by LLMs themselves. In contrast, our work seeks to
enable LLMs to spontaneously select the appropriate reasoning strategy without relying on external
planners or manual interventions.

Data Selection Data selection plays a crucial role in training LLMs (Albalak et al.,[2024). Various
methods have been developed to optimize data usage at different stages of model training, ranging
from pretraining (Brown et al.| 2020; Wettig et al.,[2024; |Lin et al., 2025) to supervised fine-tuning
(SFT) (L1 et al., 2023} [Pan et al., 2024} [Xia et al., 2024} [Zhou et al.| [2023b)). Our work focuses
specifically on data selection between CoT and TIR given a math problem and a base LLM.

Test-Time Scaling Recent efforts in scaling test-time computation have explored refinement
strategies (Snell et al., 2024} |Xu et al.,|2024bj [Hou et al.| 20255 [Lee et al., |2025)), which iteratively
build on previous outputs, and MCTS-based approaches (Zhou et al.|[2023a; [Liu et al., [2024; |Wu
et al.} [2024). The roles of SFT and RL have also been actively discussed (Chu et al., [2025). For
example, OpenAl| (2024)); DeepSeek-Al et al.| (2025) use RL to train LLMs for generating longer
CoT reasoning, while Muennighoff et al.| (2025)); |Ye et al.|(2025)) leverage SFT for scaling test-time
computation. This work focuses on enabling adaptive mathematical reasoning in LLMs primarily
through data selection during the SFT stage, with discussions on the potential use of RL in Section[6.3]
While existing test-time scaling methods mainly target CoT, exploring adaptive selection between
CoT and TIR could be an orthogonal direction.

3 BACKGROUND

3.1 REJECTION FINE-TUNING

Rejection fine-tuning (RFT) is a widely-adopted approach to enhance math reasoning abilities by
augmenting the original training set using rejection sampling (Yuan et al.,2023)). Suppose that the
original training set Dorig = {(;, y;)}, consists of N pairs of data points (z;, y;). For each query
x;, M responses are generated by a teacher model (e.g., GPT-4): {z;,y] ;Vil If y] # y;, then the

i . . M;
response y; is discarded, leading to the augmented training set Dy, = {(24,y]) i=1;—1> Where

M, < M is the number of correct responses for query x;. More details are given in Appendix [A.1]

3.2 TIR INFERENCE PIPELINE

Tool-Integrated Reasoning (TIR) (Gou et al., 2023)) combines natural language reasoning with Python
code execution in an interleaved manner. When a Python code block is encountered, it is executed
using a Python interpreter, and the resulting output, along with the previous context, is fed back into
the LLM to facilitate further reasoning (see Algorithm[I). Solving math problems with TIR often
requires multiple iterations of these interactions, which typically results in higher computational
costs compared to CoT. However, TIR offers more reliable results by leveraging external tools for
computation. The whole inference pipeline of TIR is provided in Appendix[A.2]

3.3 IMPLICIT INSTRUCTION TUNING

In-Context Learning (ICL) can be viewed as implicit instruction tuning (IIT), i.e., “fine-tune” the
demonstration implicitly (Li et al., [2023). Let X, Xiest € R% be the few-shot demonstration
inputs and the test input, respectively. Suppose W, Wy, Wq € R%uxdin are projection matrices
to compute the attention queries, keys, and values. The self-attention is formulated as follows:

WK [Xins HXtest} TQ)
\Y% din
~ (W Xiest (W Xiest) | + Wy Xing (W Xins) 110,

Wy [Xins || Xiest]Softmax (

Only test input. Only instruction sample.

where || denotes concatenation. The first term only involves the test input X, and the second term
is related to few-shot exemplars, which can be interpreted as an IIT to the model parameters (Dai
et al.,[2022; Yang et al.| [2023)) (see Appendix[A.3).

Under review as a conference paper at ICLR 2026

1. Data Construction

‘ o M M
Dorig = {(@i,y:) ¥¥, Dag = {(I“y{)};’il]‘:l ={(ziv!, z)}zN 1j=1

) 3 Rejection Sampling rewriting CoT -> TIR @ g o J SFT data selection | A i?
. iy A B —

2. Anchor Construction

. [Anchor Set Question 1: q; Answer 1: a; |
— . Anchor Set Question 2: g, Answer 2: a, Danchor = {(lh, ai)}le
) clustering :
> e i 3 X
o/ | : Anchor Set Question 3: g3 Answer 3: az (pa=: The anchor set
@af— oOfsizeA.
N
Anchor Set Question A: g4 Answer A: a,
3. Contribution Quantification 4. Data Selection

0
My A
1)""
Séar = I(a:, G(: Yk 0

L-shot prompt

"".\ H = {Hx(SCoTVST[R)}k 1
A
P 1 / .
Snk:mJ:lZ;]l G|z, Zk ’1)) D f_C\j,_j)
1- n 0t prompt 5T

Figure 2: Overview of our Teaching LLMs According to Their Aptitude (TATA) framework. Here,
Dorig denotes the original training set, Dy, represents the augmented training set obtained through
rejection sampling with CoT only, and D refers to the candidate set consisting of (query, CoT, TIR)
triplets. Danchor 1S the anchor set of size A. S’C"()T and S@IR are scores calculated based on the LLMs’
aptitude on the anchor set, elicited using 1-shot prompts. Finally, H represents the SFT data selection
process. Fine-tuning on the resulting SFT data enables LLMs to spontaneously select between
CoT and TIR at test time according to their aptitude.

4 THE TATA FRAMEWORK

4.1 PROBLEM SETTING

In this section, we formally formulate our problem setting, including our data structure and objective.

N

M;
Data Structure Suppose we have a candidate dataset D = {(z;, yl, l) Z1j—, consisting of

triplets in the form (z;, yi) 25) for the ¢-th training example, where 1 < j < M;. Here, x; represents
the ¢-th training problem, while yf and zf denote the j-th CoT solution and TIR solution to this
problem, respectively. Notably, the TIR solution z- is adapted from y' meaning both solutions
follow the same steps to solve the mathematical problem x;, but differ in their reasoning formats:

y! relies exclusively on natural language reasoning, whereas zJ incorporates Python code blocks to
perform calculations for certain reasoning steps.

Objective Our objective is to construct an SFT dataset from the candidate dataset D =

M;
{(zi,y], 2]) N 1,=1 DY incorporating suitable reasoning patterns for different training queries. Specif-

ically, for each problem z; in D = {(z;,y?,2/)} X 1 _,» we need to decide whether to include its

CoT solutlons or TIR solutions in the SFT dataset. Formally, this involves determining whether
{(zs, yj)} 1 € Dgpr or {(z;, 2)} 1 C DSFT For example, CoT-only SFT (Xu et al., 2024c)
constructs the dataset such that {(z;, y;])} 1 € Dggr, Vi. In contrast, TIR-only SFT (Gou et al.,

2023) selects {(z;, 2)}M1 C Dsfr, Vi. Unhke these static selection approaches, TATA aims to
dynamically tailor the most suitable reasoning paradigm for different training queries and base LLMs.

'We also consider scenarios where both CoT and TIR solutions for a query are included in the SFT dataset.

Under review as a conference paper at ICLR 2026

4.2 TATA OVERVIEW

Teach according to students’ aptitude. — Confucius

Motivation Intuitively, if an LLM demonstrates improved performance on certain queries when fine-
tuned with CoT solutions instead of TIR solutions, it suggests its inclination toward CoT reasoning in
those cases. This preference can be extrapolated to new cases, where the model is expected to favor
CoT for similar problems during testing. The same principle applies to TIR-based reasoning. Inspired
by IIT theory (see Section [3.3)), LLMs can be indirectly “fine-tuned” with CoT or TIR examples
through one-shot learning, thereby replacing the need for actual SFT.

Overview As depicted in Figure [2, our proposed framework, TATA, comprises four main steps:
data construction, anchor construction, contribution quantification, and data selection. In the data
construction stage, we adapt an original training set, Dy, containing CoT solutions, to form the

. Ml
candidate set D = {(z;,y], = 2) N 1j=1" This candidate set includes triplets of queries, a CoT
solution, and corresponding TIR solution. Next, during the anchor construction stage, a representative
anchor set of size A is generated from the original training set by clustering. In the contribution

quantification stage we compute two scores, Sé + and Sy, for each query gy, in the candidate

M;
set D = {(z;,y), 2]}V, j—1- These scores indicate the impact of CoT and TIR solutions on the
performance of LLMs using IIT (see Section[3.3). The data selection step formulates a decision based
on SCOT and Sk, determining whether to include CoT or TIR solutions for queries in D. Finally,

SFT is performed on this curated training set.

4.3 TATA DETAILS

Data Construction We start with an original math training set (e.g., MATH (Hendrycks et al., 2021)
training set), denoted as Dorig = {(;, i)}, which consists of N training examples, where the i-th
problem is represented as x; with its corresponding golden answer y;. To further enhance the trair}\i;lg
ﬁ\f 1j=1>
where yj denotes the j-th augmented CoT solution for the i-th training problem x;. Next, we convert
each CoT solution y] into the TIR format zj by prompting a strong LLM (e.g., GPT—40). During this

process, the original logic in y] is preserved, while Python blocks are introduced to handle necessary

NM
’Lljl’

set, we apply RFT (see Section , resulting in an augmented dataset, Dy = { (5, yf)}

computations. This transformation produces a candidate dataset D = {(z;, yZ) 2) which is

required for our problem setting (see Section ..

Anchor Construction To evaluate the impact of specific CoT or TIR solutions on the performance
of LLMs, we construct an anchor set, denoted by Danchor = { (i, ;) } L1, where A is the size of the
anchor set, g;, a; is the i-th question and corresponding ground-truth answer in Dypehor. We expect
D.nchor to be diverse, ensuring that accuracy on this set fairly reflects the LLMs’ overall performance.
To achieve this, we first encode all queries from Dy, into vector representations using an embedding
model (e.g., text—embedding-ada—-002) and then cluster them into A distinct groups. The
center of each cluster is selected to Dyychor- This approach takes the semantic diversity of questions
into account, making Dgnchor @ reliable indicator of LLMs’ performance. To put it simply, one can
treat this Dancnor as a validation set to validate the performance of a base model in different settings.

Contribution Quantification To quantify the contribution of CoT and TIR for each triplet

(mk, 7, zk) in D to the LLMs’ math reasoning abilities, we implicitly "fine-tune" the LLMs us-
ing CoT and TIR formats separately through one-shot learning (see Section[3.3). In this case, the
performance of the base model under one-shot ICL approximates the accuracy achieved by a model
that is finetuned from the same base model using the same one-shot example. For the k-th query zy,

and its corresponding CoT solutions yfc (1 <5 < My), we compute a CoT score, denoted as S’&T, as
follows:

1 M, A
ko j
SCOT* M E E a17 . Tk Yy 7qi))7
k ‘7.:1 i—1 N——
1-shot prompt

Under review as a conference paper at ICLR 2026

Table 1: The accuracies (%) of our TATA framework, comparing with various baselines. The best
accuracies within each group are shown in bold. “ID AVG”, “O0OD AVG”, and “AVG” denote the
averages of these metrics across in-domain, out-of-domain, and all six benchmarks.

Model Method In-Domain Out-of-Domain AVG
GSM8K MATH IDAVG MAWPS SVAMP College Olympiad OOD AVG

hybrid 49.3 37.7 435 84.5 55.0 27.5 7.9 437 43.6

ensemble 471 34.8 41.0 83.4 53.8 25.6 7.7 42.6 421

GPT-Select 45.6 31.6 38.6 80.4 52.6 24.4 7.1 41.1 40.3

Qwen2.5-0.5B TATA 52.8 36.6 44.7 85.9 59.4 26.9 8.6 45.2 45.0
hybrid 71.3 54.7 63.0 91.8 80.4 36.8 19.7 57.2 59.1

ensemble 71.1 54.3 62.7 91.5 79.6 36.6 18.8 56.6 58.7

GPT-Select 72.5 47.3 59.9 91.8 81.8 35.0 14.8 55.8 57.2

Qwen2.5-1.5B TATA 77.6 53.8 65.7 94.2 80.7 37.0 18.8 57.7 60.4
hybrid 80.9 61.9 714 90.2 79.8 41.6 244 59.0 63.1

ensemble 81.3 60.3 70.8 95.3 86.2 429 23.1 61.9 64.8

GPT-Select 81.4 53.6 67.5 86.2 79.0 38.9 17.3 33.8 45.0

Qwen2.5-3B TATA 84.0 61.3 72.6 94.7 85.3 41.6 24.9 61.6 65.3
hybrid 87.0 67.5 71.3 92.1 84.3 44.2 31.7 63.1 67.8

ensemble 87.1 63.0 75.0 91.5 82.0 43.0 30.2 61.7 66.1

GPT-Select 88.3 59.0 737 91.4 834 42.7 233 60.2 64.7

Qwen2.5-7B TATA 89.5 66.8 78.2 94.2 86.2 43.4 31.1 63.7 68.5
hybrid 91.4 71.7 81.5 93.8 84.5 45.8 353 64.8 70.4

ensemble 90.1 66.9 78.5 92.2 82.8 46.1 32.3 63.3 68.4

GPT-Select 90.7 61.5 76.1 86.2 79.1 441 23.0 58.1 64.1

Qwen2.5-14B TATA 92.1 1.7 81.9 96.5 88.4 46.4 353 66.7 71.7
hybrid 82.0 56.1 69.1 88.0 78.0 30.8 21.3 54.5 59.4

ensemble 84.0 46.9 65.4 83.6 79.3 29.6 15.3 53.2 57.3

GPT-Select 83.2 472 65.2 85.3 77.5 30.6 13.9 51.8 56.3

LLaMA-3-8B TATA 84.0 55.1 69.6 91.8 82.7 34.2 21.5 57.6 61.5
hybrid 82.6 66.3 74.4 92.7 83.6 43.1 26.2 61.4 65.7

ensemble 81.5 64.7 73.1 91.8 83.9 441 27.4 61.8 65.6

GPT-Select 79.4 56.9 68.1 92.7 83.7 41.8 20.6 59.7 62.5

Qwen2.5Math-1.5B TATA 83.2 62.8 73.0 94.0 85.6 439 26.8 62.6 66.0
hybrid 89.2 73.4 81.3 95.4 89.5 471 344 66.6 71.5

ensemble 89.1 67.7 78.4 93.4 84.5 46.7 30.8 63.9 68.8

GPT-Select 89.8 63.0 76.4 89.4 85.1 44.4 24.6 60.7 65.9

Qwen2.5Math-7B TATA 89.8 73.0 814 95.2 88.1 48.3 359 66.9 71.7

where x; and yi serve as the one-shot prompt for the LLM G to generate a response for the question
q; in the anchor set, and I is an indicator function that returns 1 if the model’s generated answer

matches the ground-truth answer a; of question ¢;, and 0 otherwise. S& ; represents the average
accuracy on the anchor set Danchor When using CoT format as the one-shot prompt, averaged over all

CoT solutions yi (1 £ j < Mjy) for query x. Similarly, the TIR score, S}“IR, is defined as:

M, A
o L5 e i g
Str = My ;A;H(a“g(| Tk, 2y, 7%))'

1-shot prompt

The only difference is that the TIR format zi is used as the one-shot example instead of CoT.

Data Selection Currently, two scores, S’éoT and S%IR, are associated with the k-th query g;, in the
candidate set D. The next step is to determine whether to include the CoT or the TIR solutions

for this sp(?ciﬁc query g in D. Specifically, the goal is to decide between {(x, yi)}jﬂi&l C Dspr
or {(xg, zi)}jj‘i’“l C Dspr. We formalize this decision process with a decision function H; =
(SE 1, Skir), where the final decision is represented as a series of decisions H = {#Hy, }2_,, where
N is the number of queries in candidate set D. For instance, a simple decision function H;, could

involve consistently choosing CoT solutions, i.e., {(z, yi)}j\i"l C Dggr for all k. This corresponds
to performing SFT exclusively on CoT data.

Under review as a conference paper at ICLR 2026

Table 2: Ablation of Contribution Quantification.

Model Method In-Domain Out-of-Domain AVG
GSM8K MATH IDAVG MAWPS SVAMP College Olympiad OOD AVG

hybrid 49.3 37.7 43.5 84.5 55.0 27.5 7.9 43.7 43.6

ensemble 47.1 34.8 41.0 83.4 53.8 25.6 7.7 42.6 42.1

GPT-Select 45.6 31.6 38.6 80.4 52.6 24.4 7.1 41.1 40.3

Qwen2.5-0.5B CoT+TIR 51.5 335 42.5 85.8 58.6 25.7 7.9 444 43.8
TATA - random 100 50.6 34.6 42.6 85.7 57.6 26.2 6.2 439 435

TATA - A 200 52.6 36.8 44.7 85.1 59.6 27.4 8.4 45.1 45.0

TATA 52.8 36.6 44.7 85.9 59.4 26.9 8.6 45.2 45.0

5 EXPERIMENTAL RESULTS

5.1 EXPERIMENTAL SETUP

TATA Implementation We select the training sets from GSMS8K (Cobbe et al., [2021)) and Math
(Hendrycks et al., 2021) as Doyjg. For D,ye, we use the DART-Math-Hard dataset (Tong et al., 2024).
We employ GPT—4o0 to rewrite CoT solutions into TIR format using carefully curated prompts and
filter out triplets with anomalous TIR responses (e.g., those that lack a definitive conclusion regarding
the final answer). For embedding, we use text-embedding-ada-002 to encode all queries in
D into 1,536-dimensional vectors. We set the size of D,,cnor to 100 for both the GSM8K and Math.
To save computational cost, we randomly sample one pair of CoT and TIR solutions per candidate
query, leading to a new candidate set, D* = {(z;,y;, 2;)}¥,. For the decision function H, we
determine selection criteria based on two quantiles of the distribution of (Scor — Stir). More details
are provided in Appendix [B.T]

Evaluation Benchmarks We evaluate our approach using six benchmarks for both in-domain
and out-of-domain (OOD) assessment. Specifically, we use the GSM8K and MATH test sets for
in-domain evaluation. For OOD evaluation, we include the SVAMP (Patel et al., 2021), MAWPS
(Koncel-Kedziorski et al., 2016)), CollegeMath (Tang et al.,[2024), and OlympiadBench-Math (He
et al.,[2024) (details in Appendix

Evaluation Metrics In addition to measuring accuracy on various benchmarks, we evaluate the
generation time cost using the average number of total tokens per generation and quantify the cost of
invoking Python interpreters by the average number of code executions (see Appendix[B.3).

Baselines We include the following methods as our baselines: 1) Hybrid (Yue et al.| [2023):
Primarily uses TIR but falls back to CoT upon code execution errors or timeouts (Figure 1| (b)). 2)
Ensemble (Zhao et al.,|2023)): Post-selects between TIR and CoT outputs using an additional LLM
(Figure[T] (a)). In our implementation, we use the same 8-shot prompt asZhao et al.|(2023) with the
base LLM as the selector for consistency. 3) GPT-Select: Uses GPT—-40 during data selection to
choose CoT or TIR per query, testing whether a strong external LLM can effectively select reasoning
paradigms regardless of the base LLM’s aptitude.

Additional details, including the SFT setup and evaluation setup, are provided in Appendix [B.4]

5.2 MAIN RESULTS

Effectiveness of TATA Results presented in Table[I]demonstrate the effectiveness of our proposed
TATA framework. Across various base models, model sizes, and benchmarks, TATA consistently
achieves competitive or superior performance compared to all the other baselines, highlighting its
ability to leverage the complementary advantages of both methods. Additionally, TATA achieves
significantly better performance than the “GPT-Select” baseline. While “GPT-Select” leverages
a much stronger LLM to select between CoT and TIR for different queries, it demonstrates that
this approach may not be suitable for all base LLMs. This highlights the critical importance of
base-LLM-aware selection in optimizing performance.

Inference efficiency The results in Table[3|demonstrate that our TATA not only improves accuracy
but also enhances inference efficiency compared to standalone CoT and TIR methods. Across all

Under review as a conference paper at ICLR 2026

model sizes, TATA achieves higher accuracy while maintaining lower token usage and fewer code
executions than TIR, and it significantly reduces computational overhead compared to TIR without
sacrificing the benefits of tool integration. For instance, with Qwen2.5-7B, TATA achieves a 2.3%
accuracy improvement over CoT while using 9.1 fewer tokens per generation and only 1.4 code
executions, compared to TIR’s 2.63 code executions. This balance between accuracy and efficiency
highlights TATA’s ability to streamline reasoning processes, making it a computationally effective
solution for mathematical reasoning tasks. The “hybrid” and “ensemble” approaches incur even
higher inference costs compared to our proposed TATA. Specifically, "hybrid" requires decoding via
TIR and selectively switching to CoT execution for specific cases; “ensemble” generates both CoT
and TIR outputs during testing and incurs additional costs for selection between the two.

5.3 ABLATION

Table 4: TATA is not sensitive to quantiles. * denotes the quantiles we choose for Qwen2.5Math-0.5B.

Quantiles 50,60 40,60 30,60 30,65 30,70
AVG 44.8 44.8 44.9 45.0 44.8

Quantile selection As mentioned in Sec-
tion the data selection function H is de- Table 3: Results of inference costs. The three met-
termined using two quantiles of the distribution rjcs, “Acc”, “Token”, and “# Code” represent the

(Séor —STrR) (see Appendi{g. These quantiles ayerage accuracy (%), total tokens per generation,
are selected through the grid search. As shown 34nd number of code executions.

in Table[d] the performance of TATA is not very

sensitive to the choice of these quantiles (see Vol Method Acct Token, # Codel,
Appendix ' TATA 653 383.4 1.43
Qwen2.5-3B CoT 629 24 3852.1s O 1as
) TIR 629 24 41134070 281137
Anchor set & Others Table Iﬂ.lncludeiresults TAIA 635 3691 4
for several other ablation studies: 1) “CoT + Qwen25-7B CoT 662 55 3782.01 0_1.0
TIR”: This method includes all CoT and TIR TIR 078 o7 3920 260312
solutions for each query without any data selec- TATA 615 3717 1.32
. . . LLaMA-3-8B CoT 58_35 3861143 0-1.32
tion. 2) Anchor set construction with random TIR 59352 39254005 2664134
sampling ("TATA - random 100"): Replacing TATA 660 4054 1.08

k-means clustering with random selection while = Qwen2.5Math-1.5B CoT 634 25 3885:169 O-10s
keeping the anchor set size constant. 3) Larger TR 48 1z 40diour 3Bz

anchor set size ("TATA - A=200"): Increasing o0 o0 JR A BN 520
N . -)42 «74+13.9 —1.26
the anchor set size to 200. From Table [2| we TIR 71.6-01 417.84200 268142

observe that TATA achieves the highest overall
accuracy. Naively including all CoT and TIR
solutions (i.e., “CoT + TIR”) results in a notice-
able decline in performance, despite the larger size of the Dgpr dataset. Random anchor set selection
("TATA - random 100") critically degrades performance, highlighting the importance of a representa-
tive anchor set over size alone. Increasing the anchor set size shows diminishing returns, indicating
that A = 100 is enough for model evaluation in our SFT data curation.

6 ANALYSIS AND DISCUSSION

6.1 ANALYSIS OF COT SCORES AND TIR SCORES

To further investigate how different LLMs exhibit varying reasoning patterns, we analyze the distri-
bution of S&; and SK. As illustrated in Figure (see also Appendix |C.2), different base LLMs
display distinct distributions of (S& ;. — S%r), indicating varying inclinations towards CoT and TIR
reasoning for queries in the candidate set D* = {(z;,y;,2)}¥ ;. Interestingly, even base LLMs
from the same family can demonstrate different tendencies towards CoT and TIR (e.g., Qwen2.5-0.5B
vs. Qwen2.5-7B). Notably, Qwen2.5-7B exhibits a stronger preference for CoT on GSMS8K and for
TIR on MATH, compared to Qwen2.5-0.5B.

Under review as a conference paper at ICLR 2026

GSMS8K 2000 GSM8K 2000 GSM8K
1400{ -~ MATH MATH - MATH
1750 1750
1200 1500 1500
] 1000 & 1250 21250
2 800 2 2
o ° 2 1000
8 § 1000 8

0.6 -04 -02 00 0.2 0.4 0.6 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00 ~0.6 -04 -0.2 0.0 0.2 0.4

Figure 3: The distribution of (S’&)T - S%R) for GSMS8K (red) and MATH (blue): Qwen2.5-0.5B (left),
Qwen2.5-7B (middle), LLaMA-3-8B (right).

6.2 TRANSFERABILITY OF DATA SELECTION BETWEEN DIFFERENT LLMS

To evaluate whether data selected by one LLLM can benefit another LLM, we conducted additional
experiments using Qwen2.5-0.5B to assess this type of transferability. Specifically, we fine-tuned
Qwen2.5-0.5B on data selected by Qwen2.5-7B and LLaMA-3-8B, with the results in Table [3
As expected, compared to fine-tuning Qwen2.5-0.5B on its own selected data, fine-tuning on data
selected by another LLM leads to a decline in TATA performance. This finding suggests that our
TATA approach is base model-aware, emphasizing the principle of "teaching LLMs according to
their aptitude." Interestingly, using data selected by LLMs within the same family (e.g., Qwen2.5-7B)
yields more consistent performance compared to data selected by LLMs from a different family
(LLaMA-3-8B). Complete results are in Appendix [C.3]

6.3 EXPLORING REINFORCEMENT LEARNING

Recent advancements in RL (OpenAl, 2024; DeepSeek-Al et al., 2025) have demonstrated promising
results in enhancing long CoT reasoning. To explore the role of RL in the spontaneous selection
between CoT and TIR, we employ Direct Preference Optimization (DPO) to LLMs fine-tuned with
our TATA framework (Rafailov et al.l [2023) by constructing preference pairs based on the CoT
and TIR scores of queries in the new candidate set D* = {(z;, y}, z})}}¥,. Detailed experimental
setup and methodologies are provided in Appendix [C.4] As shown in Table[6] DPO achieves results
comparable to those of TATA. The complete results are provided in Table|C.4] This suggests that
the original data has already been effectively learned by the base LLM during the SFT stage, and
applying additional DPO on the same dataset yields minor improvement. This observation aligns
with LIMO (Ye et al.} 2025), which argues that the capabilities of pretrained LLMs are latent, with
both SFT and RL serving as different methods to elicit these inherent abilities.

Table 5: The best results (%) are bold, second-best Table 6: DPO Results. Best results in bold.
underlined.
Model Method Acc Token # Code
Selected by ID AVG OOD AVG AVG LLaMA3.8B TATA 615 3717 1.32
TATA a7 452 45.0 AMA +DPO 61.6 3654 134
LLaMA-3-8B 43.8 44.2 44.1 en2.5Math-7B TATA 71.7 393.8 1.26
Qwen2.57B 445 446 446 i +DPO 717 3952 1.3

7 CONCLUSION

We propose TATA, a novel and effective framework for mathematical reasoning with LLMs that en-
ables models to dynamically align their reasoning strategies, CoT or TIR, with their intrinsic strengths.
By incorporating base-LLM-aware data selection during SFT, TATA tailors reasoning strategies to
each model, empowering them to select an appropriate paradigm for inference autonomously. Exten-
sive experiments demonstrate that TATA achieves superior or comparable performance across both
in-domain and OOD benchmarks while significantly improving inference efficiency compared to
method based on TIR alone. Moreover, our analysis underscores the importance of aptitude-aware
data selection in unlocking the potential of LLMs to make autonomous and effective reasoning
decisions, paving the way for further advancements in reasoning capabilities of LLMs.

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

All implementation details of our TATA framework are provided in Section and Appendix
Dataset curation procedures are described in Appendix while evaluation benchmarks are pre-
sented in Appendix The evaluation metrics are defined in Appendix and complete training
details, including hyperparameters and model configurations, are given in Appendix [B.4] We will
release our code, training data, and models upon acceptance.

REFERENCES

Al@Meta. Llama 3 model card. 2024. URL https://github.com/meta-1lama/llama3/
blob/main/MODEL_CARD.md.

Alon Albalak, Yanai Elazar, Sang Michael Xie, Shayne Longpre, Nathan Lambert, Xinyi Wang,
Niklas Muennighoff, Bairu Hou, Liangming Pan, Haewon Jeong, et al. A survey on data selection
for language models. ArXiv preprint, abs/2402.16827, 2024. URL https://arxiv.org/
abs/2402.16827.

Edward Beeching, Shengyi Costa Huang, Albert Jiang, Jia Li, Benjamin Lipkin, Zihan Qina, Kashif
Rasul, Ziju Shen, Roman Soletskyi, and Lewis Tunstall. Numinamath 7b cot. https://
huggingface.co/AI-MO/NuminaMath—7B-CoT, 2024.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agar-
wal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler,
Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCan-
dlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot
learners. In Hugo Larochelle, Marc’ Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan,
and Hsuan-Tien Lin (eds.), Advances in Neural Information Processing Systems 33: Annual
Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
1457c0dobfcb4967418bfb8acl42f64a-Abstract.htmll

Wenhu Chen, Xueguang Ma, Xinyi Wang, and William W Cohen. Program of thoughts prompt-
ing: Disentangling computation from reasoning for numerical reasoning tasks. ArXiv preprint,
abs/2211.12588, 2022. URL https://arxiv.org/abs/2211.12588.

Tianzhe Chu, Yuexiang Zhai, Jihan Yang, Shengbang Tong, Saining Xie, Dale Schuurmans, Quoc V
Le, Sergey Levine, and Yi Ma. Sft memorizes, 1l generalizes: A comparative study of foundation
model post-training. ArXiv preprint, abs/2501.17161, 2025. URL https://arxiv.org/
abs/2501.17161.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. ArXiv preprint, abs/2110.14168, 2021. URL https://arxiv.org/
abs/2110.14168.

Damai Dai, Yutao Sun, Li Dong, Yaru Hao, Shuming Ma, Zhifang Sui, and Furu Wei. Why can gpt
learn in-context? language models implicitly perform gradient descent as meta-optimizers. ArXiv
preprint, abs/2212.10559, 2022. URL https://arxiv.org/abs/2212.10559,

DeepSeek-Al, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong,
Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao,

10

https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://arxiv.org/abs/2402.16827
https://arxiv.org/abs/2402.16827
https://huggingface.co/AI-MO/NuminaMath-7B-CoT
https://huggingface.co/AI-MO/NuminaMath-7B-CoT
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://arxiv.org/abs/2211.12588
https://arxiv.org/abs/2501.17161
https://arxiv.org/abs/2501.17161
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2212.10559

Under review as a conference paper at ICLR 2026

Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang, Minghui Tang,
Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang,
Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L.
Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu Wang,
Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing Wu, Shengfeng
Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu, Wenfeng
Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan
Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xinyu Yang,
Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xiaosha Chen,
Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia Shan, Y. K. Li,
Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Wang,
Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang, Yixuan Tan,
Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia
He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong
Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying Tang, Yukun Zha,
Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda Xie, Zhengyan Zhang,
Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li,
Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu Zhang, and Zhen
Zhang. Deepseek-rl: Incentivizing reasoning capability in llms via reinforcement learning, 2025.
URL https://arxiv.org/abs/2501.12948.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan, and
Graham Neubig. PAL: program-aided language models. In Andreas Krause, Emma Brunskill,
Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), International
Conference on Machine Learning, ICML 2023, 23-29 July 2023, Honolulu, Hawaii, USA, volume
202 of Proceedings of Machine Learning Research, pp. 10764-10799. PMLR, 2023. URL
https://proceedings.mlr.press/v202/gao23f.htmll

Zhibin Gou, Zhihong Shao, Yeyun Gong, Yujiu Yang, Minlie Huang, Nan Duan, Weizhu Chen,
et al. Tora: A tool-integrated reasoning agent for mathematical problem solving. ArXiv preprint,
abs/2309.17452, 2023. URL https://arxiv.org/abs/2309.17452.

Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Leng Thai, Junhao Shen, Jinyi Hu,
Xu Han, Yujie Huang, Yuxiang Zhang, et al. Olympiadbench: A challenging benchmark for
promoting agi with olympiad-level bilingual multimodal scientific problems. ArXiv preprint,
abs/2402.14008, 2024. URL https://arxiv.org/abs/2402.14008.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. ArXiv
preprint, abs/2103.03874, 2021. URL |https://arxiv.org/abs/2103.03874.

Zhenyu Hou, Xin Lv, Rui Lu, Jiajie Zhang, Yujiang Li, Zijun Yao, Juanzi Li, Jie Tang, and Yuxiao
Dong. Advancing language model reasoning through reinforcement learning and inference scaling.
ArXiv preprint, abs/2501.11651, 2025. URL https://arxiv.org/abs/2501.11651l

Jian Hu, Xibin Wu, Zilin Zhu, Xianyu, Weixun Wang, Dehao Zhang, and Yu Cao. Openrlhf: An
easy-to-use, scalable and high-performance rlhf framework. ArXiv preprint, abs/2405.11143, 2024.
URLhttps://arxiv.org/abs/2405.11143.

Kazuki Irie, Rébert Csordds, and Jirgen Schmidhuber. The dual form of neural networks revisited:
Connecting test time predictions to training patterns via spotlights of attention. In Kamalika
Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato (eds.),
International Conference on Machine Learning, ICML 2022, 17-23 July 2022, Baltimore, Maryland,
USA, volume 162 of Proceedings of Machine Learning Research, pp. 9639-9659. PMLR, 2022.
URLhttps://proceedings.mlr.press/v162/irie22a.html.

Rik Koncel-Kedziorski, Subhro Roy, Aida Amini, Nate Kushman, and Hannaneh Hajishirzi. MAWPS:
A math word problem repository. In Kevin Knight, Ani Nenkova, and Owen Rambow (eds.),
Proceedings of the 2016 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, pp. 1152-1157, San Diego, Cal-
ifornia, 2016. Association for Computational Linguistics. doi: 10.18653/v1/N16-1136. URL
https://aclanthology.org/N16-1136.

11

https://arxiv.org/abs/2501.12948
https://proceedings.mlr.press/v202/gao23f.html
https://arxiv.org/abs/2309.17452
https://arxiv.org/abs/2402.14008
https://arxiv.org/abs/2103.03874
https://arxiv.org/abs/2501.11651
https://arxiv.org/abs/2405.11143
https://proceedings.mlr.press/v162/irie22a.html
https://aclanthology.org/N16-1136

Under review as a conference paper at ICLR 2026

Kuang-Huei Lee, Ian Fischer, Yueh-Hua Wu, Dave Marwood, Shumeet Baluja, Dale Schuurmans,
and Xinyun Chen. Evolving deeper llm thinking. ArXiv preprint, abs/2501.09891, 2025. URL
https://arxiv.org/abs/2501.09891l

Yunshui Li, Binyuan Hui, Xiaobo Xia, Jiaxi Yang, Min Yang, Lei Zhang, Shuzheng Si, Junhao
Liu, Tongliang Liu, Fei Huang, et al. One shot learning as instruction data prospector for large
language models. ArXiv preprint, abs/2312.10302, 2023. URL https://arxiv.org/abs/
2312.10302.

Zhenghao Lin, Zhibin Gou, Yeyun Gong, Xiao Liu, Ruochen Xu, Chen Lin, Yujiu Yang, Jian Jiao,
Nan Duan, Weizhu Chen, et al. Not all tokens are what you need for pretraining. Advances in
Neural Information Processing Systems, 37:29029-29063, 2025.

Jiacheng Liu, Andrew Cohen, Ramakanth Pasunuru, Yejin Choi, Hannaneh Hajishirzi, and Asli
Celikyilmaz. Don’t throw away your value model! generating more preferable text with value-
guided monte-carlo tree search decoding. In First Conference on Language Modeling, 2024.

Zimu Lu, Aojun Zhou, Ke Wang, Houxing Ren, Weikang Shi, Junting Pan, Mingjie Zhan, and
Hongsheng Li. Mathcoder2: Better math reasoning from continued pretraining on model-translated
mathematical code. ArXiv preprint, abs/2410.08196, 2024. URL https://arxiv.org/abs/
2410.08196.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candes, and Tatsunori Hashimoto. sl: Simple test-time
scaling, 2025. URL https://arxiv.org/abs/2501.19393!

OpenAl. Learning to reason with Ilms. https://openai.com/index/
learning-to-reason—-with-11ms/, 2024. Accessed: 2024-09-23.

Xingyuan Pan, Luyang Huang, Liyan Kang, Zhicheng Liu, Yu Lu, and Shanbo Cheng. G-dig:
Towards gradient-based diverse and high-quality instruction data selection for machine translation.
ArXiv preprint, abs/2405.12915, 2024. URL |https://arxiv.org/abs/2405.12915/

Arkil Patel, Satwik Bhattamishra, and Navin Goyal. Are NLP models really able to solve sim-
ple math word problems? In Kristina Toutanova, Anna Rumshisky, Luke Zettlemoyer, Dilek
Hakkani-Tur, Iz Beltagy, Steven Bethard, Ryan Cotterell, Tanmoy Chakraborty, and Yichao
Zhou (eds.), Proceedings of the 2021 Conference of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Language Technologies, pp. 2080-2094, Online,
2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.naacl-main.168. URL
https://aclanthology.org/2021.naacl-main.168.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D. Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. In
Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine
(eds.), Advances in Neural Information Processing Systems 36: Annual Conference on Neural
Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 -
16, 2023,2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
a85b405edob5c6477a4fe8302b5el6ce’/—Abstract-Conference.html.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Mingchuan Zhang, YK Li, Y Wu,
and Daya Guo. Deepseekmath: Pushing the limits of mathematical reasoning in open language
models. ArXiv preprint, abs/2402.03300, 2024. URL https://arxiv.org/abs/2402.
03300.

Charlie Snell, Jachoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally
can be more effective than scaling model parameters. ArXiv preprint, abs/2408.03314, 2024. URL
https://arxiv.org/abs/2408.03314l

Zhengyang Tang, Xingxing Zhang, Benyou Wan, and Furu Wei. Mathscale: Scaling instruction

tuning for mathematical reasoning. ArXiv preprint, abs/2403.02884, 2024. URL https://
arxiv.orqg/abs/2403.02884.

12

https://arxiv.org/abs/2501.09891
https://arxiv.org/abs/2312.10302
https://arxiv.org/abs/2312.10302
https://arxiv.org/abs/2410.08196
https://arxiv.org/abs/2410.08196
https://arxiv.org/abs/2501.19393
https://openai.com/index/learning-to-reason-with-llms/
https://openai.com/index/learning-to-reason-with-llms/
https://arxiv.org/abs/2405.12915
https://aclanthology.org/2021.naacl-main.168
http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2408.03314
https://arxiv.org/abs/2403.02884
https://arxiv.org/abs/2403.02884

Under review as a conference paper at ICLR 2026

Yuxuan Tong, Xiwen Zhang, Rui Wang, Ruidong Wu, and Junxian He. Dart-math: Difficulty-aware
rejection tuning for mathematical problem-solving. ArXiv preprint, abs/2407.13690, 2024. URL
https://arxiv.org/abs/2407.13690.

Ke Wang, Houxing Ren, Aojun Zhou, Zimu Lu, Sichun Luo, Weikang Shi, Renrui Zhang, Linqi Song,
Mingjie Zhan, and Hongsheng Li. Mathcoder: Seamless code integration in 1lms for enhanced
mathematical reasoning. ArXiv preprint, abs/2310.03731, 2023. URL https://arxiv.org/
abs/2310.03731l

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi,
Quoc V. Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language
models. In Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh (eds.),
Advances in Neural Information Processing Systems 35: Annual Conference on Neural Information
Processing Systems 2022, NeurlPS 2022, New Orleans, LA, USA, November 28 - December
9, 2022, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/
9d5609613524ecfd4flbafO0f7b3labcad—Abstract-Conference.html.

Alexander Wettig, Aatmik Gupta, Saumya Malik, and Danqgi Chen. Qurating: Selecting high-
quality data for training language models. ArXiv preprint, abs/2402.09739, 2024. URL https:
//arxiv.orqg/abs/2402.09739.

Yangzhen Wu, Zhiqing Sun, Shanda Li, Sean Welleck, and Yiming Yang. Inference scaling laws:
An empirical analysis of compute-optimal inference for problem-solving with language models.
ArXiv preprint, abs/2408.00724, 2024. URL https://arxiv.org/abs/2408.00724l

Mengzhou Xia, Sadhika Malladi, Suchin Gururangan, Sanjeev Arora, and Danqi Chen. Less:
Selecting influential data for targeted instruction tuning. ArXiv preprint, abs/2402.04333, 2024.
URL https://arxiv.orqg/abs/2402.04333.

Ruijie Xu, Zengzhi Wang, Run-Ze Fan, and Pengfei Liu. Benchmarking benchmark leakage in large
language models. ArXiv preprint, abs/2404.18824, 2024a. URL https://arxiv.org/abs/
2404.18824.

Xin Xu, Shizhe Diao, Can Yang, and Yang Wang. Can we verify step by step for incorrect answer
detection? ArXiv preprint, abs/2402.10528, 2024b. URL https://arxiv.org/abs/2402,
10528.

Xin Xu, Tong Xiao, Zitong Chao, Zhenya Huang, Can Yang, and Yang Wang. Can llms solve
longer math word problems better? ArXiv preprint, abs/2405.14804, 2024c. URL https:
//arxiv.org/abs/2405.14804.

Yuchen Yan, Jin Jiang, Yang Liu, Yixin Cao, Xin Xu, Xunliang Cai, Jian Shao, et al. S3 ¢c-math:
Spontaneous step-level self-correction makes large language models better mathematical reasoners.
ArXiv preprint, abs/2409.01524, 2024. URL https://arxiv.org/abs/2409.01524\

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Dayi-
heng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. ArXiv preprint, abs/2412.15115,
2024a. URL https://arxiv.org/abs/2412.15115!

An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu,
Jianhong Tu, Jingren Zhou, Junyang Lin, et al. Qwen2. 5-math technical report: Toward math-
ematical expert model via self-improvement. ArXiv preprint, abs/2409.12122, 2024b. URL
https://arxiv.org/abs/2409.12122l

Jiaxi Yang, Binyuan Hui, Min Yang, Bailin Wang, Bowen Li, Binhua Li, Fei Huang, and Yongbin
Li. Iterative forward tuning boosts in-context learning in language models. ArXiv preprint,
abs/2305.13016, 2023. URL https://arxiv.org/abs/2305.13016.

Yixin Ye, Zhen Huang, Yang Xiao, Ethan Chern, Shijie Xia, and Pengfei Liu. Limo: Less is more for
reasoning, 2025. URL https://arxiv.org/abs/2502.03387,

Shuo Yin, Weihao You, Zhilong Ji, Guogiang Zhong, and Jinfeng Bai. Mumath-code: Combining tool-
use large language models with multi-perspective data augmentation for mathematical reasoning.
ArXiv preprint, abs/2405.07551, 2024. URL |https://arxiv.org/abs/2405.07551}

13

https://arxiv.org/abs/2407.13690
https://arxiv.org/abs/2310.03731
https://arxiv.org/abs/2310.03731
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
https://arxiv.org/abs/2402.09739
https://arxiv.org/abs/2402.09739
https://arxiv.org/abs/2408.00724
https://arxiv.org/abs/2402.04333
https://arxiv.org/abs/2404.18824
https://arxiv.org/abs/2404.18824
https://arxiv.org/abs/2402.10528
https://arxiv.org/abs/2402.10528
https://arxiv.org/abs/2405.14804
https://arxiv.org/abs/2405.14804
https://arxiv.org/abs/2409.01524
https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/2409.12122
https://arxiv.org/abs/2305.13016
https://arxiv.org/abs/2502.03387
https://arxiv.org/abs/2405.07551

Under review as a conference paper at ICLR 2026

Dian Yu, Yuheng Zhang, Jiahao Xu, Tian Liang, Linfeng Song, Zhaopeng Tu, Haitao Mi, and
Dong Yu. Teaching llms to refine with tools. ArXiv preprint, abs/2412.16871, 2024. URL
https://arxiv.org/abs/2412.16871l

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, Zhengying Liu, Yu Zhang, James T Kwok,
Zhenguo Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical
questions for large language models. ArXiv preprint, abs/2309.12284, 2023. URL https
//arxiv.org/abs/2309.12284.

Zheng Yuan, Hongyi Yuan, Chengpeng Li, Guanting Dong, Chuangi Tan, and Chang Zhou. Scaling
relationship on learning mathematical reasoning with large language models. ArXiv preprint,
abs/2308.01825, 2023. URL https://arxiv.org/abs/2308.01825.

Murong Yue, Wenlin Yao, Haitao Mi, Dian Yu, Ziyu Yao, and Dong Yu. Dots: Learning to reason
dynamically in llms via optimal reasoning trajectories search. ArXiv preprint, abs/2410.03864,
2024. URL https://arxiv.org/abs/2410.03864.

Xiang Yue, Xingwei Qu, Ge Zhang, Yao Fu, Wenhao Huang, Huan Sun, Yu Su, and Wenhu Chen.
Mammoth: Building math generalist models through hybrid instruction tuning. ArXiv preprint,
abs/2309.05653, 2023. URL https://arxiv.org/abs/2309.05653!\

James Zhao, Yuxi Xie, Kenji Kawaguchi, Junxian He, and Michael Xie. Automatic model selection
with large language models for reasoning. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.),
Findings of the Association for Computational Linguistics: EMNLP 2023, pp. 758-783, Singapore,
2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.findings-emnlp.55. URL
https://aclanthology.org/2023.findings—-emnlp.55.

Andy Zhou, Kai Yan, Michal Shlapentokh-Rothman, Haohan Wang, and Yu-Xiong Wang. Language
agent tree search unifies reasoning acting and planning in language models. ArXiv preprint,
abs/2310.04406, 2023a. URL https://arxiv.org/abs/2310.04406.

Chunting Zhou, Pengfei Liu, Puxin Xu, Srinivasan Iyer, Jiao Sun, Yuning Mao, Xuezhe
Ma, Avia Efrat, Ping Yu, Lili Yu, Susan Zhang, Gargi Ghosh, Mike Lewis, Luke Zettle-
moyer, and Omer Levy. LIMA: less is more for alignment. In Alice Oh, Tristan Nau-
mann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.), Advances
in Neural Information Processing Systems 36: Annual Conference on Neural Informa-
tion Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16,
2023, 2023b. URL http://papers.nips.cc/paper_files/paper/2023/hash/
ac662d74829e4407celdl26477f4a03a-Abstract-Conference.html.

A PRELIMINARIES

A.1 REJECTION FINE-TUNING

For training LLMs, the original training datasets are often insufficient. To mitigate this issue, many
studies adopt Rejection Fine-Tuning (RFT) (Yuan et al.| 2023} |Yu et al., 2023} [Tong et al., [2024)
to augment the original dataset, thereby increasing the training data size and improving model
performance. RFT is a fine-tuning approach that uses synthesized data generated via rejection
sampling (Yuan et al., [2023]).

Suppose the original training set is Dypjg = {z;, yi}i\’zl, consisting of N data pairs (z;,y;). The
rejection sampling process works as follows: for each query z;, a teacher model (e.g., GPT-4)
generates)M responses, resulting in {z;, y; ;Vil, where M is a predefined number (e.g., M = 10 in

Yu et al.|(2023)). This yields IV - M response examples in total. A filtering process is then applied: if
a response yf # y;, it is discarded. T he result is the augmented training set Dqyg = {z;, yl}f\]:l;\il

where M; < M represents the number of correct responses for query x;. Notably, M; is often larger
for simpler queries x;, as these are more likely to produce correct responses.

RFT is widely employed for improving mathematical reasoning in LLMs (Yu et al.| 2023} |Tong et al.|
2024; [Xu et al., [2024c)). Typically, the queries remain unchanged (Tong et al.| [2024) or are altered in
a controlled way (Yu et al[2023). This is because the filtering stage of the rejection sampling process
relies on the availability of ground-truth outputs.

14

https://arxiv.org/abs/2412.16871
https://arxiv.org/abs/2309.12284
https://arxiv.org/abs/2309.12284
https://arxiv.org/abs/2308.01825
https://arxiv.org/abs/2410.03864
https://arxiv.org/abs/2309.05653
https://aclanthology.org/2023.findings-emnlp.55
https://arxiv.org/abs/2310.04406
http://papers.nips.cc/paper_files/paper/2023/hash/ac662d74829e4407ce1d126477f4a03a-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/ac662d74829e4407ce1d126477f4a03a-Abstract-Conference.html

Under review as a conference paper at ICLR 2026

A.2 TIR INFERENCE PIPELINE

Tool-Integrated Reasoning (TIR) addresses mathematical problems by intertwining natural language
reasoning with the execution of Python code. The process is initiated with gernerating a natural
language reasoning step, denoted as r;. When it is more advantageous to utilize programmatic
tools, such as complex calculations, a Python code block, a1, is created as guided by 1. This code
block is then run, and its result, o1, is fed back into the model for further generation. This cycle
is repeated until the maximal number of code blocks is reached or until the model concludes its
answer within “\boxed{}.” The entire reasoning path unfolds as 7 = r1a101 ...7, 1010 —17Tn,
where r; is the ¢-th natural language reasoning step, a; denotes the corresponding Python code
block, and o; represents the output from executing the code. The complete inference workflow is
detailed in Algorithm [I](from|Gou et al.| (2023))). From Algorithm [I] TIR usually requires multiple
generations based on previous reasoning paths and outputs returned by Python interpreter, which
is more computationally expensive than CoT. However, TIR can provide more precise calculation
results than CoT.

Algorithm 1 Inference of TIR

Require: problem g, model G, prompt p, external tools &£, stop condition Stop(-), maximum iteration rounds n

i 70 <" > Trajectory Initialization
2: fori + 1tondo

3: ri ~Pg(-lp®q®Ti-1) > Rationale Generation
4: if Stop(r;) then > Stopping Criteria
5: return 7,1 D r;

6: end if

7: a; ~Pg(-lp@®q® Tic1 i) > Program Generation
8: 0; < E(ay) > Tool Execution
9: Ti < Ti-1 @7 Da; Do > Trajectory Update
10: end for

11: return 7,

A.3 IMPLICIT INSTRUCTION TUNING

In-Context Learning (ICL) can be interpreted as a form of implicit instruction tuning, where the
model is effectively "fine-tuned" using the given demonstrations in an implicit manner (Dai et al.|

2022; |Yang et al., [2023; [Irie et al., [2022; |Li et al., [2023). Let Xy, Xiest € R%s represent the few-
shot demonstration inputs and the test input, respectively. We define the attention query vector as

Q = WX/, while the attention key and value vectors are given by K = W g [Xips || Xest] and
V = Wy [Xins|| Xiest|, Where || denotes concatenation. The projection matrices W, Wy, W €

Rouxdin gre used to compute the attention queries, keys, and values. The self-attention mechanism
for a single attention head in any given layer is formulated as follows:

Attention(K,V,Q) =

. T
Wy [Xins|| Xiest|Softmax (WK [Xins | Xees] Q) .

Vdin
Applying an approximation, this can be rewritten as:

W [Xins| [Xiest] (W e [Xins [Xies) " Q-
By expanding this expression, we obtain:

W Xiest (W i Xeest) | @ + Wy Xing (W Xins) | Q.

Only test input. Only demonstration samples.

15

Under review as a conference paper at ICLR 2026

The whole approximation process can be given as follows:

Attention(K, V, Q)

— WV [XinsHXtest]SOﬂmaX (WK [Xlnstlest] Q)

V din
~ WV [Xins”Xles[] (WK[XiusHXteleT Q
= Wy Xies (Wi Xeest) ' @ + Wy Xing(WrXins) " Q

Only test input. Only instruction sample.

= (Wi Xiest (W Xiest) | + Wy Xins (W Xins) 110,

Only test input. Only instruction sample.

where the constant /dj, acts as a scaling factor. The first term, Wy, Xiest (W KXtest)T, corresponds
to a zero-shot learning scenario where no demonstration samples are involved, and only the test
input is considered. Meanwhile, the second term, Wy X;,s(W KXinS)T, can be interpreted as an
implicit adjustment to the model parameters. This adjustment is achieved through the meta-gradient
mechanism (Dai et al., [2022} |Yang et al., 2023} [Irie et al.,|2022), meaning the few-shot examples
influence the model as if performing implicit instruction tuning.

B EXPERIMENTAL SETUP

B.1 TATA IMPLEMENTATION DETAILS

In this appendix, we give the implementation details of our TATA framework.

Data Construction For the original training set, denoted as Doy = { (2, y:)})¥,, we utilize the
training sets of GSMS8K (Cobbe et al., 2021) and MATH (Hendrycks et al., |2021). The GSM8K
training set comprises 7,473 examples, while the MATH training set includes 7,500 examples. For
simplicity, we directly adopt the DART-MATH-Hard dataset (Tong et al., 2024) as our D,,,. DART-
MATH-Hard, which is an augmented dataset derived from the GSM8K and MATH training sets
through rejection sampling, contains approximately 0.6M examples in total. Notably, the number
of responses varies across different training queries. To convert CoT solutions into TIR format,
we use GPT-40-2024-08-06 with a carefully designed prompt, as described in Table[/| While
most CoT solutions are successfully transformed into TIR format, we observe some anomalies. For
instance, some rewritten TIRs fail to conclude with a final answer, while some TIRs produce code
with syntax errors. To address these issues, we filter out ill-formed TIRs using rule-based matching.
After filtering, we obtain a candidate dataset containing approximately 483K examples.

Anchor Construction For the embedding, we use text —embedding-ada-002 to encode all
queries in our candidate set D into 1,536-dimensional vectors. We then cluster these representations
by K-means algorithm. We set the number of clusters to be 100 for both GSM8K and MATH (cluster
separately). That is to say, the size of the anchor set is A = 100.

Contribution Quantification To compute the CoT and TIR scores, we use a new candidate set,

denoted as D* = {(z;,y;, 2;)}¥ ;. This new candidate set is constructed by randomly selecting
one pair of CoT and TIR solutions for each training query from the original candidate set, thereby
reducing computational costs. The CoT score is then simplified to:

A
1 *
SéoT = Z;H(ahg(' Tk Y 7qi))7

1-shot prompt

A similar formulation is used for the TIR score.

Data Selection The distributions of (S& ;. — Sfir) on GSM8K and MATH reveal distinct patterns
(see Section [6.T]and Appendix [C.2)): all base LLMs demonstrate a tendency to rely more on CoT
for GSMS8K queries, while preferring TIR for MATH queries. As a result, it is reasonable to select

16

Under review as a conference paper at ICLR 2026

Rewriting Prompt Template

You are a helpful mathematical assistant. A problem will be presented after “Problem:”, followed by a
reference solution after “Original Solution:”. Your task is to rewrite the original solution. During rewriting,
you tend to leverage Python (sympy is preferred) to facilitate solving the problem with step-by-step reasoning,
especially for calculation and simplification. The specific requirements are as follows:

1. Analyze the problem and write functions to solve it, ensuring that the functions do not require any
arguments.

2. Present the final result in ISTEX using a without any units.

3. Utilize the ‘pi’ symbol and ‘Rational’ from Sympy for 7 and fractions, and simplify all fractions and
square roots without converting them to decimal values.

4. Avoid using sentences like “Reasoning step in natural language:”, “Reasoning in Python codes:”, and
other similar phrases.

5. Combine multiple calculation steps with Python code blocks where appropriate, avoiding unnecessary
separate blocks. Limit the number of Python code blocks to fewer than 5 and use them wisely.

6. The new solution format should be as follows:

“Reasoning step 1 in natural language without specific calculations

“‘python

Python code block 1 for calculation and simplification, please print out the final output using print
“Youtput

The output for code block 1

w

Reasoning step N in natural language without specific calculations
“‘python
Python code block N for calculation and simplification, please print out the final output using print

W

“Youtput
The output for code block N

Conclude the final answer.”
Problem: {problem}

Original Solution: {raw_answer}

New Solution:

Table 7: The prompt for transforming CoT to TIR.

17

Under review as a conference paper at ICLR 2026

different decision functions, H, for GSM8K and MATH. Specifically, for GSM8K, the dataset for
supervised fine-tuning (Dspr) is defined as:

N
iN\ M N\ M
DSFT == U {(x]wyi)}j:kl U U {(xk'a Zi)}j:kh
k=1 keA

where the index set A = {k : S — Skg < quantile, }.
For MATH, Dsgr is defined as:

N
jy\1 M J\\ M
Dser = [{(ar, 2)}2 U [{5l 12,
k=1 keB

where the index set B = {k : Sk ; — Skr > quantile, }.

The thresholds quantile; and quantiles are determined through grid search. Notably, the performance
of TATA is not sensitive to these quantiles (see Section[5.3]and Table[I0). Additionally, we explored
alternative decision functions # in our ablation study, with further details provided in Section[5.3]

and Appendix [C.T}

In-Domain Out-of-Domain

Model Quantiles Metric AVG
GSM8K MATH IDAVG MAWPS SVAMP College Olympiad OOD AVG

Acc 522 37.2 44.7 86.4 55.7 27.5 9.9 449 44.8

50, 60 Token 313.5 503.1 408.3 224.3 304.7 496.1 748.2 4433 431.7

Code 0.2 2.62 1.41 0.63 0.32 2.85 3.03 1.71 1.61

Acc 53.5 36.4 45.0 85.9 579 26.4 8.4 44.7 44.8

40, 60 Token 307.2 504.2 405.7 217.7 290.6 486.8 715.2 427.6 420.3

Code 0.24 2.5 1.37 0.56 0.3 2.7 2.84 1.6 1.52

Qwen2.5-0.5B Acc 53.1 37.0 45.0 86.2 56.3 26.7 10.2 44.8 449

30, 60 Token 312.7 507.5 410.1 218.6 298.1 482.4 720.6 429.9 4233

Code 0.21 2.49 1.35 0.49 0.29 2.73 2.81 1.58 1.50

Acc 52.8 36.6 44.7 85.9 59.4 26.9 8.6 45.2 45.0

30, 65" Token 309.7 508.7 409.2 217.3 292.9 500.9 743.0 438.5 428.8

Code 0.19 2.63 1.41 0.52 0.33 2.82 3.06 1.68 1.59

Acc 522 37.1 44.7 86.4 55.7 27.6 9.9 449 44.8

30, 70 Token 313.5 503.1 408.3 224.3 304.7 496.1 748.2 4433 431.7

Code 0.2 2.62 1.41 0.63 0.32 2.85 3.03 1.71 1.61

Table 8: Performance across different quantiles using Qwen2.5-0.5B. The best accuracies within
each group are shown in bold. The three metrics, “Acc”, “Token”, and “# Code” represent the
average accuracy, total tokens per generation, and number of code executions. “Acc” is reported
in %. “ID AVG”, “O0D AVG”, and “AVG” denote the averages of these metrics across in-domain,
out-of-domain, and all six benchmarks. The two numbers in the “Quantiles” are the quantile of
GSMEK and MATH, respectively. * denote our chosen quantiles.

B.2 EVALUATION BENCHMARKS
We give a brief introduction of evaluated benchmarks mentioned in Section [5.1}

* GSMBSK (Cobbe et al.|[2021) is a grade-school math benchmark, consisting of 7,473 training
examples and 1,319 test examples. It is available at this link, and under MIT License.

* MATH (Hendrycks et al.l 2021) is a competition-level math dataset, including 5,000 test
examples and 7,500 training examples. It is available at this link, and under MIT License,

* MAWPS (Koncel-Kedziorski et al., |2016) is a benchmark of math word problems
(MWPs), incorporating 238 test examples. It is under MIT License and can be found
at |https://github.com/LY H-YF/MWPToolkit.

e SVAMP (Patel et al., 2021) includes 1,000 simple MWPs, which is available at
https://github.com/LYH-YF/MWPToolkit. It is under MIT License.

* CollegeMath (Tang et al.,[2024): This dataset comprises 2818 college-grade mathematical
questions sourced from 9 different textbooks, covering 7 fields including linear algebra and
differential equations. It is designed to evaluate generalization in intricate mathematical
reasoning across various domains. It is available at this link.

18

https://huggingface.co/datasets/openai/gsm8k
https://lbesson.mit-license.org/
https://huggingface.co/datasets/hendrycks/competition_math
https://lbesson.mit-license.org/
https://lbesson.mit-license.org/
https://github.com/LYH-YF/MWPToolkit
https://github.com/LYH-YF/MWPToolkit
https://lbesson.mit-license.org/
https://github.com/microsoft/unilm/tree/master/mathscale

Under review as a conference paper at ICLR 2026

* OlympiadBench-Math (He et al.}|2024): This collection comprises 675 high-level Olympiad
mathematical problems selected from various competitions and represents a text-only En-
glish fraction of OlympiadBench. It is available at this link.

B.3 EVALUATION METRICS

In addition to evaluating accuracy across the six benchmarks mentioned in Section[5.1] we also assess
the computational costs associated with interacting with external Python interpreters. As described
in Algorithm I} TIR involves multiple interactions with Python interpreters. The associated time
costs can be divided into two categories: the time required to execute Python code blocks and the
increased generation costs caused by progressively longer input sequences. The first type of time cost
is reflected in the number of interactions with Python interpreters, i.e., the number of code executions.
The second type can be approximated by the number of generated tokens, which includes both input
and output tokens. Since the number of generations is equivalent to the number of code executions,
we use the average total tokens per generation to evaluate this cost. Naturally, TIR incurs a higher
number of generated tokens due to multiple generations with progressively longer contexts.

B.4 SFT AND EVALUATION SETUP

SFT Setup In our experiments, we utilize various base LLMs, including general-purpose models
(e.g., LLaMA-3-8B (Al@Meta, |2024)) and math-specialized models (e.g., Qwen2.5-Math (Yang
et al.} 2024b)). The details of these base LLMs are outlined below:

* Llama-3 (Al@Meta, [2024): LLaMA 3 Community License. We use Llama-3-8B as the
base LLM in our experiments.

* Qwen2.5 (Yang et al.| |2024a): Qwen?2.5 series are developed with dedication to math and
coding. We used 0.5B, 1.5B, 3B, and, 7B models. They are licensed under Apache 2.0.

* Qwen2.5-Math (Yang et al.,[2024b): Qwen2.5-Math is a series of specialized math language
models built upon the Qwen2.5 LLMs. We use 3B and 7B variants. They are under the same
license as the Qwen2.5 series.

We set the maximum input length for all base models to be 4,096. During SFT, we employ the Adam
optimizer with a learning rate of 2 x 107> and set batch size to 64, conducting training over three
epochs. Unlike Beeching et al.| (2024); |Yang et al. (2024b)), we use the same training prompt for both
CoT and TIR. The prompt is provided in Table |9}

Training and Inference Prompt Template
Below is an instruction that describes a task. Write a response that appropriately completes the request.

#i## Instruction:
{instruction}

Response:

Table 9: Training prompt for base LLMs.

Evaluation Setup For evaluation, we adopt the same prompt used during SFT, as recommended
by [Tong et al| (2024). For TIR inference, please refer to Algorithm [} where the maximum number
of interactions is set to n = 6. CoT inference can be viewed as a special case of Algorithm [I] with
n=1

19

https://github.com/OpenBMB/OlympiadBench
https://www.llama.com/llama3/license/
https://www.apache.org/licenses/LICENSE-2.0

Under review as a conference paper at ICLR 2026

C MORE FINE-GRAINED RESULTS

C.1 ABLATION STUDY

As detailed in Appendix [B] we use different decision function 7 for GSM8K and MATH. Specifically,
for GSMSK, the dataset for supervised fine-tuning (Dspr) is defined as:

N
Dser = [{(r, w12 v U (s 2D 12,

k=1 kEA
where the index set A = {k : S — S¥r < quantile, }.
For MATH, Dspr is defined as:

N

Dsr = (J{(zx, 21720 U (U {G@n w12

k=1 keB

where the index set B = {k : SE — Sfr > quantile, }. We consider this as the default choice of
our TATA (i.e., TATA in Table[I0).

We present the results of the 7 ablation study in Table The variants of ‘H evaluated are described
as follows:

Random The key difference between “Random” and “TATA” lies in the selection of the index sets
A and B. In the “Random” variant, we randomly select the index sets A and B while ensuring that
|A| and | B| match those in the default TATA configuration. It is important to note that this is not
purely a random selection, the number of queries using TIR or CoT is still determined by the default
settings of TATA, making “Random” a strong baseline.

CoT + TIR In this variant, we include all CoT and TIR solutions in Dggr, doubling the number of
training examples compared to using only CoT or TIR individually. Formally, the dataset is defined

as:
N

N
Dgpr = U {(zk, ?/‘;1)}?2”1 U U {(@k, Z%)}jj\iﬁ
k=1 k=1

TATA~ The TATA™ variant differs from the original TATA in that it uses a single quantile for
selection. The dataset is formally defined as:

i\ Mg N\ M
Dser = |J{(r: 1)1 2 U (U {20 12
keA keB

where the index set A = {k : SE — Sk > quantile}, and B = A°. In this setup, each query in the
candidate set D* = {(z;,y}, 2})} Y, includes either CoT or TIR solutions but not both.

From Table[I0] the selection function 7 in our TATA gains the best results.

C.2 ANALYSIS OF COT SCORES AND TIR SCORES

In Section we presented representative results analyzing CoT and TIR scores. Here, we further
provide the distributions of S& p, Sk, and (S&; — Sfir) for various base LLMs in Figures E], @
[Pl and[I0] From these figures, we have the following observations: 1. Different base LLMs
exhibit varying tendencies towards CoT or TIR responding to the same candidate set queries. 2.
Math-specialized LLMs (e.g., Qwen2.5Math) demonstrate higher CoT and TIR scores compared to
their general-purpose counterparts (e.g., Qwen2.5). This may be attributed to the inclusion of similar
CoT and TIR data in their pretraining process. 3. Notably, Qwen2.5Math-7B achieves TIR scores
approaching 0.8 accuracy on the MATH anchor set using only a 1-shot prompt from the candidate set,
as shown in Figure[I0] (middle). This suggests the potential for anchor set contamination (Xu et al,
20244).

20

Under review as a conference paper at ICLR 2026

Model Method Metric In-Domain Out-of-Domain AVG
GSM8K MATH IDAVG MAWPS SVAMP College Olympiad OOD AVG

Acc 84.7 46.5 65.6 91.6 81.6 30.2 13.3 54.2 58.0
CoT Token 246.4 471.0 358.7 173.3 236.8 511.7 676.7 399.6 386.0

Code 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Acc 81.7 56.2 69.0 87.8 77.8 30.5 219 54.5 59.3
TIR Token 299.0 457.5 378.2 240.9 269.1 437.9 650.8 399.7 392.5

Code 2.96 2.51 2.74 242 2.64 2.69 2.76 2.63 2.66

LLaMA-3-8B Acc 83.1 56.4 69.8 91.8 81.3 31.3 21.8 56.6 61.0
Random Token 271.6 472.0 371.8 203.7 251.0 4534 695.5 400.9 391.2

Code 0.21 2.35 1.28 0.36 0.33 2.44 2.83 1.49 1.42

Acc 83.1 48.4 65.8 91.2 78.7 30.8 16.7 544 58.2
CoT+ TIR Token 278.0 497.4 387.7 208.6 281.2 507.3 707.3 421.1 410.0

Code 0.83 0.51 0.67 0.68 0.95 0.51 1.09 0.81 0.76

Acc 83.1 54.7 68.9 91.2 80.6 319 19.6 55.8 60.2
TATA™ Token 2854 472.1 378.8 226.7 2539 474.3 692.2 411.8 400.8

Code 14 2.31 1.86 1.23 1.2 2.34 2.49 1.81 1.83

Acc 84.0 55.1 69.6 91.8 82.7 34.2 21.5 57.6 61.5
TATA Token 248.2 461.1 354.6 191.1 222.5 449.5 657.7 380.2 371.7

Code 0.12 2.33 1.23 0.27 0.21 2.39 2.6 1.37 1.32

Table 10: Ablation Study using LLaMA-3-8B. The best accuracies within each group are shown in
bold. The three metrics, “Acc”, “Token”, and “# Code” represent the average accuracy, total tokens
per generation, and number of code executions. “Acc” is reported in %. “ID AVG”, “O0OD AVG”, and
“AVG” denote the averages of these metrics across in-domain, out-of-domain, and all six benchmarks.

1750

1500

cot
pot

cot
pot

GSM8K
MATH

0.0

0.1

0.2 0.3

0.4 0.5

0.6

70.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

Figure 4: The distribution of S& . (left), Skx (middle), and (SE,; —

2000

1750

1500

1250

Count

cot
pot

Count

2500

2000

1500

1000

cot
pot.

Count

0.2 0.4

Skr) (right) for LLaMA-3-8B.

1600

1400

1200

1000

GSM8K
MATH

0.0

0.1

02 03

04 05

0.

6

0.0

0.1 0.2

0.3

0.4

-04 -0.2 0.0 0.2 0.4 0.6

Figure 5: The distribution of S& ;. (left), Skir (middle), and (S& ; — Skir) (right) for Qwen2.5-0.5B.

cot
pot
2000

1500

Count

1000

cot
pot

Count

1750

1500

1250

GSM8K
MATH

0.0

0.2 0.4

0.6

0.8

0.0 0.1

02 03

04 05

0.6

0.7

—-0.75-0.50-0.25 0.00 0.25 0.50 0.75

Figure 6: The distribution of S& ;. (left), Skir (middle), and (S& ; — Skir) (right) for Qwen2.5-1.5B.

21

Under review as a conference paper at ICLR 2026

cot 3000 cot 1600{ —~ GSM8K
2500 pot pot MATH
2500 1400
2000 1200
2000
= - =
g 1500 5 5 1000
H 3 1500 S 800
o &) (&)
1000 1000 600
100
500 500
200
) 0.2 04 0.6 08 1.0 “00 01 02 03 04 05 06 07 © -0.75-050-0.25 0.00 0.25 0.50 0.75

Figure 7: The distribution of S& 1 (left), Skx (middle), and (SE.;

— Sk) (right) for Qwen2.5-3B.

cot cot 2000 GSM8K
2500 pot 2000 pot MATH
1750
2000 1
1500 300
- - -
1250
§ 1500 5 E
)]]
8 S 1000 G 1000
1000 750
500 500
500
250
) 0.2 0.4 0.6 0.8 1.0 00 01 02 03 04 05 06 07 —0.75-0.50 —0.25 0.00 0.25 0.50 0.75 1.00

Figure 8: The distribution of S& ;- (left), Skr (middle), and (S — Skg) (right) for Qwen2.5-7B.

3000
cot 3500] €Ot GSM8K
2500 — pot. pot MATH
3000 2500
2000 2500 2000
= = -
]]]
5 1500 5 2000
3 2 g 1500
© © 1500 ©
1000 1000
1000
500 5
500 500
) 0.2 04 0.6 0.8 1.0) 02 0.4 0.6 0.8 7-1.0 -0.8 -0.6 -0.4 -0.2 0.0 02 04 0.6

Figure 9: The distribution of S& . (left), Sk (middle), and (S& ;. —

Skir) (right) for Qwen2.5Math-

20001 cot s000] €Ot GSM8K
1750{ ~ POt pot 2000 MATH
1750
1500 2500
1500
» 1250 = 2000 =
] E £ 1250
1000
2 2 2
Qo o 1500 S 1000
750
1000 750
500 500
250 500 250
%0 o2 o024 o6 08 10 %00 02 04 0’6 08 0-100-0775-0550-025 0.00 0.25 0.50 0.75

Figure 10: The distribution of S& ;. (left), S¥r (middle), and (S& ;. — S¥r) (right) for Qwen2.5Math-

7B.

22

Under review as a conference paper at ICLR 2026

C.3 TRANSFERABILITY RESULTS

The complete results of transferability results are given in Table [IT]

In-Domain Out-of-Domain

Model Select By Metric AVG
GSM8K MATH IDAVG MAWPS SVAMP College Olympiad OOD AVG
Acc 52.8 36.6 44.7 85.9 59.4 26.9 8.6 45.2 45.0
Qwen2.5-0.5B Token 309.7 508.7 409.2 217.3 292.9 500.9 743.0 438.5 428.8
Code 0.19 2.63 1.41 0.52 0.33 2.82 3.06 1.68 1.59
Qwen2.5-0.5B Acc 513 36.3 43.8 86.2 55.9 26.5 8.1 442 44.1
T LLaMA-3-8B Token 318.2 507.7 413.0 216.9 298.9 485.4 732.8 4335 426.6
Code 0.28 2.49 1.39 0.52 0.52 245 2.73 1.56 1.5
Acc 522 36.8 445 86.7 57.6 26.7 74 44.6 44.6
Qwen2.5-7B Token 3125 499.4 406.0 228.6 308.2 489.3 744.5 442.6 430.4
Code 0.4 2.53 1.46 0.85 0.68 2.75 2.94 1.81 1.69

Table 11: Detailed results of transferability experiments using Qwen2.5-0.5B. The best accuracies
within each group are shown in bold. The three metrics, “Acc”, “Token”, and “# Code” represent
the average accuracy, total tokens per generation, and number of code executions. “Acc” is reported
in %. “ID AVG”, “O0D AVG”, and “AVG” denote the averages of these metrics across in-domain,
out-of-domain, and all six benchmarks.

C.4 DPO RESULTS

The detailed settings of DPO are as follows:

Preference Data Construction The construction of the preference dataset used in DPO is guided
by CoT and TIR scores, following a similar approach to the construction of Dggr. Specifically, two
separate quantiles are used to select preference pairs for the GSM8K and MATH datasets. The
preference dataset, Dy, is selected from the newly defined candidate set, D* = {(z;,y;, 27)}¥ 1.
and is formally defined as:

Dore = {(zk, Ck, k) J e s
where ¢y, is the chosen (preferred) response for the query x, and ry, is the rejected response.

The index set A is defined as:
A={k:Shp —Sks < quantile/1 or

Stor — Stk > quantile,},

where quantile; and quantile, are two quantiles optimized via grid search.

The rules for determining cj, (chosen response) and 7, (rejected response) are as follows:

o = yr if SEr — Shr > quantile/27
zp if S — SE < quantile,,

and
yr if SEr — SE < quantile,,

Tk = . o
2 if Sk — SkR > quantile,.

This preference selection process ensures that the dataset Dy contains meaningful comparisons
between CoT and TIR responses based on their relative scores.

DPO Hyperparameters We utilize OpenRLHF|(Hu et al.,|2024) to implement DPO. The maximum
token length is set to 4,096, consistent with the SFT stage. The training process adopts a learning rate
of 5x 107, a batch size of 256, and runs for one epoch. We use LLaMA-3-8B and Qwen2.5Math-7B,
fine-tuned with TATA, as the starting point for DPO.

The complete results are presented in Table[T2] As shown, DPO achieves comparable results with
LLMs fine-tuned with TATA.

23

https://github.com/OpenRLHF/OpenRLHF

Under review as a conference paper at ICLR 2026

In-Domain

Out-of-Domain

Model Method Metric AVG
GSM8K MATH IDAVG MAWPS SVAMP College Olympiad OOD AVG
Acc 84.7 46.5 65.6 91.6 81.6 30.2 13.3 54.2 58.0
CoT Token 246.4 471.0 358.7 173.3 236.8 S511.7 676.7 399.6 386.0
Code 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Acc 81.7 56.2 69.0 87.8 77.8 30.5 21.9 54.5 59.3
TIR Token 299.0 4575 378.2 240.9 269.1 437.9 650.8 399.7 392.5
LLaMA-3-8B # Code 2.96 2.51 2.74 242 2.64 2.69 2.76 2.63 2.66
Acc 84.0 55.1 69.6 91.8 82.7 34.2 21.5 57.6 61.5
TATA Token 248.2 461.1 354.6 191.1 222.5 449.5 657.7 380.2 371.7
Code 0.12 2.33 123 0.27 0.21 2.39 2.6 1.37 1.32
Acc 84.0 552 69.6 91.8 82.7 34.0 21.8 57.6 61.6
+DPO Token 250.8 453.6 352.2 185.0 219.1 435.9 647.9 372.0 365.4
Code 0.14 2.38 1.26 0.25 0.17 242 2.7 1.38 1.34
Acc 91.0 61.5 76.2 94.8 87.9 45.7 239 63.1 67.5
CoT Token 254.7 470.6 362.6 177.0 223.5 484.1 669.2 388.5 379.9
Code 0.0 0.0 0.0 0.0 0.0 0.0 0.01 0.0 0.0
Acc 88.9 73.6 81.2 95.4 89.4 47.1 353 66.8 71.6
TIR Token 311.8 490.9 401.4 261.2 272.2 456.8 713.7 426.0 417.8
Qwen2.5Math-7B # Code 3.04 2.56 2.8 2.58 2.51 2.65 2.75 2.62 2.68
Acc 89.8 73.0 814 95.2 88.1 48.3 359 66.9 71.7
TATA Token 264.7 487.2 376.0 193.7 229.7 476.9 710.6 402.7 393.8
Code 0.25 2.14 1.2 0.33 0.24 2.02 2.59 1.3 1.26
Acc 89.8 73.1 81.4 95.2 88.1 484 354 66.8 71.7
+DPO Token 267.0 487.2 377.1 193.8 229.4 474.8 718.9 404.2 395.2
Code 0.3 2.18 1.24 0.39 0.27 2.08 2.67 1.35 1.32

Table 12: Detailed DPO results. The best accuracies within each group are shown in bold. The three
metrics, “Acc”, “Token”, and “# Code” represent the average accuracy, total tokens per generation,
and number of code executions. “Acc” is reported in %. “ID AVG”, “OO0D AVG”, and “AVG” denote
the averages of these metrics across in-domain, out-of-domain, and all six benchmarks.

D THE LLM USAGE DECLARATION

In this work, we employ GPT-40 to transform CoT answers into the TIR format, as described in
Sectiond] As one of our baselines, we also use GPT-4o for SFT data selection, denoted as “GPT-
Select” in Table[I] In addition, we incorporate several base models for our SFT experiments. Finally,
we utilize GPT-5 to assist in refining our writing.

24

	Introduction
	Related Work
	Background
	Rejection Fine-Tuning
	TIR Inference Pipeline
	Implicit Instruction Tuning

	The TATA Framework
	Problem Setting
	TATA Overview
	TATA Details

	Experimental Results
	Experimental Setup
	Main Results
	Ablation

	Analysis and Discussion
	Analysis of CoT scores and TIR scores
	Transferability of Data Selection between Different LLMs
	Exploring Reinforcement Learning

	Conclusion
	Preliminaries
	Rejection Fine-Tuning
	TIR Inference Pipeline
	Implicit Instruction Tuning

	Experimental Setup
	TATA Implementation Details
	Evaluation Benchmarks
	Evaluation Metrics
	SFT and Evaluation Setup

	More Fine-grained Results
	Ablation Study
	Analysis of CoT scores and TIR scores
	Transferability Results
	DPO Results

	The LLM Usage Declaration

