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Abstract

Time series generation is a crucial aspect of data analysis, playing a pivotal role in
learning the temporal patterns and their underlying dynamics across diverse fields.
Conventional time series generation methods often struggle to capture extreme
values adequately, diminishing their value in critical applications such as scenario
planning and risk management for healthcare, finance, climate change adaptation,
and beyond. In this paper, we introduce a conditional diffusion model called FIDE
to address the challenge of preserving the distribution of extreme values in gen-
erative modeling for time series. FIDE employs a novel high-frequency inflation
strategy in the frequency domain, preventing premature fade-out of the extreme
values. It also extends the traditional diffusion-based model, enabling the genera-
tion of samples conditioned on the block maxima, thereby enhancing the model’s
capacity to capture extreme events. Additionally, the FIDE framework incorporates
the Generalized Extreme Value (GEV) distribution within its generative modeling
framework, ensuring fidelity to both block maxima and overall data distribution.
Experimental results on real-world and synthetic data showcase the efficacy of
FIDE over baseline methods, highlighting its potential in advancing Generative AI
for time series analysis, specifically in accurately modeling extreme events.

1 Introduction

Generative models [18, 10, 13] have revolutionized the AI landscape, demonstrating their broad
applicability across diverse domains, including computer vision and natural language processing.
Such models are designed to learn the underlying data distribution and exhibit resilience to overfitting
while promoting automatic feature extraction. Diffusion-based models [12, 19], in particular, have
emerged as a popular generative AI method due to their capability to generate realistic, high-quality
data. This paper examines the application of diffusion-based models for time series generation. In
particular, we investigate the following issue: How well do existing diffusion models preserve the
fidelity of extreme values (i.e., tail distribution) of the original time series?

The modeling of extreme values in time series is essential for informed decision-making across diverse
applications, including weather forecasting, earthquake prediction, and disease outbreak detection.
Effective generative modeling of these extremes is important as it aids in learning the underlying
data distribution, facilitating data augmentation, and improving uncertainty estimation, all of which
are crucial for developing robust risk management strategies and enhancing disaster preparedness
measures. While there has been growing research on applying diffusion models for time series [20, 2],
their ability to preserve the distribution of extreme values remains largely underexplored. In this
study, we examine how effectively diffusion models preserve extreme values in the form of block
maxima [4], defined as the peak value within a specified time window.

To illustrate the difficulty of modeling the distribution of block maxima, Figure 1 shows the result of
applying the Denoising Diffusion Probabilistic Model (DDPM) [12] to a synthetic AR(1) dataset.
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(a) All Values Distribution (b) Block Maxima Distribution

Figure 1: Comparing the distributions of all values and block maxima values for real and generated
samples using DDPM [12] when applied to the synthetic AR(1) dataset.

While DDPM shows proficiency in generating samples that closely align with the overall data
distribution (left diagram), it struggles to preserve the distribution of block maxima values (right
diagram) when the generated time series is partitioned into disjoint time windows.

In this paper, we identify the key shortcomings of existing diffusion models that hamper their
ability to accurately model block maxima values. We then present a novel framework to overcome
this limitation. Our key observation is that unusually large block maxima values, often linked
to abrupt temporal changes, are strongly associated with high-frequency components of the time
series. As the diffusion-based generative model gradually introduces noise with a linearly increasing
variance schedule, it slowly diminishes the long-term trends (low-frequency components) of the time
series while quickly attenuating the high-frequency components. These high-frequency components
are crucial for reproducing extreme block maxima values. This limitation hampers the accurate
representation of the block maxima, necessitating the development of new techniques.

To address this challenge, we propose an end-to-end diffusion model framework termed FIDE.
First, to mitigate the rapid dissipation of high-frequency components in the diffusion model, we
introduce a novel high-frequency inflation strategy within the frequency domain. This strategic
augmentation ensures the sustained emphasis on block maxima, preventing their premature fade-
out. We further employ a conditional diffusion-based generative modeling approach to guide the
time series generation by conditioning on their block maxima. To enhance the preservation of the
block maxima distribution while learning the overall data distribution, we extend the conventional
framework with a regularization term in the loss function based on the negative log-likelihood of
the Generalized Extreme Value (GEV) distribution. Using these strategies, we empirically show
that our approach effectively addresses the challenges of learning the overall data distribution while
simultaneously preserving the block maxima distribution.

2 Preliminaries

Consider a time series dataset D = {xm,0}Mm=1 comprising of M samples, where each sample
xm,0 = (x1

m,0, x
2
m,0, · · · , xT

m,0) is a univariate time series of finite length T . Let fm,0 ∈ RT be the
Fourier coefficients, whose k-th frequency component is obtained by applying the following discrete
Fourier transform on xm,0:

fk
m,0 =

T∑
t=1

xt
m,0 e−i2πtk/T =

T∑
t=1

[
xt
m,0 cos

(
2πtk

T

)
− i · xt

m,0 sin

(
2πtk

T

)]
(1)

The time series can be recovered from its Fourier coefficients using the following inverse discrete
Fourier transform:
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For brevity, we will drop the sample subscript m when it is clear from the context. Let, ωk = 2πk
T be

the k-th frequency in Fourier transform.

Given a sample x0, let y0 be its corresponding block maxima value, where y0 = maxτ∈{1,··· ,T} x
τ
0 .

The distribution of the block maxima values is governed by the Generalized Extreme Value (GEV)
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Figure 2: Removal of high-frequency components from daily temperature time series significantly
alters the magnitude of its block maxima value (at time step 20), as evidenced by its high residual.

distribution, whose cumulative distribution function is given as follows [4]:

G(y) = exp

{
−
[
1 + ξ(

y − µ

σ
)

]−1/ξ}
(3)

where µ (location), σ (scale), and ξ (shape) are the distribution parameters. Given M independent
block maxima values, denoted as {y1,0, y2,0, · · · , yM,0}, with the cumulative distribution function
given by Equation (3), the distribution parameters can be estimated using the maximum likelihood
approach by minimizing the following negative log-likelihood function:

− logLGEV(µ, σ, ξ) = M log σ+

(
1

ξ
+ 1

) M∑
i=1

log

[
1 + ξ

yi,0 − µ

σ

]
+

M∑
i=1

(
1 + ξ

yi,0 − µ

σ

)−1/ξ

(4)

3 On the Rapid Dissipation of Block Maxima in Diffusion Models

While diffusion models have demonstrated remarkable capabilities in learning complex data distribu-
tions, a significant challenge arises in accurately capturing the distribution of block maxima values,
as evidenced by Figure 1. Addressing this shortcoming is crucial for enhancing the performance and
applicability of these models across various domains. In this section, we delve into the root cause of
this phenomenon and present insightful observations that shed light on the underlying issue.

Our first key observation reveals a connection between block maxima with abrupt changes and the
high-frequency components of many real-world time series. Block maxima, often characterized by
their rarity and abrupt temporal changes, are intrinsically linked to the high-frequency components of
the data. This relationship is observed in many real-world datasets, where the block maxima values
do not typically evolve smoothly but rather emerge through large deviations from their adjacent
values.

To illustrate this, consider the real-world temperature time series depicted in Figure 2. In this plot,
we first transform the time series into its Fourier domain, obtaining its frequency components, and
selectively zeroing out its top-5 highest frequency components. We then reconstruct the time series
via its inverse Fourier transform and compute the difference between the original and reconstructed
time series. The recovered signal exhibits a notable distortion around the block maxima value, as
evidenced by the larger residual at time step 20, where the block maxima value occurs. This suggests
that the removal of high-frequency components of a time series has a significant impact on the
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(a) Attenuation of Block Maxima by DDPM (b) Effect of High Frequency Inflation

Figure 3: A comparison of the effects of noise addition by existing DDPM versus high-frequency
inflation on the block maxima of generated samples.

accurate representation of block maxima values. A more detailed analysis supporting this argument
is given in Appendix B.

Our second key observation unveils a concerning behavior of diffusion models: the addition of noise
diminishes high frequency components, i.e., block maxima, at a faster rate compared to other
values in the signal. As diffusion-based generative models gradually introduce noise characterized
by a linearly increasing variance scheduler, they inadvertently attenuate the signals associated with
high-frequency components. These components, as established in our first observation, are crucial
for accurately reproducing block maxima. Concurrently, the models effectively capture the long-term
trends and low-frequency components, which are conducive to learning the overall data distribution.
However, the high frequency components dissipate more rapidly, hindering the model’s ability to
adeptly learn the distribution of the block maxima values.

Figure 3a illustrates this phenomenon. By tracking the evolution of residuals, or the differences
between the original and perturbed time series generated by DDPM, we observe a discernible pattern:
block maxima dissipate at a faster rate compared to other values, as evidenced by the higher residuals
associated with these extreme points. Notably, in the early iterations highlighted by the green circle,
the substantially higher residual suggests that the block maxima signal is rapidly transformed into
noise, outpacing the dissipation rate of other values. This behavior poses a formidable challenge for
diffusion models in effectively capturing the distributions of the block maxima values.

To substantiate our observations, the theorem below offers a rigorous justification for the rapid
dissipation of block maxima during the forward process of the diffusion model (see Appendix C for
proof and details). Let x0 be an input sample and xn be the perturbed sample after n iterations of the
forward process, where xt

n = xt
n−1 + ϵtn and ϵtn ∼ N(0, σ2

ϵtn
) is Gaussian noise. Due to the linearity

of the Fourier transform operator F , we have:

F(xn) = F(xn−1) + F(ϵn) =⇒ fk
n = fk

n−1 + Ek
n (5)

Theorem 1. Under certain mild assumptions (see Appendix C), the ratio of high-frequency and
low-frequency components after perturbation during the forward process of the diffusion model is:

limk→kmax
|fk

n |2

limk→0 |fk
n |2

= δ ≪ 1 (6)

where kmax is the index of the maximum frequency and δ = fkmax
n , which is generally close to 0.

In short, our findings shed light on a fundamental limitation of diffusion models while modeling
block maxima and underscore the need for a more tailored approach to preserve its distribution.

4 Proposed Framework: FIDE

In this section, we present the detailed methodology of our proposed approach, addressing the
challenges associated with capturing extreme values of time series within diffusion-based generative
models. Figure 4 provides an overview of the FIDE framework.
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Figure 4: Proposed FIDE framework for generating time series with extreme events

4.1 High Frequency Components Inflation

In order to counteract the rapid decay of high-frequency components in the frequency domain while
adding noise in the forward process of DDPM, we present a strategy for high-frequency inflation. Let
f0 = FFT (x0) denote the vector of Fourier coefficients resulting from applying the discrete Fourier
transform to the time series x0. These coefficients are arranged in ascending order from lowest to
highest frequency. Consequently, the last κ elements of f0 correspond to the coefficients associated
with the κ highest frequencies. Our goal is to inflate the top-κ frequency components of f0 as follows:

Γi =

{
1, if i ≤ κ

γ, if i > T − κ
and f0 = Γ⊙ f0

where γ > 1 is the inflation weight and ⊙ denotes the element-wise multiplication.

With the modified coefficients f0, the inverse Fourier transform (IFFT) is applied to get the modified
time series, x0 = IFFT

(
f0
)
, containing the inflated high-frequency components. Here, the high-

frequency components are inflated by γ > 1. The following theorem shows how this inflation strategy
helps the high-frequency components (block maxima) diminish less rapidly in the diffusion forward
process compared to before (see Appendix C for proof and details).
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Theorem 2. Let fk
n be the Fourier coefficient after inflating high-frequency components with a

factor of γ such that γ > 1. Let δ = fkmax
n be the Fourier coefficient of the maximum frequency

before inflation, and δ′ = δ · γ = fkmax
n be the Fourier coefficient of the maximum frequency after

inflation. Then, using Lemma 1 and under certain mild assumptions (see Appendix C), the ratio of
high-frequency and low-frequency components after inflation and perturbations is:

limk→kmax
|fk

n |2

limk→0 |fk
n |2

= δ · γ (7)

Thus, by applying high-frequency inflation, the high-frequency components including abrupt block
maxima will be preserved by a factor of γ compared to the previous case. We can see the effects
of this inflation empirically as well. Figure 3b shows how inflating the high-frequency components
helps in preserving the block maxima values for longer iterations of the diffusion model. This enables
the block maxima after high-frequency inflation to dissipate at a similar rate compared to other values
in the earlier iterations. The diffusion model will have more iterations to capture the block maxima
signal.

4.2 Forward Process

We use the inflated time series x0 as input time series to be perturbed during the forward process
instead of x0. By adopting x0 as the reference for the unperturbed sample, we ensure that the
denoising diffusion process takes advantage of the enhanced representation provided by the inflated
high-frequency components. This nuanced adjustment contributes to the efficacy of our proposed
framework in capturing and preserving essential information during the diffusion process.

4.3 Conditional Reverse Diffusion Process

To enable the generation of samples conditioned on block maxima, we extend the conventional
diffusion model to a conditional model. Here, the reverse process is conditioned on block maxima
y0. Grounded in extreme value theory [4], the block maxima values {y0} are governed by the
Generalized Extreme Value (GEV) distribution, distinctly diverging from the distribution of all values
x0 ∼ pθ(x0). This mandates a strategic shift in our learning objective. Rather than marginally
targeting pθ(x0), our objective now extends to mastering the joint distribution pθ(x0, y0), driven by
a nuanced understanding of the unique characteristics inherent in extreme events and their crucial
impact on the overall distribution. We formally extend the diffusion model’s marginal distribution to
a joint distribution in the following theorem (see Appendix C for proof and details).
Theorem 3. Consider an extension of the conventional diffusion model from learning a marginal
distribution pθ(x0) to a joint distribution pθ(x0, y0) conditioned on block maxima y0. In this context,
the variational lower bound can be formulated as follows:

− log pθ(x0, y0) ≤ Eq
[
log

q(x1:N |x0, y0)

pθ(x0:N )

]
− log pθ(y0) (8)

First, we adopt x0 as the reference for the unperturbed sample x0 as discussed in the previous
subsection. After reparameterization and ignoring the weighting term, as suggested by [12], the first
term of the variation lower bound can be expressed as:

LDDPM = Exn,ϵn,n,y0
∥ϵ̃n(xn, n, y0)− ϵn∥22 (9)

Additionally, considering a Generalized Extreme Value (GEV) distribution for block maxima, the
second term is simplified as logLGEV(µ, σ, ξ), as defined in Eq. 4.

The preceding theorem establishes a clear link between the variational lower bound and an inter-
pretable objective loss function:

− log pθ(x0, y0) ≤ LDDPM − λ logLGEV(µ, σ, ξ) := L (10)

Here, LDDPM represents the expected reconstruction error between actual and estimated noise, and
logLGEV(µ, σ, ξ) captures the negative log-likelihood of the block maxima governed by the GEV
distribution.
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4.4 GEV Distribution Enforcement Module

To enforce fidelity on both the block maxima and overall data distribution, we incorporate the
Generalized Extreme Value (GEV) distribution within the DDPM framework following Theorem
3. We first fit a GEV distribution using maximum log-likelihood estimation with all the block
maxima (y0) values in the training data. The fitted GEV distribution is parameterized by µ, σ, and ξ,
denoted as θgev = {µ, σ, ξ}. Using the conditional diffusion process, the estimated noise is given by
ϵ̃n(xn, n, y0). Consequently, the estimated denoised sample can be obtained as: x̃0 = xn− ϵ̃n. Then,
utilizing the fitted GEV distribution, the log-likelihood of the estimated denoised block maxima,
ỹ0 = maxτ∈{1,··· ,T} x̃

τ
0 , is calculated. This negative log-likelihood, − logLGEV(µ, σ, ξ, ỹ0), is

finally incorporated into the loss function of training.

4.5 Optimization

Algorithm 1 summarizes the pseudocode for training and Algorithm 2 summarizes the pseudocode
for the sampling step of FIDE. The overall loss function LFIDE is constructed by combining two key
components: the DDPM loss LDDPM and the negative log-likelihood of the Generalized Extreme
Value (GEV) distribution −LGEV. The formulation is expressed as follows:

LFIDE = Exn,ϵn,n,y0
∥ϵ̃n(xn, n, y0)− ϵn∥22 − λ · logLGEV(µ, σ, ξ, ỹ0) (11)

where λ is a hyperparameter controlling the influence of the GEV distribution on the loss.

In this context, LDDPM evaluates the mean squared difference between the estimated noise term
ϵ̃n and the true noise term ϵn within the conditional diffusion process. Its purpose is to guide
the generative model towards effectively capturing the underlying data distribution. The second
element, − logLGEV(µ, σ, ξ, ỹ0), encapsulates the negative log-likelihood of the GEV distribution.
This component assesses how well the fitted GEV distribution aligns with the estimated block
maxima values ỹ0 derived from the denoised samples. Here, the log-likelihood has a negative sign
to indicate a minimization objective, aligning with the overall goal of minimizing the loss function.

Algorithm 1 Training
repeat
x0 ∼ q(x0) where x0 = (x1

0, x
2
0, · · · , xT

0 )
f0 = FFT(x0)
f0 = γ ⊙ f0
x0 = IFFT(f0)
n ∼ Uniform({1, · · · , N})
ϵn ∼ N (0, I)
y0 = max(x0)
xn =

√
αn x0 +

√
1− αn ϵn

ỹ0 = max(xn − ϵ̃n(xn, n, y0))

Take the gradient step on
∇θ||ϵ̃n(xn, n, y0))− ϵn||22

−λ · logLGEV(µ, σ, ξ, ỹ0)
until converged

Algorithm 2 Sampling

Input: Block maxima ŷ0 ∼ GEV(y0) and
Trained Model ϵ̃
Output: Generate time series, x̂0.

x̂N ∼ N (0, σ2)
for n = N, · · · , 1 do

z ∼ N (0, I)
x̂n−1 = 1√

αn
(x̂n− 1−αn√

1−αn
ϵ̃n(x̂n, n, ŷ0))

+σnz
end for
return x̂0

5 Experimental Evaluation

We have performed extensive experiments to evaluate the performance of our FIDE framework. All
the code and datasets used in this paper are available at https://github.com/galib19/FIDE.
The datasets used are described in Appendix D.

We compared our proposed framework against various generative models: (1) GAN-based: We utilize
two GAN-based approaches as our baselines. The first approach is Conditional GAN (cGAN [15]),
which introduces conditional information to the training process, enabling targeted generation based
on specified conditions. The second baseline is TimeGAN [21], which is a generative model designed
specifically for time-series generation. (2) VAE-based: We employ beta-VAE [11], conditional beta-
VAE [16], and TimeVAE [6] as baseline methods for comparison. Both beta-VAE and conditional
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Table 1 Comparison of generated samples’ block maxima distribution metrics and predictive score
using the various methods. Bold and Underlined entries denote the best and second-best result

Metrics Methods AR1 Stock Energy Temperature ECG

JS
Divergence

beta-VAE 0.0211±0.0187 0.1105±0.0188 0.0722±0.0095 0.0140±0.0125 0.1210±0.0214
c-beta-VAE 0.0190±0.0125 0.1011±0.0152 0.0710±0.0088 0.0109±0.0098 0.1120±0.0352
TimeVAE 0.0015±0.0003 0.1054±0.0071 0.0795±0.0085 0.0096±0.0002 0.0985±0.0078
TimeGAN 0.0840±0.0109 0.1411±0.1585 0.0950±0.0089 0.0112±0.0012 0.1620±0.0221
cGAN 0.0690±0.0091 0.1211±0.0205 0.0890±0.0093 0.0091±0.0008 0.1440±0.0211
RealNVP 0.0754±0.0121 0.1185±0.0108 0.0905±0.0084 0.0089±0.0007 0.1411±0.0116
Fourier-Flows 0.0612±0.0045 0.1108±0.0195 0.0820±0.0044 0.0078±0.0010 0.1398±0.0202
DDPM 0.0010±0.0007 0.0912±0.0062 0.0752±0.0082 0.0082±0.0009 0.1041±0.0122
Diffusion-TS 0.0011±0.0008 0.0854±0.0045 0.0712±0.0071 0.0077±0.0008 0.1005±0.0108
FIDE (Ours) 0.0004±0.0001 0.0700±0.0061 0.0680±0.0092 0.0007±0.0001 0.0930±0.0082

KL
Divergence

beta-VAE 0.0110±0.0024 0.1947±0.0184 0.1210±0.0146 0.0410±0.0128 0.2020±0.0048
c-beta-VAE 0.0091±0.0012 0.1744±0.0105 0.1160±0.0174 0.0360±0.0114 0.1880±0.0079
TimeVAE 0.0105±0.0007 0.2514±0.0152 0.1625±0.0095 0.0490±0.0006 0.2254±0.0068
TimeGAN 0.1920±0.0156 0.2425±0.0251 0.1590±0.0198 0.0550±0.0145 0.2540±0.0254
cGAN 0.1240±0.0122 0.2101±0.0115 0.1510±0.0211 0.0490±0.0125 0.2210±0.0184
RealNVP 0.1298±0.0215 0.2295±0.0154 0.1605±0.0310 0.0512±0.0108 0.2305±0.0145
Fourier-Flows 0.1235±0.0104 0.2045±0.0255 0.1458±0.0345 0.0505±0.0136 0.2254±0.0141
DDPM 0.0062±0.0008 0.1915±0.0125 0.1120±0.0108 0.0326±0.0090 0.1905±0.0094
Diffusion-TS 0.0054±0.0007 0.1889±0.0108 0.1089±0.0115 0.0311±0.0078 0.1894±0.0081
FIDE (Ours) 0.0030±0.0009 0.1504±0.0128 0.0950±0.0098 0.0029±0.0008 0.1810±0.0084

CRPS

beta-VAE 0.1247±0.0189 0.3149±0.0348 0.2410±0.0298 0.1554±0.0214 0.3059±0.0454
c-beta-VAE 0.1154±0.0151 0.2698±0.0214 0.2574±0.0241 0.1420±0.0311 0.3150±0.0414
TimeVAE 0.1511±0.0081 0.2547±0.0155 0.2853±0.1082 0.1847±0.0071 0.3252±0.0204
TimeGAN 0.1858±0.0214 0.2825±0.0418 0.2685±0.0284 0.2110±0.0287 0.3240±0.0401
cGAN 0.1224±0.0157 0.2689±0.0301 0.2385±0.0187 0.1990±0.0214 0.2985±0.0311
RealNVP 0.1325±0.0144 0.2545±0.0258 0.2541±0.0214 0.2014±0.0354 0.2824±0.0425
Fourier-Flows 0.1305±0.0254 0.2589±0.0214 0.2415±0.0211 0.1975±0.0251 0.2884±0.0215
DDPM 0.0422±0.0084 0.2422±0.0187 0.2199±0.0874 0.1516±0.0211 0.2488±0.0388
Diffusion-TS 0.0398±0.0092 0.2358±0.0211 0.2125±0.0454 0.1525±0.0315 0.2415±0.0451
FIDE (Ours) 0.0310±0.0098 0.2115±0.0152 0.2085±0.0985 0.0517±0.0082 0.2345±0.0204

Predictive
Score

beta-VAE 0.6350±0.0201 0.9528±0.0314 0.7410±0.0187 0.6814±0.0108 0.9420±0.0142
c-beta-VAE 0.6240±0.0145 0.9226±0.0165 0.7317±0.0163 0.6718±0.0025 0.9310±0.0214
TimeVAE 0.6150±0.0104 0.9140±0.0218 0.7325±0.0195 0.6723±0.0036 0.9150±0.0112
TimeGAN 0.6050±0.0104 0.8950±0.0198 0.7280±0.0187 0.6718±0.0047 0.8960±0.0084
cGAN 0.6120±0.0014 0.9354±0.0210 0.7310±0.0147 0.6847±0.0041 0.9220±0.0191
RealNVP 0.6884±0.0011 0.9988±0.0354 0.7898±0.0254 0.7852±0.0017 0.9730±0.0215
Fourier-Flows 0.6925±0.0031 0.9844±0.0241 0.7955±0.0088 0.7871±0.0021 0.9655±0.0221
DDPM 0.6148±0.0081 0.8997±0.0111 0.7350±0.0102 0.6708±0.0098 0.9121±0.0121
Diffusion-TS 0.6105±0.0045 0.8912±0.0105 0.7355±0.0084 0.6708±0.0108 0.9089±0.0095
FIDE (Ours) 0.6081±0.0098 0.8871±0.0104 0.7240±0.0087 0.6694±0.0082 0.9040±0.0112

beta-VAE incorporate a specific disentanglement objective to encourage the model to learn more
interpretable and factorized representations while TimeVAE [6] promotes interpretability. (3) Flow-
based: We use normalizing flows-based approaches such as RealNVP [7] and Fourier-Flows [1]
as our baseline methods. (4) Diffusion-based: We consider two baselines for comparison, namely,
the denoising diffusion probabilistic model (DDPM) [12] and time series diffusion model called
Diffusion-TS [22].

5.1 Experimental Settings

We partitioned each dataset into training, validation, and testing, according to a 8:1:1 ratio. We
repeated the experiments 5 times. Prior to applying the various algorithms, the time series data
is standardized to have zero mean and unit variance. The encoder component of our framework
employs a 3-layer transformer architecture, accompanied by fully connected layers. The training
was facilitated using the Adam optimizer. For all the methods, we perform extensive hyperparameter
tuning on the length of the embedding vector, the number of hidden layers, the number of nodes, the
learning rate, and the batch size. The optimal hyperparameters were determined using the Ray Tune
framework, integrating an Asynchronous Successive Halving Algorithm (ASHA) scheduler to enable
early stopping. All experiments were conducted on NVIDIA T4 GPU.

To assess the effectiveness of the proposed framework, we utilize four metrics: Jensen-Shannon (JS)
Divergence, KL Divergence, CRPS (Continuous Rank Probability Score), and Predictive Score. The
first three metrics examine how well the generated samples fit the original data distribution. The
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Table 2 Comparison of the generated sample distribution for all values using KL divergence and
CRPS metrics. Bold and Underlined entries denote the best and second-best result. For the JS
Divergence and Predictive Score metrics, the results are given in Appendix E.

Metrics Methods AR1 Stock Energy Temperature ECG

KL
Divergence

beta-VAE 0.0020±0.0003 0.0188±0.0016 0.0181±0.0015 0.0025±0.0003 0.0031±0.0004
c-beta-VAE 0.0017±0.0004 0.0178±0.0019 0.0177±0.0017 0.0022±0.0004 0.0028±0.0004
TimeVAE 0.0016±0.0003 0.0169±0.0015 0.0159±0.0021 0.0018±0.0002 0.0026±0.0003
TimeGAN 0.0025±0.0003 0.0182±0.0025 0.0161±0.0016 0.0021±0.0005 0.0034±0.0005
cGAN 0.0018±0.0003 0.0178±0.0018 0.0169±0.0016 0.0015±0.0003 0.0029±0.0003
RealNVP 0.0023±0.0004 0.0185±0.0019 0.0185±0.0017 0.0019±0.0004 0.0036±0.0002
Fourier-Flows 0.0019±0.0003 0.0173±0.0021 0.0165±0.0015 0.0017±0.0003 0.0028±0.0003
DDPM 0.0010±0.0001 0.0117±0.0011 0.0114±0.0010 0.0009±0.0001 0.0019±0.0003
Diffusion-TS 0.0011±0.0001 0.0114±0.0012 0.0116±0.0009 0.0010±0.0002 0.0019±0.0003
FIDE (Ours) 0.0012±0.0001 0.0121±0.0015 0.0109±0.0009 0.0011±0.0002 0.0021±0.0004

CRPS

beta-VAE 0.0201±0.0041 0.4955±0.0125 0.4985±0.0102 0.0914±0.0010 0.1425±0.0049
c-beta-VAE 0.1984±0.0022 0.4205±0.0148 0.4514±0.0210 0.0899±0.0009 0.1388±0.0068
TimeVAE 0.1848±0.0038 0.4841±0.085 0.4815±0.0189 0.0889±0.0009 0.1422±0.0077
TimeGAN 0.2412±0.0019 0.3941±0.0115 0.4415±0.0171 0.0911±0.0008 0.1262±0.0062
cGAN 0.1974±0.0012 0.4451±0.0201 0.3914±0.0211 0.0903±0.0007 0.1298±0.0056
RealNVP 0.2511±0.0019 0.4254±0.0194 0.5125±0.0184 0.0919±0.0007 0.1405±0.0035
Fourier-Flows 0.2214±0.0024 0.3814±0.0164 0.4514±0.0123 0.0912±0.0008 0.1281±0.0077
DDPM 0.1595±0.0018 0.2955±0.0144 0.3215±0.0154 0.0875±0.0006 0.1028±0.0062
Diffusion-TS 0.1565±0.0016 0.2985±0.0174 0.3285±0.0149 0.0863±0.0007 0.1018±0.0045
FIDE (Ours) 0.1541±0.0021 0.3001±0.0191 0.3251±0.0177 0.0893±0.0007 0.1061±0.0054

(a) Using FIDE (b) Using DDPM [12] (c) Using FIDE (d) Using DDPM [12]

Figure 5: Comparison of block maxima distribution and all values distribution for real and generated
samples using the proposed FIDE model and DDPM [12] when applied to the synthetic AR(1) dataset.

fourth metric, Predictive Score [21], evaluates the generative model’s ability to replicate the temporal
characteristics of the original data. This is done by training an LSTM-based sequence model for
time series forecasting using the synthetic samples produced by each generative model. The model’s
performance is measured by its mean absolute error (MAE) on the original test data, providing insight
into how well the generative model preserves the temporal patterns of the data. In short, the evaluation
focuses on forecasting block maxima on the test dataset using the model trained on generated data.

5.2 Experimental Results

Table 1 compares the performance of FIDE against the various baselines in terms of their ability
to capture the block maxima distribution for 5 diverse datasets (AR1, Stock, Energy, Temperature,
and ECG). In terms of the distribution metrics (JS divergence, KL divergence, and CRPS), FIDE
consistently achieves the best results, providing evidence of FIDE’s superior performance in preserv-
ing the block maxima distribution. For the Predictive Score metric, FIDE achieves the best results
in 3 out of 5 datasets and ranks second in the remaining 2 datasets. To further illustrate FIDE’s
capabilities, Figures 5-(a) and (b) compare the distribution of block maxima values generated by
DDPM [12] and FIDE for the AR(1) dataset. Note that, while DDPM struggles to capture the block
maxima distribution accurately, FIDE generates samples that more faithfully preserve the fidelity
of the distribution. This improvement is particularly noticeable in the upper tail behavior, which is
critical for applications that require precise modeling of extreme block maxima values. This superior
performance is not surprising as it directly results from our method’s emphasis on block maxima
distribution, achieved through the introduction of frequency inflation, conditional generation based on
block maxima, and incorporation of the GEV distribution into the generative modeling framework.

As FIDE prioritizes the accurate modeling of block maxima, we have also evaluated its efficacy in
capturing the distribution of all (block maxima and non-block maxima) values in time series. The
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Table 3 Ablation Study of generated samples’ block maxima distribution metrics and predictive score
using the proposed FIDE model and without individual component of the model

Metrics Methods AR1 Stock Energy Temperature ECG

Jensen–
Shannon

Divergence

FIDE - frequency inflation 0.0006+0.0001 0.0898+0.0054 0.0822+0.0084 0.0009+0.0001 0.0984+0.0058
FIDE - conditional 0.0007+0.0001 0.1054+0.0089 0.0941+0.0098 0.0010+0.0002 0.1102+0.0098
FIDE - GEV Loss 0.0005+0.0001 0.0813+0.0035 0.0715+0.0041 0.0008+0.0001 0.0922+0.0056
FIDE 0.0004+0.0001 0.0700+0.0061 0.0680+0.0092 0.0007+0.0001 0.0930+0.0082

KL
Divergence

FIDE - frequency inflation 0.0042+0.0008 0.1559+0.0161 0.1054+0.0049 0.0036+0.0006 0.1854+0.0064
FIDE - conditional 0.0051+0.0010 0.1689+0.0210 0.1089+0.0095 0.0041+0.0010 0.1901+0.0063
FIDE - GEV Loss 0.0039+0.0007 0.1551+0.0188 0.1021+0.0088 0.0032+0.0009 0.1823+0.0092
FIDE 0.0030+0.0009 0.1504+0.0128 0.0950+0.0098 0.0029+0.0008 0.1810+0.0084

CRPS

FIDE - frequency inflation 0.0391+0.0078 0.2172+0.0158 0.2152+0.0791 0.0649+0.0081 0.2372+0.0181
FIDE - conditional 0.0335+0.0089 0.2165+0.0132 0.2082+0.0768 0.0651+0.0047 0.2382+0.0184
FIDE - GEV Loss 0.0415+0.0087 0.2232+0.0203 0.2189+0.0874 0.0815+0.0104 0.2456+0.0399
FIDE 0.0310+0.0098 0.2115+0.0152 0.2085+0.0985 0.0517+0.0082 0.2345+0.0204

Predictive
Score

FIDE - frequency inflation 0.6070+0.0112 0.8942+0.0158 0.7264+0.0069 0.6711+0.0091 0.9081+0.0154
FIDE - conditional 0.6095+0.0079 0.8901+0.0141 0.7261+0.0081 0.6715+0.0078 0.9059+0.0122
FIDE - GEV Loss 0.6089+0.0089 0.8891+0.0122 0.7269+0.0074 0.6712+0.0009 0.9062+0.0058
FIDE 0.6081+0.0098 0.8871+0.0104 0.7240+0.0087 0.6694+0.0082 0.9040+0.0112

results are shown in Tables 2 and 4 (in Appendix E). Note that FIDE achieves comparable performance
to state-of-the-art methods like DDPM [12] and Diffusion-TS [22]. This is further illustrated by the
distribution plots of all values for DDPM and FIDE given in Figure 5-(c) and (d). The results in Table
2 also show that FIDE consistently outperforms VAE-based, GAN-based, and Flow-based alternatives.
For Predictive Score, while TimeGAN and TimeVAE show marginally better results, FIDE maintains
competitive performance against other baseline methods. These results suggest minimal performance
degradation when applying FIDE to time series data. Despite its emphasis on block maxima values,
this does not significantly compromise its ability to model the overall distribution. This positions
FIDE as a robust and versatile generative model for capturing extreme values in time series.

5.3 Ablation Study

In our ablation study depicted in Table 3, we systematically assessed the individual contributions
of each component within our proposed framework. By selectively deactivating elements such as
the GEV loss, conditional block maxima input, and high-frequency inflation module, we observed
consistent performance degradation across all scenarios. Notably, the absence of the conditional
block maxima input significantly impacted the Jenson-Shannon Divergence and KL Divergence
metrics, while the lack of the GEV loss had the most pronounced effect on the CRPS metric.
Surprisingly, the predictive score remained relatively resilient to the deactivation of any single
component, suggesting a degree of redundancy or compensatory mechanisms among the remaining
components. Overall, our ablation study highlights the indispensable role of each component in
achieving optimal performance in our model. In summary, our findings underscore the holistic
importance of the individual components, with their synergistic interplay contributing to the overall
effectiveness of FIDE.

6 Conclusions

This framework examines the challenges of applying diffusion models to capture extreme values in
time series. Through a comprehensive exploration of the constraints within current diffusion-based
models, the proposed FIDE framework addresses these limitations by introducing a novel strategy
to maintain high-frequency components of the time series. FIDE extends conventional diffusion
models to enable conditional generation of block maxima by integrating a loss function based on
the generalized extreme value (GEV) distribution. The superiority of the framework over various
baseline methods is validated through rigorous experiments on both synthetic and real-world data.
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A Related Works

Time series generation has been a subject of extensive research, leveraging a variety of statistical [23]
and machine-learning [16, 21] techniques to capture temporal dependencies and complexities within
data. Generative methods, including Generative Adversarial Networks (GANs) [10], Variational
Autoencoders (VAEs) [13], normalizing flows [18], and diffusion-based approaches [12, 19], have
demonstrated efficacy in time series generation and garnered interest due to their ability to learn under-
lying data distributions for data generation. Normalizing flows are constrained by their computational
complexity, limited expressiveness, and suboptimal sample quality, thereby restricting their capacity
for effective modeling. Numerous works have delved into enhancing GANs, introducing variations
like RcGAN [15] and TimeGAN [21], which have demonstrated improvements in generating realistic
time series data. TimeGAN [21] specifically adopts a GAN architecture to generate time-series data,
employing an encoder and decoder to transform a time-series sample into latent vectors. However,
GAN-based generative models are susceptible to issues like mode collapse and unstable behavior
during training. While VAEs have not been extensively applied to synthetic time series generation,
their effectiveness in addressing related challenges, such as time series imputation [8], suggests their
potential utility in this domain. Diffusion-based models are also gaining traction for their ability
to generate high-quality data such as images and videos, bypassing the challenges associated with
discriminator networks in GANs and avoiding the artifact-prone lower-dimensional latent spaces of
VAEs. There are a couple of diffusion-based works [20, 2] that have been employed for time series,
but they are specifically designed for discriminative tasks.

While generative AI for time series offers numerous advantages, it has not been extensively explored,
especially in terms of modeling extreme values. The difficulty of modeling extremes using generative
models such as normalizing flows [14] has been recognized in previous research. Studies by Wiese
et al. (2019) and Jaini et al. (2020) highlight the inability of normalizing flows to accurately
capture heavy-tailed marginal distributions. Specifically, these studies show that any attempt to map
heavy-tailed distributions to light-tailed distributions (e.g., Gaussian) cannot maintain Lipschitz-
boundedness. However, this challenge remains largely unexplored within the realm of diffusion
models.

B Relationship between Abrupt Block Maxima and High Frequency
Components

This section presents the relationship between abrupt block maxima and high frequency components
of a time series.

Figure 6: Percentile distribution of first order derivatives for the block maxima values in different
time series datasets. Observe that the derivatives tend to exhibit elevated percentile values.

Definition 1 (Abrupt Block Maxima). Let, x0 ∈ RT be a time series of length T and y0 ≡ xτ
0 =

maxt∈1,...,T xt
0 be its block maxima, where τ is the time step of the block maxima. Then, xτ

0 is
considered an abrupt block maxima if dx

dt |t=τ > ρ, where ρ is a threshold.
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Figure 7: The summation of high frequency terms for abrupt (A) changes is consistently higher than
for smooth (S) changes. (A) denotes abrupt changes, (S) denotes smooth changes.

We argue that the block maxima values in real-world time series often exhibit an abrupt change
behavior compared to the non-block maxima values. To substantiate this, we conduct an empirical
analysis across five distinct datasets, wherein we assess the percentile distribution of the first-order
derivatives associated with the block maxima values, as depicted in Figure 6. Specifically, given a
time series, we first partition it into a set of disjoint time windows and compute the block maxima
value within each window along with the first-order difference, ∆xt = xt

0 − xt−1
0 , for each time step

t. We then compute the percentile of ∆xτ associated with the block maxima xτ
0 of the window and

plot its distribution using a boxplot as shown in Figure 6. Our findings affirm the conjecture that the
block maxima tends to exhibit an elevated value for its time derivative (with a median larger than
70% of all first-order differences), thereby indicating a notable association between block maxima
occurrences and the abrupt changes in a time series.

More importantly, the abrupt changes are strongly influenced by the high frequency components
of the time series. This can be observed by differentiating the inverse Fourier transform shown in
Equation 2 and decomposing the derivative into low and high frequency components:

dxt
m,0

dt
=

1

T

T∑
k=1

fk
m,0

d

dt

[
ei2πtk/T

]
=

1

T

T∑
k=1

i2πk

T
fk
m,0e

i2πtk/T =
1

T

T∑
k=1

iωkf
k
m,0e

iωkt,

where ωk = 2πk
T . Let κ be the threshold index for dividing the frequencies into low (k ≤ κ) and high

(k > κ) frequency components. Then, we have:

dxt
m,0

dt
=

1

T

κ∑
l=1

iωlf
l
m,0e

iωlt +
1

T

T∑
h=κ+1

iωhf
h
m,0e

iωht (12)

To illustrate the impact of high frequency components on the abrupt changes, we compute the value
of the second term in Equation (7) for time steps with abrupt1 (A) and non-abrupt (S) changes for
various datasets. The results shown in Fig. 7 suggest that the sum of high frequency terms for abrupt
changes is consistently higher than the sum of high frequency terms for non-abrupt changes. In
essence, the abrupt block maxima values often manifest as high-frequency components in the Fourier
domain as they introduce sharp transitions in the time domain signal. This explains the high residual
shown in Fig. 2 for the block maxima when the high frequency components are zeroed out.

C Theoretical Analysis

Let ϵtn be the Gaussian noise added in the diffusion step n during the forward process of the diffusion
model and xt

0 be the original value in the time series. The perturbed signal at diffusion step n can be
expressed as: xt

n = xt
n−1 + ϵtn. Let σ2

n and σ2
ϵn be the variances of perturbed time series and noise

respectively at diffusion step n while σ2
n−1 is the variance of the time series at diffusion step n− 1.

1A time step has abrupt change if its dx
dt

is in the top 90%.
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Note that σ2
ϵn increases linearly according to a linear noise scheduler as the diffusion step increases.

Let Sf
n(ωk) and SE

n (ωk) denote the power spectral density (PSD) for the k-th frequency component
of the perturbed time series and noise respectively for the diffusion step n, where ωk = 2πk

T .

Our theoretical analysis is based on the following assumptions:
Assumption 1. An abrupt block maxima is linked to the high-frequency components of the time
series.
Assumption 2. The noise ϵtn is a stationary random process with a constant power spectral density
(PSD) for diffusion step n, i.e., ∀k : SE

n (ωk) ≈ σ2
ϵn .

Assumption 3. The power spectral density (PSD) of the perturbed time series for diffusion step n
can be modeled using the following generalized Gaussian function:

Sf
n(ωk) = σ2

n · exp(−αn|ωk|βn) (13)
where αn is a scaling factor, and βn is a shape parameter.
Remark 1. The rationale and supporting evidence for Assumption 1 is presented in Section 3.
Remark 2. Assumption 2 is intuitive as the Gaussian noise used in the diffusion model has approxi-
mately constant PSD over the frequency range of interest.
Remark 3. Assumption 3 is reasonable as for most real-world time series, the energy spectrum
is localized at the lower frequency (ωk ≈ 0), also known as the fundamental frequency, which
quickly decays with increasing frequency (ωk → ωmax) [5]. Therefore, we use the generalized
Gaussian function to model this decaying behavior. Note that, the exponential decay behavior
will eventually transition into a uniform distribution according to the diffusion model’s forward
process. Consequently, the shape βn of the distribution function (Eqn 13) is not constant; instead,
it evolves with the diffusion step n to remain consistent with the diffusion model’s forward process.
Initially, when n is small, 1 ≤ βn ≤ 2, representing an exponential decay. However, as n → N ,
where N is the final diffusion step, βn → ∞, and the PSD transitions to a uniform distribution.
This transformation occurs because, according to the forward process of the diffusion model, as n
increases, Gaussian noise with linearly increasing variance is added to the perturbed time series,
making the signal increasingly noise-like until it becomes white noise at step N .
Lemma 1. The difference between the variance of the perturbed time series xt

n and the variance of
the noise ϵtn is equal to a constant ζ such that:

σ2
n − σ2

ϵn = ζ (14)

where ζ = σ2
0 +

∑n−1
i=1 σ2

ϵi

Proof. First, we have the following:
xt
n = xt

n−1 + ϵtn (15)
Applying the variance operator to both sides of Equation 15 and utilizing the property that the variance
of a sum of independent random variables is the sum of their individual variances, we obtain:

σ2
n = σ2

n−1 + σ2
ϵn (16)

where σ2
ϵn denotes the variance of the noise at step n. Recursively applying Equation 16, we can

express the variance of the perturbed time series at step n as:

σ2
n = σ2

0 +

n∑
i=1

σ2
ϵi (17)

Subtracting σ2
ϵn from both sides of Equation 17, we get:

σ2
n − σ2

ϵn = σ2
0 +

n−1∑
i=1

σ2
ϵi (18)

Therefore, the difference between the variance of the perturbed time series and the variance of the
noise at step n is equal to the constant ζ =

∑n−1
i=1 σ2

ϵi , which completes the proof.

The lemma establishes a crucial bound on the difference between the variances of the perturbed time
series and the noise, which is leveraged in the subsequent theorem to analyze the behavior of the
Fourier transform of the perturbed time series at low and high frequencies.

We now provide the proof for Theorem 1 in the main paper.
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Proof for Theorem 1 Using Lemma 1 and Assumptions 1, 2, and 3, we can prove the theorem
as follows: For low frequencies, i.e., ωk → 0, taking the limit as ωk → 0 on the expression for the
signal power spectral density Sf

n(ω), we have:

lim
k→0

Sf
n(ωk) = lim

k→0
σ2
n · exp(−αn|ωk|βn) = σ2

n

since exp(−αn|0|βn) = exp(0) = 1. Therefore, as k → 0, Sf
n(ωk) = |fk

n |2 approaches the variance
σ2
n. So, we can write:

lim
k→0

Sf
n(ωk) = lim

k→0
|fk

n |2 = σ2
n = ζ + σ2

ϵn = σ2
0 +

n−1∑
i=1

σ2
ϵi + σ2

ϵn = σ2
0 +

n∑
i=1

σ2
ϵi

Similarly, for high frequencies, i.e., k → kmax, taking the limit as ω → ωmax on the expression for
the signal power spectral density Sf

n(ωk) (Eq. (13)), we have:

lim
k→kmax

Sf
n(ωk) = lim

k→kmax
σ2
n · exp(−αn|ω|βn) → σ2

n · δ

where δ = fkmax
n ≪ 1.

As k → kmax, Sf
n(ωk) approaches σ2

n · δ. We can also write:

lim
k→kmax

|fk
n |2 = δ ·

(
ζ + σ2

ϵn

)
= δ ·

(
σ2
0 +

n∑
i=1

σ2
ϵi

)
Taking the ratio of high-frequency and low-frequency components after perturbations yields:

limk→kmax |fk
n |2

limk→0 |fk
n |2

= δ

Thereby, high-frequency components or abrupt block maxima dissipate rapidly compared to low-
frequency components or smooth changes. Our findings shed light on a fundamental limitation of
diffusion models while modeling block maxima and underscore the need for tailored approaches to
preserve the block maxima consistent with the other values and to address the accurate representation
of block maxima distributions.

We now provide the proof for Theorem 2 in the main paper.

Proof for Theorem 2

Proof. Using Lemma 1 and Assumptions 1, 2, and 3, we can prove the theorem as follows: For low
frequencies, i.e., ωk → 0, taking the limit as ωk → 0 on the expression for the signal power spectral
density Sf

n(ω), we have:

lim
k→0

Sf
n(ωk) = lim

k→0
σ2
n · exp(−αn|ωk|βn) = σ2

n

since exp(−αn|0|βn) = exp(0) = 1. Therefore, as k → 0, Sf
n(ωk) = |fk

n |2 approaches the variance
σ2
n. So, we can write:

lim
k→0

Sf
n(ωk) = lim

k→0
|fk

n |2 = σ2
n = ζ + σ2

ϵn = σ2
0 +

n−1∑
i=1

σ2
ϵi + σ2

ϵn = σ2
0 +

n∑
i=1

σ2
ϵi

Similarly, for high frequencies, i.e., k → kmax, taking the limit as ω → ωmax on the expression for
the signal power spectral density Sf

n(ωk) (Eq. (13)), we have:

lim
k→kmax

Sf
n(ωk) = lim

k→kmax
σ2
n · exp(−αn|ω|βn) → σ2

n · δ′
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where δ′ = δ · γ

As k → kmax, Sf
n(ωk) approaches σ2

n · δ · γ. We can also write:

lim
k→kmax

|fk
n |2 = δ · γ ·

(
ζ + σ2

ϵn

)
= δ · γ ·

(
σ2
0 +

n∑
i=1

σ2
ϵi

)
Taking the ratio of high-frequency and low-frequency components after perturbations yields:

limk→kmax |fk
n |2

limk→0 |fk
n |2

= δ · γ

Proof for Theorem 3

Proof. The proof begins by expressing the negative log-likelihood of the joint distribution
− log pθ(x0, y0) in terms of conditional probabilities:

− log pθ(x0, y0) = − log pθ(x0|y0) · pθ(y0) = − log pθ(x0|y0)− log pθ(y0)

≤ DKL(q(x1:N |x0, y0)∥pθ(x1:N |x0, y0))

− log pθ(x0|y0)− log pθ(y0)

= Eq

[
log

q(x1:N |x0, y0)

pθ(x0:N )
+ log pθ(x0, y0)

]
− log pθ(y0)

= Eq

[
log

q(x1:N |x0, y0)

pθ(x0:N )

]
− log pθ(y0)

(19)

D Data

We performed our experiments using the following datasets. (1) Synthetic Data (AR2): AR(2)
dataset comprises synthetic time series data generated using an autoregressive model of order 2.
(2) Financial Data (Stocks): It features continuous-valued and aperiodic sequences, such as daily
historical Google stocks data spanning from 2004 to 2019. We consider the adjusted closing price data
for this work. (3) Energy Data (Appliance Energy): The UCI Appliances energy prediction dataset
[3] encompasses multivariate, continuous-valued measurements. We consider appliance energy
data for analysis. (4) Weather/Climate Data (Daily Minimum Temperature): This dataset [17]
comprises daily minimum temperatures in Melbourne, Australia, from 1981 to 1990. (5) Medical
Data (ECG5000: Congestive Heart Failure): The original dataset [9] for "ECG5000" originates
from a 20-hour long electrocardiogram (ECG) obtained from the Physionet database. Specifically,
it is derived from the BIDMC Congestive Heart Failure Database (chfdb), with the record labeled
as "chf07." The processed data encompasses 5,000 heartbeats randomly selected from the original
dataset.

E Experimental Results

Table 4 reports the evaluation of all values in time series using JS Divergence and predictive score,
comparing the performance of our proposed method against baseline methods.
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Table 4 Comparison of generated samples’ (all values) JS Divergence and Predictive Score using the
baselines methods. Bold and Underlined entries denote the best and second-best result.

Metrics Methods AR1 Stock Energy Temperature ECG

JS
Divergence

beta-VAE 0.0013±0.0004 0.0091±0.0011 0.0091±0.0008 0.0012±0.0002 0.0015±0.0003
c-beta-VAE 0.0011±0.0004 0.0088±0.0012 0.0089±0.0007 0.0010±0.0001 0.0014±0.0002
TimeVAE 0.0010±0.0003 0.0086±0.0008 0.0081±0.0011 0.0009±0.0001 0.0014±0.0001
TimeGAN 0.0015±0.0004 0.0092±0.0015 0.0082±0.0009 0.0011±0.0003 0.0018±0.0003
cGAN 0.0012±0.0002 0.0091±0.0010 0.0085±0.0008 0.0008±0.0001 0.0015±0.0002
RealNVP 0.0014±0.0003 0.0093±0.0011 0.0092±0.0008 0.0010±0.0002 0.0017±0.0001
Fourier-Flows 0.0013±0.0004 0.0087±0.0012 0.0083±0.0007 0.0009±0.0001 0.0015±0.0002
DDPM 0.0007±0.0001 0.0061±0.0007 0.0058±0.0005 0.0005±0.0001 0.0010±0.0001
Diffusion-TS 0.0008±0.0001 0.0057±0.0008 0.0061±0.0005 0.0008±0.0001 0.0009±0.0001
FIDE (Ours) 0.0008±0.0001 0.0068±0.0010 0.0056±0.0006 0.0006±0.0002 0.0011±0.0001

Predictive
Score

beta-VAE 0.8121±0.0410 1.0915±0.0215 0.8515±0.0104 0.8021±0.0109 0.9911±0.0133
c-beta-VAE 0.7951±0.0555 1.0841±0.0121 0.8442±0.0110 0.7958±0.0089 0.9891±0.0151
TimeVAE 0.7714±0.0345 1.0662±0.0211 0.8394±0.0089 0.7821±0.0105 0.9822±0.0101
TimeGAN 0.7514±0.0451 1.0621±0.0198 0.8379±0.0151 0.7856±0.0098 0.9862±0.0125
cGAN 0.7694±0.0354 1.0721±0.0188 0.8433±0.0181 0.7905±0.0122 0.9874±0.0151
RealNVP 0.8011±0.0384 1.0914±0.0178 0.8533±0.0154 0.8033±0.0135 0.9981±0.0201
Fourier-Flows 0.7985±0.0324 1.1008±0.0205 0.8501±0.0151 0.7988±0.0140 0.9954±0.0188
DDPM 0.7711±0.0441 1.0751±0.0184 0.8488±0.0133 0.7912±0.0125 0.9925±0.0167
Diffusion-TS 0.7684±0.0405 1.0722±0.0189 0.8501±0.0125 0.7889±0.0129 0.9910±0.0155
FIDE (Ours) 0.7651±0.0488 1.0692±0.0192 0.8458±0.0151 0.7895±0.0135 0.9852±0.0158
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to have some path to reproducing or verifying the results.
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Answer: [Yes]
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• The answer NA means that paper does not include experiments requiring code.
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public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
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• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
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• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.
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deviation from the Code of Ethics.

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
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safety filters.
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