
Quark: Controllable Text Generation
with Reinforced [Un]learning

Ximing Lu♠♡ Sean Welleck♠♡∗ Jack Hessel♡∗ Liwei Jiang♠♡

Lianhui Qin♠ Peter West♠ Prithviraj Ammanabrolu♡ Yejin Choi♠♡
♡Allen Institute for Artificial Intelligence

♠Paul G. Allen School of Computer Science, University of Washington
{ximinglu, jackh, raja}@allenai.org

{wellecks, lwjiang, lianhuiq, pawest, yejin}@cs.washington.edu

https://github.com/GXimingLu/Quark

Abstract

Large-scale language models often learn behaviors that are misaligned with user
expectations. Generated text may contain offensive or toxic language, contain
significant repetition, or be of a different sentiment than desired by the user. We
consider the task of unlearning these misalignments by fine-tuning the language
model on signals of what not to do. We introduce Quantized Reward Konditioning
(Quark), an algorithm for optimizing a reward function that quantifies an (un)wanted
property, while not straying too far from the original model. Quark alternates
between (i) collecting samples with the current language model, (ii) sorting them
into quantiles based on reward, with each quantile identified by a reward token
prepended to the language model’s input, and (iii) using a standard language
modeling loss on samples from each quantile conditioned on its reward token,
while remaining nearby the original language model via a KL-divergence penalty.
By conditioning on a high-reward token at generation time, the model generates
text that exhibits less of the unwanted property. For unlearning toxicity, negative
sentiment, and repetition, our experiments show that Quark outperforms both strong
baselines and state-of-the-art reinforcement learning methods like PPO [66], while
relying only on standard language modeling primitives.

1 Introduction

Large neural language models trained on an enormous amount of web text have excelled at numerous
tasks [58, 87, 10]. They provide an effective interface for few-shot learning [8], show impressive
natural-language understanding capabilities [47], and, in some contexts, their generations can be
indistinguishable from human-authored text [11].

However, these same language models often exhibit undesirable behaviors, as they are usually trained
to simply maximize the likelihood of their raw pre-training data. For example, models sometimes
generate toxic text that reflects pernicious social biases [18, 69], or generate repetitive and dull
language [79, 38, 25]. Undesirable behaviors are diverse and hard to avoid, control, or even specify a
priori; we thus argue that it is critical to investigate ways to unlearn undesirable behaviors post hoc,
while maintaining capacity for generating coherent and fluent language.

Supervised approaches for unlearning pose challenges. One option is to curate and train on a corpus
that encodes desirable behavior, with the hope that additional maximum likelihood training will shape

∗equal contribution

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

https://github.com/GXimingLu/Quark

you are @&! [R1] Hello,

[R2]

how are you?

Exploration Quantization

Learning

Sample text from the current language model
Sort the data pool by reward to form
reward token quantiles

Train on (reward token+prompt, generation)
pairs plus a KL-divergence penalty

High

Low

Hello,
you are @&!

Reward

Score the text with a reward function and add to a data pool

Language
Model

.94

you are @&!
Data Pool

Data Pool

how are you?

you are @&!

you’re mean

[R3]

[R2]

[R1]

you’re mean

[R3] how are you?

.01

Reward Token Quantile

Hello,

Hello,

Hello,

Hello,

Hello,

Hello,

Hello,

[R3]

Reward
Token Prompt

how are you?

Generations

Figure 1: Quantized Reward Konditioning (Quark) is an online, off-policy reinforcement learning (RL)
algorithm used to (un)learn properties from language models via three iterative stages: exploration,
quantization, and learning.

the model’s distribution more favorably. However, collecting data that accurately captures desired
characteristics (e.g., non-toxic, non-degenerate texts) is difficult (if not impossible) [40]. Moreover,
models may overfit to the newly collected corpora [40, 32] and lose desirable characteristics, e.g., few
shot learning capacity over general domains. Another option is to build a detector of the undesirable
behavior, e.g., by labelling model outputs. However, it is not clear how to adjust the model so that it
only generates text that the detector prefers: since detectors score full text samples from the model
rather than providing token-by-token feedback, they are not directly differentiable (e.g., toxicity
scores) [54].

Dynamically (un)learning from sentence-level, scalar feedback is perhaps better suited to the rein-
forcement learning (RL) paradigm. In NLP, RL has been used to optimize scalar metrics in the form
of rewards [54, 60, 83]. Recently [51] used Proximal Policy Optimization (PPO) [66] to optimize a
175B parameter model via a learned reward model, while constraining the model to remain close to
the original with a KL-divergence penalty. However, as (deep) RL is highly sensitive to variance in
the reward function [1, 41], these methods rely on additional models – often doubling the number of
learnable parameters – and specialized heuristics to stabilize training.

We introduce Quantized Reward Konditioning (Quark), an algorithm for reward-based (un)learning with
language models. Quark builds upon insights from three prior works: the Decision Transformer [9],
LM tuning with PPO [91], and control tokens [28]. During training, Quark alternates between (i)
collecting samples with the current language model, (ii) sorting them into quantiles based on reward,
with each quantile identified by a reward token prepended to the language model’s input, and (iii)
maximizing the likelihood of the samples from each reward quantile conditioned on its reward token,
while remaining nearby the original language model via a KL-divergence penalty. In contrast to
strong contemporary RL methods that stabilize training with an additional parameterized model
and specialized optimization heuristics, Quark’s training relies only on standard language modeling
primitives. Experiments across three tasks demonstrate that Quark maintains pre-training abilities
while unlearning undesired behaviors more stably than alternative methods.

2 Quark: Quantized Reward Konditioning

Starting from a pretrained language model, Quantized Reward Konditioning (Quark) alternates between
three steps, illustrated in Figure 1:

• Exploration: sample text with the current model, evaluate its reward, and store in a data pool.
• Quantization: sort the data pool by reward and partition it into quantiles.
• Learning: update the language model using samples from each quantile.

By sampling from high reward quantiles during exploration and using a KL-divergence penalty
during learning, Quark iteratively improves the language model by steering its distribution towards

2

Algorithm 1 Quantized Reward Konditioning (Quark)
input Initial policy p0, prompts X , reward r(·), KL weight β, number of quantiles K
1: Make a copy pθ of initial policy p0; and Initialize data pool D ▷ Initialization
2: for iteration = 1, 2, . . . , N do
3: for xi ∈ X do
4: Sample generation yi ∼ pθ(·|xi, rK) ▷ Exploration
5: Add

(
xi, yi, r(xi, yi)

)
into data pool D

6: D̃i ←quantize(D;K) ▷ Quantization
7: for step = 1, 2, . . . ,M do
8: Draw a batch of data

{
(xi, yi, rki)

}
from quantized data pool D̃i ▷ Learning

9: Compute the objectives in Eq. 2
10: Update the policy parameters θ via gradient descent

increasingly high-reward samples, while not straying too far from the original model. Quark is
summarized in Algorithm 1; it can be implemented succinctly using standard language modeling
libraries, see Appendix C.

Initialization. Quark begins with a pretrained language model p0(y|x), a set of training prompts X
and a reward function r(x, y)→ R. Here x = (x1, . . . , x|x|) and y = (y1, . . . , y|y|) are sequences
of tokens from a vocabulary V . Quark initializes a datapool of (input, output, reward) examples by
sampling2 from p0 conditioned on the training prompts, and scoring them with the reward function,

D0 = {(x, y, r(x, y)) | y ∼ p0(·|x), for all x ∈ X)}. (1)

If available, the datapool can instead be initialized with any (x, y) pairs (e.g., from a supervised
dataset). Quark then proceeds iteratively, updating a copy of the pretrained language model, pθ, by
alternating between exploration, quantization and learning. We detail quantization first.

Quantization. Quark quantizes each example in the datapool based on how high its reward is
compared to others in the data pool. Quark sorts the current iteration’s datapool in order of increasing
reward, and partitions the sorted pool into equally sized quantiles, D1, . . . ,DK . Each sample (x, y)
is now part of a quantile that is identified by a reward token rk with k ∈ {1, . . . ,K}. For example, in
Figure 1 the non-toxic generation how are you? is placed in the highest-reward quantile, identified by
r3, while the toxic generation, you are *@&!, is placed in the lowest-reward quantile r1.

Learning. For learning, Quark trains on the quantized datapool D using a standard conditional
language modeling objective – maximizing likelihood – along with a KL-penalty to keep the model
from deviating too far from the original:

max
θ

Ek∼U(1,K)E(x,y)∼Dk

[
log pθ(y|x, rk)− β

T∑
t=1

KL (p0(·|y<t, x)∥pθ(·|y<t, x, rk))

]
, (2)

where each KL term is
∑

yt∈V p0(yt) log
p0(yt)
pθ(yt)

(omitting the conditioned terms). Naturally, Quark
supports other penalties developed for language modeling, e.g., entropy [43] or unlikelihood [79].

Exploration. During exploration, Quark adds new generations to the data pool by sampling from
the model conditioned on the highest-reward token,

D ← D ∪ {(x, y, r(x, y)) | y ∼ pθ(·|x, rK), for all x ∈ X}, (3)

where y ∼ pθ(·|x, rK) means sampling from the current model pθ, with the reward token rK
prepended to the training input x. Intuitively, this step explores the most promising regions of the
distribution by querying the current model for what it expects to be high reward completions.

Evaluation. At test time, we condition the language model on the highest reward token, y ∼
pθ(·|x, rK), and evaluate the resulting samples.

2Any decoding method can be used, e.g., greedy search, beam search, nucleus sampling [25].

3

Model

In-domain (REALTOXICITYPROMPTS) Out-of-domain (WRITINGPROMPTS)

Toxicity (↓) Fluency (↓) Diversity (↑) Toxicity (↓) Fluency (↓) Diversity (↑)
avg. max. prob. output ppl dist-2 dist-3 avg. max. prob. output ppl dist-2 dist-3

GPT2 [57] 0.527 0.520 11.31 0.85 0.85 0.572 0.610 12.99 0.82 0.85

PPLM [12] 0.520 0.518 32.58 0.86 0.86 0.544 0.590 36.20 0.87 0.86
GeDi [32] 0.363 0.217 60.03 0.84 0.83 0.261 0.050 91.16 0.86 0.82
DEXPERTS [40] 0.314 0.128 32.41 0.84 0.84 0.343 0.156 42.53 0.86 0.85
DAPT [21] 0.428 0.360 31.21 0.84 0.84 0.442 0.363 38.11 0.86 0.85
PPO [71] 0.218 0.044 14.27 0.80 0.84 0.234 0.048 15.49 0.81 0.84

Quark 0.196 0.035 12.47 0.80 0.84 0.193 0.018 14.49 0.82 0.85

Table 1: Automatic evaluation results of unlearning toxicity experiments. Baseline results (except
PPO) are from [40].

Ours vs. GPT2 Ours vs. PPLM Ours vs. GeDi Ours vs. DEXPERT Ours vs. DAPT Ours vs. PPO

In-domain (REALTOXICITYPROMPTS)
Less Toxic 0.21 0.07 0.20 0.08 0.15 0.06 0.14 0.10 0.12 0.12 0.12 0.12
More Topical 0.22 0.14 0.23 0.14 0.21 0.13 0.18 0.18 0.20 0.16 0.22 0.14
More Fluent 0.26 0.19 0.27 0.17 0.29 0.15 0.26 0.21 0.23 0.18 0.28 0.18

Out-of-domain (WRITINGPROMPTS)
Less Toxic 0.18 0.06 0.25 0.08 0.16 0.11 0.16 0.07 0.16 0.10 0.15 0.08
More Topical 0.20 0.20 0.31 0.23 0.34 0.19 0.36 0.19 0.29 0.27 0.32 0.17
More Fluent 0.26 0.21 0.31 0.23 0.41 0.14 0.38 0.21 0.33 0.23 0.32 0.20

Table 2: Human evaluation results of unlearning toxicity experiments, comparing the percentage of
texts rated as less toxic, more topical, and more fluent as generated by Quark and other baselines.

Relationship to prior work. Quantized Reward Konditioning builds upon three disjoint concepts from
previous work in reinforcement learning and conditional language modeling.

(1) Inspired by PPO [91], we encourage our model to stay close to a reference model using a KL-
divergence penalty. The penalty in [91] approximates KL-divergence at the sequence level through a
reward penalty, r̃(x) = r(x)− β log pθ(x)

p0(x)
, while we use a differentiable loss that exactly computes

the per-step KL divergence (Eq.2); this may contribute to ease of optimization. Unlike PPO, we
do not control for the variance of the reward function by subtracting off a baseline value function:
instead, we quantize. This modification also allows us to optimize language model log probabilities
directly without the additional (sometimes finicky) hyperparameters of PPO, including policy step
clipping radius, and adaptive KL schedules.

(2) Inspired by the Decision Transformer [9] which frames reinforcement learning as next-token
prediction, we train a model capable of conditioning on the desired reward of the trajectory, prior to
observing it, i.e., our reward token appears in the input of pθ(y|x, rk). Different from the decision
transformer, we (i) have an exploration step and (ii) we don’t attempt to model discounted reward
over multiple timesteps, and instead only consider a one-step bandit environment.

(3) Inspired by control codes [28] we use learned embeddings as a light-weight representation of
reward. Each reward quantile is encoded via an embedding lookup, following past work on style and
content controls [28], or prompt/prefix encodings that can be tuned to solve tasks efficiently [39, 37].
Unlike prior work, our control codes are iteratively updated to guide unlearning.

3 Experiments

In this section, we show that Quark can effectively unlearn undesirable behaviors from neural language
models, including toxicity, repetition, and unwanted sentiment. Following the setup of previous works
[40, 79, 73], we use GPT2-large [57] as the initial policy p0 for toxicity and sentiment experiments,
and GPT2-base for repetition experiment.

3.1 Unlearning Toxicity from Language Models

Language models are susceptible to generating offensive completions that reflect false social biases,
even when prompted with seemingly innocuous text [18]. We consider unlearning toxicity from GPT-

4

2 on the REALTOXICITYPROMPTS benchmark, which contains prompts known to elicit problematic
generations, e.g., “I cant believe the people of...". We show that using Quark with a commercial
toxicity API as the reward substantially reduces the chance of generating toxic text as measured by
both automatic metrics and human judgments, without otherwise affecting generation quality.

Experimental setup. REALTOXICITYPROMPTS consists of 100k prompts designed to elicit toxic
generations. We follow the experimental setup of Liu et al. [40]. During training, we use 85K
prompts from the train set; for evaluation, we use the same 10K non-toxic test prompts used by [40],
and generate using nucleus sampling with p = 0.9. Additionally, we also conduct out-of-domain
evaluation with the WRITINGPROMPTS dataset [15], which is created for creative writing (i.e., story
generation). We use the Perspective API as a reward function, which provides a score between 1
(non-toxic) and 0 (toxic)3. We use K = 5 quantiles.

Baselines and evaluation metrics. We include previously reported baselines from [40], including
GPT-2 (i.e., the p0 model), PPLM [12], GEDI [32], DAPT [21], and DEXPERTS [40]. Additionally,
as a representative state-of-the-art RL method, we implement PPO with the KL-penalty as in [91, 51];
see subsection B.1 for details.

Following [40], maximum toxicity is measured as the average maximum toxicity over 25 text gen-
erations, and the empirical toxic probability of at least one of any 25 generations being toxic, both
of which are judged by Perspective API. To evaluate language quality as a proxy for how much
the model deviates from the original model, we report fluency as the perplexity of generated output
according to a larger off-the-shelf GPT2-XL model, and diversity as the count of unique n-grams
normalized by the length of text. Finally, we conduct a pairwise human evaluation to compare
outputs from Quark to each baseline, based on the perceived level of toxicity (which one is less rude or
disrespectful), topicality (which one is more natural, relevant, and logical), and fluency (which one is
more grammatically correct and coherent); human evaluation details are in Appendix A.

Results. As shown in Table 1, Quark reduces the rate of toxic completions substantially compared
to all baselines, in both in-domain and out-of-domain settings. While prior detoxification methods
generally sacrifice language quality, Quark reduces toxicity while maintaining a similar level of fluency
and diversity compared to vanilla GPT-2. Compared to PPO, Quark achieves better performance,
with less parameters and shorter training time. Additionally, human evaluation (Table 2) shows that
generations from Quark are rated as less toxic, more topical and more fluent compared to all other
baselines, for both the in-domain and the out-of-domain settings. The results above demonstrate the
promise of Quark for unlearning toxicity, which could enable broader use of the resulting detoxified
language model. Additional qualitative results are in Appendix D.

3.2 Steering Away from Unwanted Sentiment of Generated Texts

Next, we explore Quark’s capacity to control the sentiment polarity of text generated from a language
model [74, 12, 40]. This task, which is well-studied in controllable generation, is often practically
motivated by the goal of building chat bots that do not simply output probable language, but also
discourse acts that echo a particular emotion or sentiment [63, 36, 78].

Experimental setup. We aim to steer the model to generate continuations with either positive or
negative sentiment, while prompted with the opposite sentiment (negative or positive, respectively).
We follow the experimental setup of [40], which uses 100K prompts from the OpenWebText Corpus
(OWT) [19]. During training, we use 85K prompts from the training set. During evaluation, we
evaluate on three sets of test prompts: 5K neutral prompts, 2.5K positive prompts and 2.5K negative
prompts. We use the sentiment analysis classifier (DistillBERT [62]) trained on SST-2 dataset[70]
from HuggingFace [81] as the training reward, which provides a sentiment score between 1(positive)
and 0 (negative)4. We use K = 5 quantiles.

3The Perspective API is a service provided by Google that defines a “toxic" comment as one that is
“rude, disrespectful, or unreasonable ... that is likely to make one leave a discussion” https://github.com/
conversationai/perspectiveapi. Queries were made from Jan 2022 – May 2022, and reflect the version
being hosted at the time. The API is itself imperfect and reflects some social biases [26, 46, 64]. See section 7
for further discussion.

4https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english

5

https://github.com/conversationai/perspectiveapi
https://github.com/conversationai/perspectiveapi
https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english

Model

Sentiment to Unlearn: NEGATIVE Sentiment to Unlearn: POSITIVE

% Positive (↑) Fluency (↓) Diversity (↑) % Positive (↓) Fluency (↓) Diversity (↑)
negative neutral output ppl dist-2 dist-3 positive neutral output ppl dist-2 dist-3prompt prompt prompt prompt

GPT2 [57] 0.00 50.02 11.42 0.85 0.85 99.08 50.02 11.42 0.84 0.84

PPLM [12] 8.72 52.68 142.1 0.86 0.85 89.74 39.05 181.7 0.87 0.86
CTRL [29] 18.88 61.81 43.79 0.83 0.86 79.05 37.63 35.94 0.83 0.86
GeDi [32] 26.80 86.01 58.41 0.80 0.79 39.57 8.73 84.11 0.84 0.82
DEXPERTS [40] 36.42 94.46 25.83 0.84 0.84 35.99 3.77 45.91 0.84 0.83
DAPT [21] 14.17 77.24 30.52 0.83 0.84 87.43 33.28 32.86 0.85 0.84
PPO [71] 43.13 94.10 15.16 0.80 0.84 32.22 3.65 15.54 0.81 0.84

Quark 46.55 95.00 14.54 0.80 0.84 27.50 2.75 14.72 0.80 0.84

Table 3: Automatic evaluation results of unlearning sentiment experiments. Baseline results (except
PPO) are from [40].

Ours vs. GPT2 Ours vs. PPO Ours vs. CTRL Ours vs. GeDi Ours vs. DEXPERT Ours vs. DAPT

Sentiment to Unlearn: NEGATIVE
More Positive 0.58 0.04 0.16 0.06 0.46 0.12 0.38 0.14 0.32 0.18 0.48 0.12
More Topical 0.32 0.07 0.32 0.26 0.23 0.16 0.22 0.19 0.24 0.17 0.24 0.12
More Fluent 0.36 0.10 0.33 0.28 0.28 0.23 0.26 0.26 0.27 0.23 0.28 0.19

Sentiment to Unlearn: POSITIVE
More Negative 0.47 0.14 0.37 0.21 0.48 0.18 0.39 0.31 0.37 0.29 0.51 0.12
More Topical 0.21 0.18 0.29 0.18 0.26 0.20 0.33 0.17 0.32 0.16 0.20 0.20
More Fluent 0.28 0.24 0.31 0.20 0.36 0.22 0.38 0.21 0.40 0.23 0.24 0.24

Table 4: Human evaluation results of unlearning sentiment experiments, comparing the percentage of
texts rated as more positive/negative, more topical, and more fluent as generated by Quark and other
baselines.

Baselines and Evaluation Metrics. In addition to all baselines described in §3.1, we also include
CTRL [29], which steers language models with control codes. For each prompt, we generate 25
continuations at evaluation time. For automatic evaluation, we report the previously discussed
fluency/diversity metrics, and also the mean percentage of positive continuations among the 25
generations according to the HuggingFace sentiment model. We also conduct a pairwise human
evaluation as before to compare outputs from Quark to each baseline, based on the perceived level of
desired sentiment, topicality, and fluency; human evaluation details are in Appendix A

Results. As shown in Table 3, Quark more effectively steers models away from unwanted sentiment
(both positive and negative) compared to all other baselines, while remaining as fluent and diverse as
the vanilla GPT2 model. Moreover, the human evaluation results in Table 4 confirm that generations
from Quark are consistently judged to be more of the desired sentiment, more topical, and more fluent
compared to all previous methods. Additional qualitative results are in Appendix D.

3.3 Unlearning Degenerate Repetition

Neural language models often suffer from text degeneration, i.e., they generate repetitive, uninfor-
mative, and dull text [79, 25]. Here, we show that the unlikelihood objective from [79] and reward
optimization using Quark complement each other, resulting in models with substantially reduced
degeneracy in their generated text.

Experimental setup. Our goal is to unlearn degenerate repetition in text generation. We follow
the experimental setup of [79, 73]. During the exploration phase, in order to have a diverse set of
representative model outputs with different repetition levels, we mix greedy decoding and nucleus
sampling in a 50%-50% proportion, as repetition more often happens when using greedy decoding.
We use a diversity metric as the reward, to encourage a larger portion of unique n-grams in generations,
defined as diversity(y) =

∏4
n=2(1.0−

rep-n(y)
100), where rep-n(y) = 100× (1.0− |unique n-grams(y)|

|total n-grams(y)|). We
use K = 8 quantiles. Following the setup of [79, 73], we use WIKITEXT-103 [44] as the dataset,
which contains 100M English tokens from Wikipedia articles. During evaluation, we generate using
greedy decoding, as degenerate repetition tends to appear most frequently with greedy decoding.

6

Model Language Model Quality Generation Quality Human Eval
ppl ↓ acc ↑ rep ↓ wrep ↓ rep-2 ↓ rep-3 ↓ div ↑ mauve↑ fluency↑ coherence↑ overall↑

MLE [73] 24.23 39.63 52.82 29.97 69.21 65.18 0.04 0.03 1.89 2.55 1.96
Unlikelihood [73] 28.57 38.41 51.23 28.57 24.12 13.35 0.61 0.69 2.90 3.19 3.00
SimCTG [73] 23.82 40.91 51.66 28.65 67.36 63.33 0.05 0.05 1.93 2.68 2.08

Quark 26.22 41.57 45.64 25.07 39.89 30.62 0.35 0.74 2.75 3.20 2.77
+Unlikelihood 27.97 39.41 37.76 19.34 18.76 12.14 0.67 0.82 3.92 4.04 3.87

Table 5: Unlearning repetitions of sequences generated from GPT2-base via greedy decoding, for the
WIKITEXT-103 test set. Baselines results are adopted from [73].

Figure 2: Performance (y-axis) of Quark on WIKITEXT-103 val set with respect to training step
(x-axis). The orange and blue lines denotes Quark with and without the unlikelihood loss respectively.

Baselines and evaluation metrics. We compare with maximum likelihood estimation (MLE),
unlikelihood training (unlikelihood) [79], and contrastive training (SimCTG) [73]. In addition to
comparing directly against these methods, Quark can be readily used in conjunction with these losses
(see subsection B.3 for details).

Following the setup of [79, 73], we evaluate both language modeling quality and generation quality
of samples. For language modeling, on ground-truth continuations the the WIKITEXT-103 test set,
we report perplexity (ppl), token prediction accuracy (acc), prediction repetition (rep; the fraction
of next-token repeating content from the prefix), and another variant of prediction repetition (wrep;
single-token repeats that are different from the ground-truth next-token, since naturally-occurring
ground truth texts may also contain repetitions). For generation quality, we report sequence-level
repetition, defined as the proportion of repeated n-grams (rep-n), diversity (diverse) as measured
by a fusion of different n-gram levels, and MAUVE [56], an automatic measure of how much the
generated text distribution diverges from that of human-written text. We additionally conduct human
evaluations of the text generations on coherency (whether aligned in meaning/topic with the prompt),
fluency (whether grammatical, easy-to-read, and non-repetitive) and overall quality; details of human
evaluation are in Appendix A.

Results. As shown in Table 5, Quark without unlikelihood loss generally outperforms MLE and
SimCTG, on both automatic metrics and human judgements. Unlikelihood on its own outperforms
Quark on its own: this is perhaps not surprising, because the unlikelihood loss is a directly differentiable
objective that captures repetition. However, what is surprising is the performance gain of combining
Quark with the unlikelihood objective: this decreases repetition over either method independently,
and improves human judgements of fluency, coherence, and overall quality by 35%, 27%, and 29%
respectively compared to unlikelihood alone. As shown in Fig 2, Quark without unlikelihood loss
steadily improves the reward across training steps, and the additional unlikelihood loss accelerates
the reward optimization process. Additional qualitative results are in Appendix D.

4 Model Ablations

In addition to showing the effectiveness of using Quark for unlearning undesirable behaviors from
language models, we further conduct ablation studies to explore the effect of each component of our
training objective.We focus on the toxicity unlearning task for our ablation studies.

What effect does the KL term have? Fig 3 illustrates the effect of increasing the KL coefficient β
(our default value is β = .05), which encourages pθ to stay closer to p0. This leads to lower perplexity
and better language quality, but lower rewards, as shown by the slight increase in toxicity.

7

Figure 3: Performance of Quark (y-axis) on RE-
ALTOXICITYPROMPTS val set, with varying KL
coefficient β (x-axis).

Figure 4: Performance of Quark (y-axis) on REAL-
TOXICITYPROMPTS val set, with varying number
of quantiles (x-axis).

Figure 5: Performance of Quark (y-axis) on RE-
ALTOXICITYPROMPTS val set, with varying fre-
quency of exploration (x-axis) in terms of number
of explorations per 8k gradient update steps.

Figure 6: Toxicity probability (y-axis) over train-
ing iterations (x-axis) across the best quan-
tiles to the worst quantiles on REALTOXICI-
TYPROMPTS val set.

KL term Toxicity (↓) Fluency (↓) Diversity (↑)
avg. max. prob. output ppl dist-2 dist-3

without 0.192 0.031 13.29 0.79 0.83
approx. 0.194 0.038 13.86 0.80 0.84
exact 0.194 0.035 12.72 0.79 0.83

Table 6: Ablations on different choices of
KL term on val set: no KL, point-wise
approximate KL, and token-level exact KL.

Explore Learn Toxicity (↓) Fluency (↓) Diversity (↑)
strategy quantile avg. max. prob. output ppl dist-2 dist-3

best-tok all 0.194 0.035 12.72 0.79 0.83
random-tok all 0.286 0.109 12.40 0.80 0.84

best-tok best 0.115 0.014 21.92 0.43 0.66
p0 all 0.291 0.183 12.53 0.78 0.80

no-tok best 0.263 0.146 14.19 0.73 0.77

Table 7: Ablations on different design choices
for conditional reward tokens in exploration and
quantiles to use in learning on val set.

Exact KL vs. Approximate KL. Table 6 compares the effect of our exact token-level KL as defined
in Eq.2 against an approximate point-wise KL, log p0(·|y<t,x)

pθ(·|y<t,x,rk)
, proposed by [71]. Compared to

no KL term, the exact KL gives a controllable trade-off between language quality and reward
maximization, unlike the point-wise KL, which hurts both dimensions. We speculate the discrepancy
is due to the noise introduced by approximating the distributional KL via point-wise estimation.

What effect does the number of quantiles have? As shown in Fig 4, increasing the number of
quantiles results in more effective reward maximization and lower toxicity. More quantiles leads
to a finer-grained partition of the data pool and higher average reward in the best quantile; when
conditioned on the best reward token, the model is more likely to generate higher reward sequences.
As a trade-off, the model strays more from the original, yielding slightly worse language quality.

Can we just train on the highest-reward quantile? As shown in Table 7, compared to training on
all quantiles (row 1), training on the best quantile only (row 3) leads to better reward maximization
and lower toxicity, but a significant drop in both fluency and language diversity. We speculate that
this is due to over-fitting on the sequences in the highest-reward quantile.

Can we condition on random reward tokens in exploration? As shown in Table 7, compared to
conditioning on the best reward token (row 1) in exploration, conditioning on uniformly sampled
reward tokens (row 2) leads to much worse reward maximization and much higher toxicity. While the
former focuses exploration on the most promising regions, the latter does uniform exploration over
the action space, which reduces the chance of discovering better trajectories to enhance the datapool.

Are control codes useful for exploration and training? Row 4 of Table 7 illustrates performance
decreases when the initial policy p0 is used for exploration instead of reward code conditioned policy
pθ; Row 5 illustrates performance decreases when pθ has no control code for both training/exploration,
even when the high reward samples are added to the data pool.

8

How do the rewards for generations in each partition evolve over time? As demonstrated in Fig
6, for all quantiles, toxicity monotonically decreases across training iterations; and for an arbitrary
iteration, toxicity monotonically decreases from the worst quantile to the best quantile.

What effect does the frequency of exploration have? As shown in Fig 5, with a fixed amount
of gradient update steps, more exploration results in lower toxicity and higher generation diversity.
Intuitively, more exploration leads to a larger data pool with a better reward distribution, which benefits
reward maximization and language diversity. Interestingly, generation perplexity first decreases and
then increases. We speculate the initial decrease is due to the larger datapool alleviating over-fitting,
and the later decrease is due to the trade-off between language quality and reward maximization as
we attain lower toxicity.

5 Related Work

Reinforcement Learning in NLP. Previous works have used RL techniques in a wide range of
classical NLP applications, such as named entity recognition [42], semantic parsing [90], dependency
parsing [80], constituency parsing [16], part-of-speech tagging [6], and information extraction [49].
Recent works have explored applying RL on tasks such as question-answering [85, 86, 48, 84, 85],
summarization [59, 54, 71, 61, 17, 52], and machine translation [59, 88, 80, 83, 82, 13, 67, 5, 50].
Some other works at the intersection of language and other modalities also use RL techniques, e.g.,
navigation [77, 76], multi-agent communication [35], image captioning [59, 6, 60], etc. RL has
also been used to train language models to align with models of human preferences and values
[91, 24, 3]. In the domain of open-text generation, REINFORCE [75] and PPO [2] have been used
for controllable story generation, and soft Q-Learning [20] has been applied to generate prompts
for steering language model generations. Finally, prior work has used RL techniques to generate
language grounded in text-based narrative games [23, 4, 3].

Reinforcement learning with transformers. Recent works have incorporated RL techniques into
transformer models. The Trajectory Transformer [27] and Decision Transformer [9] are both offline
RL methods that use transformers to produce a sequence of actions with high rewards given observed
states. Unlike Quark, agents only access a fixed dataset with pre-specified trajectories and do not
learn through interaction with the environment. Zheng et al. [89] recently proposed the Online
Decision Transformer, which adds sample-efficient online learning. [72] uses PPO to incorporate
human feedback for summarization.

Unlearning undesirable behaviors from language models. Unlearning behavior in language
models is similar to model-editing [22, 45], but for rewards rather than datapoints. Some recent works
use RL for post-hoc modification of language models, e.g., unlearning toxicity [14] or non-normative
generations [55]. Complementary pre hoc methods aim to avoid learning undesired behavior at
training time [79, 38, 7]. Similarly, methods for controlling models at inference time, e.g., via
prompts [65, 68] or by enforcing parity across generations [30], could also complement Quark. [34]
recently proposed Generative Cooperative Networks; while methodologically similar to Quark, their
work is inspired by GANs, and thus the focus is on training models such that a discriminator cannot
readily identify machine vs. human authored text, whereas our focus is on capturing external factors
via reward functions.

6 Conclusion

In this work, we introduce Quark, a simple but effective method for reward optimization to unlearn
undesirable properties of language models acquired during pretraining. We empirically show that
Quark can, more effectively than prior work, be applied to unlearn toxicity, repetition, and unwanted
sentiment without sacrificing underlying language qualities such as fluency and diversity. Finally, we
provide insights on various model components via a series of ablation studies.

Quark, like other controlled generation techniques, carries risks of dual use: Quark may inherit the
biases reflected in the reward scoring process; and, while we do not condone malicious applications,
reward functions could operationalize pernicious behaviors. We foresee Quark as a tool for encouraging
language generators to behave in specific ways, but not as a tool that guarantees safety, no toxicity,
or outputs that reflect no negative social biases. We discuss further in Section 7.

9

Future directions include:

1. investigating adaptations of Quark for controlling multiple rewards simultaneously;
2. exploring more diverse types of rewards, e.g., those related to human preferences;
3. and training Quark with fewer parameters vs. optimizing all model parameters.

7 Additional Ethical Considerations

In this work, we show that Quark can steer language models away from unwanted properties as speci-
fied by reward functions, without sacrificing general language understanding/generation capabilities.
We foresee two primary dual use concerns for this method.

First, as with any controllable text generation technique, Quark could be used to steer language models
towards malicious behaviors. While we encourage those who deploy language technologies to con-
sider potential negative impacts, and don’t intend Quark to be used for manipulation, misinformation,
etc., we foresee the marginal risks introduced by our method specifically as minimal. Malicious actors,
in theory, can already adapt language models for malicious use cases without reward optimization.
Furthermore, in contrast to some other reward optimization methods, models trained with Quark
support removal of behavior at inference time. Specifically, reward tokens for different quantiles
of the reward function are specified by parameters in the embedding table corresponding to those
tokens. Thus, to disable the model from generating conditioned on particular buckets (e.g., high
toxicity quantiles), those parameters can simply be removed/erased for a public release. While this
doesn’t fully mitigate undesirable behavior, our experiments clearly show high correlation between
conditioning on particular quantiles and corresponding rewards, thus, the rate of undesirable behavior
is likely to decrease if specific quantiles cannot be conditioned on.

Second, reward functions may misspecify desired characteristics in subtle ways that reflect pernicious
social biases, particularly if they are black-box APIs or large, difficult-to-interpret neural networks.
For example, for the task of unlearning toxicity, since the toxicity reward is dependent upon the
Perspective API, our model checkpoints inherit the biases and limitations of the API. While we
undertake human evaluations for our experiments to confirm that our model really is outputting less
toxic language on REALTOXICITYPROMPTS, Quark is not a panacea. We foresee Quark as a tool that
can encourage language models to generate higher reward outputs for a given reward function. As
more accurate, specific, and inclusive classifiers are built (e.g., for toxicity classification), we expect
that Quark would inherit those improvements as well.

8 Acknowledgements

We thank Jena Hwang, Sarah Wiegreffe, and the anonymous reviewers for the helpful discussions and
feedback. Additionally, we thank the Google Perspective API team for supporting our quota increase
requests. This research was supported in part by Natural Sciences and Engineering Research Council
of Canada (NSERC) (funding reference number 401233309), DARPA MCS program through NIWC
Pacific (N66001-19-2-4031), Google Cloud Compute, a Microsoft PhD Fellowship, and the Allen
Institute for AI.

10

References
[1] Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C Courville, and Marc Belle-

mare. Deep reinforcement learning at the edge of the statistical precipice. Advances in Neural
Information Processing Systems, 34, 2021.

[2] Amal Alabdulkarim, Winston Li, Lara J. Martin, and Mark O. Riedl. Goal-directed story
generation: Augmenting generative language models with reinforcement learning, 2021.

[3] Prithviraj Ammanabrolu, Liwei Jiang, Maarten Sap, Hanna Hajishirzi, and Yejin Choi. Aligning
to social norms and values in interactive narratives. In NAACL, 2022.

[4] Prithviraj Ammanabrolu, Jack Urbanek, Margaret Li, Arthur Szlam, Tim Rocktäschel, and
Jason Weston. How to motivate your dragon: Teaching goal-driven agents to speak and act in
fantasy worlds. In Proceedings of 2021 Annual Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT,
2021.

[5] Michael Auli and Jianfeng Gao. Decoder integration and expected BLEU training for recurrent
neural network language models. In Proceedings of the 52nd Annual Meeting of the Association
for Computational Linguistics (Volume 2: Short Papers), pages 136–142, Baltimore, Maryland,
June 2014. Association for Computational Linguistics.

[6] Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and Noam Shazeer. Scheduled sampling for
sequence prediction with recurrent neural networks. In Proceedings of the 28th International
Conference on Neural Information Processing Systems - Volume 1, NIPS’15, page 1171–1179,
Cambridge, MA, USA, 2015. MIT Press.

[7] Shikha Bordia and Samuel R. Bowman. Identifying and reducing gender bias in word-level
language models. In Proceedings of the 2019 Conference of the North American Chapter
of the Association for Computational Linguistics: Student Research Workshop, pages 7–15,
Minneapolis, Minnesota, June 2019. Association for Computational Linguistics.

[8] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz
Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners, 2020.

[9] Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter
Abbeel, Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning
via sequence modeling. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan,
editors, Advances in Neural Information Processing Systems, 2021.

[10] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, Parker
Schuh, Kensen Shi, Sasha Tsvyashchenko, Joshua Maynez, Abhishek Rao, Parker Barnes,
Yi Tay, Noam Shazeer, Vinodkumar Prabhakaran, Emily Reif, Nan Du, Ben Hutchinson,
Reiner Pope, James Bradbury, Jacob Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin,
Toju Duke, Anselm Levskaya, Sanjay Ghemawat, Sunipa Dev, Henryk Michalewski, Xavier
Garcia, Vedant Misra, Kevin Robinson, Liam Fedus, Denny Zhou, Daphne Ippolito, David
Luan, Hyeontaek Lim, Barret Zoph, Alexander Spiridonov, Ryan Sepassi, David Dohan, Shivani
Agrawal, Mark Omernick, Andrew M. Dai, Thanumalayan Sankaranarayana Pillai, Marie Pellat,
Aitor Lewkowycz, Erica Moreira, Rewon Child, Oleksandr Polozov, Katherine Lee, Zongwei
Zhou, Xuezhi Wang, Brennan Saeta, Mark Diaz, Orhan Firat, Michele Catasta, Jason Wei,
Kathy Meier-Hellstern, Douglas Eck, Jeff Dean, Slav Petrov, and Noah Fiedel. Palm: Scaling
language modeling with pathways, 2022.

[11] Elizabeth Clark, Tal August, Sofia Serrano, Nikita Haduong, Suchin Gururangan, and Noah A
Smith. All that’s’ human’is not gold: Evaluating human evaluation of generated text. arXiv
preprint arXiv:2107.00061, 2021.

11

[12] Sumanth Dathathri, Andrea Madotto, Janice Lan, Jane Hung, Eric Frank, Piero Molino, Jason
Yosinski, and Rosanne Liu. Plug and play language models: A simple approach to controlled
text generation. In International Conference on Learning Representations, 2020.

[13] Sergey Edunov, Myle Ott, Michael Auli, David Grangier, and Marc’Aurelio Ranzato. Classical
structured prediction losses for sequence to sequence learning. In Proceedings of the 2018
Conference of the North American Chapter of the Association for Computational Linguis-
tics: Human Language Technologies, Volume 1 (Long Papers), pages 355–364, New Orleans,
Louisiana, June 2018. Association for Computational Linguistics.

[14] Farshid Faal, Ketra Schmitt, and Jiawei Yu. Reward modeling for mitigating toxicity in
transformer-based language models. ArXiv, abs/2202.09662, 2022.

[15] Angela Fan, Mike Lewis, and Yann Dauphin. Hierarchical neural story generation. In Proceed-
ings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), pages 889–898, Melbourne, Australia, July 2018. Association for Computational
Linguistics.

[16] Daniel Fried and Dan Klein. Policy gradient as a proxy for dynamic oracles in constituency
parsing. In Proceedings of the 56th Annual Meeting of the Association for Computational Lin-
guistics (Volume 2: Short Papers), pages 469–476, Melbourne, Australia, July 2018. Association
for Computational Linguistics.

[17] Yang Gao, Christian M. Meyer, and Iryna Gurevych. APRIL: Interactively learning to summarise
by combining active preference learning and reinforcement learning. In Proceedings of the
2018 Conference on Empirical Methods in Natural Language Processing, pages 4120–4130,
Brussels, Belgium, October-November 2018. Association for Computational Linguistics.

[18] Samuel Gehman, Suchin Gururangan, Maarten Sap, Yejin Choi, and Noah A. Smith. Real-
ToxicityPrompts: Evaluating neural toxic degeneration in language models. In Findings of the
Association for Computational Linguistics: EMNLP 2020, pages 3356–3369, Online, November
2020. Association for Computational Linguistics.

[19] Aaron Gokaslan and Vanya Cohen. Openwebtext corpus. http://Skylion007.github.io/
OpenWebTextCorpus, 2019.

[20] Han Guo, Bowen Tan, Zhengzhong Liu, Eric P. Xing, and Zhiting Hu. Text generation with
efficient (soft) q-learning, 2021.

[21] Suchin Gururangan, Ana Marasović, Swabha Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey,
and Noah A. Smith. Don’t stop pretraining: Adapt language models to domains and tasks.
In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics,
pages 8342–8360, Online, July 2020. Association for Computational Linguistics.

[22] Peter Hase, Mona T. Diab, Asli Celikyilmaz, Xian Li, Zornitsa Kozareva, Veselin Stoyanov,
Mohit Bansal, and Srini Iyer. Do language models have beliefs? methods for detecting, updating,
and visualizing model beliefs. ArXiv, abs/2111.13654, 2021.

[23] Matthew Hausknecht, Prithviraj Ammanabrolu, Côté Marc-Alexandre, and Yuan Xingdi. Inter-
active fiction games: A colossal adventure. In AAAI, volume abs/1909.05398, 2020.

[24] Dan Hendrycks, Mantas Mazeika, Andy Zou, Sahil Patel, Christine Zhu, Jesus Navarro, Dawn
Song, Bo Li, and Jacob Steinhardt. What would jiminy cricket do? towards agents that behave
morally, 2021.

[25] Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. The curious case of neural
text degeneration. In International Conference on Learning Representations, 2020.

[26] Hossein Hosseini, Sreeram Kannan, Baosen Zhang, and Radha Poovendran. Deceiving google’s
perspective api built for detecting toxic comments. arXiv preprint arXiv:1702.08138, 2017.

[27] Michael Janner, Qiyang Li, and Sergey Levine. Offline reinforcement learning as one big
sequence modeling problem. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman
Vaughan, editors, Advances in Neural Information Processing Systems, 2021.

12

http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus

[28] Nitish Shirish Keskar, Bryan McCann, Lav R. Varshney, Caiming Xiong, and Richard
Socher. Ctrl: A conditional transformer language model for controllable generation. ArXiv,
abs/1909.05858, 2019.

[29] Nitish Shirish Keskar, Bryan McCann, Lav R. Varshney, Caiming Xiong, and Richard Socher.
Ctrl: A conditional transformer language model for controllable generation, 2019.

[30] Muhammad Khalifa, Hady Elsahar, and Marc Dymetman. A distributional approach to con-
trolled text generation. In International Conference on Learning Representations, 2021.

[31] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[32] Ben Krause, Akhilesh Deepak Gotmare, Bryan McCann, Nitish Shirish Keskar, Shafiq Joty,
Richard Socher, and Nazneen Fatema Rajani. GeDi: Generative discriminator guided sequence
generation. In Findings of the Association for Computational Linguistics: EMNLP 2021, pages
4929–4952, Punta Cana, Dominican Republic, November 2021. Association for Computational
Linguistics.

[33] Klaus Krippendorff. Content analysis: An introduction to its methodology. Sage publications,
2018.

[34] Sylvain Lamprier, Thomas Scialom, Antoine Chaffin, Vincent Claveau, Ewa Kijak, Jacopo
Staiano, and Benjamin Piwowarski. Generative cooperative networks for natural language
generation. In ICML, 2022.

[35] Angeliki Lazaridou, Anna Potapenko, and Olivier Tieleman. Multi-agent communication
meets natural language: Synergies between functional and structural language learning. In
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages
7663–7674, Online, July 2020. Association for Computational Linguistics.

[36] Hung-yi Lee, Cheng-Hao Ho, Chien-Fu Lin, Chiung-Chih Chang, Chih-Wei Lee, Yau-Shian
Wang, Tsung-Yuan Hsu, and Kuan-Yu Chen. Investigation of sentiment controllable chatbot.
arXiv preprint arXiv:2007.07196, 2020.

[37] Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient
prompt tuning. In Proceedings of the 2021 Conference on Empirical Methods in Natural Lan-
guage Processing, pages 3045–3059, Online and Punta Cana, Dominican Republic, November
2021. Association for Computational Linguistics.

[38] Margaret Li, Stephen Roller, Ilia Kulikov, Sean Welleck, Y-Lan Boureau, Kyunghyun Cho, and
Jason Weston. Don’t say that! making inconsistent dialogue unlikely with unlikelihood training.
In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics,
pages 4715–4728, Online, July 2020. Association for Computational Linguistics.

[39] Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation.
In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics
and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long
Papers), pages 4582–4597, Online, August 2021. Association for Computational Linguistics.

[40] Alisa Liu, Maarten Sap, Ximing Lu, Swabha Swayamdipta, Chandra Bhagavatula, Noah A.
Smith, and Yejin Choi. DExperts: Decoding-time controlled text generation with experts and
anti-experts. In Proceedings of the 59th Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Conference on Natural Language Processing (Vol-
ume 1: Long Papers), pages 6691–6706, Online, August 2021. Association for Computational
Linguistics.

[41] Runjing Liu, Jeffrey Regier, Nilesh Tripuraneni, Michael I. Jordan, and Jon D. McAuliffe.
Rao-blackwellized stochastic gradients for discrete distributions. In ICML, 2019.

[42] Francis Maes, Ludovic Denoyer, and Patrick Gallinari. Structured Prediction with Reinforce-
ment Learning. Machine Learning, 77(2-3):271–301, December 2009.

13

[43] Clara Meister, Elizabeth Salesky, and Ryan Cotterell. Generalized entropy regularization or:
There’s nothing special about label smoothing. In Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pages 6870–6886, Online, July 2020. Association
for Computational Linguistics.

[44] Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models, 2017.

[45] Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea Finn, and Christopher D Manning. Fast
model editing at scale. In International Conference on Learning Representations, 2022.

[46] Margaret Mitchell, Simone Wu, Andrew Zaldivar, Parker Barnes, Lucy Vasserman, Ben Hutchin-
son, Elena Spitzer, Inioluwa Deborah Raji, and Timnit Gebru. Model cards for model reporting.
In FAccT, 2019.

[47] Nasrin Mostafazadeh, Nathanael Chambers, Xiaodong He, Devi Parikh, Dhruv Batra, Lucy
Vanderwende, Pushmeet Kohli, and James Allen. A corpus and cloze evaluation for deeper
understanding of commonsense stories. In Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language Tech-
nologies, pages 839–849, San Diego, California, June 2016. Association for Computational
Linguistics.

[48] Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu, Long Ouyang, Christina Kim, Christo-
pher Hesse, Shantanu Jain, Vineet Kosaraju, William Saunders, Xu Jiang, Karl Cobbe, Tyna
Eloundou, Gretchen Krueger, Kevin Button, Matthew Knight, Benjamin Chess, and John
Schulman. Webgpt: Browser-assisted question-answering with human feedback. CoRR,
abs/2112.09332, 2021.

[49] Karthik Narasimhan, Adam Yala, and Regina Barzilay. Improving information extraction by
acquiring external evidence with reinforcement learning. In Proceedings of the 2016 Conference
on Empirical Methods in Natural Language Processing, pages 2355–2365, Austin, Texas,
November 2016. Association for Computational Linguistics.

[50] Mohammad Norouzi, Samy Bengio, zhifeng Chen, Navdeep Jaitly, Mike Schuster, Yonghui Wu,
and Dale Schuurmans. Reward augmented maximum likelihood for neural structured prediction.
In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett, editors, Advances in Neural
Information Processing Systems, volume 29. Curran Associates, Inc., 2016.

[51] Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to
follow instructions with human feedback. arXiv preprint arXiv:2203.02155, 2022.

[52] Ramakanth Pasunuru and Mohit Bansal. Multi-reward reinforced summarization with saliency
and entailment. In Proceedings of the 2018 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short
Papers), pages 646–653, New Orleans, Louisiana, June 2018. Association for Computational
Linguistics.

[53] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. 2017.

[54] Romain Paulus, Caiming Xiong, and Richard Socher. A deep reinforced model for abstractive
summarization. In International Conference on Learning Representations, 2018.

[55] Xiangyu Peng, Siyan Li, Spencer Frazier, and Mark O. Riedl. Reducing non-normative text
generation from language models. In INLG, 2020.

[56] Krishna Pillutla, Swabha Swayamdipta, Rowan Zellers, John Thickstun, Sean Welleck, Yejin
Choi, and Zaid Harchaoui. Mauve: Measuring the gap between neural text and human text
using divergence frontiers. In NeurIPS, 2021.

[57] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al.
Language models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

14

[58] Jack W. Rae, Sebastian Borgeaud, Trevor Cai, Katie Millican, Jordan Hoffmann, Francis
Song, John Aslanides, Sarah Henderson, Roman Ring, Susannah Young, Eliza Rutherford,
Tom Hennigan, Jacob Menick, Albin Cassirer, Richard Powell, George van den Driessche,
Lisa Anne Hendricks, Maribeth Rauh, Po-Sen Huang, Amelia Glaese, Johannes Welbl, Sumanth
Dathathri, Saffron Huang, Jonathan Uesato, John Mellor, Irina Higgins, Antonia Creswell, Nat
McAleese, Amy Wu, Erich Elsen, Siddhant Jayakumar, Elena Buchatskaya, David Budden,
Esme Sutherland, Karen Simonyan, Michela Paganini, Laurent Sifre, Lena Martens, Xiang Lor-
raine Li, Adhiguna Kuncoro, Aida Nematzadeh, Elena Gribovskaya, Domenic Donato, Angeliki
Lazaridou, Arthur Mensch, Jean-Baptiste Lespiau, Maria Tsimpoukelli, Nikolai Grigorev, Doug
Fritz, Thibault Sottiaux, Mantas Pajarskas, Toby Pohlen, Zhitao Gong, Daniel Toyama, Cyprien
de Masson d’Autume, Yujia Li, Tayfun Terzi, Vladimir Mikulik, Igor Babuschkin, Aidan Clark,
Diego de Las Casas, Aurelia Guy, Chris Jones, James Bradbury, Matthew Johnson, Blake
Hechtman, Laura Weidinger, Iason Gabriel, William Isaac, Ed Lockhart, Simon Osindero,
Laura Rimell, Chris Dyer, Oriol Vinyals, Kareem Ayoub, Jeff Stanway, Lorrayne Bennett,
Demis Hassabis, Koray Kavukcuoglu, and Geoffrey Irving. Scaling language models: Methods,
analysis & insights from training gopher, 2021.

[59] Marc’Aurelio Ranzato, Sumit Chopra, Michael Auli, and Wojciech Zaremba. Sequence level
training with recurrent neural networks. ICLR, 2016.

[60] S. J. Rennie, E. Marcheret, Y. Mroueh, J. Ross, and V. Goel. Self-critical sequence training
for image captioning. In 2017 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 1179–1195, Los Alamitos, CA, USA, jul 2017. IEEE Computer Society.

[61] Seonggi Ryang and Takeshi Abekawa. Framework of automatic text summarization using
reinforcement learning. In Proceedings of the 2012 Joint Conference on Empirical Methods in
Natural Language Processing and Computational Natural Language Learning, pages 256–265,
Jeju Island, Korea, July 2012. Association for Computational Linguistics.

[62] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter. ArXiv, abs/1910.01108, 2019.

[63] Chinnadhurai Sankar and Sujith Ravi. Deep reinforcement learning for modeling chit-chat
dialog with discrete attributes. In Proceedings of the 20th Annual SIGdial Meeting on Discourse
and Dialogue, Stockholm, Sweden, September 2019. Association for Computational Linguistics.

[64] Maarten Sap, Dallas Card, Saadia Gabriel, Yejin Choi, and Noah A Smith. The risk of racial
bias in hate speech detection. In ACL, 2019.

[65] Timo Schick, Sahana Udupa, and Hinrich Schütze. Self-diagnosis and self-debiasing: A proposal
for reducing corpus-based bias in nlp. Transactions of the Association for Computational
Linguistics, 9:1408–1424, 2021.

[66] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. CoRR, abs/1707.06347, 2017.

[67] Shiqi Shen, Yong Cheng, Zhongjun He, Wei He, Hua Wu, Maosong Sun, and Yang Liu.
Minimum risk training for neural machine translation. In Proceedings of the 54th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages
1683–1692, Berlin, Germany, August 2016. Association for Computational Linguistics.

[68] Emily Sheng, Kai-Wei Chang, Prem Natarajan, and Nanyun Peng. Towards Controllable Biases
in Language Generation. In Findings of the Association for Computational Linguistics: EMNLP
2020, pages 3239–3254, Online, November 2020. Association for Computational Linguistics.

[69] Emily Sheng, Kai-Wei Chang, Prem Natarajan, and Nanyun Peng. Societal biases in language
generation: Progress and challenges. In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the 11th International Joint Conference on
Natural Language Processing (Volume 1: Long Papers), pages 4275–4293, Online, August
2021. Association for Computational Linguistics.

15

[70] Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew
Ng, and Christopher Potts. Recursive deep models for semantic compositionality over a
sentiment treebank. In Proceedings of the 2013 Conference on Empirical Methods in Natural
Language Processing, pages 1631–1642, Seattle, Washington, USA, October 2013. Association
for Computational Linguistics.

[71] Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea Voss, Alec
Radford, Dario Amodei, and Paul F Christiano. Learning to summarize with human feedback.
In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin, editors, Advances in Neural
Information Processing Systems, volume 33, pages 3008–3021. Curran Associates, Inc., 2020.

[72] Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea Voss, Alec
Radford, Dario Amodei, and Paul F Christiano. Learning to summarize with human feedback.
In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin, editors, Advances in Neural
Information Processing Systems, volume 33, pages 3008–3021. Curran Associates, Inc., 2020.

[73] Yixuan Su, Tian Lan, Yan Wang, Dani Yogatama, Lingpeng Kong, and Nigel Collier. A
contrastive framework for neural text generation, 2022.

[74] Akhilesh Sudhakar, Bhargav Upadhyay, and Arjun Maheswaran. “transforming” delete, retrieve,
generate approach for controlled text style transfer. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP), pages 3269–3279, Hong Kong, China,
November 2019. Association for Computational Linguistics.

[75] Pradyumna Tambwekar, Murtaza Dhuliawala, Lara J. Martin, Animesh Mehta, Brent Harrison,
and Mark O. Riedl. Controllable neural story plot generation via reward shaping. In Proceedings
of the Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI-19, pages
5982–5988. International Joint Conferences on Artificial Intelligence Organization, 7 2019.

[76] Jesse Thomason, Michael Murray, Maya Cakmak, and Luke Zettlemoyer. Vision-and-dialog
navigation. In Leslie Pack Kaelbling, Danica Kragic, and Komei Sugiura, editors, Proceedings of
the Conference on Robot Learning, volume 100 of Proceedings of Machine Learning Research,
pages 394–406. PMLR, 30 Oct–01 Nov 2020.

[77] Xin Eric Wang, Qiuyuan Huang, Asli Celikyilmaz, Jianfeng Gao, Dinghan Shen, Yuan fang
Wang, William Yang Wang, and Lei Zhang. Reinforced cross-modal matching and self-
supervised imitation learning for vision-language navigation. 2019 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pages 6622–6631, 2019.

[78] Anuradha Welivita, Yubo Xie, and Pearl Pu. A large-scale dataset for empathetic response
generation. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language
Processing, pages 1251–1264, 2021.

[79] Sean Welleck, Ilia Kulikov, Stephen Roller, Emily Dinan, Kyunghyun Cho, and Jason Weston.
Neural text generation with unlikelihood training. In International Conference on Learning
Representations, 2020.

[80] Sam Wiseman and Alexander M. Rush. Sequence-to-sequence learning as beam-search opti-
mization. In Proceedings of the 2016 Conference on Empirical Methods in Natural Language
Processing, pages 1296–1306, Austin, Texas, November 2016. Association for Computational
Linguistics.

[81] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony
Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Huggingface’s transform-
ers: State-of-the-art natural language processing. arXiv preprint arXiv:1910.03771, 2019.

[82] Lijun Wu, Yingce Xia, Fei Tian, Li Zhao, Tao Qin, Jianhuang Lai, and Tie-Yan Liu. Adversarial
neural machine translation. In Jun Zhu and Ichiro Takeuchi, editors, Proceedings of The 10th
Asian Conference on Machine Learning, volume 95 of Proceedings of Machine Learning
Research, pages 534–549. PMLR, 14–16 Nov 2018.

16

[83] Yonghui Wu, Mike Schuster, Z. Chen, Quoc V. Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jeff Klingner, Apurva Shah, Melvin
Johnson, Xiaobing Liu, Lukasz Kaiser, Stephan Gouws, Yoshikiyo Kato, Taku Kudo, Hideto
Kazawa, Keith Stevens, George Kurian, Nishant Patil, Wei Wang, Cliff Young, Jason R. Smith,
Jason Riesa, Alex Rudnick, Oriol Vinyals, Gregory S. Corrado, Macduff Hughes, and Jeffrey
Dean. Google’s neural machine translation system: Bridging the gap between human and
machine translation. ArXiv, abs/1609.08144, 2016.

[84] Caiming Xiong, Victor Zhong, and Richard Socher. DCN+: Mixed objective and deep residual
coattention for question answering. In ICLR, 2018.

[85] Xingdi Yuan, Marc-Alexandre Côté, Jie Fu, Zhouhan Lin, Chris Pal, Yoshua Bengio, and Adam
Trischler. Interactive language learning by question answering. In Proceedings of the 2019
Conference on Empirical Methods in Natural Language Processing and the 9th International
Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 2796–2813, Hong
Kong, China, November 2019. Association for Computational Linguistics.

[86] Xingdi Yuan, Jie Fu, Marc-Alexandre Côté, Yi Tay, Chris Pal, and Adam Trischler. Interactive
machine comprehension with information seeking agents. In Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics, pages 2325–2338, Online, July 2020.
Association for Computational Linguistics.

[87] Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen,
Christopher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, Todor Mihaylov, Myle Ott, Sam
Shleifer, Kurt Shuster, Daniel Simig, Punit Singh Koura, Anjali Sridhar, Tianlu Wang, and Luke
Zettlemoyer. Opt: Open pre-trained transformer language models, 2022.

[88] Wen Zhang, Yang Feng, Fandong Meng, Di You, and Qun Liu. Bridging the gap between
training and inference for neural machine translation. In Proceedings of the 57th Annual Meeting
of the Association for Computational Linguistics, pages 4334–4343, Florence, Italy, July 2019.
Association for Computational Linguistics.

[89] Qinqing Zheng, Amy Zhang, and Aditya Grover. Online decision transformer, 2022.

[90] Victor Zhong, Caiming Xiong, and Richard Socher. Seq2SQL: Generating structured queries
from natural language using reinforcement learning, 2018.

[91] Daniel M. Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B. Brown, Alec Radford, Dario Amodei,
Paul Christiano, and Geoffrey Irving. Fine-tuning language models from human preferences.
arXiv preprint arXiv:1909.08593, 2019.

17

Checklist

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [Yes] , see § 7
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes] We will release
the code for Quark at https://github.com/GXimingLu/Quark prior to NeurIPS
2022.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See §3.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [No] Due to computational resource constraints, we didn’t run
multiple cross-validation splits, or with enough random seeds to form stable confidence
intervals. However, we do a thorough set of ablations across many domains and model
configurations, see §4.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See §3.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [No] : we don’t introduce new datasets,

and refer readers to the original releases in case license information for those works
changes.

(c) Did you include any new assets either in the supplemental material or as a URL? [No]
We plan to release code, but have not yet due to internal review processes, but we

commit to releasing code that enables use of Quark.
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [Yes] All data we experiment with is public.
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [Yes] We aren’t releasing new data, and existing
corpora, to our knowledge and in our experience, do not contain personally identifying
information.

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [Yes] See § A.

(b) Did you describe any potential participant risks, with links to Institutional Review Board
(IRB) approvals, if applicable? [Yes] Crowdworking studies involving no personal
disclosures of standard NLP corpora are not required by our IRB to be reviewed by
them. Specifically:
i. We do not collect personal information. Information gathered is strictly limited to

general surveys about the quality of generated text.
ii. We take precaution to anonymize Mechanical Turk WorkerIDs in a manner that the

identity of the human subjects cannot be readily ascertained (directly or indirectly).
iii. We do not record or include any interpersonal communication or contact between

investigation and subject.

18

https://github.com/GXimingLu/Quark

Crowdworking studies involving no personal disclosures of standard computer vision
corpora are not required by our IRB to be reviewed by them. While we are not lawyers,
the opinion is based on United States federal regulation 45 CFR 46, under which this
study qualifies and as exempt and does not require IRB review.

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [Yes] , our pay is always over $15 USD per hour
on average (and sometimes more, see § A)

19

