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Abstract

We study the computation of doubly regularized Wasserstein barycenters, a recently
introduced family of entropic barycenters governed by inner and outer regular-
ization strengths. Previous research has demonstrated that various regularization
parameter choices unify several notions of entropy-penalized barycenters while
also revealing new ones, including a special case of debiased barycenters. In this
paper, we propose and analyze an algorithm for computing doubly regularized
Wasserstein barycenters. Our procedure builds on damped Sinkhorn iterations
followed by exact maximization/minimization steps and guarantees convergence
for any choice of regularization parameters. An inexact variant of our algorithm,
implementable using approximate Monte Carlo sampling, offers the first non-
asymptotic convergence guarantees for approximating Wasserstein barycenters
between discrete point clouds in the free-support/grid-free setting.

1 Introduction

The Wasserstein distance between two probability distributions measures the least amount of effort
needed to reconfigure one measure into the other. Unlike other notions of distances based solely on
the numerical values taken by the distribution functions (e.g., the Kullback-Leibler divergence), the
Wasserstein distance incorporates an additional layer of complexity by considering pairwise distances
between distinct points, measured by some predetermined cost function. As a result, the Wasserstein
distances can be seen to lift the geometry of the underlying space where the probability measures
are defined to the space of the probability measures itself. This allows for a more thorough and
geometrically nuanced understanding of the relationships between different probability measures,
which proved to be a versatile tool of increasing importance in a broad spectrum of areas.

Given a collection of probability measures and an associated set of positive weights that sum to one,
the corresponding Wasserstein barycenter minimizes the weighted sum of Wasserstein distances to
the given measures. In the special case of two measures and the squared Euclidean cost function,
Wasserstein barycenters concide with the notion of McCann’s displacement interpolation introduced
in the seminal paper [42]. The general case, encompassing an arbitrary number of measures, was first
studied by Agueh and Carlier [1], where they also demonstrated a close link between Wasserstein
barycenters and the multi-marginal optimal transport problem [29]. Recent years have witnessed an
increasing number of applications of Wasserstein barycenters across various scientific disciplines. See,
for instance, the following sample of works in economics [16, 11], statistics [8], image processing
[50], and machine learning [19], among other areas. For further background and references we point
the interested reader to the introductory surveys [47, 45] and the textbooks [58, 59, 54, 46, 28].
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Despite their compelling theoretical characteristics, the computation of Wasserstein barycenters poses
significant computational challenges, particularly in large-scale applications. While Wasserstein
barycenters can be computed in polynomial time for fixed dimensions [3], the approximation of
Wasserstein barycenters is known to be NP–hard [4]. Currently employed methods for approximating
Wasserstein barycenters are predominantly based on space discretizations. Unfortunately, such
strategies are only computationally practical for problems of relatively modest scale. Although
there are a handful of grid-free techniques available for approximating Wasserstein barycenters (e.g.,
[18, 35, 23, 40]), we are not aware of any existing methods that provide bounds on computational
complexity. One contribution of the present paper is to introduce a method that in some regimes can
provably approximate Wasserstein barycenters without relying on space discretizations, but instead
employing approximate Monte Carlo sampling.

More broadly, the difficulties associated with computation of the optimal transport cost has prompted
the exploration of computationally efficient alternatives, leading to the consideration of regularized
Wasserstein distances. Among these, the entropic penalty has emerged as one of the most successful
in applications. The practical success of entropic penalization can be attributed to Sinkhorn’s
algorithm [56], which enables efficient and highly parallelizable computation, an algorithm that
gained substantial traction in the machine learning community following the work of Cuturi [20]. It is
worth noting that entropic Wasserstein distances are of intrinsic interest, beyond their approximation
capabilities. Indeed, they hold a rich historical connection to the Schrödinger bridge problem
[55, 60, 26], as highlighted in the recent surveys [39, 14]. Furthermore, they increasingly serve as
an analytically convenient tool for studying the unregularized optimal transport problem (see, e.g.,
[38, 31, 27, 15]) and they underlie some favorable statistical properties that are currently under active
investigation; see the works [43, 30, 24, 48, 52, 49] and the references therein.

Let us now define the entropic optimal transport cost. Consider two probability measures, µ and
ν, both supported on X , and let c : X × X → [0,∞) be a cost function. The entropic Wasserstein
distance with a regularization level λ > 0 is defined as

Tλ(µ, ν) = inf
γ∈Π(µ,ν)

E(X,Y )∼γ [c(X,Y )] + λKL(γ, µ⊗ ν), (1)

where Π(µ, ν) denotes the set of probability measures on X ×X with marginal distributions equal to
µ and ν, and KL(·, ·) is the Kullback-Leibler divergence. When λ→ 0, the regularized cost Tλ(µ, ν)
converges to the unregularized Wasserstein distance. Various properties of entropic optimal transport
can be found in the recent lecture notes by Léonard [39].

To develop efficiently computable approximations for Wasserstein barycenters, a natural approach is
to replace the unregularized Wasserstein cost with the minimizer of the weighted sum of entropy-
regularized costs. This method was first explored by Cuturi and Doucet [21] and it has gained
additional traction in the recent years. There is some flexibility in the definition of (1), which arises
from substituting the reference product measure µ⊗ν with alternatives such as the Lebesgue measure.
Consequently, various notions of entropic barycenters have emerged in the literature, which can be
unified through the following optimization problem:

min
µ

k∑
j=1

wjTλ(µ, νj) + τKL(µ, πref). (2)

Here ν1, . . . , νk are the probability measures whose barycenter we wish to compute and w1, . . . , wk
are positive weights that sum to one. The inner regularization strength is denoted by λ > 0 while
τ > 0 is the outer regularization strength. The measure πref is an arbitrary reference measure, the
support of which dictates the support of the computed barycenter. For instance, if we take πref to be
a uniform measure on a particular discretization of the underlying space, we are dealing with a fixed-
support setup. On the other hand, letting πref be the Lebesgue measure puts us in the free-support
setup. We shall refer to the minimizer of (2) as the (λ, τ)-barycenter, which exists and is unique due
to the strict convexity of the outer regularization penalty; however, uniqueness may no longer holds
when τ = 0.

The objective (2) was recently studied in [17]; it also appeared earlier in [5] for the special case τ ≥ λ,
where stochastic approximation algorithms were considered for the computation of fixed-support
barycenters. In [17, Section 1.3], it is discussed how various choices of (λ, τ) relate to Barycenters
previously explored in the literature. To provide a brief overview, (0, 0) are the unregularized
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Wasserstein barycenters studied in [1]. Inner-regularized barycenters (λ, 0) introduce a shrinking
bias; this can be seen already when k = 1, in which case the solution computes a maximum-likelihood
deconvolution [53]. The (λ, λ)-barycenters were considered in [21, 7, 22, 10, 36]; they introduce
a blurring bias. Likewise, blurring bias is introduced by the outer-regularized barycenters (0, τ),
studied in [9, 12]. The only case not covered via the formulation (2) appears to be the one of
debiased Sinkhorn barycenters [51, 33], for which an algorithm exists but without computational
guarantees. Of particular interest are the (λ, λ/2) barycenters: the choice τ = λ/2 for smooth
densities yields approximation bias of order λ2, while the choice τ = λ results in bias of order λ,
which is significantly larger than λ2 in the regimes of interest. This is a new notion of entropic
barycenters that was unveiled in the analysis of [17]. We provide the first convergence guarantees for
this type of barycenters.

The regularity, stability, approximation, and statistical sample complexity properties of (λ, τ)-
barycenters were investigated in [17]. However, the question of obtaining non-asymptotic convergence
guarantees for the computation of (λ, τ)-barycenters with arbitrary regularization parameters was
not addressed therein. In particular, the (λ, λ/2) case, which has stood out due to its compelling
mathematical features, has not yet been addressed in the existing literature. This gap is addressed by
the present paper; we summarize our contributions in the following section.

1.1 Contributions

The remainder of this paper is organized as follows: Section 2 provides the necessary background
on entropic optimal transport and a particular dual problem of the doubly regularized entropic
objective (2). Section 3 introduces a damped Sinkhorn iteration scheme and complements it with
convergence guarantees. An approximate version of the algorithm together with convergence results
and implementation details is discussed in Section 4. We summarize our key contributions:

1. Lemma 1, presented in Section 3, demonstrates that bounds on the dual suboptimality gap
for the dual problem (8), defined in Section 2.2, can be translated into Kullback-Leibler
divergence bounds between the (λ, τ)-barycenter and the barycenters corresponding to
dual-feasible variables. This translation enables us to formulate all our subsequent results in
terms of optimizing the dual objective (8).

2. In Section 3, we introduce a damped Sinkhorn scheme (Algorithm 1) that can be employed to
optimize (λ, τ)-barycenters for any choice of regularization parameters. The damping factor
min(1, τ/λ) accommodates the degrading smoothness properties of the dual objective (8)
as a function of decreasing outer regularization parameter τ . The introduced damping of the
Sinkhorn iterations is, in fact, necessary and it is one of our core contributions: undamped
exact scheme can be experimentally shown to diverge as soon as τ < λ/2.

3. The main result of this paper is Theorem 1 proved in Section 3. It provides convergence
guarantees for Algorithm 1 with arbitrary choice of regularization parameters λ, τ > 0.
This, in particular, results in the first algorithm with guarantees for computing (λ, λ/2)
barycenters. For smooth densities, these barycenters incur a bias of order λ2 in contrast to
the predominantly studied (λ, λ) barycenters that incur bias of order λ.

4. In Section 4, we describe Algorithm 2, an extension of Algorithm 1 that allows us to perform
inaccurate updates. We formulate sufficient conditions on the inexact updates oracle under
which the errors in the convergence analysis do not accumulate. Section 4.1 details an
implementation of this inexact oracle, based on approximate Monte Carlo sampling.

5. Theorem 2 proved in Section 4 furnishes convergence guarantees for Algorithm 2. When
combined with the implementation of the inexact oracle described in Section 4.1, this
yields a provably convergent scheme for a grid-free computation of entropic Wasserstein
barycenters between discrete distributions, provided sufficient regularity on the domain X
and the cost function c.

6. Appendix F complements our theoretical results with numerical experiments. Our simula-
tions experimentally confirm the necessity of damping when τ < λ/2. They also provide
experimental support for the suggested damping factor in Algorithms 1 and 2.
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2 Background and Notation

This section provides the background material on doubly regularized entropic Wasserstein barycenters
and introduces the notation used throughout the paper. In the remainder of the paper, let X be a
compact and convex subset of Rd with a non-empty interior. Let P(X ) denote the set of probability
measures on X endowed with Borel sigma-algebra. Let c : X × X → [0,∞) be a cost function such
that c∞(X ) = supx,x′∈X c(x, x

′) < ∞. We denote by KL(·, ·) the Kullback-Leibler divergence,
‖ · ‖TV is the total-variation norm, and ‖f‖osc = supx f(x) − infx′ f(x′) is the oscillation norm.
Given two measures ν, ν′, the notation ν � ν′ denotes that ν is absolutely continuous with respect to
the measure ν′; in this case dν/dν′ denotes the Radon-Nikodym derivative of ν with respect to ν′.
Finally, throughout the paper w denotes a vector of k strictly positive elements that sum to one.

2.1 Entropic Optimal Transport

For any µ, ν ∈ P(X ) define the entropy regularized optimal transport problem by

Tλ(µ, ν) = inf
γ∈Π(µ,ν)

E(X,Y )∼γ [c(X,Y )] + λKL(γ, µ⊗ ν), (3)

where KL is the Kullback-Leibler divergence and Π(µ, ν) ⊆ P(X ⊗ X ) is the set of probability
measures such that for any γ ∈ Π(µ, ν) and any Borel subset A of X it holds that γ(A×X ) = µ(A)
and γ(X ×A) = ν(A).

Let Eµ,νλ : L1(µ)× L1(ν)→ R be the function defined by

Eµ,νλ (φ, ψ) = EX∼µ[φ(X)] + EY∼ν [ψ(Y )]

+ λ

(
1−

∫
X

∫
X

exp

(
φ(x) + ψ(y)− c(x, y)

λ

)
ν(dy)µ(dx)

)
.

The entropic optimal transport problem (3) admits the following dual representation:

Tλ(µ, ν) = max
φ,ψ

Eµ,νλ (φ, ψ). (4)

For any ψ define
φψ ∈ argmaxφ∈L1(µ)E

µ,ν
λ (φ, ψ).

The solution is unique µ-almost everywhere up to a constant; we fix a particular choice

φψ(x) = −λ log

(∫
X

exp

(
ψ(y)− c(x, y)

λ

)
ν(dy)

)
.

Likewise, we denote ψφ = argmaxψ∈L1(ν)E
µ,ν
λ (φ, ψ) with the analogous expression to the one

given above, interchanging the roles of φ and ψ. Then, the maximum in (4) is attained by any pair
(φ∗, ψ∗) such that φ∗ = φψ∗ and ψ∗ = ψφ∗ ; such a pair is said to solve the Schrödinger system and
it is unique up to translations (φ∗ + a, ψ∗ − a) by any constant a ∈ R. The optimal coupling that
solves the primal problem (3) can be obtained from the pair (φ∗, ψ∗) via the primal-dual relation

γ∗(dx, dy) = exp

(
φ∗(x) + ψ∗(y)− c(x, y)

λ

)
µ(dx)ν(dy).

We conclude this section by listing two properties of functions of the form φψ . These properties will
be used repeatedly throughout this paper. First, for any ψ we have∫

X

∫
X

exp

(
φψ(x) + ψ(y)− c(x, y)

λ

)
ν(dy)µ(dx) = 1,

which means, in particular, that for any ψ we have

Eµ,νλ (φψ, ψ) = EX∼µ[φψ(X)] + EY∼ν [ψ(Y )]. (5)
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The second property of interest is that for any ψ and any x, x′ ∈ X it holds that

φψ(x)− φψ(x′) = −λ log

∫
exp

(
ψ(y)−c(x,y)

λ

)
ν(dy)∫

exp
(
ψ(y)−c(x′,y)

λ

)
ν(dy)

= −λ log

∫
exp

(
ψ(y)−c(x′,y)+c(x′,y)−c(x,y)

λ

)
ν(dy)∫

exp
(
ψ(y)−c(x′,y)

λ

)
ν(dy)

≤ sup
y∈X

c(x′, y)− c(x, y) ≤ c∞(X ).

In particular, for any ψ we have

‖φψ‖osc = sup
x
φψ(x)− inf

x′
φψ(x′) ≤ c∞(X ). (6)

2.2 Doubly Regularized Entropic Barycenters

Let ν = (ν1, . . . , νk) ∈ P(X )k be k probability measures and let w ∈ Rk be a vector of positive
numbers that sum to one. Given the inner regularization strength λ > 0 and the outer regularization
strength τ > 0, the (λ, τ) barycenter µλ,τ ∈ P(X ) of probability measures ν with respect to the
weights vector w is defined as the unique solution to the following optimization problem:

µλ,τ = argminµ∈P(X )

k∑
j=1

wjTλ(µ, νj) + τKL(µ, πref), (7)

where πref ∈ P(X ) is a reference probability measure.

We will now describe how to obtain a concave dual maximization problem to the primal problem
(7), following along the lines of Chizat [17, Section 2.3], where the interested reader will find a
comprehensive justification of all the claims made in the rest of this section.

First, using the semi-dual formulation of entropic optimal transport problem (5), we have, for each
j ∈ {1, . . . , k}

Tλ(µ, νj) = sup
ψj∈L1(νj)

EX∼µ[φψj (X)] + EY∼νj [ψj(Y )].

Denote ψ = (ψ1, . . . , ψj) ∈ L1(ν). Then, we may rewrite the primal problem (7) by

min
µ∈P(X)

max
ψ∈L1(ν)

k∑
j=1

wjEY∼νj

[
ψj(Y )

]
+ EX∼µ

[ k∑
j=1

wjφψj (X)
]

+ τKL(µ, πref).

Interchanging min and max, which is justified using compactness of X as detailed in [17], we obtain
the dual optimization objective Eν,wλ,τ : L1(ν)→ R defined by

Eν,wλ,τ (ψ) = min
µ∈P(X)

k∑
j=1

wjEY∼νj

[
ψj(Y )

]
+ EX∼µ

[ k∑
j=1

wjφψj (X)
]

+ τKL(µ, πref).

=

k∑
j=1

wjEY∼νj

[
ψj(Y )

]
− τ log

∫
exp

(
−∑k

j=1 wjφψj (x)

τ

)
πref(dx).

(8)

The infimum above is attained by the measure

µψ(dx) = Z−1
ψ exp

(
−∑k

j=1 φψj (x)

τ

)
πref(dx), Zψ =

∫
exp

(
−∑k

j=1 φψj (x)

τ

)
πref(dx).

To each dual variable ψ we associate the marginal measures νjψ(dy) defined for j = 1, . . . , k by

νjψ(dy) = νj(dy)

∫
exp

(
φψj (x) + ψj(y)− c(x, y)

λ

)
µψ(dx). (9)
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Finally, we mention that the objective Eν,wλ,τ is concave and for any ψ,ψ′ it holds that

lim
h→0

Eν,wλ,τ (ψ + hψ′)− Eν,wλ,τ (ψ)

h
=

k∑
j=1

wj

(
Eνj [(ψ′)j ]−Eνj

ψ
[(ψ′)j ]

)
.

In particular, fixing any optimal dual variable ψ∗, for any ψ it holds using concavity of Eν,wλ,τ that

0 ≤ Eν,wλ,τ (ψ∗)− Eν,wλ,τ (ψ) ≤
k∑
j=1

wk

(
Eνj

[
(ψ∗)j − ψj

]
−Eνj

ψ

[
(ψ∗)j − ψj

])
. (10)

This concludes our overview of the background material on (λ, τ)-barycenters.

3 Damped Sinkhorn Scheme

This section introduces a damped Sinkhorn-based optimization scheme (Algorithm 1) and provides
guarantees for its convergence (Theorem 1). Before describing the algorithm, we make a quick detour
to the following lemma, proved in Appendix A, which shows that the sub-optimality gap bounds on
the dual objective (8) can be transformed into corresponding bounds on relative entropy between the
(λ, τ)-barycenter and the barycenter associated to a given dual variable.
Lemma 1. Fix any λ, τ > 0 and ν, w. Let ψ∗ be the maximizer of dual problem Eν,wλ,τ and let µψ∗
be the corresponding minimizer of the primal objective (7). Then, for any ψ ∈ L1(ν) we have

KL(µψ∗ , µψ) ≤ τ−1(Eν,wλ,τ (ψ∗)− Eν,wλ,τ (ψ)).

We now turn to describing an iterative scheme that ensures convergence of the dual suboptimality gap
to zero. Let ψt be an iterate at time t. Then, we have

Eν,wλ,τ (ψt) = L(ψt,φt, µt) =

k∑
j=1

wjEνj [ψjt ]−Eµt [φ
j
t ] + τKL(µt, πref),

where

φj = argmaxφE
µt−1,ν

j

λ (φ, ψjt ) and µt = argminµ

{
Eµ
[∑

j

wjφ
j
t

]
+ τKL(µ, πref)

}
. (11)

In particular, when optimizing the dual objective Eν,wλ,τ , every time the variable ψt is updated, it
automatically triggers the exact maximization/minimization steps defined in (11). It is thus a natural
strategy to fix φt and µt and perform exact minimization on ψ, which can be done in closed form:

ψjt+1 = argmaxψ E
µt,ν

j

λ (φjt , ψ) = ψjt − λ log
dνjt
dνj

, (12)

where νjt denotes the marginal distribution νjψt
defined in (9). The update (12) performs a Sinkhorn

update on each block of variables ψj . Together, the update (12) followed by (11) results in the
iterative Bregman projections algorithm introduced in [7]. In [36], it was shown that this scheme
converges for the (λ, λ)-barycenters. The analysis of [36] is built upon a different dual formulation
from the one considered in our work; this alternative formulation is only available when τ = λ [17,
Section 2.3] and thus excludes the consideration of debiased barycenters (λ, λ/2).

We have observed empirically (see Appendix F) that the iterates of the iterative Bregman projections
(i.e., the scheme of updates defined in (12) and (11)) diverge whenever τ < λ/2. Indeed, decreasing
the outer regularization parameter τ makes the minimization step in (11) less stable. As a result, the
cumulative effect of performing the updates (12) and (11) may result in a decrease in the value of the
optimization objective Eν,wλ,τ .

One of the main contributions of our work is to show that this bad behaviour can be mitigated
by damping the exact Sinkhorn updates (12). This leads to Algorithm 1 for which convergence
guarantees are provided in Theorem 1 stated below.
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Algorithm 1: Exact Damped Sinkhorn Scheme
Input: regularization strengths λ, τ > 0, reference measure πref ,number of iterations T and k

marginal measures ν1, . . . , νk with positive weights w1, . . . , wk such that
∑k
j=1 wj = 1.

1. Set η = min(1, τ/λ) and initialize (ψj0) = 0 for j ∈ {1, . . . , k}.
2. For t = 0, 1 . . . , T − 1 do

(a) φjt (x)← −λ log
∫
X exp((ψjt (y)− c(x, y))/λ)νj(dy) for j ∈ {1, . . . , k}

(b) Vt(x)←∑k
j=1 wjφ

j(t)(x)

(c) Zt ←
∫

exp(−Vt(x)/τ)dπref(dx)

(d) µt(dx)← Z−1
t exp(−Vt(x)/τ)πref(dx)

(e) dνj
t

dνj (y)←
∫

exp
(
φj
t(x)+ψj

t (y)−c(x,y)
λ

)
µt(dx) for j ∈ {1, . . . , k}.

(f) ψjt+1(y)← ψjt (y)− ηλ log
dνj

t

dνj (y) for j ∈ {1, . . . , k}.
3. Return (φjT , ψ

j
T )kj=1.

Theorem 1. Fix any λ, τ > 0 and ν, w. Let ψ∗ be the maximizer of dual problem Eν,wλ,τ . Let (ψt)t≥0

be the sequence of iterates generated by Algorithm 1. Then, for any t ≥ 1 it holds that

Eν,wλ,τ (ψ∗)− Eν,wλ,τ (ψt) ≤
2c∞(X )2

min(λ, τ)

1

t
.

Our convergence analysis draws upon the existing analyses of Sinkhorn’s algorithm [2, 25], which
in turn are based on standard proof strategies in smooth convex optimization (e.g., [44, Theorem
2.1.14]). Concerning the proof of Theorem 1, the main technical contribution of our work lies in the
following proposition proved in Appendix B.
Proposition 1. Consider the setup of Theorem 1. Then, for any integer t ≥ 0 it holds that

Eν,wλ,τ (ψt+1)− Eν,wλ,τ (ψt) ≥ min (τ, λ)

k∑
j=1

wjKL(νj , νjt ).

With Proposition 1 at hand, we are ready to prove Theorem 1.

Proof of Theorem 1. Denote δt = Eν,wλ,τ (ψ∗)−Eν,wλ,τ (ψt). We would like to relate the suboptimality
gap δt to the increment δt − δt+1. To do this, we will first show that the iterates ψt have their
oscillation norm bounded uniformly in t. Indeed, for any j ∈ {1, . . . , k}, any t ≥ 1, and any y ∈ X
we have

ψjt (y) = (1− η)ψjt−1(y) + ηψφj
t
(y).

By (6), ψφj
t

has oscillation norm bounded by c∞(X ). Because ψj0 = 0 and η ∈ (0, 1], by induction
on t it follows that ‖ψt‖osc ≤ c∞(X ) for any t ≥ 0. Combining the bound on the dual sub-optimality
gap (10) with Pinsker’s inequality yields

δt ≤ 2c∞(X )

k∑
j=1

wj‖νj − νjt ‖TV ≤
√

2c∞

k∑
j=1

wj

√
KL(νj , νjt ).

Using concavity of the square root function, Proposition 1 yields for any t ≥ 0

δt − δt+1 ≥ min(λ, τ)

k∑
j=1

wjKL(νj , νjt ) ≥ min(λ, τ)

2c∞(X )2
δ2
t .

By Proposition 1, the sequence δt is non-increasing. Hence, dividing the above equality by δtδt+1

yields
1

δt+1
− 1

δt
≥ min(λ, τ)

2c∞(X )2
.

Telescoping the left hand side completes the proof.
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4 Approximate Damped Sinkhorn Scheme

In this section, we extend the analysis of Algorithm 1 to an approximate version of the algorithm.
Then, in Section 4.1, we describe how inexact updates may be implemented via approximate random
sampling, thus enabling the computation of (λ, τ)-barycenters in the free-support setting with
convergence guarantees.

Algorithm 2 describes an inexact version of Algorithm 1. It replaces the damped Sinkhorn iterations
of Algorithm 1 via approximate updates computed by an approximate Sinkhorn oracle – a procedure
that satisfies the properties listed in Definition 1.

Definition 1 (Approximate Sinkhorn Oracle). An ε-approximate Sinkhorn oracle is a procedure that

given any ψ and any index j ∈ {1, . . . , k}, returns a Radon-Nikodym derivative
dν̃j
ψ

dνj of a measure
ν̃jψ � νj that satisfies the following properties:

1.
dν̃j
ψ

dνj is strictly positive on the support of νj ;

2. ‖ν̃jψ − ν
j
ψ‖TV ≤ ε/(2c∞(X ));

3. EY∼νj [
dνj
ψ

dν̃j
ψ

(Y )] ≤ 1 + ε2/(2c∞(X )2);

4. For any η ∈ [0, 1] and any j ∈ {1, . . . , k} it holds that ‖ψj + ηλ log(dν̃jψ/dν
j)‖osc ≤

(1− η)‖ψj‖osc + ηc∞(X ).

Algorithm 2: Approximate Damped Sinkhorn Scheme
Input: error tolerance parameter ε > 0, a function “ApproximateSinkhornOracle” satisfying

properties listed in Definition 1, regularization strengths λ, τ > 0, reference measure
πref ,number of iterations T and k marginal measures ν1, . . . , νk with positive weights
w1, . . . , wk such that

∑k
j=1 wj = 1.

1. Set η = min(1, τ/λ) and initialize (ψj0) = 0 for j ∈ {1, . . . , k}.
2. For t = 0, 1 . . . , T − 1 do

(a) dν̃j
t

dνj (y)← ApproximateSinkhornOracle(ν, λ, τ,ψt, ε, j) for j ∈ {1, . . . , k}.
(b) ψjt+1(y)← ψjt (y)− ηλ log

dν̃j
t

dνj (y) for j ∈ {1, . . . , k}.
3. Return (φjT , ψ

j
T )kj=1.

The following theorem shows that Algorithm 2 enjoys the same convergence guarantees as Algo-
rithm 1 up to the error tolerance of the procedure used to implement the approximate updates. A
noteworthy aspect of the below theorem is that the error does not accumulate over the iterations.

Theorem 2. Fix any λ, τ > 0 and ν, w. Let ψ∗ be the maximizer of dual problem Eν,wλ,τ . Let (ψ̃t)t≥0

be the sequence of iterates generated by Algorithm 2 with the accuracy parameter ε ≥ 0. Let
T = min{t : Eν,wλ,τ (ψ∗)− Eν,wλ,τ (ψ̃t) ≤ 2ε}. Then, for any t ≤ T it holds that

Eν,wλ,τ (ψ∗)− Eν,wλ,τ (ψ̃t) ≤ 2ε+
2c∞(X )2

min(λ, τ)

1

t
.

The proof of the above theorem can be found in Appendix C.

4.1 Implementing the Approximate Sinkhorn Oracle

In this section, we show that the approximate Sinkhorn oracle (see Definition 1) can be implemented
using approximate random sampling when the marginal distributions νj are discrete. To this end, fix
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the regularization parameters λ, τ > 0, the weight vector w, and consider a set of k discrete marginal
distributions

νj =

mj∑
l=1

νj(yjl )δyjl
,

where δx is the Dirac measure located at x and νj(yjl ) is equal to the probability of sampling the
point yjl from measure νj . We denote the total cardinality of the support of all measures νj by

m =

m∑
j=1

mj .

Fix any ψ ∈ L1(ν). Suppose we are given access to n i.i.d. samples X1, . . . , Xn from a probability
measure µ′ψ that satisfies

‖µψ − µ′ψ‖TV ≤ εµ.
Then, for j = 1, . . . , k and l = 1, . . . ,mj consider

ν̂j(yji ) = νj(yji )
1

n

n∑
i=1

exp

(
φψj (Xi) + ψj(y)− c(x, y)

λ

)
and for any parameter ζ ∈ (0, 1/2] define

ν̃j = (1− ζ)ν̂j + ζνj . (13)

We claim that ν̃j implements the approximate Sinkhorn oracle with accuracy parameter of order
O(ε

1/4
µ ) provided that n is large enough. This is shown in the following lemma, the proof of which

can be found in Appendix D.
Lemma 2. Fix any δ ∈ (0, 1) and consider the setup described above. With probability at least 1− δ,
for each j ∈ {1, . . . , k} it holds simultaneously that the measure ν̃j defined in (13) satisfies all the
properties listed in Definition 1 with accuracy parameter

εj ≤ c∞(X )

(
2ζ +

1

ζ
mjεµ +

1

ζ
mj

√
2 log

(
2m
δ

)
n

)1/2

.

The above lemma shows that a step of Algorithm 2 can be implemented provided access to i.i.d.
sampling from some measure µ′ψ close to µψ in total variation norm, where ψ is an arbitrary iterate
of Algorithm 2. The remainder of this section is dedicated to showing that this can be achieved by
sampling via Langevin Monte Carlo.

Henceforth, fix πref to be the Lebesgue measure on X , which corresponds to the free-support
barycenters setup. Then, for any ψ we have

µψ(dx) ∝ 1X exp(−Vψ(x)/τ)dx, where Vψ(x) =

k∑
j=1

wjφ
j
ψj ,

where 1X is equal to one on X and zero everywhere else. It follows by (6) that ‖Vψ‖osc ≤ c∞(X )/τ .
Further, let diamX = supx,x′∈X ‖x − x′‖2. By the convexity of X , the uniform measure on X
satisfies the logarithmic Sobolev inequality (LSI) with constant diam(X )2/4 (cf. [37]). Hence, by
the Holley-Stroock perturbation argument [32], the measure µψ satisfies LSI with constant at most
exp (2c∞(X )/τ) diam(X )2/4 <∞.

It is well-established that Langevin Monte Carlo algorithms offer convergence guarantees for ap-
proximate sampling from a target measure subject to functional inequality constraints provided
additional conditions hold such as the smoothness of the function Vψ. However, such guarantees
do not directly apply to the measure µψ due to its constrained support. Instead, it is possible to
approximate µψ arbitrarily well in total variation norm by a family of measures (µψ,σ)σ>0 (see
Appendix E for details) supported on all of Rd. Tuning the parameter σ allows us to trade-off between
the approximation quality of µψ,σ and its LSI constant. Crucially, standard sampling guarantees for
Langevin Monte Carlo (e.g., [57]) apply to the regularized measures µψ,σ, which leads to provable
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guarantees for an implementation of Algorithm 2, thus furnishing the first convergence guarantees for
computation of Wasserstein barycenters in the free support setup; see Theorem 3 stated below.

The above approximation argument applies to any cost function c that is Lipschitz on X and exhibits
quadratic growth at infinity. For the sake of simplicity, we consider the quadratic cost c(x, y) =
‖x − y‖22. The exact problem setup where we are able to obtain computational guarantees for
free-support barycenter computation via Langevin Sampling is formalized below.
Problem Setting 1. Consider the setting described at the beginning of Section 4.1. In addition,
suppose that

1. the reference measure πref(dx) = 1Xdx is the Lebesgue measure supported on X (free-
support setup);

2. it holds that X ⊆ BR = {x ∈ Rd : ‖x‖2 ≤ R} for some constant R <∞;

3. the cost function c : Rd × Rd → [0,∞) is defined by c(x, y) = ‖x− y‖22;

4. for any ψ we have access to a stationary point xψ of Vψ over X .

The last condition can be implemented in polynomial time using a first order gradient method. For our
purposes, this condition is needed to obtain a good initialization point for the Unadjusted Langevin
Algorithm following the explanation in [57, Lemma 1]; see Appendix E for further details.

We now proceed to the main result of this section, the proof of which can be found in Appendix E.
The following theorem provides the first provably convergent method for computing Wasserstein
barycenters in the free-support setting. We remark that a stochastic approximation argument of a
rather different flavor used to compute fixed-support Wasserstein barycenters (for τ ≥ λ) has been
previously analyzed in [5].
Theorem 3. Consider the setup described in Problem Setting 1. Then, for any confidence parameter
δ ∈ (0, 1) and any accuracy parameter ε > 0, we can simulate a step of Algorithm 2 with success
probability at least 1− δ in time polynomial in

ε−1, d, R, exp(R2/τ), (Rd−1/4)d, τ−1, λ−1, d,m, log(m/δ).

In particular, an ε-approximation of the (λ, τ)-Barycenter can be obtained within the same computa-
tional complexity.

Comparing the above guarantee with the discussion following the statement of Lemma 2, we see
an additional polynomial dependence on (Rd−1/4)d (note that for R ≤ d1/4 this term disappears).
We believe this term to be an artefact of our analysis appearing due to the approximation argument
described above. Considering the setup with R ≤ d1/4, the running time of our algorithm depends
exponentially in R2/τ .

We conclude with two observations. First, since approximating Wasserstein barycenters is generally
NP-hard [4], an algorithm with polynomial dependence on all problem parameters does not exist if
P 6= NP. Second, notice that computing an ε approximation of (λ, τ)-Barycenter can be done in
time polynomial in ε−1. This should be contrasted with numerical schemes based on discretizations
of the set X , which would, in general, result in computational complexity of order (R/ε)d to reach
the same accuracy.

5 Conclusion

We introduced algorithms to compute doubly regularized entropic Wasserstein barycenters and studied
their computational complexity, both in the fixed-support and in the free-support settings. Although a
naive adaptation of the usual alternate maximization scheme from [7] to our setting leads to diverging
iterates (at least for small values of τ ), our analysis shows that it is sufficient to damp these iterations
to get a converging algorithm.

While we have focused on the problem of barycenters of measures, we note that the idea of entropic
regularization is pervasive in other applications of optimal transport. There, the flexibility offered by
the double entropic regularization may prove to be useful as well, and we believe that our damped
algorithm could be adapted to these more general settings.
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A Proof of Lemma 1

To simplify the notation throughout this proof, for each j ∈ {1, . . . , k} denote φj = φψj . We have

Eν,wλ,τ (ψ∗)− Eν,wλ,τ (ψ) =

k∑
j=1

wjEY∼νj

[
(ψ∗)j(Y )− ψj(Y )

]
− τ log

Zψ∗

Zψ
. (14)

Observe that for any x ∈ X it holds that

dµψ
dµψ∗

(x) =
Zψ∗

Zψ
exp

(
−
∑k
j=1 wj(φ

j(x)− (φ∗)j(x))

τ

)
.

Hence,

τ log
Zψ∗

Zψ
= τ logEX∼µψ∗

[
Zψ∗

Zψ

]
= τ logEX∼µψ∗

[
dµψ
dµψ∗

(x) exp

(∑k
j=1 wj(φ

j(x)− (φ∗)j(x))

τ

)]

= τ logEX∼µψ

[
exp

(∑k
j=1 wj(φ

j(x)− (φ∗)j(x))

τ

)]

= sup
µ�µψ

EX∼µ

 k∑
j=1

wj(φ
j(x)− (φ∗)j(x))

− τKL(µ, µψ)

 , (15)

where in the final expression we have applied the Donsker-Varadhan variational principle (i.e., convex-
conjugate duality between KL-divergence and cumulant generating functions); therein, the supremum
runs over probability measures µ absolutely continuous with respect to µψ, and it is attained by µ
defined as

µ(dx) ∝ exp

1

τ

k∑
j=1

wj(φ
j(x)− (φ∗)j(x))

µψ(dx)

∝ exp

1

τ

k∑
j=1

wj(φ
j(x)− (φ∗)j(x))

 exp

−1

τ

k∑
j=1

wjφ
j(x)

πref(dx)

∝ exp

−1

τ

k∑
j=1

wj(φ
∗)j(x)

πref(dx) = πψ∗(dx).

That is, the supremum in (15) is attained by µ = µψ∗ . Hence, the identity (14) becomes
Eν,wλ,τ (ψ∗)− Eν,wλ,τ (ψ)

=

k∑
j=1

wjEY∼νj

[
(ψ∗)j(Y )− ψj(Y )

]
−EX∼µψ∗

[ k∑
j=1

wj(φ
j(X)− (φ∗)j(X))

]
+ τKL(µψ∗ , µψ)

=

k∑
j=1

wj
(
EY∼νj

[
(ψ∗)j(Y )− ψj(Y )

]
+ EX∼µψ∗

[
(φ∗)j(X))− φj(X)

])
+ τKL(µψ∗ , µψ)

≥ τKL(µψ∗ , µψ),

where the final inequality follows by noting that for each j the optimality of the pair ((φ∗)j , (ψ∗)j)

for the entropic optimal transport dual objective Eµψ∗ ,ν
j

λ implies that

EY∼νj

[
(ψ∗)j(Y )− ψj(Y )

]
+ EX∼µψ∗

[
(φ∗)j(X)− φj(X)

]
= Eµ,ν

j

λ ((φ∗)j , (ψ∗)j)− Eµ,ν
j

λ (φj , ψj) ≥ 0.

The proof of Lemma 1 is complete.
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B Proof of Proposition 1

Recall that for any non-negative integer t we have

µt(dx) = Z−1
t exp

(
−
∑k
j=1 wjφ

j
t (x)

τ

)
πref(dx).

where Zt is the normalizing constant defined by

Zt =

∫
X

exp

(
−
∑k
j=1 wjφ

j
t (x)

τ

)
πref(dx).

With the notation introduced above, we have

E(ψt) =

k∑
j=1

wjEY∼νj

[
ψjt (Y )

]
− τ logZt.

Hence,

E(ψt+1)− E(ψt) =

k∑
j=1

wjEY∼νj

[
ψjt+1(Y )− ψjt (Y )

]
− τ log

Zt+1

Zt
.

= ηλ

k∑
j=1

wjEY∼νj

[
log

dνj

dνjt
(Y )

]
− τ log

Zt+1

Zt
.

= min (λ, τ)

k∑
j=1

wjKL(νj , νjt )− τ log
Zt+1

Zt
.

Therefore, to prove Proposition 1 it suffices to show that the inequality

log
Zt+1

Zt
≤ 0 (16)

holds for any t ≥ 0. We will complete the proof of Proposition 1 using the following lemma, the
proof of which is deferred to the end of this section.

Lemma 3. Let (ψt)t≥0 be any sequence of the form

ψjt+1 = ψjt + ηλ log(∆j
t ),

where for j ∈ {1, . . . , k}, (∆j
t )t≥0 is an arbitrary sequence of strictly positive functions and

η = min(1, τ/λ). Then, for any t ≥ 0 it holds that

τ log
Zψt+1

Zψt

≤ min(λ, τ) log

k∑
j=1

wjEY∼νj
ψt

[
∆j
t (Y )

]
.

To complete the proof of Proposition 1, we will apply the above lemma with ∆j
t = dνj

dνj
t

. Indeed, we
have

τ log
Zt+1

Zt
≤ min(λ, τ) log

k∑
j=1

wjEY∼νj
t

[
dνj

dνjt
(Y )

]

= min(λ, τ) log

k∑
j=1

wjEY∼νj [1]

= 0.

By (16), the proof of Proposition 1 is complete.
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B.1 Proof of Lemma 3

We will break down the proof with the help of the following lemma, the proof of which can be found
in Section B.2.
Lemma 4. For any sequence (ψt)t≥0 and any t ≥ 0 it holds that

log
Zψt+1

Zψt
≤


λ
τ log

∑k
j=1 wjEX∼µt

[
exp

(
−φj

t+1(X)+φj
t(X)

τ

)τ/λ]
if τ ≥ λ,

log
∑k
j=1 wjEX∼µt

[
exp

(
−φj

t+1(X)+φj
t(X)

τ

)]
if τ < λ,

where φt = φψt
and µt(dx) = Z−1

ψt
exp(−∑k

j=1 wjφ
j
t (x)/τ)πref(dx).

Observe that the sequence (ψt)t≥0 of the form stated in Lemma 3 satisfies, for any for any j ∈
{1, . . . , k} and any t ≥ 0,

exp

(
−φjt+1 + φjt

τ

)
= exp

(
−λ
τ

log
dµt

dµ̃jt

)
=

(
dµ̃jt
dµt

)λ/τ
,

where
dµ̃jt
dµt

(x) =

∫
X
ν(dy) exp

(
ψjt+1(y) + φjt (x)− c(x, y)

λ

)

=

∫
X
νj(dy)∆j

t (y)η exp

(
ψjt (y) + φjt (x)− c(x, y)

λ

)
.

Hence, by Lemma 4 we have

log
Zψt+1

Zψt

≤ 1

τ
min(λ, τ)

k∑
j=1

wjEX∼µt

[
(∫
X
νj(dy)∆j

t (y)η exp

(
ψjt (y) + φjt (X)− c(X, y)

λ

))max(1,λ/τ) ]
. (17)

We split the remaining proof into two cases: τ ≥ λ and τ < λ.

The case τ ≥ λ. When τ ≥ λ, we have max(1, λ/τ) = 1 and η = min(1, τ/λ) = 1. Thus, (17)
yields

log
Zψt+1

Zψt

≤ 1

τ
min(λ, τ) log

k∑
j=1

wjEX∼µt

[∫
X
νj(dy)∆j

t (y) exp

(
ψjt (y) + φjt (X)− c(X, y)

λ

)]

=
1

τ
min(λ, τ) log

k∑
j=1

wj

[∫
X
µt(dx)

∫
X
νj(dy)∆j

t (y) exp

(
ψjt (y) + φjt (X)− c(X, y)

λ

)]

=
1

τ
min(λ, τ) log

k∑
j=1

wj

[∫
X

∆j
t (y)νj(dy)

∫
X

exp

(
ψjt (y) + φjt (X)− c(X, y)

λ

)
µt(dx)

]

=
1

τ
min(λ, τ) log

k∑
j=1

wj

[∫
X

∆j
t (y)νj(dy)

dνjψt

dνj
(y)

]

=
1

τ
min(λ, τ) log

k∑
j=1

wjEY∼νj
ψt

[
∆j
t (y)

]
.

This completes the proof of Lemma 3 when τ ≥ λ.
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The case τ < λ. For j ∈ {1, . . . , k} and any x ∈ X define the measure ρx by

ρjx(dy) = νj(dy) exp

(
ψjt (y) + φjt (x)− c(x, y)

λ

)
.

By the definition of φjt , we have∫
X
ρjx(dy)

=

∫
X
ν(dy) exp

(
ψjt (y)− c(x, y)

λ

)
exp

(
φjt (x)

λ

)

=

∫
X
ν(dy) exp

(
ψjt (y)− c(x, y)

λ

)
exp

(
− log

∫
X
νj(dy′) exp

(
ψjt (y

′)− c(x, y′)
λ

))
= 1

In particular, ρx is a probability measure. Hence, (17) can be rewritten as

log
Zψt+1

Zψt

≤ log

k∑
j=1

wjEX∼µt

[
EY∼ρjX

[
∆j
t (Y )η

∣∣∣∣X]λ/τ
]

Because λ/τ > 1, the function x 7→ xλ/τ is convex. Applying Jensen’s inequality to the conditional
expectation and using the fact that ηλ/τ = 1, it follows that

log
Zψt+1

Zψt

≤ log

k∑
j=1

wjEX∼µt

[
EY∼ρjX

[
∆j
t (Y )

∣∣∣∣X]]

= log

k∑
j=1

wj

∫
X
µt(dx)

∫
X

∆j
t (y) exp

(
ψjt (y) + φjt (x)− c(x, y)

λ

)
ν(dy). (18)

By the definition of νjψt
we have

dνjψt

dνj
(y) =

∫
X

exp

(
ψjt (y) + φjt (x)− c(x, y)

λ

)
µt(dx).

Interchanging the order of integration in (18) and plugging in the above equation yields

log
Zψt+1

Zψt

≤ log

k∑
j=1

wj

∫
X

[∫
X

exp

(
ψjt (y) + φjt (x)− c(x, y)

λ

)
µt(dx)

]
∆j
t (y)νj(dy)

= log

k∑
j=1

wj

∫
X

[
dνjψt

dνj
(y)

]
∆j
t (y)νj(dy)

= log

k∑
j=1

wjEY∼νj
ψt

[
∆j
t (Y )

]
.

This completes the proof of Lemma 3.

B.2 Proof of Lemma 4

To simplify the notation, denote Zt = Zψt
. Let x ∈ X and t ≥ 0. We have µt � µt+1 with the

Radon-Nikodym derivative dµt+1/dµt given by

dµt+1

dµt
(x) =

Zt
Zt+1

exp

(
−∑k

j=1 wk(φjt+1(x)− φjt (x))

τ

)

=
Zt
Zt+1

k∏
j=1

exp

(
−φjt+1(x) + φjt (x)

τ

)wj

.
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Multiplying both sides by Zt+1/Zt and taking expectations with respect to µt yields
Zt+1

Zt
= EX∼µt+1

[
Zt+1

Zt

]
= EX∼µt

[
Zt+1

Zt

dµt+1

dµt
(X)

]

= EX∼µt

 k∏
j=1

exp

(
−φjt+1(X) + φjt (X)

τ

)wj
 .

In the case τ < λ, the proof is complete by the Artihmetic-Geometric mean inequality (recall that
wj > 0 for j = 1, . . . , k and

∑k
j=1 wj = 1). On the other hand, if τ ≥ λ then x 7→ xλ/τ is concave.

Hence, it follows that

log
Zt+1

Zt
= logEX∼µt


 k∏
j=1

exp

(
−φjt+1(X) + φjt (X)

τ

)wjτ/λ
λ/τ


≤ logEX∼µt

 k∏
j=1

exp

(
−φjt+1(X) + φjt (X)

τ

)wjτ/λ
λ/τ

=
λ

τ
logEX∼µt

 k∏
j=1

exp

(
−φjt+1(X) + φjt (X)

τ

)wjτ/λ


≤
k∑
j=1

wjEX∼µt

exp

(
−φjt+1(X) + φjt (X)

τ

)τ/λ ,
where the final step follows via the Arithmetic-Geometric mean inequality. This completes the proof
of Lemma 4.

C Proof of Theorem 2

For every t ≥ 0 and j ∈ {1, . . . , k}, let ν̃jt be the distribution returned by the approximate Sinkhorn
oracle that satisfies the properties listed in Definition 1. We follow along the lines of proof of
Theorem 1.

First, we will establish an upper bound on the oscillation norm of the iterates ψ̃t. Indeed, by the
property four in Definition 1 we have

‖ψ̃jt+1‖osc ≤ (1− η)‖ψ̃jt ‖osc + ηc∞(X ).

Since ψ̃j0 = 0, for any t ≥ 0 we have ‖ψ̃jt ‖osc ≤ c∞(X ).

Let δ̃t = Eν,wλ,τ (ψ∗)−Eν,wλ,τ (ψ̃t) be the suboptimality gap at time t. Using the concavity upper bound
(10) and the property two in Definition 1 we have

δ̃t ≤ 2c∞(X )

k∑
j=1

wj‖νj − νjt ‖TV

≤ ε+ 2c∞(X )

k∑
j=1

wj‖νj − ν̃jt ‖TV

≤ ε+
√

2c∞(X )

k∑
j=1

wj

√
KL(νj , ν̃jt )

≤ ε+
√

2c∞(X )

√√√√ k∑
j=1

wjKL(νj , ν̃jt ).
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Combining the property three stated in the Definition 1 with Lemma 3 we obtain

δ̃t − δ̃t+1 ≥ min(λ, τ)

k∑
j=1

wjKL(vj , ṽjt )−min(λ, τ) log

 k∑
j=1

wj

∫
X

dνt
dν̃t

(y)νj(dy)


≥

k∑
j=1

wjKL(vj , ṽjt )−min(λ, τ) log
(
1 + ε2/(2c∞(X )2)

)
≥ min(λ, τ)

k∑
j=1

wjKL(vj , ṽjt )−
min(λ, τ)

2c∞(X )2
ε2

≥ min(λ, τ)

2c∞(X )2
max

{
0, δ̃t − ε

}2

− min(λ, τ)

2c∞(X )2
ε2.

Provided that δ̃t ≥ 2ε it holds that

(δ̃t − 2ε)− (δ̃t+1 − 2ε) ≥ min(λ, τ)

2c∞(X )
(δ̃t − 2ε)2.

Let T be the first index such that δ̃T+1 < 2ε and set T =∞ if no such index exists. Then, the above
equation is valid for any t ≤ T . In particular, repeating the proof of Theorem 1, for any t ≤ T we
have

δ̃t − 2ε ≤ 2c∞(X )2

min(λ, τ)

1

t
,

which completes the proof of this theorem.

D Proof of Lemma 2

The first property – the positivity of the probability mass function of ν̃j – is immediate from its
definition.

To simplify the notation, denote in what follows

Kj(x, y) = exp

(
φψj (x) + ψj(y)− c(x, y)

λ

)
.

With this notation, recall that

ν̂jψ(yjl ) =
1

n

n∑
i=1

νj(yjl )K(Xi, y
j
l ).

The above is a sum of n non-negative random variables bounded by one with expectation

(ν′)j(yjl ) = EX∼µ′ψ

[
νj(yjl )

]
It follows by Hoeffding’s inequality and the union bound that with probability at least 1 − δ the
following holds for any j ∈ {1, . . . , k} and any l ∈ {1, . . . ,mj}:∣∣∣ν̂ψ(yjl )− (ν′)j(yjl )

∣∣∣ ≤
√

2 log
(

2m
δ

)
n

.

In particular, the above implies that

‖ν̃jψ − ν
j
ψ‖TV ≤ 2ζ + (1− ζ)‖ν̃jψ − ν

j
ψ‖TV

≤ 2ζ + (1− ζ)‖ν̃jψ − (ν′)j‖TV + (1− ζ)‖(ν′)j − νjψ‖TV

≤ 2ζ + ‖ν̃jψ − (ν′)j‖TV + ‖(ν′)j − νjψ‖TV

≤ 2ζ +mjεµ +mj

√
2 log

(
2m
δ

)
n

.
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Notice that the above bound can be made arbitrarily close to mjεµ by taking a large enough n and a
small enough ζ. This proves the second property of Definition 1.

To prove the third property, observe that

EY∼νj

[
νjψ(Y )

ν̃jψ(Y )

]
= EY∼νj

[
ν̂jψ(Y )

ν̃jψ(Y )
+
νjψ(Y )− ν̂jψ(Y )

ν̃jψ(Y )

]

≤ EY∼νj

[
1

1− ζ +
νjψ(Y )− ν̂jψ(Y )

ν̃jψ(Y )

]

≤ EY∼νj

1 +
ζ

1− ζ +

∣∣∣νjψ(Y )− ν̂jψ(Y )
∣∣∣

ν̃jψ(Y )


≤ 1 +

ζ

1− ζ +
1

ζ
‖νjψ(Y )− ν̂jψ(Y )‖TV

≤ 1 + 2ζ +
1

ζ

mjεµ +mj

√
2 log

(
2m
δ

)
n

 .

This concludes the proof of the third property.

It remains to prove the fourth property of Definition 1. Observe that for any y, y′ we have(
ψj(y)− ηλ log

ν̃j(y)

νj(y)

)
−
(
ψj(y′)− ηλ log

ν̃j(y′)

νj(y′)

)
=
(
ψj(y)− ψj(y′)

)
+ ηλ log

(
ζ + (1− ζ) 1

n

∑n
i=1K

j(Xi, y
′)

ζ + (1− ζ) 1
n

∑n
i=1K

j(Xi, y)

)

=
(
ψj(y)− ψj(y′)

)
+ ηλ log

(
ζ

1−ζ + 1
n

∑n
i=1K

j(Xi, y
′)

ζ
1−ζ + 1

n

∑n
i=1K

j(Xi, y)

)

≤
(
ψj(y)− ψj(y′)

)
+ ηλ log

 ζ
1−ζ + exp

(
c∞(X )+ψj(y′)−ψj(y)

λ

)
1
n

∑n
i=1K

j(Xi, y)

ζ
1−ζ + 1

n

∑n
i=1K

j(Xi, y)

 .

Now observe that for any a, b > 0 the function g : [0,∞)→ (0,∞) defined by g(x) = (x+a)/(x+b)
is increasing if a < b and decreasing if a ≥ b. Thus, g is maximized either at zero or at infinity. It
thus follows that

ηλ log

 ζ
1−ζ + exp

(
c∞(X )
λ

)
1
n

∑n
i=1K

j(Xi, y)

ζ
1−ζ + 1

n

∑n
i=1K

j(Xi, y)


≤
{
ηc∞(X )− η(ψj(y)− ψj(y′)) if exp

(
c∞(X )
λ

)
≥ 1

0 otherwise.

This proves the claim and completes the proof of this lemma.

E Proof of Theorem 3

The purpose of this section is to show how sampling via Langevin Monte Carlo algorithm yields
the first provable convergence guarantees for computing barycenters in the free-support setup (cf.
the discussion at the end of Section 2.2). In particular, we provide computational guarantees for
implementing Algorithm 2.

A measure µ is said to satisfy the logarithmic Sobolev inequality (LSI) with constant C if for all
sufficiently smooth functions f it holds that

Eµ[f2 log f2]−Eµ[f2] logEµ[g2] ≤ 2CEµ[‖∇f‖22].
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To sample from a measure µ(dx) = exp(−f(x))dx supported on Rd, the unadjusted Langevin Monte
Carlo algorithm is defined via the following recursive update rule:

xk+1 = xk − η∇f(xk) +
√

2ηZk, where Zk ∼ N (0, Id). (19)

The following Theorem is due to Vempala and Wibisono [57, Theorem 3].

Theorem 4. Let µ(dx) = exp(−f(x))dx be a measure on Rd. Suppose that µ satisfies LSI a with
constant C and that f has L-Lipschitz gradient with respect to the Euclidean norm. Consider the
sequence of iterates (xk)k≥0 defined via (19) and let let ρk be the distribution of xk. Then, for any
ε > 0, any η ≤ 1

8L2C min{1, ε4d}, and any k ≥ 2C
η log 2KL(ρ0,µ)

ε , it holds that

KL(ρk, µ) ≤ ε.

Thus, LSI on the measure µ provides convergence guarantees on KL(ρk, µ). It is shown in [57,
Lemma 1] how to initialize the iterate x0 so that KL(ρ0, µ) scales linearly with the ambient dimension
d up to some additional terms. The final condition described in Problem Setting 1 ensures that (by
[57, Lemma 1]) for any σ > 0, the initialization scheme x0 ∼ N (xψ, Id) for the Langevin algorithm
(19) satisfies

KL(ρ0, µψ,σ) ≤ c∞(X )

τ
+
d

2
log

Lσ
2π
,

where Lσ is the smoothness constant of Vψ/τ + dist(x,X )/(2σ2) (see Lemma 5) and µψ,σ is the
probability measure defined in (20).

To implement the approximate Sinkhorn oracle described in Definition 1, we can combine Lemma 2
with approximate sampling via Langevin Monte Carlo; note that by Pinsker’s inequality, Kullback-
Leibler divergence guarantees provide total variation guarantees which are sufficient for the applica-
tion of Lemma 2. Therefore, providing provable convergence guarantees for Algorithm 2 amounts to
proving that we can do arbitrarily accurate approximate sampling from distributions of the form

µψ(dx) ∝ 1X (x) exp(−Vψ(x)/τ)dx, where Vψ(x) =

k∑
j=1

wjφ
j
ψj (x).

Here 1X is the indicator function of X , ψ is an arbitrary iterate generated by Algorithm 2, and we
consider the free-support setup characterized via the choice πref(dx) = 1Xdx.

Notice that we cannot apply Theorem 4 directly because the measure µψ defined above has con-
strained support while Theorem 4 only applies for measures supported on all of Rd. Nevertheless, we
will show that the compactly supported measure µψ can be approximated by a measure µψ,σ , where
the parameter σ will trade-off LSI constant of µψ,σ against the total variation norm between the two
measures. To this end, define

µψ,σ =∝ exp(−Vψ(x)/τ − dist(x,X )2/(2σ2))dx, where dist(x,X ) = inf
y∈X
‖x− y‖2. (20)

The following lemma, proved at the end of this section, collects the main properties of the measure
µψ,σ .

Lemma 5. Consider the setup described in Problem Setting 1. Let ψ be any iterate generated by
Algorithm 2 and let µψ,σ be the distribution defined in (20). Then, the measure µψ,σ satisfies the
following properties:

1. For any σ ∈ (0, 1/4] it holds that

‖µψ − µψ,σ‖TV ≤ 2σ exp

(
8R2

τ

)[(
4Rd−1/4

)d−1

+ 1

]
.

2. Let Vσ(x) = exp(−Vψ(x)/τ − dist(x,X )2/(2σ2)); thus µψ,σ(dx) = exp(−Vσ(x))dx.
The function Vσ has Lσ-Lipschitz gradient where

Lσ =
1

τ
+

1

τλ
4R2 max

j
mj +

1

σ2
.
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3. The measure µψ,σ satisfies LSI with a constant Cσ = poly(R, exp(R2/τ), Lσ).

Above, the notation C = poly(x, y, z) denotes a constant that depends polynomially on x, y and z.
With the above lemma at hand, we are ready to prove Theorem 3.

Proof of Theorem 3. Let ψ be an arbitrary iterate generated via Algorithm 2. We can simulate a step
of approximate Sinkhorn oracle with accuracy ε via Lemma 2 (with ζ = ε/4) in time poly(n,m, d)
provided access to n = poly(ε−1,m, log(m/δ)) samples from any distribution µ′ψ such that

‖µ′ψ − µψ‖TV ≤
ε2

16m
. (21)

To find a choice of µ′ψ satisfying the above bound, consider the distribution

µψ,σ with σ =
ε2

32m
·
(

2 exp

(
8R2

τ

)[(
4Rd−1/4

)d−1

+ 1

])−1

.

Let Cσ and Lσ be the LSI and smoothness constants of the distribution µψ,σ provided in Lemma 5.
By Theorem 4, it suffices to run the Langevin algorithm (19) for poly(ε−1,m, d, Cσ, Lσ) number
of iterations to obtain a sample from a distribution µ̃ψ,σ such that

‖µ̃ψ,σ − µψ,σ‖TV ≤
ε2

32m
.

In particular, by the triangle inequality for the total variation norm, the choice µ′ψ = µ̃ψ,σ satisfies
(21). This finishes the proof.

E.1 Proof of Lemma 5

To simplify the notation, denote µ = µψ, µσ = µψ,σ, V (x) = Vψ(x)/τ , and Vσ(x) = V (x)/τ +
dist(x,X )2/(2σ2).

Total variation norm bound. With the above shorthand notation, we have

µ(dx) = 1XZ
−1 exp(−V (x))dx, where Z =

∫
X

exp(−V (x))dx

and

µσ(dx) = (Z + Zσ)−1 exp(−Vσ(x))dx, where Zσ =

∫
Rd\X

exp(−Vσ(x))dx.

We have

‖µ− µσ‖TV =

∫
Rd\X

(Z + Zσ)−1 exp(−Vσ(x))dx+

∫
X
|(Z + Zσ)−1 − Z−1| exp(−V (x))dx

=
2Zσ

Z + Zσ
≤ 2Zσ

Z
≤ 2 exp

(
c∞(X )

τ

)
Zσ ≤ 2 exp

(
4R2

τ

)
Zσ.

We thus need to upper bound Zσ. Let Vol(A) be the Lebesgue measure of the set A, let ∂A denote
the boundary of A, and let A+B = {a+ b : a ∈ A, b ∈ B} be the Minkowski sum of sets A and
B. Using the facts that for each j ∈ {1, . . . , k} we have supy∈X ψ

j(y) ≤ c∞(X ) ≤ 4R2 and that
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X ⊆ BR = {x : ‖x‖2 ≤ R} we have

Zσ =

∫
Rd\X

exp(−Vσ(x))dx

≤ exp

(
4R2

τ

)∫
Rd\X

exp

(
−dist(x,X )

2σ2

)
dx

= exp

(
4R2

τ

)∫ ∞
0

Vol(∂(X + Bx)) exp

(
− x2

2σ2

)
dx

≤ exp

(
4R2

τ

)∫ ∞
0

Vol(∂BR+x) exp

(
− x2

2σ2

)
dx

= exp

(
4R2

τ

)
πd/2

Γ(d/2)

∫ ∞
0

(R+ x)d−1 exp

(
− x2

2σ2

)
dx.

Bounding (R+ x)d−1 ≤ 2d−1Rd−1 + 2d−1xd−1 and computing the integrals results in

‖µ− µσ‖TV ≤ 2 exp

(
8R2

τ

)
πd/2

Γ(d/2)
2d−1

[
Rd−1σ

√
π

2
+ 2d/2−1Γ(d/2)σd

]
≤ 2σ exp

(
8R2

τ

)[
(2R)d−1

Γ(d/2)
+ (4σ)d−1

]
.

Using the assumption σ ≤ 1/4 and using the bound Γ(d) ≥ (d/2)d/2 we can further simplify the
above bound to

‖µ− µσ‖TV ≤ 2σ exp

(
8R2

τ

)[(
4Rd−1/4

)d−1

+ 1

]
,

which completes the proof of the total variation bound.

Lipschitz constant of the gradient. Recall that for any any j ∈ {1, . . . , d} we have

φj(x)− 1

2
‖x‖22 = −λ log

 nj∑
l=1

exp

ψj(yjl )− ‖yjl ‖222 + 〈x, yjl 〉
λ

 νj(yjl )

 .

Denote φ̃j(x) = φj(x)− 1
2‖x‖22. Fix any x, x′ and define g(t) = φ̃j(x+ (x′ − x)t). Then, for any

t ∈ [0, 1] we have

g′′(s) = − 1

λ
VarL∼ρt

[
(Y j(x′ − x))L

]
≥ − 1

λ
‖x− x′‖22mj4R

2, (22)

where

ρt(l) ∝ ν(yjl ) exp

ψj(yjl )− ‖yjl ‖222 + 〈x+ t(x′ − x), yjl 〉
λ


and Y j ∈ Rd×mj is the matrix whose l-th column is equal to the vector yjl .

Because ψ̃j is concave, the bound (22) shows that φj is 1 + 1
λmj4R

2-smooth.

Combining the above with the fact that the convex function dist(x,X ) has 1-Lipschitz gradient [6,
Proposition 12.30] proves the desired smoothness bound on the function Vσ .

LSI Constant bound. The result follows, for example, by applying the sufficient log-Sobolev
inequality criterion stated in [13, Corollary 2.1, Equation (2.3)], combined with the bound (22). The
exact constant appearing in the log-Sobolev inequality can be traced from [13, Equation (3.10)].

F Numerical Experiments

In this section, we numerically validate our main theoretical results presented in Theorems 1 and 2.
We empirically demonstrate the necessity of damping Sinkhorn iterations when τ < λ/2. In addition,
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we examine empirical convergence rates of Algorithms 1 and 2 (for a specific implementation of the
approximate Sinkhorn oracle described below) in a simulation setup comprised of isotropic Gaussian
measures.1

Simulation setup. Let µ∗λ,τ denote the optimal (λ, τ)-barycenter; that is, µ∗λ,τ is the unique solution
to the optimization problem (2). Let (µt)t≥0 denote the iterates of either Algorithm 1 or Algorithm 2.
Then, the dual objective sub-optimality gap bounds of Theorems 1 and 2 combined with Lemma 1
establish the convergence of KL(µ∗λ,τ , µt) to zero as t goes to infinity.

To numerically compute KL(µ∗λ,τ , µt) we need to know the true (λ, τ)-barycenter µ∗λ,τ . The only
setup where µ∗λ,τ admits a known closed-form expression is when the marginal measures νj are
isotropic Gaussians with identical variance. In particular, it was shown in [17, Proposition 3.4] that
for νj = N(mj , σ

2Id) and for any non-negative weights (wj)
k
j=1 that sum to one, we have

µ∗λ,τ = N

 k∑
j=1

wjmj , ξ
2Id

 , where ξ2 =

(
σ2 +

√
(σ2 − λ)2 + 4σ2τ

)2

− λ2

4σ2
.

Hence, in all the simulations performed in this section, we let νj = N(mj , σ
2Id) for some mj ∈ Rd

and σ2 > 0. While this simulation setup allows for exact computations of the divergence measure
KL(µ∗λ,τ , µt), there are two primary limitations in our experimental design. First, the theoretical
results in this paper are proved under boundedness assumptions on the marginal measures, while
Gaussian distributions are unbounded. Second, our simulations do not cover the free-support
discrete point clouds setup investigated in Section 4.1 concerning the approximate Sinkhorn oracle
implementable via Monte Carlo sampling.

Implementation of Algorithm 1. When the marginals νj are Gaussian measures (not necessarily
isotropic) and when ψj0 = 0, then Sinkhorn updates admit a closed-form expression that result
in quadratic Sinkhorn potentials ψj , φj and Gaussian measure µt. In particular, the iterates of
Algorithm 1 can be written as

ψjt (y) =
1

2
y>Ajty−y>bjt + const, φjt (y) =

1

2
x>Cjt x−x>djt + const, µt = N(et,Σt) (23)

for some matrices At, Ct,Σt ∈ Rd×d and vectors bt, dt, et ∈ Rd that can be computed using explicit
recursive expressions (see, e.g., [34, 41]).

Implementation of Algorithm 2. We implement approximate Sinkhorn oracle (Definition 1) as
follows. Our updates maintain the property that the potentials ψj and φj are quadratic functions of the
form described in Equation (23). At every iteration t, we replace each matrix Ajt (for j = 1, . . . , k)
by performing the transformation Ajt 7→ Ajt −N j

t , where N j
t is a random positive-definite matrix

with trace equal to ε. In our simulations, each N j
t is obtained by drawing an independent d×d matrix

U with i.i.d. N(0, 1) entries and setting N j
t = ε · U>U/trace(U>U). The parameter ε controls the

approximation error of the implemented approximate Sinkhorn oracle.

Simulation results. We now comment on the main findings in our numerical simulations.

In Figure 1, we consider the toy setup k = 1, ν1 = N(0, 1). Figure 1a shows that undamped iterates
explode when τ < λ/2 (note the absence of the blue line due to the explosion of iterates when
λ/τ = 2.1). Figure 1b investigates the critical case τ ≈ λ/2 , noticing a sharp phase transition in the
convergence behavior. Figure 1c demonstrates that damping removes the bad behavior. Moreover, the
damping factor suggested in our work yields the fastest convergence among the tested five different
damping factor choices.

In Figure 2, we investigate an undamped inexact algorithm described above. As suggested by
Theorem 2, the iterates converge up to some level governed by the accuracy parameter ε of the inexact
Sinkhorn oracle.

1The code for reproducing the simulation results is available at https://github.com/
TomasVaskevicius/doubly-entropic-barycenters.
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In Figure 3, we perform the same simulations as in Figure 2, but this time with damping. We
observe again that damping helps significantly in the critical case τ ≈ λ/2, yielding a much faster
convergence rate. The second row in Figure 3 considers the overdamped case, where we observe
slightly slower convergence than that with the optimal choice of the damping parameter.

In Figure 4, investigate the effect of different levels of damping in the noisy setup (Algorithm 2). First,
observe that the undamped algorithm (η = 1) explodes in the noisy case with τ = λ/2, in contrast
to the zero-noise setup reported in Figure 1a. Moreover, we find that overdamping might have a
negative effect on attained accuracy: larger damping factors lead to lower accuracy at convergence in
noisy setups.
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(b) Phase transition at λ/τ = 2.
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Figure 1: Simulations for Algorithm 1 with k = 1, ν1 = N(0, 1).
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Figure 2: Setup: k = 3, w = (1/3, 1/3, 1/3), ν1 = ν2 = ν3 = N(0, I10). The effect of noise for
the inexact algorithm.
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Figure 3: Setup: k = 3, w = (1/3, 1/3, 1/3), ν1 = ν2 = ν3 = N(0, I10). The effect of noise for
the inexact algorithm. Second row overdamps.
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Figure 4: Setup: k = 3, w = (1/3, 1/3, 1/3), ν1 = ν2 = ν3 = N(0, I10). The effect of damping
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