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Abstract

We present the copy suppression motif: an001
algorithm implemented by attention heads in002
large language models that reduces loss. If003
i) language model components in earlier lay-004
ers predict a certain token, ii) this token ap-005
pears earlier in the context and iii) later atten-006
tion heads in the model suppress prediction of007
the token, then this is copy suppression. To008
show the importance of copy suppression, we009
focus on reverse-engineering attention head010
10.7 (L10H7) in GPT-2 Small. This head sup-011
presses naive copying behavior which improves012
overall model calibration, which explains why013
multiple prior works studying certain narrow014
tasks found negative heads that systematically015
favored the wrong answer. We uncover the016
mechanism that the negative heads use for copy017
suppression with weights-based evidence and018
are able to explain 76.9% of the impact of019
L10H7 in GPT-2 Small, by this motif alone.020
To the best of our knowledge, this is the most021
comprehensive description of the complete role022
of a component in a language model to date.023
One major effect of copy suppression is its024
role in self-repair. Self-repair refers to how025
ablating crucial model components results in026
downstream neural network parts compensat-027
ing for this ablation. Copy suppression leads to028
self-repair: if an initial overconfident copier is029
ablated, then there is nothing to suppress. We030
show that self-repair is implemented by several031
mechanisms, one of which is copy suppression,032
which explains 39% of the behavior in a nar-033
row task. Interactive visualizations of the copy034
suppression phenomena may be seen at our035
web app https://copy-suppression.036
streamlit.app/.037

1 Introduction038

Mechanistic interpretability research aims to re-039

verse engineer neural networks into the algorithms040

that network components implement (Olah, 2022).041

A central focus of this research effort is the search042

for explanations for the behavior of model com- 043

ponents, such as circuits (Cammarata et al., 2020; 044

Elhage et al., 2021), neurons (Radford et al., 2017; 045

Bau et al., 2017; Gurnee et al., 2023) and attention 046

heads (Voita et al., 2019; Olsson et al., 2022). How- 047

ever, difficulties in understanding machine learning 048

models has often limited the breadth of these ex- 049

planations or the complexity of the components 050

involved (Räuker et al., 2023). 051

In this work we explain how “Negative Heads” 052

(which include ‘negative name mover heads’ from 053

Wang et al. (2023) and ‘anti-induction heads’ from 054

Olsson et al. (2022)) function on the natural lan- 055

guage training distribution in GPT-2 Small. Pre- 056

vious work found that Negative Heads systemati- 057

cally write against the correct completion on nar- 058

row datasets, and we explain these observations as 059

instances of copy suppression. Copy suppression 060

accounts for a majority of the head’s behavior and 061

reduces the model’s overall loss. To the best of our 062

knowledge, our explanation is the most comprehen- 063

sive account of the function of a component in a 064

large language model (Section 5 reviews related 065

literature). 066

We define Negative Heads as attention heads 067

which primarily reduce the model’s confidence in 068

particular token completions. We show that the 069

main role of Negative Heads in GPT-2 Small is 070

copy suppression (Figure 1), which is defined by 071

three steps: 072

1. Prior copying. Language model components 073

in early layers directly predict that the next 074

token is one that already appears in context, 075

e.g that the prefix “All’s fair in love and” is 076

completed with “ love”. 077

2. Attention. Copy suppression heads detect the 078

prediction of a copied token and attend back 079

to the previous instance of this token (“ love”). 080

3. Suppression. Copy suppression heads write 081

directly to the model’s output to decrease the 082

logits on the copied token. 083
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" love" " and" " war"... All's fair in

     ' love'
Layer 10
Head 7

Early naive prediction
of ' love'.

     ' love'?
The main role of 
head L10H7 in GPT-2 Small
is copy suppression.

+

Copy suppression:
attend to previous
instance of ' love', and
suppress it.

Figure 1: L10H7’s copy suppression mechanism. Attention head L10H7 detects the naive prediction of “love”
(copied from earlier in the prompt by upstream model components), attends back to the previous instance of
the “love” token, and writes to the residual stream in the opposite direction to the “love” unembedding, thereby
suppressing the prediction of that token.

By lowering incorrect logits, steps 1–3 can in-084

crease the probability on correct completions (e.g085

“ war”) and decrease model loss.1 Our central086

claim is that at least 76.9% of the role of at-087

tention head L10H7 on GPT-2 Small’s training088

distribution is copy suppression. However, we089

do not explain precisely when or how much copy090

suppression is activated in different contexts. Nev-091

ertheless, to the best of our knowledge, there is no092

prior work which has explained the main role of093

any component in a large language model in terms094

of its input stimulus and specific downstream effect095

across a whole training distribution.096

Explaining language models components across097

wide distributions in mechanistic detail may be im-098

portant for engineering safe AI systems. While099

interpreting parts of language models on narrow100

distributions (Hanna et al., 2023; Heimersheim and101

Janiak, 2023; Wang et al., 2023) may be easier than102

finding complete explanations, researchers can be103

misled by hypotheses about model components that104

do not generalize (Bolukbasi et al., 2021). Mecha-105

nistically understanding models could fix problems106

that arise from opaque training processes, as mech-107

anisms can predict behavior on off-distribution and108

adversarial inputs rather than merely those that109

arise in training (Mu and Andreas, 2020; Goh et al.,110

2021; Carter et al., 2019).111

Mechanistic interpretability research is difficult112

to automate and scale (Räuker et al., 2023), and113

understanding negative and backup heads2 could114

1We recommend using our web app https://
copy-suppression.streamlit.app/ to understand
L10H7’s behavior interactively.

2We define backup heads (see Section 4) as attention heads

be crucial for further progress. Many approaches to 115

automating interpretability use ablations - remov- 116

ing a neural network component and measuring the 117

effect of this intervention (Conmy et al., 2023; Wu 118

et al., 2023; Bills et al., 2023; Chan et al., 2022). 119

Ideally, ablations would provide accurate measures 120

of the importance of model components on given 121

tasks, but negative and backup components compli- 122

cate this assumption. Firstly, negative components 123

may be ignored by attribution methods that only 124

find the positive components that complete tasks. 125

This means that these attribution methods will not 126

find faithful explanations (Jacovi and Goldberg, 127

2020) of model behavior. Secondly, backup com- 128

ponents may counteract the effects of ablations (Li 129

et al., 2023; Turner et al., 2023) and hence cause 130

unreliable importance measurements. 131

In this work we rigorously reverse-engineer at- 132

tention head L10H7 in GPT-2 Small to show that its 133

main role on the training distribution is copy sup- 134

pression. We do not know why language models 135

form copy suppression components, but in Sec- 136

tion 4.1 and Appendix C we discuss ongoing re- 137

search into some hypotheses. Appendix A provides 138

evidence that copy suppression occurs in models 139

trained without dropout. Our main contributions 140

are: 141

1. Finding the main role of an attention head 142

in an LLM on an entire training distribution 143

(Section 2), and verifying this hypothesis (Sec- 144

tion 3.3). 145

2. Using novel weights-based arguments to ex- 146

plain the role of language model components 147

that respond to the ablation of a head by imitating that original
behavior.
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(Section 3).148

3. Applying our mechanistic understanding to149

the practically important self-repair phe-150

nomenon, finding that copy suppression ex-151

plains 39% of self-repair in one setting (Sec-152

tion 4).153

2 Negative Heads Copy Suppress154

In this section we show that Negative Head L10H7155

suppresses copying across GPT-2 Small’s training156

distribution. We show that copy suppression ex-157

plains most of L10H7’s role in the model, and de-158

fer evaluation of our mechanistic understanding159

to Section 3.3. We use the logit lens (nostalge-160

braist, 2020) technique to measure what interme-161

diate model components predict, and use mean162

ablation to delete internal model activations.163

2.1 Behavioral Results164

We can find where L10H7 has the largest impact by165

looking at the OpenWebText (Gokaslan et al., 2019)166

examples where mean ablating L10H7’s effect on167

model outputs increases loss. Specifically, we sam-168

pled from the top 5% of completions where L10H7169

had greatest effect as these accounted for half of170

the attention head’s loss reducing effect across the171

dataset. 80% of the sampled completions were172

examples of copy suppression when we opera-173

tionalized the three qualitative copy suppression174

steps from Section 1 by three corresponding condi-175

tions:176

1. The model’s predictions at the input to L10H7177

included a token which appeared in context as178

one of the top 10 most confident completions179

(as measured by the logit lens, a technique to180

measure the direct influence of specific model181

components on output logits using the unem-182

bedding matrix);183

2. The source token was one of the top 2 tokens184

in context that L10H7 attended to most;185

3. The 10 tokens that L10H7 decreased logits for186

the most included the source token.187

Examples can be found in the Section 2.188

These results and more can also be ex-189

plored on our interactive web app (https://190

copy-suppression.streamlit.app/).191

2.2 How Does L10H7 Affect the Loss?192

To investigate the relative importance of the direct193

and indirect effect of L10H7 on the model’s loss,194

we decompose its effect into a set of different paths195

(Elhage et al., 2021; Goldowsky-Dill et al., 2023),196

and measure the effect of ablating certain paths.197

We measure the effect on model’s loss as well as 198

the KL divergence to the model’s clean predictions. 199

Results can be seen in Figure 2. 200

Fortunately, we find that most of L10H7’s effect 201

on loss was via the direct path to the final log- 202

its. This suggests that a) explaining the direct path 203

from L10H7 to outputs would explain the main 204

role of the attention head in the model and b) KL 205

divergence is correlated with the increase in loss of 206

ablated outputs. Our goal is to show that our copy 207

suppression mechanism faithfully reflects L10H7’s 208

behaviour (Section 3.3) and therefore in the rest of 209

our main text, we focus on minimizing KL diver- 210

gence, which we discuss further in Section 3.3.1. 211

3 How Negative Heads Copy Suppress 212

In this section, we show that copy suppression ex- 213

plains 76.9% of L10H7’s behavior on OpenWeb- 214

Text. To reach this conclusion, we perform the 215

following set of experiments: 216

1. In Section 3.2, we analyse the output-value 217

(OV) circuit, which is the circuit determining 218

what information the attention head moves 219

from source to destination tokens. We show 220

that the head suppresses the prediction of 221

84.70% of tokens which it attends to. 222

2. In Section 3.2, we analyse the query-key (QK) 223

circuit, which is the circuit determining which 224

tokens the head will pay attention to. We show 225

that the head attends to the token which the 226

model is currently predicting across 95.72 227

3. In Section 3.3, we define a form of ablation 228

(CSPA) which deletes all of L10H7’s function- 229

ality except 1. and 2., and preserves 76.9% of 230

its effect. 231

In step 3 we project L10H7’s outputs onto the un- 232

embedding vectors, but apply a filtering operation 233

(that is weaker than a weights-based projection) 234

to the QK circuit, as described in Section 3.3.1. 235

We also performed an ablation that involved pro- 236

jecting the query vectors onto unembedding vec- 237

tors present in the residual stream (Appendix M), 238

but found that this did not recover as much KL 239

divergence, likely due to issues discussed in Sec- 240

tion 4. In Section 3.1-3.2 we apply the zeroth 241

MLP layer of GPT-2 Small to its embedding, ie 242

we use MLP0(WE) rather than WE and call this 243

the model’s ‘effective embedding’. We discuss 244

this in Appendix H and compare with other works. 245
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Prompt Source
token

Incorrect com-
pletion

Correct
completion

... Millions of Adobe users picked easy-to-
guess Adobe passwords ... “ Adobe” “ Adobe” “ passwords”

... tourist area in Beijing. A university in
Beijing Northeastern ... “ Beijing” “ Beijing” “ Northeastern”

... successfully stopped cocaine and cocaine
alcohol ... “ cocaine” “ cocaine” “ alcohol”

Table 1: Dataset examples of copy suppression, in cases where copy suppression behaviour decreases loss by
suppressing an incorrect completion.
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Figure 2: Loss effect of L10H7 via different paths. Grey
paths denote ablated paths.
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Figure 3: Distribution of ranks of diagonal
elements of Eqn. (2).

3.1 OV Circuit246

To understand L10H7’s output, we study the sim-247

ple setting where the attention head i) only attends248

to a single source token and ii) the source token249

position only contains information about one to-250

ken. We can then look at what effect L10H7 has on251

the model’s logits for each token in the vocabulary.252

This motivates studying L10H7’s OV circuit (El-253

hage et al., 2021), with our effective embedding re-254

finement: WUW
L10H7
OV MLP0(WE) ∈ Rnvocab×nvocab255

(1), where WU and MLP0(WE) is the unembed-256

ding and effective embedding matrix of the model,257

respectively, and W L10H7
OV is the OV Matrix of258

L10H7.259

The OV circuit (1) studies the impact that L10H7260

has on all output tokens, given it attended to the ef-261

fective embedding of a particular input token. The262

ith column of (1) is the vector of logits added at263

any destination token which attends to the ith to-264

ken in the model’s vocabulary (ignoring layernorm265

scaling). If L10H7 is suppressing the tokens that266

it attends to, then the diagonal elements of (1))267

will consistently be the most negative elements in268

their columns. This is what we find: 84.70% of the269

tokens in GPT-2 Small’s vocabulary have their di- 270

agonal elements as one of the top 10 most negative 271

values in their columns, and 98.86% of tokens had 272

diagonal elements in the bottom 5%. This suggests 273

that L10H7 is copy suppressing almost all of the 274

tokens in the model’s vocabulary. 275

This effect can also be seen in practice. We fil- 276

tered for (source, destination token) pairs in Open- 277

WebText where attention in L10H7 was large, and 278

found that in 78.24% of these cases the source was 279

among the 10 most suppressed tokens from the di- 280

rect effect of L10H7 (full experimental details in 281

Appendix E). This indicates that our weights-based 282

analysis of L10H7’s OV circuit does actually tell 283

us about how the head behaves on real prompts. 284

3.2 QK Circuit 285
Having understood L10H7’s outputs in a controlled 286

setting, we need to understand when the head is 287

activated by studying its attention patterns. In a sim- 288

ilar manner to Section 3.1 we study L10H7’s atten- 289

tion in the simple setting where i) the query input 290

is equal to the unembedding vector for a single to- 291

ken and ii) the key input is the effective embedding 292

for another single token, i.e we study the QK cir- 293
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QK Ablation Copy Suppression 
Preserving Ablation
(CSPA)
Both OV and QK ablations.

OV Ablation
Project each result vector along 
the unembedding vector for that 
token (and take only the negative 
components).

" and" " war"

     " love"

     " love"?

+
      " love"?       " in"?

Mean ablate all vectors, except 
from source tokens which are 
most strongly predicted at the 
destination token.

" love"" in" " and" " war"

     " love"

     " love"?

+

" in" " love" " and" " war"

     " love"

     " love"?

+

" in" " love"

      " love"?

Figure 4: Illustration of three different kinds of ablation: just OV, just QK, and CSPA.

cuit WUW
L10H7
QK MLP0(WE) ∈ Rnvocab×nvocab (Eqn.294

(2)).3295

Copy suppression (Section 1) suggests that296

L10H7 has large attention when i) a token is confi-297

dently predicted at the query position and ii) that298

token appeared in the context so is one of the key299

vectors. Therefore we expect the largest elements300

of each row of Eqn. (2) to be the diagonal elements301

of this matrix. Indeed, in Figure 3 (orange bars) we302

find that 95.72% of diagonal values in this matrix303

were the largest in their respective rows.304

However, this result alone doesn’t imply that305

copying (the first step of the three copy suppres-306

sion steps in Section 1) explains L10H7’s attention.307

This is because GPT-2 Small uses the same ma-308

trix for embeddings and unembeddings, so L10H7309

could simply be matching similar vectors at query310

and keyside (for example, in a ‘same matching’ QK311

matrix (Elhage et al., 2021)) Therefore in Figure 3312

(blue bars) we also compare to a baseline where313

both query and keys are effective embeddings,4 and314

find that the ranks of the diagonal elements in their315

rows are much smaller, which provides evidence316

that W L10H7
QK is not merely a ‘same matching’ ma-317

trix. We also verify the copy suppression attention318

pattern further in Appendix L.1. However, one319

limitation of our analysis of the QK circuit is that320

this idealised setup does not completely faithfully321

represent L10H7’s real functioning (Appendices322

L.2, L.3 and M).323

3We ignore bias terms in the key and query parts (as we
find that they do not change results much in Appendix L).
Our experimental setup allows us to ignore LayerNorm (Ap-
pendix G).

4i.e in Eqn. (2) we replace the WU term with MLP0(WE).

3.3 How much of L10H7’s behavior have we 324

explained? 325

In this section, we perform an ablation which 326

deletes all functionality of L10H7’s OV and QK 327

circuits, except for the mechanisms described in 328

Section 3.1 and 3.2 respectively, with the goal of 329

seeing how much functionality we can remove with- 330

out damaging performance. We refer to this as 331

Copy Suppression-Preserving Ablation (CSPA). 332

In the Section 3.3.1 section we explain exactly how 333

each part of CSPA works, and in the Section 3.3.2 334

section we present the ablation results. 335

3.3.1 Methodology 336

CSPA consists of both an OV ablation and a QK 337

ablation. 338

OV ablation. The output of an attention head 339

at a given destination token D can be written as 340

a sum of result vectors from each source token S, 341

weighted by the attention probabilities from D to 342

S (Elhage et al., 2021). We can project each of 343

these vectors onto the unembedding vector for the 344

corresponding source token S. We only keep the 345

negative components.5 346

QK ablation. We mean ablate the result vectors 347

from each source token S, except for the top 5% 348

of source tokens which are predicted with highest 349

probability at the destination token D (as measured 350

with the logit lens). 351

As an example of how the OV and QK ablations 352

work in practice, consider the opening example 353

“All’s fair in love and war”. In this case the des- 354

tination token D is “ and”. The token “love” is 355

highly predicted to follow D (as measured with 356

the logit lens), and also appears as a source token 357

S, and so we would take the result vector from 358

S and project it onto the unembedding vector for 359

5In Figure 16 we show the results when we also keep
positive components.
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“ love”, mean-ablating everything else. Although360

this deletes most of the dimensions of L10H7, it361

still captures how L10H7 suppresses the “ love”362

prediction.363

Ablation metric. After performing an ablation,364

we can measure the amount of L10H7’s behavior365

that we have explained by comparing the ablation366

to a baseline that mean ablates L10H7’s direct ef-367

fect. Formally, if the model’s output token distribu-368

tion on a prompt is π and the distribution under an369

ablation Abl is πAbl, then we measure the KL diver-370

gence DKL(π||πAbl). We average these values over371

OpenWebText for both ablations we use, defining372

DCSPA for CSPA and DMA for the mean ablation373

baseline. Finally, we define the effect explained as374

1−
(
DCSPA/DMA

)
(Eqn. (3)).375

We choose KL divergence for several reasons,376

including how 0 has a natural interpretation as the377

ablated and clean distributions being identical –378

in other words, 100% of the head’s effect being379

explained by the part we preserve. See Appendix I380

for limitations, comparison and baselines.381

3.3.2 Results382

CSPA explains 76.9% of L10H7’s behavior. Since383

the QK and OV ablations are modular, we can ap-384

ply either of them independently and measure the385

effect recovered. We find that performing only the386

OV ablation leads to 81.1% effect explained, and387

only using QK leads to 95.2% effect explained.388

To visualize the performance of CSPA, we group389

each OpenWebText completion into one of 100 per-390

centiles, ordered by the effect that mean ablation of391

L10H7 has on the output’s KL divergence from the392

model. The results are shown in Figure 6, where393

we find that CSPA preserves a larger percentage of394

KL divergence in the cases where mean ablation is395

most destructive: in the maximal percentile, CSPA396

explained 88.1% of L10H7’s effect.397

4 Applications of Copy Suppression398

In this section, we explore some different appli-399

cations of copy suppression. First, we connect400

it to the previously observed phenomena of anti-401

induction, while also providing evidence that it oc-402

curs in several different sizes and classes of models.403

Second, we discuss the phenomena of self-repair,404

which refers to how neural network components405

can sometimes compensate for perturbations made406

to earlier components.407

We will focus on the narrow Indirect Object Iden-408

tification (IOI; Wang et al. (2023)) task during this 409

section. We give a short introduction to IOI in 410

points i)-iii) below. Non-essential further details 411

can be found in Wang et al. (2023). 412

i) The IOI task consists of sentences such as 413

‘When John and Mary went to the store, Mary 414

gave a bottle of milk to’ which are completed 415

with the indirect object (IO) ‘ John’. 416

ii) The task is performed by an end-to-end circuit. 417

The final attention heads involved in this cir- 418

cuit are called Name Mover Heads; they copy 419

the IO to the model’s output. 420

iii) We can measure the extent to which IOI oc- 421

curs by measuring the logit difference metric, 422

which is equal to the difference between the ‘ 423

John’ and ‘ Mary’ logits in the above example. 424

Copy suppression heads like L10H7 usually 425

come after the name mover heads. They detect 426

the IO prediction, attend back to the first instance 427

of the IO, and suppress it (but not enough to change 428

the model’s prediction). This is a relatively clean 429

domain in which to study copy suppression. 430

4.1 Anti-induction 431

While studying induction heads, Olsson et al. 432

(2022) discovered attention heads which identify 433

repeating prefixes and suppress the prediction of 434

the token which followed the first instance of the 435

prefix - in other words the opposite of the induction 436

pattern. We suspected this anti-induction was an 437

instance of copy suppression, because induction 438

heads writing the prediction of this token into the 439

residual stream could cause copy suppression heads 440

to attend back to and suppress the first instance of 441

the token. To investigate this, we created scores 442

for how much a set of attention heads (across GPT, 443

Pythia and SoLU architectures copy suppressed on 444

both the IOI task and the anti-induction task. We 445

measured these scores by taking the negation of the 446

attention head’s direct effect on the correct token: 447

in the induction task this was the repeated token, 448

in the copy-suppression task this was the indirect 449

object name. We found a strong correlation in the 450

quadrant where both were positive (Figure 5). 451

There are two important lessons to draw from 452

these experiments. Firstly, copy suppression 453

heads exist in larger models, and models of dif- 454

ferent classes. We observed copy suppression 455

heads in models as large as Pythia-6B. Secondly, 456

this result demonstrates the danger of drawing con- 457

clusions from narrow distribution-based studies, 458

since it strongly implies that two seemingly sep- 459

6



−0.5 0 0.5 1 1.5 2 2.5

−0.5

0

0.5

1

1.5
Model Class

GPT

Pythia

Other

Anti-Induction vs IOI Copy Suppression Scores

Copy-Suppression Score

A
n
t
i-

In
d
u
c
t
io

n
 S

c
o
r
e

GPT2-Small L10H7

Figure 5: Anti-induction and copy suppression on the IOI task
compared.

0 0.05 0.1 0.15 0.2 0.25
0

0.05

0.1

0.15

0.2

0.25

D MA 

D C
SP

A 

KL divergence of CSPA vs. clean predictions

Clean predictions

Mean ablation

CSPA

Figure 6: We plot (DCSPA, DMA) for each
percentile of our OpenWebText data (with
percentiles given by the values of DMA).

Head Type Response to Name Movers predicting T Effect of attending to T

Negative More attention to T Decrease logits on T

Backup Less attention to T Increase logits on T

Table 2: Qualitative differences between Negative and Backup Heads.

arate and task-specific behaviors (anti-induction460

on random repeated sequences, and suppression461

of the IO token in the IOI task) are actually not462

task-specific at all, but are both consequences of463

the same core algorithm: copy suppression. Study-464

ing attention heads on just one of these distribu-465

tions might give the incorrect impression that it466

was using details of the task to make its predic-467

tions, but our study across the entire OWT distribu-468

tion has revealed an algorithm which explains both469

behaviours.470

4.2 Self-Repair471

Self-repair refers to how some neural network com-472

ponents compensate for other components that have473

been perturbed earlier in the forward pass (Mc-474

Grath et al., 2023). Copy suppressing components475

self-repair: if perturbing specific model compo-476

nents causes them to stop outputting an unembed-477

ding, copy suppression is deactivated. In this sec-478

tion, we show that copy suppression explains 39%479

of self-repair in one setting. However Appendix R480

gives weights-based evidence that self-repair relies481

on more than just copy suppression, and finds that482

the unembedding direction in the residual stream483

does not have a large effect on self-repair.484

To visualize self-repair under an ablation of the485

three Name Mover Heads, for every attention head486

downstream of the Name Mover Heads we measure487

its original contribution to logit difference (xc),488

as well as its contribution to logit difference post- 489

ablation (yc). We then plot all these (xc, yc) pairs 490

in Figure 8. 491

In Figure 8, the higher the points are above the 492

y = x line, the more they contribute to self-repair. 493

This motivates a way to measure self-repair: if we 494

let C denote the set of components downstream of 495

Name Mover Heads and take c ∈ C, then the pro- 496

portion of self-repair that a component c explains 497

is (yc − xc)/
∑

i∈C(yi − xi) (Eqn. (4)). The sum 498

of the proportions of self-repair explained by Neg- 499

ative Heads L10H7 and L11H10 is 39%. This pro- 500

portion is almost entirely copy suppression since 501

Appendix O shows that the Negative Heads in the 502

IOI task are entirely modulated by Name Mover 503

Heads. 504

However, Figure 8 indicates another form of self- 505

repair in the heads on the right side of the figure: 506

these heads do not have large negative effects in 507

clean forward passes, but then begin contributing 508

to the logit difference post-ablation. We found that 509

these backup heads on the right hand side use a 510

qualitatively different mechanism for self-repair 511

than (copy suppressing) negative heads, which we 512

summarise behaviorally in Table 2. 513

To justify the description in Table 2, we analyze 514

how Name Movers determine the attention patterns 515

of self-repairing heads using Q-composition, i.e. 516

their queries are computed from the output of up- 517

stream attention heads. We study Q-composition 518

7



Figure 7: Red edges denote less, and blue edges denote
more attention to names due to the Name Movers.
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Figure 8: Ablating the Name Mover Heads in Layer
9 causes a change in the direct effects of all the down-
stream heads. Plotting the Clean Logit Difference vs the
Post-Intervention Logit Difference for each head high-
lights the heads above the y = x line which perform
self-repair.

between a Name Mover’s OV matrix WOV and the519

QK matrix WQK of downstream heads by calculat-520

ing MLP0(WE)
⊤W⊤

OV WQKMLP0(WE) and find521

that backup heads attend less to names when Name522

Movers copy them, and negative heads attend more523

(Figure 7; Appendix N). Combining this result with524

the prior results that i) backup heads copy names525

(Wang et al., 2023) and ii) negative heads have526

negative-copying OV matrices (Section 3.1), this527

explains self-repair at a high-level in IOI: when the528

Backup/Negative heads attend more/less to a to-529

ken T upon the Name Mover’s ablation, they copy530

more/suppress less of T , increasing the logit dif-531

ference and thus self-repairing. However, there are532

limits to this line of reasoning, since in Appendix R533

we explore how the unembedding component does534

not seem to be the most important component used;535

we hope future works can probe self-repair further.536

5 Related Work537

Explanations of neural network components in538

post-hoc language model interpretability include539

explanations of neurons, attention heads and cir-540

cuits. Related work includes the automated ap-541

proach by Bills et al. (2023) and manual explana-542

tions found by Voita et al. (2023) who both find543

suppression neurons. More comprehensive expla-544

nations are found in Gurnee et al. (2023). Attention545

heads correlated with previous tokens (Vig, 2019)546

and rare words (Voita et al., 2019) have been an-547

alyzed. Circuits have been found on narrow dis-548

tributions (Wang et al., 2023) and induction heads549

(Elhage et al., 2021) are the most general circuits550

found in language models, but they have only been551

explained in as much detail as our work in toy552

models. Chan et al. (2022)’s loss recovered metric553

inspired our loss recovered analysis.554

Iterative inference. Greff et al. (2017) propose 555

that neural networks layers iteratively update fea- 556

ture representations rather than recomputing them, 557

in an analysis specific to LSTMs and Highway 558

Networks. Several works have found that trans- 559

former language model predictions are iteratively 560

refined (Dar et al., 2022; nostalgebraist, 2020; Bel- 561

rose et al., 2023; Halawi et al., 2023) in the sense 562

that the state after intermediate layers forms a par- 563

tial approximation to the final output, though no 564

connections have yet been made to Negative Heads. 565

6 Conclusion 566

In summary, in this work we firstly introduced copy 567

suppression, a description of the main role of an 568

attention head across GPT-2 Small’s training distri- 569

bution. Secondly, we applied weights-based argu- 570

ments using QK and OV circuits to mechanistically 571

verify our hypotheses about copy suppression. Fi- 572

nally, we showed how our comprehensive analysis 573

has applications to open problems in ablation-based 574

interpretability (Section 4). 575

Two limitations of our work include our under- 576

standing of the query inputs to self-repair heads, 577

and the transferability of our results to different 578

models. In both Section 3.2 and 4 we found that 579

copy suppression and self-repair rely on more than 580

simply unembedding directions, and we hope that 581

future work can fully explain this observation. Fur- 582

ther, while we show that some of our insights gen- 583

eralize to large models (Section 4.1 and A), we 584

don’t have a mechanistic understanding of copy 585

suppression in these cases. Despite this, our work 586

shows that it is possible to explain LLM compo- 587

nents across broad distributions with a high level 588

of detail. For this reason, we think that our insights 589

will be useful for future interpretability research. 590
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Glossary 754

Anti-induction Anti-induction heads are our name for ‘anti-copying prefix search’ heads (Olsson et al., 755

2022). See Section 4.1. 756

Backup heads are attention heads that are characterised by responding to the ablation of a head by 757

imitating the original behavior, studied in the IOI task in Section 4. 758

Copy Suppression is a mechanism in a language models determined by the three steps naive copying, 759

attention and suppression, as described in Section 1. 760

Copy suppression-preserving ablation (CSPA) refers to our ablation that deletes all functionality of 761

attention head 10.7 except the copy suppression mechanism (Section 3.3.1). 762

Direct Logit Attribution is defined in https://www.neelnanda.io/ 763

mechanistic-interpretability/glossary. 764

Effective embedding is what models use to identify tokens at different positions after the first transformer 765

layer. We define this as MLP0(WE), and discuss the choice in Appendix H. 766

Eqn. (1) is defined in Section 3.1 and is our OV circuit expression. 767

Eqn. (2) is defined in Section 3.2 and is our QK circuit expression. 768

Eqn. (3) is defined in Section 3.3.1 and measures how well ablations preserve L10H7’s functionality. 769

Eqn. (4) is defined in Section 4.2 and measures how much self-repair a component c explains. 770

Induction heads are attention heads that identify repeating prefixes, attend back to the token following 771

the previous instance of the prefix, and predict that same token will come next in the sequence. 772

IOI . The IOI task is the prediction that ‘ John’ completes the sentence ‘When John and Mary went to 773

the store, Mary gave a bottle of milk to’ (Wang et al., 2023). 774

Logit difference is described in point iii) in Section 4.2. 775

Logit Lens We can measure which output predictions different internal components push for by applying 776

the Logit Lens method (nostalgebraist, 2020). Given model activations, such as the state of the 777

residual stream or the output of an attention head, we can multiply these activations by GPT-2 Small’s 778

unembedding matrix. This measures the direct effect (ie not mediated by any downstream layers) 779

that this model component has on the output logits for each possible token in the model’s vocabulary 780

(sometimes called direct logit attribution). The Logit Lens method allows us to refer to the model’s 781

predictions at a given point in the network. 782

Mean ablation refers to replacing the output of a machine learning model component with the mean 783

output of that component over some distribution. 784

Name Mover Heads are heads that attend to (and copy) IO rather than S in the IOI task. 785

Negative Head are attention heads in transformer language models which which primarily reduce the 786

model’s confidence in particular token completions. This is a qualitative definition. These heads tend 787

to be rare since the majority of attention heads in models positively copy tokens (Elhage et al., 2021; 788

Olsson et al., 2022). 789

Self-repair refers to how some neural network components compensate for other components that have 790

been perturbed earlier in the forward pass (McGrath et al., 2023). 791
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Figure 9: Copy Suppression scores on OWT measured against the Anti-Induction scores in the IOI distribution.

A Scaling Copy Suppression792

In this appendix we discuss how our observations about copy suppression scale to larger models (Llama-2793

7B and 13B (Touvron et al., 2023)). Our high-level takeaways are that794

1. General distribution copy-suppression heads exist across model scales and architectures.795

2. Larger models have weaker copy suppression heads.796

3. The mechanism behind the IOI task does not generalize to larger models.797

1: Repeating the methodology that generated Figure 5, we can also compare the copy suppression798

effect on OWT to the anti-induction score.799

We filter for token positions where there the maximally predicted token (measured via the Logit Lens)800

occurs in context as a token so that copy suppression is indeed a potential behavior, and again measure the801

direct logit attribution from the token in context.802

The results are in Figure 9 and show that once more anti-induction heads do not perform any positive803

behavior (there are no points in bottom right or top left quadrant). We do find that the there are heads that804

only implement anti-induction or copy suppression, however. We discuss Llama in 2.805

2: In Figure 10(a) we show that while there do exist Copy Suppression heads in Llama-2 (e.g the points806

closest to the top right are L26H28 and L30H24 in Llama-2 7B and 13B respectively), the direct logit807

attribution magnitude is much smaller than in Figure 9. This suggests that the more attention heads models808

have, the more they distribute behavior across heads. We also find heads that copy suppress on the general809

distribution but not on the anti-induction task, showing further specialization.810

3: When we studied the IOI direct logit attribution of Llama-2 7B and Llama-2 13B, we found that811

the direct logit attribution was smaller still, and further there was no division between positive heads and812

negative heads. This suggests that IOI is performed qualitatively differently to small models, perhaps not813

using direct attention back to the IO name.814
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((a)) Broad distribution (OWT). ((b)) Narrow distribution (IOI).

Figure 10: Copy Suppresion in Llama-2.

B L11H10 815

In Section 2.2 we showed that the majority of L10H7’s effect on loss is via its direct effect. In this 816

appendix we show that we can explain up to half of L10H7’s indirect effect by considering the indirect 817

through L11H10, the second Negative Head in GPT-2 Small. We repeat the same methodology as in the 818

indirect path experiment in Figure 2, but also controlling for the path from L10H7 to L11H10 by not mean 819

ablating this connection. We show the results in Figure 11. 820

The indirect path through L11H10 is special because both Negative Heads perform copy suppression, 821

which is a self-repair mechanism: once a predicted token is suppressed, it is no longer predicted, and 822

therefore does not activate future copy suppression components. This means that ablating head L10H7 823

will often result in it being backed up by head L11H10. In an experiment that ablates the effect of L10H7 824

on L11H10 but not on the final model output, we would expect excessive copy suppression to take place 825

since i) L10H7 will have a direct copy suppression effect, and ii) L11H10 will copy suppress more than in 826

normal situations, since its input from L10H7 has been ablated. Indeed the loss increase is roughly twice 827

as large in the normal indirect effect case compared to when we control for the effect through L11H10 828

(Figure 11). However, surprisingly there is little effect on KL Divergence. 829

C Entropy and Calibration 830

A naive picture of attention heads is that they should all reduce the model’s entropy (because the purpose 831

of a transformer is to reduce entropy by concentrating probability mass in the few most likely next tokens). 832

We can calculate a head’s direct contribution to entropy by measuring (1) the entropy of the final logits, 833

and (2) the entropy of the final logits with the head’s output subtracted. In both cases, the negative head 834

L10H7 stands out the most, and the other negative heads L11H10 and L8H10 are noticeable. 835

We can also examine each attention head’s effect on the model’s calibration. Hu et al. (2023) use 836

calibration curves to visualise the model’s degree of calibration. From this curve, we can define an 837

overconfidence metric, calculated by subtracting the perfect calibration curve from the model’s actual 838

calibration curve, and taking the normalized L2 inner product between this curve and the curve we get 839

from a perfectly overconfident model (which only ever makes predictions of absolute certainty). The L2 840

inner product can be viewed as a measure of similarity of functions, so this metric should tell us in some 841

sense how overconfident our model is: the value will be 1 when the model is perfectly overconfident, and 842

0 when the model is perfectly calibrated. Figure 13 illustrates these concepts. 843

We can then measure the change in overconfidence metric from ablating the direct effect of an attention 844

head, and reverse the sign to give us the head’s direct effect on overconfidence. This is shown in the figure 845

below, with the change shown relative to the model’s original overconfidence (with no ablations). Again, 846

we see that head L10H7 stands out, as do the other two negative heads. Interestingly, removing the direct 847
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effect of head L10H7 is enough to push the model from net over-confident to net under-confident. 848

What are we to interpret from these results? It is valuable for a model to not be over-confident, because 849

the cross-entropy loss will be high for a model which makes high-confidence incorrect predictions. One 850

possible role for negative heads is that they are reducing the model’s overconfidence, causing it to make 851

fewer errors of this form. However, it is also possible that this result is merely incidental, and not directly 852

related to the reason these heads form. For example, another theory is that negative heads form to 853

suppress early naive copying behaviour by the model, and in this case they would be better understood as 854

copy-suppression heads rather than ”calibration heads”. See the next section for more discussion of this. 855

D Why do negative heads form? Some speculative theories 856

This paper aimed to mechanistically explain what heads like L10H7 do, rather than to provide an 857

explanation for why they form. We hope to address this in subsequent research. Here, we present three 858

possible theories, present some evidence for/against them, and discuss how we might test them. 859

• Reducing model overconfidence. 860

– Theory: Predicting a token with extremely high confidence has diminishing returns, because 861

once the logprobs are close to zero, any further increase in logits won’t decrease the loss if the 862

prediction is correct, but it will increase loss if the prediction is incorrect. It seems possible that 863

negative heads form to prevent this kind of behaivour. 864

– Evidence: The results on calibration and entropy in Appendix C provide some evidence for this 865

(although these results aren’t incompatible with other theories in this table). 866

– Tests: Examine the sequences for which this head decreases the loss by the most (particularly 867

for checkpointed models, just as the negative head is forming). Are these cases where the 868

incorrect token was being predicted with such high probability that it is in this “diminishing 869

returns” window? 870

• Suppressing naive copying. 871

– Theory: Most words in the English language have what we might term the “update property” 872

- the probability of seeing them later in a prompt positively updates when they appear. Early 873

heads might learn to naively copy these words, and negative heads could form to suppress this 874

naive behaviour. 875

– Evidence: The “All’s fair in love and love” prompt is a clear example of this, and provides 876

some evidence for this theory. 877

– Tests: Look at checkpointed models, and see if negative heads form concurrently with the 878

emergence of copying behaviour by other heads. 879
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• Suppressing next-token copying for tied embeddings.880

– Theory: When the embedding and unembedding matrices are tied, the direct path WUWE will881

have large diagonal elements, which results in a prediction that the current token will be copied882

to the next sequence position. Negative heads could suppress this effect.883

– Evidence: This wouldn’t explain why negative heads appear in models without tied embeddings884

(although it might explain why the strongest negative heads we found were in GPT-2 Small, and885

the Stanford GPT models, which all have tied embeddings).886

– Tests: Look at attention patterns of the negative head early in training (for checkpointed models,887

with tied embeddings). See if tokens usually self-attend.888

While discussing these theories, it is also important to draw a distinction between the reason a head889

forms during training, and the primary way this head decreases loss on the fully trained model - these890

two may not be the same. For instance, the head seems to also perform semantic copy suppression (see891

Appendix J), but it’s entirely possible that this behaviour emerged after the head formed, and isn’t related892

to the reason it formed in the first place.893

E Experiment details for OV-Circuit in practice894

We ran a forward pass on a sample of OpenWebText where we i) filtered for all (source, destination)895

token pairs where the attention from destination to source is above some threshold (we chose 10%), ii)896

measured the direct logit attribution of the information moved from each of these source tokens to the897

corresponding destination token and finally iii) performed the same analysis as we did in Section 3.1 -898

measuring the rank of the source token amongst all tokens.899

We found that the results approximately matched our dynamic analysis (with slightly more noise): the900

proportion of (source, destination) token pairs where the source token was in the top 10 most suppressed901

tokens was 78.24% (which is close to the static analysis result of 84.70%).902

F Function Words903

In Section 3.1 we found that a large fraction of the tokens which failed to be suppressed were function904

words. The list of least copy suppressed tokens are: [‘ of’, ‘ Of’, ‘ that’, ‘ their’, ‘ most’, ‘ as’, ‘ this’, ‘905

for’, ‘ the’, ‘ in’, ‘ to’, ‘ a’, ‘Their’, ‘ Its’, ’When’, ‘ The’, ‘ its’, ‘ these’, ‘The’, ‘Of’, ‘ it’, ‘ nevertheless’, ‘906

an’, ‘<|endoftext|>, ’Its’, ‘ have’, ‘ some’, ‘ By’]. Sampling randomly from the 3724 tokens other907

than 92.59% that are copy suppressed, many are also connectives (and rarely nouns): [‘ plainly’, ‘ utterly’,908

‘ enhance’, ‘ obtaining’, ‘ entire’, ‘ Before’, ‘eering’, ‘.)’, ‘ holding’, ‘ unnamed’].909

It is notable that this result is compatible with all three theories which we presented in the previous910

section.911

• Reducing model overconfidence. The unembedding vectors for function words tend to have smaller912

magnitude than the average token in GPT-2 Small. This might lead to less confident predictions for913

function words than for other kinds of tokens.914

• Suppressing naive copying. There would be no reason to naively copy function words, because915

function words don’t have this ”update property” - seeing them in a prompts shouldn’t positively916

update the probability of seeing them later. So there is no naive copying which needs to be suppressed.917

• Suppressing next-token copying for tied embeddings. Since function words’ unembedding vectors918

have smaller magnitudes, the diagonal elements of WUWE are small anyway, so there is no risk of919

next-token copying of function words.920

G Model and Experiment Details921

All of our experiments were performed with Transformer Lens (Nanda and Bloom, 2022). We note that922

we enable all weight processing options,6 which means that transformer weight matrices are rewritten923

6That are described here: https://github.com/neelnanda-io/TransformerLens/blob/main/
further_comments.md#weight-processing
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so that the internal components are different and simpler (though the output probabilities are identical). 924

For example, our Layer Norm functions only apply normalization, with no centering or rescaling (this 925

particular detail significantly simplifies our Logit Lens experiments). 926

H Effective Embedding 927

GPT-2 Small uses the same matrix in its embedding and unembedding layers, which may change how it 928

learns certain tasks.7 Prior research on GPT-2 Small has found the counter-intuitive result that at the stage 929

of a circuit where the input token’s value is needed, the output of MLP0 is often more important for token 930

predictions than the model’s embedding layer (Wang et al., 2023; Hanna et al., 2023). To account for this, 931

we define the effective embedding. The effective embedding is purely a function of the input token, with 932

no leakage from other tokens in the prompt, as the attention is ablated. 933

Why choose to extend the embedding up to MLP0 rather than another component in the model? This is 934

because if we run forward passes with GPT-2 Small where we delete WE from the residual stream 935

just after MLP0 has been added to the residual stream, cross entropy loss decreases.8 Indeed, we 936

took a sample of 3000 documents of at least 1024 tokens from OpenWebText, took the loss on their first 937

1024 positions, and calculated the average loss. The result was 3.047 for GPT-2 and 3.044 when we 938

subtracted WE . 939

I CSPA Metric Choice 940

I.1 Motivating KL Divergence 941

To measure the effect of an ablation, we primarily focused on the KL divergence DKL(P∥Q) = 942∑
i pi log pi/qi, where P was the clean distribution and Q was the distribution after our ablation had been 943

applied. Conveniently, a KL Divergence of 0 corresponds to perfect recovery of model behavior, and it is 944

linear in the log-probabilities log qi obtained after CSPA. 945

There are flaws with the KL divergence metric. For example, if the correct token probability is very 946

small, and a head has the effect of changing the logits for this token (but not enough to meaningfully 947

change the probability), this will affect loss but not KL divergence. Our copy suppression preserving 948

ablation on L10H7 will not preserve situations like these, because it filters for cases where the suppressed 949

token already has high probability. Failing to preserve these situations won’t change how much KL 950

divergence we can explain, but it will reduce the amount of loss we explain. Indeed, the fact that the 951

loss results appear worse than the KL divergence results is evidence that this is happening to some 952

extent.Indeed empirically, we find that density of points with KL Divergence close to 0 but larger change 953

in loss is greater than the opposite (change in loss close to 0 but KL larger) in Figure 14, as even using two 954

standard deviations of change on the x axis leads to more spread acrosss that axis. In Appendix I.2 we 955

present results on loss metrics to complement our KL divergence results, and we compare these metrics to 956

baselines in Appendix I.3. 957

I.2 Comparing KL Divergence and Loss 958

In Figure 2, we use two different metrics to capture the effect and importance of different model compo- 959

nents. Firstly, the amount by which ablating these components changes the average cross-entropy loss 960

of the model on OpenWebText. Secondly, the KL Divergence of the ablated distribution to the model’s 961

ordinary distribution, again on OpenWebText. In essence, the first of these captures how useful the head is 962

for the model, and the second captures how much the head affects the model’s output (good or bad). In 963

Section 3.3 we only reported the recovered effect from KL divergence. We can also compute analogous 964

quantities to Eqn. (3) for loss, in two different ways. 965

Following the ablation metric definition in Section 3.3.1, suppose at one token completion GPT-2 Small 966

usually has loss L, though if we ablate of L10H7’s direct effect has loss LAbl. Then we could either 967

measure LAbl − L and try and minimise the average of these values over the dataset, or we could instead 968

7As a concrete example, Elhage et al. (2021) show that a zero-layer transformer with tied embeddings cannot perfectly model
bigrams in natural language.

8Thanks to an anonymous colleague for originally finding this result.
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Figure 15: Studying CSPA under metrics other than KL Divergence.

minimize |LAbl − L|. Either way, we can compare CSPA (Abl = CSPA) to the baseline of mean ablation969

(Abl = MA), by a similar ratio calculation as Eqn. (3). We get 82% effect recovered for the net loss970

effect and 45% effect recovered for the absolute change in loss. Despite these differing point values, the971

same visualisation method as Section 3.3.2) can be used to see where Copy Suppression is not explaining972

L10H7 behavior well (see Figure 15). We find that the absolute change in loss captures the majority of973

the model’s (73.3%) in the most extreme change in loss percentile (Figure 15(b), far right), which shows974

that the heavy tail of cases where L10H7 is not very useful for the model is likely the reason for the poor975

performance by the absolute change in loss metric.976

Also, surprisingly Figure 15(a)’s symmetry about x = 0 shows that there are almost as many com-977

pletions on which L10H7 is harmful as there are useful cases. We observed that this pattern holds on a978

random sample of OpenWebText for almost all Layer 9-11 heads, as most of these heads have harmful979

direct effect on more than 25% of completions, and a couple of heads (L8H10 and L9H5) are harmful on980

the majority of token completions (though their average direct effect is beneficial).981
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Figure 16: Calculating CSPA (with KL divergence) for all Layer 9-11 heads in GPT-2 Small.

I.3 Does Eqn. (3) accurately measure the effect explained? 982

If Eqn. (3) is a good measure of the copy suppression mechanism, it should be smaller for heads in 983

GPT-2 Small that aren’t negative heads. We computed the CSPA value for all heads in Layers 9-11 in 984

Figure 16.9 We also ran two forms of this experiment: one where we projected OV-circuit outputs onto the 985

unembeddings (right), and one where we only kept the negative components of OV-circuit outputs (left). 986

While we find that CSPA recovers more KL divergence L10H7 than all other heads, we also find that 987

the QK and OV ablations (Section 3.3.1) lead to large (> 50%) KL divergence recovered for many other 988

heads, too. In ongoing experiments, we’re looking into projection ablations on the QK circuit that will 989

likely not recover as much KL divergence for other heads. 990

J Semantic Similarity 991

42.00% of (source, destination) pairs had the source token in the top 10 most suppressed tokens, but not 992

the most suppressed. When we inspect these cases, we find a common theme: the most suppressed token 993

is often semantically related to the source token. For our purposes, we define semantically related as an 994

equivalence relation on tokens, where if tokens S and T are related via any of the following: 995

• Capitalization (e.g. “ pier” and “ Pier” are related), 996

• Prepended spaces (e.g. “ token” and “token” are related), 997

• Pluralization (e.g. “ device” and “ devices” are related), 998

• Sharing the same morphological root (e.g. ”drive”, ”driver”, ”driving” are all related) 999

• Tokenization (e.g. “ Berkeley” and “keley” are related, because the non-space version “Berkeley” is 1000

tokenized into [“Ber”, “keley”]). 1001

We codify these rules, and find that in 90% of the aforementioned cases, the most suppressed token is 1002

semantically related to the source token. Although part of this is explained by the high cosine similarity 1003

between semantically related tokens, this isn’t the whole story (on this set of examples, the average cosine 1004

similarity between the source token and the semantically related most suppressed token was 0.520). We 1005

speculate that the copy suppression algorithm is better thought of as semantic copy suppression, i.e. all 1006

tokens semantically related to the source token are suppressed, rather than pure copy suppression (where 1007

only the source token is suppressed). The figure below presents some OpenWebText examples of copy 1008

suppression occurring for semantically related tokens. 1009

1010

9All attention heads in Layers 0-8 have small direct effects: the average increase in loss under mean ablation of these direct
effects is less than 0.05 for all these heads, besides 8.10. However heads in later layers have much larger direct effects, e.g 10/12
attention heads in Layer 10 (including L10H7) have direct effect more than 0.05.
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Table 3: Dataset examples of copy suppression, with semantic similarity.

Prompt Source
token

Incorrect com-
pletion

Correct
completion

Form of
semantic
similarity

...America’s private prisons ... the biggest
private prison - ... “ prisons” “ prison” “-” Pluralization

...SteamVR (formerly known as OpenVR),
Valve’s alternate VR reality ... “VR” “ VR” “ reality” Prepended space

...Berkeley to offer course ... university of
Berkeley California ... “keley” “ Berkeley” “ California” Tokenization

...Wrap up the salmon fillets in the foil, care-
fully wrapping sealing ... “ Wrap” “ wrapping” “ sealing”

Verb conjugation
& capitalization

K Breaking Down the Attention Score Bilinear Form1011

In Section 4, we observed that Negative Heads attend to IO rather than S1 due to the outputs of the Name1012

Mover heads. We can use QK circuit analysis (Section 3.2) in order to understand what parts of L10H7’s1013

query and key inputs cause attention to IO rather than S1.1014

As a gentle introduction to our methodology in this section, if an attention score was computed from1015

an incoming residual stream vector q at queryside and k at queryside, then mirroring Eqn. (2) we could1016

decompose the attention score1017

s = q⊤W L10H7
QK k (5)1018

into the query component from each residual stream component10 (e.g MLP9, the attention heads in1019

layer 9, ...) so s = q⊤MLP9W
L10H7
QK k+ q⊤L9H0W

L10H7
QK k+ · · · . We could then further decompose the keyside1020

input in each of these terms.1021

However, in this appendix we’re actually interested in the difference between how the model attends to1022

IO compared to S, so we decompose the attention score difference1023

∆s := q⊤W L10H7
QK kIO − q⊤W L10H7

QK kS1 = q⊤W L10H7
QK (kIO − kS1). (6)1024

Since ∆s is in identical form to Equation (5) when we take k = kIO − kS1, we can decompose both1025

the query inputs and key inputs of ∆s. We also take q from the END position in the IOI task. Under1026

this decomposition, we find that the most contributions are from L9H6 and L9H9 queryside and MLP01027

keyside (Figure 17(a)), which agrees with our analysis throughout the paper.1028

Further, we can test the hypotheses in Section 3.1 and Section 3.2 that copy suppression is modulated1029

by an unembedding vector in the residual stream, by further breaking up each of the attention scores1030

in Figure 17(a) into 4 further components, for the queryside components parallel and perpendicular to1031

the unembedding direction, as well as the keyside components parallel and perpendicular to the MLP01032

direction (Figure 17(b)). Unfortunately the direction perpendicular to IO is slightly more important than1033

the parallel direction, for both name movers. This supports the argument in Section 4 that self-repair is1034

more general than the simplest possible form of copy suppression described in Section 3.2.1035

L L10H7’s QK-Circuit1036

L.1 Details on the QK-Circuit experiments (Figure 3).1037

We normalize the query and key inputs to norm
√
dmodel to simulate the effect of Layer Norm. Also,1038

MLP0 in Figure 3 refers to taking the embeddings for all tokens and feeding this through MLP0 (so is1039

identical to effective embedding besides not having WE added).1040

10As in Eqn. (2), we found that the query and key biases did not have a large effect on the attention score difference computed
here.
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Figure 17: Decomposing the bilinear attention score. 17(a): decomposing by all model components. 17(b):
decomposing by all model components, and further by terms in the MLP0 direction (keyside) and terms in the IO
unembedding direction (queryside). Terms involving name movers and MLP0 are highlighted.

Actually, key and query biases don’t affect results much so we remove them for simplicity of Eqn. (2). 1041

Results when we uses these biases can be found in Figure 18(a). Additionally, the median ranks for other 1042

attention heads do not show the same patterns as Figure 3: for example, Duplicate Token Heads (Wang 1043

et al., 2023) have a ‘matching’ QK circuit that has much higher median ranks when the queryside lookup 1044

table is an embedding matrix (Figure 18(b)). Additionally, most other attention heads are different to copy 1045

suppression heads and duplicate token heads, as e.g for Name Mover Heads across all key and queryside 1046

lookup tables the best median rank is 561. 1047

L.2 Making a more faithful keyside approximation 1048

Is our minimal mechanism for Negative Heads faithful to the computation that occurs on forward passes 1049

on dataset examples? To test this, we firstly select some important key tokens which we will measure 1050

faithfulness on. We look at the top 5% of token completions where L10H7 was most useful (as in 1051

Section 2) and select the top two non-BOS tokens in context that have maximal attention paid to them. We 1052

then project L10H7’s key input onto a component parallel to the effective embedding for the key tokens, 1053

and calculate the change in attention paid to the selected key tokens. The resulting distribution of changes 1054

in attention can be found in Figure 19. 1055

We find that the median attention change is −0.09, with lower quartile −0.19. Since the average 1056

attention amongst these samples is 0.21, this suggests that the effective embedding does not faithfully 1057

capture the model’s attention. 1058

To use a more faithful embedding of keyside tokens, we run a forward pass where we set all attention 1059

weights to tokens other than BOS and the current token to 0. We then measure the state of the residual 1060

stream before input to Head L10H7, which we call the context-free residual state. Repeating the 1061

experiment used to generate Figure 19 but using the context-free residual state rather than the effective 1062

embedding, we find a more faithful approximation of L10H7’s keyside input as Figure 20 shows that the 1063

median change in L10H7’s attention weights is −0.06 which is closer to 0. 1064

L.3 Making a more faithful queryside approximation 1065

We perform a similar intervention to the components on the input to the model’s query circuit. We study 1066

the top 5% of token completions where L10H7 has most important effect. For the two key tokens with 1067

highest attention weight in each of these prompts, we project the query vector onto the unembedding 1068

vector for that key token. We then recompute attention probabilities and calculate how much this differs 1069

from the unmodified model. We find that again our approximation still causes a lot of attention decrease 1070
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Figure 19: Change in attention on tokens when projecting key vectors onto the effective embedding for tokens.
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Figure 20: Change in attention on tokens when projecting key vectors onto the context free residual state.

in many cases (Figure 21). 1071

There is a component of the queryside input perpendicular to the unembedding direction that is 1072

important for L10H7’s attention. This component seems more important for L10H7s attention when the 1073

unembedding direction is more important, by performing an identical experiment to the experiment that 1074

produced Figure 21 except projecting onto the perpendicular direction, and then measuring the correlation 1075

between the attention change for both of these interventions on each prompt, shown in Figure 22. The 1076

correlation shows that it’s unlikely that there’s a fundamentally different reason why L10H7 attends to 1077

tokens other than copy suppression, as if this was the case it would be likely that some points would be in 1078

the low very negative x, close-to-0 y region. This does not happen often. 1079

We’re not sure what this perpendicular component represents. Appendix R dives deeper into this 1080

perpendicular component in the IOI case study, and Appendix K further shows that the model parts that 1081

output large unembedding vectors (the Name Mover heads) are also the parts that output the important 1082

perpendicular component. 1083

M CSPA with query projections 1084

In this appendix, we design a similar ablation to CSPA, except we compute L10H7’s attention pattern by 1085

only using information about the unembeddings in the residual stream, and the exact key tokens present in 1086

context, and we also do not perform any OV interventions. This means that together we only study how 1087

confident predictions in the residual stream are, as well as which types of tokens are more likely to be 1088

copy suppressed. 1089

A simple baseline. The simplest query projection intervention is to recalculate the attention score 1090

on each key token T by solely using the residual stream component in the direction WU [T ]. Sadly, this 1091

intervention results in only 25% of KL divergence recovered. 1092

Improving the baseline. Observing the starkest failure cases of the simple baseline, we often see that 1093

this intervention neglects cases where a proper noun and similar words are copy suppressed: the model 1094

attended most to a capitalized word in context 9x times as frequently as occurred in this ablation. To 1095

remedy these problems, we performed two changes. 1) Following Appendix J, when we compute the 1096

attention score back to a token T , we don’t just project onto the unembedding vector WU [T ], but instead 1097

take all T ∗ that are semantically similar to T , and project onto the subspace spanned by all those vectors. 1098

23



Figure 21: Change in attention on tokens when projecting query vectors onto the unembedding vectors for particular
tokens.

Figure 22: Correlation between change in attention on tokens when projecting onto the component parallel to the
unembedding and (x-axis) and also projecting onto the component perpendicular to the unembedding (y-axis).
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2) we learnt a scaling and bias factor for every token in GPT-2 Small’s vocabulary, such that we multiply 1099

the attention score back to a token T by the scaling factor and then add the bias term. We never train on 1100

the test set we evaluate on, and for more details see our Github (which will be released upon successful 1101

publication). With this setup, we recover 61% of KL divergence. 1102

Limitations. This setup may recover more KL divergence than the 25% of the initial baseline, but 1103

clearly shows that L10H7 has other important functions. However, observing the cases where this 1104

intervention has at least 0.1 KL divergence to the original model (57/6000 cases), we find that in 39/57 1105

of the cases the model had greatest attention to a capitalized word, which is far above the base rate in 1106

natural language. This suggests that the failure cases are due to our projection not detecting cases where 1107

the model should copy suppress a token, rather than L10H7 performing an entirely different task to copy 1108

suppression. 1109

N Weights-based evidence for self-repair in IOI 1110

In this section, we provide evidence for how the attention heads in GPT-2 Small compose to perform 1111

self-repair. As shown in Elhage et al. (2021), attention heads across in different layers can compose via 1112

the residual stream. 1113

Copy Suppression qualitatively explains the mechanism behind the self-repair performed in the Negative 1114

Heads: ablating the upstream Name Mover Heads reduces copying of the indirect object (IO) token, 1115

causing less attention to that token (Appendix O). In this section, we show that the opposite effect arises 1116

in backup heads: ablation indirectly cause more attention to the IO token, as the Name Mover Heads 1117

outputs prevent backup heads from attending to the IO token. 1118

To reach this conclusion, we conduct a weights-based analysis of self-repair in GPT-2 Small. Specifi- 1119

cally, we can capture the reactivity of downstream heads to Name Mover Heads by looking at how much 1120

the OV matrix WOV of the Name Mover Heads causes Q-composition (Elhage et al., 2021) with the QK 1121

matrix WQK of a downstream QK-head. To this end, we define 1122

M := MLP0(WE)
⊤W T

OV WQKMLP0(WE) ∈ Rnvocab×nvocab . (7) 1123

M is an extension to the setup in Section 3.2.1112 We studied this composition over the nnames = 141 1124

name tokens in GPT-2 Small’s vocabulary by studying the Rnnames×nnames submatrix of M corresponding 1125

to these names. For every (Name Mover Head, QK-head) pair, we take the submatrix and measure the 1126

median of the list of ranks of each diagonal element in its column. This measures whether QK-heads 1127

attend to names that have been copied by Name Movers (median close to 1), or avoid attending to these 1128

names (median close to nnames = 141). Figure 23 shows the results. 1129

These ranks reflect qualitatively different mechanisms in which self-repair can occur (Table 2). In the 1130

main text Figure 26, we colour edges with a similar blue-red scale as Figure 24. 1131

112 86 139 96 72 79 114 1 65 65 138 74 30 117 141 119 83 34 138 45 73 39 1 112

140 128 138 112 92 67 134 1 82 77 136 106 34 123 141 127 63 63 138 103 60 106 1 110

27 123 141 139 37 60 131 103 74 116 1 128
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Figure 24: Measuring the difference in attention paid to different names when editing the input Negative Heads
receive from Name Mover Heads.

O Negative heads’ self-repair in IOI1132

We edited the input that the Negative Heads receive from the Name Mover heads by replacing it with1133

an activation from the ABC distribution. We then measured the difference between the attention that1134

the negative head paid to the IO token compared to the S token. We found that the Negative Heads now1135

attended equally to the IO and the S1 token, as the average IO attention minus S1 attention was just 0.081136

for Head L10H7 and 0.0006 for Head L11H10 (Figure 24).1137

Since Negative Heads are just copying heads (Section 3.1), this fully explains copy suppression.1138

P Universality of IOI Self-Repair1139

Since Negative Heads exist across distributions and models, we also expect that IOI self-repair potentially1140

exists universally as well. Initial investigations across other models about self-repair in the IOI task1141

highlight similarities to the phenomena we observe here but with some subtleties in the specifics. For1142

instance, one head in Stanford GPT-2 Small E wrote ’less against’ the correct token upon the ablation of1143

earlier Name Mover Heads; however, it is distinct from the copy suppression heads in GPT-2 Small in that1144

it attended to both the IO and S2 tokens equally on a clean run.1145

Q Amplifying Query Signals into Self-Repair Heads1146

As a part of our exploration into how self-repair heads respond to signals in the residual stream, we noticed1147

that the output of the name mover heads was extremely important for the queries of the self-repair heads.1148

We wanted to decompose the signal down into subcomponents to determine which parts were meaningful1149

- in particular, we were curious if the IO unembedding direction of the name mover head’s output was1150

important.1151

To do this, we intervened on the query-side component of a self-repair head by:1152

1. Making a copy of the residual stream before the self-repair head, and adding a scaled vector sv⃗1153

(where v⃗ is a vector and s is some scaling) to this copy (before the LayerNorm)1154

2. Replacing the query component of the head with the query that results from the head reading in this1155

copied residual stream into the query1156

3. Varying the scaling s while repeatedly observing the new attention patterns of the self-repair of the1157

head1158

11This is similar to how Elhage et al. (2021) test the ‘same matching’ induction head QK circuit with a K-composition path
through a Previous Token Head

12As in Section 3.2 we ignore query and key biases as they have little effect.
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Figure 25: Observing the change in attention scores of Negative Heads upon scaling the presence of the output of
L9H9, both parallel and perpendicular to the WU [IO] direction.

Figure 25 shows a specific instance in which the vector is the output of head L9H9. We add scaled 1159

versions of the output into the residual streams of the Negative Heads which produce their queries (before 1160

LayerNorm). Additionally, we do an analogous operation with the projection of L9H9 onto the IO 1161

unembeddings, as well as the projection of L9H9 away from the IO unembeddings. 1162

We observe that the Negative Heads have a positive slope across all of the IO subgraphs. In particular, 1163

this still holds while using just the projection of L9H9 onto the IO unembedding direction: this implies 1164

that the greater the presence of the IO unembedding in the query of the negative name mover head, the 1165

greater the neagtive head attends to the IO token. The result still holds whether or not we add the vector 1166

before or after LayerNorm, or whether or not we freeze LayerNorm. 1167

Unfortunately, this same trend does not hold for backup heads. In particular, it seems that while we 1168

expect a predictable ’negative’ slope of all the subgraphs (as the L9H9 output causes the backup heads to 1169

attend less to the IO token), this trend does not hold for the projection of L9H9 onto the IO unembedding. 1170

This provides additional evidence for the claim that the unembeding component is not the full story of all 1171

of self-repair. 1172

R Complicating the Story: Component Intervention Experiments 1173

Copy suppression explains self-repair in negative heads via the importance of the unembedding direction 1174

(Section 3.2). Ideally, the unembedding direction would also help understand backup heads. However, we 1175

present two pieces of evidence to highlight how the unembedding only explains part of the self-repair in 1176

GPT-2 Small, including showing that our understanding of Negative Heads on the IOI task also requires 1177

understanding more than simply the unembedding directions. 1178

First, we intervened on the output of the Name Movers and L10H7,13 and edited the resulting changes 1179

into the queries of downstream heads. The intervention, shown in Figure 26, was either a projection onto 1180

13We also ablate the output of L10H7 due to self-repair that occurs between L11H10 and L10H7, as explained in Appendix B.
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IO unembedding input into self-
repairing heads, and measuring the
logit difference before and after
these intervetions. The unembed-
ding direction doesn’t completely
describe the backup effect.

or away from the IO unembedding WU [IO]14. We also froze the Layer Norm scaling factor equal to the1181

value on the original forward pass. To interpret Figure 26, note that for most backup heads, projecting1182

away from WU [IO] does not change the heads’ logit differences much, suggesting that the unembedding1183

direction isn’t very causally important for self-repair in backup heads. As such, there must be important1184

information in the WU [IO]-perpendicular direction that controls self-repair.1185

To complement this analysis, we also broke the attention score (a quadratic function of query and key1186

inputs) down into terms and again found the importance of the perpendicular direction (Appendix K).1187

Beyond this, intervening in the queries of self-repair heads reflects that the perpendicular direction is1188

particularly important in the Backup Heads (Appendix Q). Ultimately, we conclude that while Name1189

Mover Heads modulate Negative Heads’ copy suppression, this is only partly through the unembedding1190

direction. Further, backup heads do not seem to depend on the unembedding direction.1191

14By ‘away from’, we mean removing the unembedding direction from the head output, so the resultant vector is orthogonal
to the unembedding direction.
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