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Abstract

Finding the root cause of failures is a prominent
problem in many complex networks. Causal infer-
ence provides us with tools to address this prob-
lem algorithmically to automate this process and
solve it efficiently. The existing methods either use
a known causal structure to identify root cause
by backtracking the changes, or ignore the causal
structure but relies on invariance tests to identify
the changing causal mechanisms after the failure.
Assuming a single, unknown root cause, we first
establish a novel connection between root cause
analysis and the Interactive Graph Search (IGS)
problem. This mapping highlights the importance
of causal knowledge: we demonstrate that any al-
gorithm relying solely on marginal invariance tests
to identify the root cause must perform at least
Ω(log2(n) + d log1+d n) many tests, where n rep-
resents the number of components and d denotes
the maximum out-degree of the graph. We then
present an optimal algorithm that achieves this
bound by reducing the root cause identification
problem as an instance of IGS. Beyond the sin-
gle root cause scenario, we propose a practical
extension for settings with multiple root causes
and partial causal knowledge. More specifically,
we show that even if the causal graph is partially
known, we can identify the root-causes with a lin-
ear number of invariance tests. This is the first
known result on incorporating a partial causal struc-
ture for root cause analysis. Our experiments on
a production-level application demonstrate that,
even in the absence of complete causal informa-
tion, our approach accurately identifies the root
causes of failures. Our source code is available
online at github.com/azamikram/rcg.

†Equal contribution

1 INTRODUCTION

Root Cause Analysis (RCA), which aims to understand the
root cause of failures, is crucial for ensuring the reliability
and stability of production systems in diverse domains, in-
cluding but not limited to medicine [Kellogg et al., 2016,
Latino, 2015], telecommunications [Schaaf et al., 2015],
and IT operations [Whitney and Daniels, 2013, Drasar and
Jirsik, 2019]. In cloud applications, particularly those using
microservice architectures, the challenges of RCA are even
more pronounced. The large number of microservices com-
plicates pinpointing the primary cause of failures [Emmons
et al., 2022], and the interdependent nature of these services
means that a failure in one can cascade, disrupting the entire
network. These factors make timely and accurate diagnosis
of failures particularly difficult. According to Wang et al.
[2018], identifying the root cause of issues in platforms like
IBM’s Bluemix can take an average of three hours without
automated tools. Therefore, rapid fault detection is essential
for minimizing downtime and mitigating impact on sys-
tem performance. Delays in diagnosing issues can lead to
substantial financial losses and customer dissatisfaction, es-
pecially as service-level agreements often prioritize system
availability as a key performance indicator.

Recent RCA research has focused on developing methods to
detect the root cause of failures, often through a two-phase
process: first, constructing a graph structure and then rank-
ing the nodes within that graph. Some approaches rely on
expert knowledge to build the graph [Ma et al., 2020], while
others derive it from service call graphs [Chakraborty et al.,
2023], or employ deep neural networks for graph learn-
ing [Lin et al., 2024]. The goal is to model relationships and
dependencies between services using causal discovery tech-
niques to construct a causal graph [Wang et al., 2018, Qiu
et al., 2020, Gan et al., 2021, Ikram et al., 2022, Xin et al.,
2023]. For instance, MicroCause [Meng et al., 2020] em-
ploys the PC algorithm to learn a causal graph from service
metrics. However, the resulting graph is often an equiva-
lence class with undirected edges, prompting researchers
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to arbitrarily convert it into a directed acyclic graph (DAG).
RUN [Lin et al., 2024], for example, removes the edge be-
tween two nodes with the lowest correlation, but this method
does not guarantee the representation of the true underly-
ing graph. In the second phase, existing algorithms rank
all nodes using graph centrality measures such as random
walk [Wang et al., 2018, Ma et al., 2020], PageRank [Wu
et al., 2021, Xin et al., 2023, Lin et al., 2024], BFS [Lin et al.,
2018], and DFS [Chen et al., 2014]. However, many rely on
arbitrary objective functions that may not accurately reflect
the failure propagation chain. For example, Groot [Wang
et al., 2021] assumes that sink nodes are more likely to be
root causes and assigns them different scores than others.

During normal operations, site engineers or RCA systems
can proactively prepare for potential failures by learning
cause-effect relationships through domain knowledge or
causal discovery from observational data, a topic exten-
sively explored in the literature [Spirtes and Glymour, 1991,
Spirtes et al., 2000, Chickering, 2002, Peters et al., 2013,
Zheng et al., 2018, Lam et al., 2022]. In this context, observa-
tional data refers to metrics collected before a failure occurs,
while post-interventional data pertains to metrics gathered
after the failure. Recent work by Budhathoki et al. [2022]
leverages a graph from normal hours and allows anomalous
samples from multiple distributions but assumes known,
invertible functional relations, which are hard to estimate.
Okati et al. [2024] extends this by relaxing the functional
assumptions. Nonetheless, a fully known causal structure
can be difficult to obtain in practice, especially in a large-
scale system. Although Okati et al. [2024] has proposed a
score function for RCA without any causal knowledge, it re-
mains unclear how to incorporate existing causal discovery
algorithms, which often give a partial causal structure.

Our contribution. In this paper, we introduce a novel algo-
rithm, Root Cause Analysis with Causal Graphs (RCG),
which uses a system’s normal operational period to proac-
tively prepare for potential failures. To the best of our knowl-
edge, this is the first work to show the advantages of using a
partial causal structure learned from normal operation data
for RCA. We achieve this by showing a reduced number and
order of conditional independence (CI) tests required by our
proposed algorithm against state-of-the-art RCA methods
based on CI tests. We begin by examining the simplest case,
where there is a single root cause and the causal relation-
ships are fully known in the form of a DAG. Interestingly, we
show that identifying the root cause in a DAG is equivalent
to solving a well-established graph theory problem known
as Interactive Graph Search (IGS) Tao et al. [2019], with
minor modifications. This reduction to IGS provides a novel
insight: a logarithmic number of marginal invariance tests
relative to the number of variables is sufficient to identify
root causes given a causal graph. For cases of multiple root
causes, we propose another algorithm to learn the root cause
of failure. Our algorithm exploits causal knowledge that is

learned offline and can be represented as a mixed graph.
For example, it can accept a CPDAG, a mixed graph with
directed and undirected edges that represents a set of causal
graphs containing the true graph. It can also accept partial
causal structures obtained by testing a smaller set of condi-
tional independences from data such as LOCI Wienöbst and
Liskiewicz [2020], or the recently proposed kPC Kocaoglu
[2023], which are shown to be effective in the data-scarce
regime. We summarize our contributions below.

1. Considering a single root cause and given a complete
causal structure of a system, we map the problem of
RCA to IGS. We further provide an algorithm that
identifies the root cause with O(log2(n) + d log1+d n)
number of marginal invariance tests and show that any
algorithm that solely relies on marginal invariance tests
for RCA must perform Ω(log2(n)+ d log1+d n) many
tests, where n is the number of variables and d is the
maximum degree in the graph.

2. In scenarios with multiple root causes, we propose
an algorithm that leverages causal knowledge repre-
sented as a mixed graph (e.g., CPDAG) learned before
the failure. The algorithm efficiently finds the separat-
ing set based on the estimated structure along with an
information-theoretic approach to identify the true root
causes of failure. We also prove its soundness for RCA
given a partial causal structure.

3. We validate the performance of our proposed algo-
rithm by showing its higher accuracy relative to state-
of-the-art methods, such as RCD [Ikram et al., 2022],
RUN [Lin et al., 2024], and BARO [Pham et al., 2024],
through experiments on a real-world production-level
application, which has a large number of variables with
limited failure samples.

2 BACKGROUND

In this section, we give the most relevant definitions. We
use boldface letters to denote a set of random variables.
For more details on other graph notations and terminology,
please refer to Appendix A. We also discuss related work in
Appendix B.

Causal Graphs. A causal graph is used to encapsulate the
causal relationships among variables in the form of a DAG,
where each node represents a variable X and the directed
edge X → Y indicates that X causes Y . A variable is said
to cause another variable if a change in the former induces
a change in the probability distribution of the latter.

Structural Causal Models (SCMs) and Causal Bayesian
Networks (CBNs). SCMs are used to model causality
among a set of random variables. Each variable X is a func-
tion of some endogenous variables as its parents, denoted by
Pa(X), and an exogenous noise term, denoted as EX e.g.
X = fX(Pa(X), EX). An SCM induces a causal graph



by assigning a set of endogenous variables as the parents
of X for all variables X . CBNs are used to define a causal
model that specifies the observational and interventional
distributions via the truncated factorization formula without
the functional descriptions like SCMs in a causal graph.

D-separation, Markov Equivalence, CPDAG. In a causal
graph D, a path p between X and Y is d-connecting (active)
relative to a set of vertices Z(X,Y ̸∈ Z) if (i) every non-
collider on p is not in Z and (ii) every collider on p is an
ancestor of some Z ∈ Z. Otherwise, we say Z blocks p. If
Z blocks all paths between X and Y , we say X and Y are
d-separated relative to Z, denoted by (X ⊥⊥ Y |Z)D. Two
DAGs are Markov equivalent if they share the same set of
d-separation statements. The set of DAGs that are Markov
equivalent is called a Markov equivalence class of DAGs,
denoted by [D]. Generally, a DAG is only identifiable up
to its Markov equivalence class since different DAGs can
generate the same observational distribution. This leads to
an important concept about a partial causal structure. A
completed partially directed acyclic graph (CPDAG) that
represents [D] and has the same skeleton as D, with directed
edges Xi → Xj if the edge direction between Xi and Xj

holds for all DAGs in [D], and undirected edges otherwise.

Possible Parents relative to Equivalence Class [D]. X is
called a possible parent of Y , denoted as PossPaD(X), if
any of the following edges is in D: {X − Y,Xo→ Y,X →
Y,Xo—oY }. The notations Xo→ Y and Xo—oY are
only applicable for a particular partial structure known as
k-essential graphs which we will discuss in greater details
in Appendix D.

Intervention and F-NODE. An intervention on a variable
is the process of changing the generative mechanism of
that variable. Randomized controlled trials (RCTs) and A/B
tests are the most common notion of interventions. Pearl
uses do-operator do(X = x) to capture this type of inter-
vention. For instance, when do(X = x) forces a variable
X to take on certain values, it is known as the hard in-
terventions [Pearl, 2009]. Its effect in a causal graph is to
remove the edges incoming to the intervened nodes. It is
different than another type of intervention known as the
soft interventions, which do not completely alter the causal
mechanisms and retain the original causal graph by only
replacing fX(Pa(X), EX) with f ′

X(Pa(X), EX) where
f ′ ̸= f . A variable F-NODE has been extensively used to
represent the effect of an intervention on a system [Pearl,
1995, Yang et al., 2018, Mooij et al., 2020]. Throughout this
work, we denote a ground truth DAG D being augmented by
F-NODE as an intervention to the root cause as Daug. We
will discuss its role in RCA in the next section. We assume
no latent confounders. We also make the extended faithful-
ness assumption as in Jaber et al. [2020]. It means that any
statistical independence implies d-separation. Please refer
to Appendix A.6 and A.7 for more details.

3 PROBLEM FORMULATION

A system has n componentsM = {m1, . . . ,mn}. Within a
given time interval, the monitoring tool collects at least
d metrics from each of the components, i.e. T (i, t) =
{ri,1,t, . . . , ri,d,t}, where d ≥ 1;∀i ∈ {1, . . . , n}, T (i, t)
is a set of d metrics of component i at time instance t. Con-
sidering the entirety of the data, we have two time series
datasets defined as D = {T (1, 1), . . . , T (n, t − 1)} and
D⋆ = {T (1, t), . . . , T (n, γ)}, where t represents the time
when the failure was first registered and γ is the time when
the issue was fixed. We consider the setting where one can
learn some cause-effect relations in the form of a CPDAG
at the time s from D, where s < t. We leverage this partial
causal structure to pinpoint the root cause between times-
tamps t and γ.

Failure as Interventions. An important observation of this
problem is to model a failure as a soft intervention on the
failing mode [Ikram et al., 2022]. Here, the representation
of F-NODE allows one to identify the distribution invari-
ances PN (X|Pa(X)) = PA(X|Pa(X)), where PN and
PA are the distributions under normal mode of operation
and anomalous operation respectively. By concatenating
both of these datasets, one can sample from the distri-
bution P ⋆ of a set of observed variables V involving F-
NODE, denoted as F , where P ⋆(V|F = 0) = PN (V) and
P ⋆(V|F = 1) = PA(V). Under this formalism, the in-
variance PN (X|Pa(X)) = PA(X|Pa(X)) corresponds to
conditional independence between X and F given Pa(X).
Since F-NODE cannot have any incoming edges, one can
then employ a series of CI tests on the sampling distribu-
tions P̂ ⋆ to determine which node is the root cause R (the
child of F-NODE) by observing (R ⊥̸⊥ F |Pa(R))P̂⋆ .

To demonstrate the advantages of leveraging normal opera-
tion time, we begin by examining the number and order of
CI tests that can be reduced given a complete causal graph
(i.e., a DAG). Then, we will discuss a more practical solu-
tion for scenarios where only a partial causal structure is
available during the failure period.

4 RCA WITH A KNOWN GRAPH

In this section, we highlight the advantages of leveraging a
DAG prior to failure by contrasting it with RCD, an RCA
method that relies solely on CI tests. We begin by addressing
the primary limitation of RCD, specifically its inability to
utilize a DAG, which leads to a significant increase in the
number of CI tests required. Then, we introduce the use of
graphical structures as a potential solution in the case of a
single root cause. For details on RCD, see Appendix F. All
proofs are provided in the Appendix C.

Firstly, RCD only learns the adjacencies between F-NODE
and each observed variable as it operates. It conditions on
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Figure 1: An example to show how Lemma 4.1 and 4.2 help
identify the root cause with a few invariance tests given a
causal graph, where X1 is the root cause.

every possible subset S of variables V for testing the condi-
tional independence relations between each pair of variables
i.e., X,Y ∈ V until it identifies a conditioning set that
yields conditional independence, thereby excluding a poten-
tial node as the root cause under Assumption A.7. However,
under Assumption A.6, having access to a DAG D allows
us to conduct n CI tests e.g., (F ⊥⊥ X|PaD(X)) for each
observed variable X where n is the number of observed
variables. In other words, RCD performs at least as many
CI tests as a naive approach using the DAG would require.
Secondly, RCD may condition on a set of variables that is
much larger than the actual parent set, resulting in unreliable
CI test results in practice. In contrast, since our graphical
structure captures ancestral relationships between nodes and
there is only a single root cause variable, we argue that the
root cause can be identified in fewer than n tests. To support
this, we present key results that allow for a systematic ex-
ploration of the causal structure, significantly reducing the
number of required CI tests.

For the case where there is only a single root cause, the
following two lemmas indicate that certain CI relations can
eliminate variables from being considered as root causes,
under Assumption A.6 and A.7. The first lemma states that
all ancestors of a variable X can be excluded as the root
cause if we observe that F is conditionally independent of
X given some variables Z. The second lemma asserts that
all non-ancestors of X can be excluded as the root cause
if F is conditionally dependent on X . Unlike RCD, which
performs a series of CI tests and stops once a CI relation
excludes a variable as the root cause, our approach systemati-
cally eliminates variables using two key results—Lemma 4.1
and Lemma 4.2—without requiring tests on every variable.
W

Lemma 4.1. Given a DAG D, if (F ⊥⊥ X)P for some
X ∈ V, then A ̸∈ ChDaug

(F ) for all A ∈ AnD(X), where
P is any joint distribution between variables on Daug .

Lemma 4.2. Given a DAG D, if (F ̸⊥⊥ X)P for some X ∈
V, then then Q ̸∈ ChDaug

(F ) for all Q ∈ NAnD(X),
where P is any joint distribution between variables on
Daug .

We will use Figure 1 to illustrate how Lemmas 4.1 and 4.2
may help identify the root cause, which is X1 in this case,
with less than n invariance tests. We can start by arbitrar-
ily picking a variable for testing conditional independence

with F . Suppose we select X2 to test whether (F ⊥⊥ X2)P .
By Assumption A.7, we will observe (F ̸⊥⊥ X2)P . Then,
Lemma 4.2 says that X3 cannot be the root cause. Suppose
we pick X1 to test for conditional independence, then we
will observe (F ⊥⊥ X1)P . Then, by Lemma 4.1, we know
that X5 cannot be the root cause either. Then, we are only
left with X4 to test for conditional independence. This re-
sults in a total of 3 marginal independence tests, which is
less than n = 5. To further illustrate the utility of these two
key results, we show that there is a one-to-one correspon-
dence between the use of marginal invariance tests for RCA
with a known DAG and the problem known as Interactive
Graph Search (IGS) [Tao et al., 2019] which guarantees
identification of the root cause in fewer than n tests. For the
sake of clarity, we provide the formal problem formulation
of IGS.

Interactive Graph Search (IGS)
INSTANCE: A DAG D = (V,E) that has a single
root node, an adversary chooses arbitrarily a target node
R ∈ V. There is an oracle that returns a boolean answer
to the given query: yes, if there is a directed path from
X to R and no otherwise for any X ∈ V.
QUESTION: What is the minimum number of queries
to ask in order to identify R in D?

Lemma 4.3. Consider a DAG D = (V,E) with a single
sink node and D′ be a DAG by reversing every edge direc-
tion in εk(), let Q(X) be a query to the oracle on whether
some X ∈ V has a directed path to an unknown target node
R ∈ V.

Q(X) = yes⇔ (F ̸⊥⊥ X)P (1)

Therefore, if Q(X) = yes, then X ∈ AnD′(R). If Q(X) =
no, then X ∈ NAD′(R).

The significance of Lemma 4.3 is that a solution to IGS
is now a solution to RCA using marginal invariance tests,
given a known DAG. For DAGs that do not have a single
sink node, we can simply add a dummy node as a child
of all the sink nodes. Hence, the following theorem is an
immediate consequence of Theorem 1 (see Appendix C.1)
proven by Shangqi et al. [2023]).

Theorem 4.4. Given a DAG D with a single sink node,
any algorithm the only uses marginal invariance tests
must perform Ω(log2 n + d log1+d n) many tests to find
the single root cause in the worst case, where d is the
maximum in-degree of D and n is the number of nodes.
There exists an algorithm that finds the root cause with
O(log2 n+ d log1+d n) marginal invariance tests.

Shangqi et al. [2023] provides an optimal algorithm that
bounds the worst-case number of queries to O(log2 n +
d log1+d n) for IGS. Due to Lemma 4.3, this algorithm can
be modified for RCA with a single root cause using marginal
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Figure 2: RCG framework: The true graphs, D and Daug,
are unknown to the algorithm. Red nodes represent the root
cause, while orange nodes are impacted but not the root
cause. During the normal period, RCG learns a CPDAG
from a sound causal discovery algorithm. After a failure, it
identifies the root cause by performing marginal invariance
tests to further orient the edges and computing the Condi-
tional Mutual Information (CMI), denoted by I , between
the F and each node in the graph. Finally, RCG ranks the
nodes by CMI scores, outputting an ordered list of potential
root causes.

invariance tests. Hence, we have shown that we need fewer
than n tests and that marginal invariance tests alone are suffi-
cient for identifying the root cause given a DAG. We provide
the pseudocode of the modified IGS algorithm through Al-
gorithm 4 in the Appendix.

5 RCA WITH A PARTIAL GRAPH

Having established that a causal graph helps to reduce the
number and order of CI tests, we now turn our attention
to the challenge of performing RCA with partial graphical
structure in the case of multiple root causes. We provide the
workflow of the proposed solution in Figure 2. All proofs
are provided in the Appendix C. We start with an example
to highlight three main challenges of incorporating a partial
causal structure with CI tests, as illustrated in Figure 3. For
simplicity, we use a CPDAG as the given partial causal struc-
ture. However, our results in this section also hold for other
partial causal structures, which we leave to Appendix D.
We briefly discuss the challenges of learning CPDAG from
observational data on top of RCA and the benefits of using
other partial causal structures in the end of Appendix B.

Motivating Example. Consider the true augmented graph
D1aug

shown in Figure 3(b). The CPDAG of D1 is the in-
duced subgraph of D1aug obtained by removing F . Here,
we can use a single CI test to identify the root cause. We
can select X1 and test the CI relation (F ⊥⊥ X1)P . Since
X2, X3, X4 are non-ancestors of X1 in the CPDAG and
(F ⊥̸⊥ X1)P , it follows that X1 must be a child of F in
the ground truth. Hence, X1 is the root cause. However,
RCD must have tested 6 CI tests e.g., (F ⊥⊥ X4)P , (F ⊥̸⊥
X2)P , (F ⊥⊥ X2|X1)P , (F ⊥̸⊥ X3)P and (F ⊥⊥ X3|X2)P
(or (F ⊥⊥ X3|X1)P ), in order to conclude that X1 is the

X1 X2 X3

X4

(a) D1

X1 X2 X3

X4F

(b) D1aug

X1 X2

X3 F

(c) D2aug

X1 X2

X3

(d) C(D2)

X1 X2 X3

F

(e) D3aug

X1 X2 X3

(f) C(D3)

Figure 3: (a) A true graph D1 which is also the CPDAG of
D1. (b) A true graph augmented from D1. It shows how a
CPDAG can help identify root causes more efficiently. (c)-
(d) A true graph D2aug

augmented from D2 and the CPDAG
C(D2). They show how a CPDAG may not help identify
root causes with more CI tests since it does not have any
orientations. (e)-(f) A true graph D3aug augmented from
D3 and the CPDAG C(D3), showing that not all CPDAGs
without orientations are equally informative for RCA.

root cause in the best case. Nonetheless, it is unclear how
to initially select a variable for testing conditional indepen-
dence. The second challenge is that some CPDAGs do not
have any orientations as shown by Figure 3(d). We cannot
utilize any ancestral relationships even if we exhaust all
marginal tests. The third challenge is that all CPDAGs that
do not have any orientations are not equally informative for
RCA. Consider another true augmented graph in Figure 3(e)
and the corresponding CPDAG learned from observed data
in 3(f), one can infer that: (i) F cannot point to X1 due to
(F ⊥⊥ X1)P ; (ii) F has a directed path to X2. Therefore,
X1 − X2 can be further oriented as X1 → X2 in Figure
3(f) with interventional data. Since all the unshielded col-
liders in Figure 3(f) should have been oriented, X2 − X3

can then be further oriented as X2 → X3, resulting in
X1 → X2 → X3. Hence, we can conclude that X2 is the
root cause as X2 is the parent of X3 without testing whether
(F ⊥⊥ X3)P holds.

Ranking Root Causes. A key requirement for RCA tools
is the output format. While failures typically have few root
causes, much of the literature focuses on ranking nodes and
reporting the top-l. This poses a challenge for approaches
that rely on CI tests, which often identify only a single or
a few root cause nodes. RCD addresses this by gradually
increasing the significance level, α, in its CI tests and re-
running the algorithm until at least l nodes are identified.



However, this does not guarantee a meaningful ranking;
the resulting nodes may appear in an arbitrary order, and
multiple reruns increase runtime.

To address this along with the challenges mentioned previ-
ously , RCG (Algorithm 1) leverages the critical insight that
the ranking in RCA aligns with an information-theoretic
approach. Clearly, any non-root-cause variable R̄ can be
d-separated from F given its parents PaR̄, while only the
true root cause R is d-connecting with F given its parents
Pa(R). Under the faithfulness assumption, F must be con-
ditionally dependent with R given Pa(R), and by Assump-
tion A.6, F must be conditionally independent with R̄ given
Pa(R̄). These conditional independencies can be measured
using CMI. Thus, RCA with a partial causal structure can
be broken down into two steps: finding the parents of each
variable and estimating the CMI given its parents. Ranking
the potential root causes is achieved by sorting the CMI
values in descending order. This non-parametric method is
robust, capturing both linear and nonlinear dependencies,
and works across various types of distributions, whether
discrete, continuous, or mixture.

However, given a CPDAG, the parent set of each variable
may not always be known. Our key contribution is to show
that computing the CMI between F and each variable X ,
conditioned on possible parent set of X , is sufficient to iden-
tify root causes. This allows us to identify the root cause
using only n invariance tests. We have proven the sound-
ness of our algorithm for identifying root causes. This result
is further extended to other partial causal structures in the
form of a mixed graph such as k-CPDAG Wienöbst and
Liskiewicz [2020] or k-essential graphs Kocaoglu [2023]
for the data-scarce regime, which we discuss in Appendix D.
Our algorithm can accept the output of any causal discovery
algorithm, once it is converted to a CPDAG 1. To combat
finite sample noise, Algorithm 1 first sorts the mutual infor-
mation between F and each variable in descending order.
Then, it starts by using the minimum mutual information
as a threshold to determine statistical independence and ori-
ent the CPDAG (lines 5-12). It repeatedly increments the
threshold based on the next smallest mutual information un-
til we have a consistent ranking of the root causes (see lines
19-20), meaning that there cannot be any variable that has
a low mutual information with F but a high CMI given its
possible parents. We do so to ensure the orientation applied
to the CPDAG is consistent with the ranking procedure.

Theorem 5.1. Given a CPDAG output by any sound causal
discovery algorithms and under causal sufficiency and the
extended faithfulness assumption, Algorithm 1 returns the
true root cause variables.

1A CPDAG captures all edges that can be learned through CI
constraints and the remaining edges are uninformative.

Algorithm 1 RCA with Causal Graphs (RCG)
input Observational data D, interventional data D⋆, a CPDAG
C(D) = (V,E), Max. no of root causes l,

output Top-l root causes
1: Concatenate D and D⋆ with a binary indicator variable F .
2: for X ∈ V do
3: AX ← I(F ;X)
4: A←Sort X ∈ V by AX in ascending order
5: Create an empty list V⋆

s

6: for α ∈ A do
7: G← C(D)
8: for X,Y ∈ V do
9: if I(F ;X) < α and I(F ;Y ) ≥ α then

10: If X ← Y is in G, remove X ← Y
11: If X − Y is in G, orient X → Y
12: for X ∈ V do
13: CMIX ← I(F ;X|PossPaG(X))
14: Vs ←Sort X ∈ V by CMIX in descending order
15: if ∃X that has I(F ;X) < α and CMIX is ranked on

top-l in Vs then
16: Return the first l root causes from V⋆

s .
17: V⋆

s ← Vs

18: Return the first l root causes from V⋆
s .

6 EXPERIMENTS

In this section, we evaluate RCG by addressing two key
questions: 1) Does a causal graph help RCG identify the
root cause? 2) How quickly can RCG find the root cause?
We then discuss our implementation setup and present the
results. We provide additional results in Appendix G.

Implementation. To generate experimental data, we fol-
lowed a streamlined approach [Ikram et al., 2022, Lin et al.,
2024], using pyagrum [Ducamp et al., 2020] to create ran-
dom causal graphs. We then generated samples for both
observational and interventional settings by perturbing the
data generation process of a randomly selected node. To
ensure robustness, each experiment was repeated 100 times,
with results reported as the mean and standard error. In RCA
literature, a key metric for evaluating effectiveness is accu-
racy at top-l, defined as the probability of identifying the
root cause within the top l ranked causes. Hence, we report
top-l accuracy along with the execution runtime.

We implemented the following baselines:

• RUN [Lin et al., 2024]: It constructs a causal graph
using neural Granger causal discovery with contrastive
learning. It ranks the nodes by PageRank with a per-
sonalized vector according to the learned graph.

• BARO [Pham et al., 2024]: A non-causal approach
that ranks root causes by computing a score for each
variable, based on the absolute difference between each
post-failure sample and the median of pre-failure data.

• SMOOTH Okati et al. [2024]: A recent work that tries
to find the root cause given a complete causal graph.
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Figure 4: The results demonstrate that RCG with RCG-2 consistently achieves higher accuracy than RCD. While MI
struggles due to its inability to condition on the parents of each node, whereas RCD can condition on other nodes but lacks
information about the causal structure. In contrast, RCG overcomes these challenges by learning a causal graph and using
CMI to rank the nodes effectively.

• MI: A simple approach that sorts each node based on
its mutual information with F.

• RCD [Ikram et al., 2022]: A recent method that uses
CI tests to identify the root cause.

• RCG: A prototype of Algorithm 1 that uses a CPDAG.

To demonstrate the value of graphical structure, we first
present an experiment where all baselines used the ground
truth graph as input. The results with graphs learned from
data are shown in Appendix G.2. We also compare two vari-
ants of RCG: M-IGS (Modified IGS)2, which takes a DAG
as input and identifies the root cause per Lemma 4.3; and
RCG(CPDAG), which uses the essential graph generated
by the PC algorithm [Spirtes et al., 2000]. Furthermore, we
used 10,000 samples for the normal period and only 1,000
samples for the post-failure dataset.

Figure 4(a) shows the top-l accuracy of different approaches
with l = 1/3/5. Although M-IGS offers the lowest runtime
among all CI-based methods, its accuracy drops sharply.
This decline stems from a key limitation: M-IGS assumes
perfect CI tests, but in practice, test results can be unreliable
due to limited sample availability. As a result, M-IGS of-
ten makes incorrect decisions, leading to poor performance,
especially as the number of nodes increases. This weak-
ness is particularly evident when comparing M-IGS with
SMOOTH. Both methods operate on a fully known causal
graph (DAG), but SMOOTH, being score-based, ranks vari-
ables using the anomaly scores of their parents and is more
robust to noisy CI tests. Consequently, it outperforms M-IGS
under imperfect conditions. This observation underscores

2For IGS, we referenced the recent findings from the POMS
paper [Shangqi et al., 2023], but the authors declined to share
their code in a way that can be made public. Consequently, we
implemented an older, simpler version from [Tao et al., 2019].
For a runtime comparison, please see Theorem C.1 and C.2 in
Appendix.

a critical point: while IGS has strong theoretical guaran-
tees, its practical performance suffers in the presence of
noisy CI tests, where even a single error can propagate and
significantly impact results.

Similarly, RUN performs poorly due to its PageRank person-
alization algorithm, which incorporates arbitrary constraints
not applicable to our experimental setup, such as assuming
that leaf nodes are more likely to be the root cause. As a
result, even with the ground truth DAG, RUN fails to iden-
tify the root cause. Also, BARO, which relies solely on the
absolute difference between normal and failure periods, per-
forms poorly because failures can propagate across multiple
nodes in a graph, often having a more pronounced impact
on child nodes than on the root cause itself. When compar-
ing RCD and RCG, we find that RCG generally achieves
better accuracy. With 100 nodes, RCG(CPDAG) identifies
the root cause in the top-1 position with an accuracy of 87%,
surpassing RCD’s 78%. This can further improve to 93%
when ranking top-5 nodes. Similarly, when comparing RCG
(CPDAG) with SMOOTH, we observe that RCG consis-
tently outperforms SMOOTH. For instance, at 100 nodes,
RCG achieves an accuracy of 87%, compared to 78% for
SMOOTH in finding root cause in top-1. A key distinction
between the two methods is that RCG(CPDAG) operates on
a partially known causal graph, whereas SMOOTH requires
a fully specified DAG as input.

Since root cause analysis is often time-sensitive, we re-
port the number of samples required for each approach to
perform effectively. Instead of execution time, we focus
on sample efficiency, as most graph-based methods can
be parallelized in large clusters. Hence, the key question
is how many samples need to be collected before an ap-
proach becomes effective. Nevertheless, we provide run-
time comparisons in Appendix G.4. Figure 4(b) shows the
top-1 accuracy of three competing approaches on 25-node
graphs with a varying number of interventional samples.



RCG(CPDAG) consistently outperforms baselines due to
its reliance on the CPDAG and its ability to orient edges
after failure. Appendix G.3 extends these results to 50- and
100-node graphs.

7 CASE STUDY

Sock-shop. This section demonstrates the effectiveness of
RCG using the Sock-shop application, a microservice-based
replica of a web application for selling socks. The system
consists of 13 microservices, with 5 being the most critical
and user-facing. Although Sock-shop is microservice-based,
our method remains system-agnostic. We used the dataset
from Ikram et al. [2022], which includes two failure types:
CPU hog and memory leak. The dataset contains 50 in-
stances, each running for 5 minutes in both normal and
failure conditions. We repeated each experiment 50 times
and report the mean top-l accuracy.

For Sock-shop scenario, we considered state-of-the-art RCA
baselines, including causalRCA [Xin et al., 2023] (shown as
cRCA), RUN [Lin et al., 2024], BARO [Pham et al., 2024],
and RCD. To demonstrate the utility of the extended version
of Algorithm 1 (see Algorithm 2 in Appendix E), we used a
recent causal discovery algorithm k-PC Kocaoglu [2023],
which learns the graph using a restricted conditioning set.
Note that our algorithm only requires a partial causal graph,
and k-PC was only chosen for its ability to constrain the
separating set size, helping to prevent faithfulness violations
in real data. We use postfixes to indicate how k was chosen.
For example, RCG-k refers to using all conditioning sets
up to size k, where k ∈ {0, 1}. Additionally, we construct a
causal graph based on the system’s call graph and use that as
the input to Algorithm 1. We denote this algorithm by RCG-
Expert, which uses expert knowledge for identifying the
root cause. In this case, the possible parent set in Algorithm
1 is the parent set indicated by the DAG structure.

Table 1 shows the top-l accuracy of RCG with different
baselines for CPU hog failure. We report the results for the
memory leak failure in the Appendix H. The results align
with those from our synthetic data experiments in Section 6.
Notably, RCD and RCG-0 perform similarly because, with
k = 0, k-PC is limited to marginal CI tests, producing a
dense k-essential graph (see Appendix D. This leads to a
larger set of possible parent nodes, forcing RCG to condition
on more variables, which can obscure the true root cause.
However, when k = 1, RCG outperforms RCD as k-PC is
allowed to use separating sets of size up to one. Increasing k
improves graph learning but demands larger sample sizes for
reliable CI tests. Additionally, the system call graph shows
that RCG achieves high accuracy when a high-quality causal
graph is learned from observational data.

Notably, the performance of BARO, which achieves high
top-1 accuracy on the Sock-shop dataset for both failure

types. However, this contradicts our earlier experiments in
Section 6. As we show in the next section with real-world
data, BARO performs poorly. This discrepancy suggests that
BARO may be overfitting to the Sock-shop dataset.

Real Datasets. We collected data from a real-world produc-
tion application from January to July 2024, during which
four outages were reported. For each incident, Software
Reliability Engineers (SREs) documented key details, in-
cluding outage duration, detection time, resolution method,
and root cause (see Table 3). We presented the SREs with
the top 10 ranked nodes from each baseline and asked them
to confirm if the true root cause was among them. We report
the rank of the root cause for each incident, where a lower
rank indicates better performance by the method.

Table 2 compares the performance of MI, BARO, RCD,
and RCG on the real-world dataset. The results show that
RCG-0 consistently outperforms BARO and matches closely
with MI’s performance in outages C and D. MI’s strong per-
formance may stem from data inequality processing, but
it breaks down when confounders ext between root causes
and their descendants. In outage B, RCG-0 ranks the root
cause first, while MI places it ninth. For outage A, RCG-0
identifies the root cause within the top 10, whereas MI does
not. BARO often ranked the root cause near the bottom and
failed to identify it entirely in one case, highlighting the lim-
itations of methods focused solely on detecting noticeable
changes. This also underscores the drawbacks of relying
on a single point of the distribution (such as the median),
which may not accurately capture the shift between the two
distributions. RCD performs well on outages C and D, but it
took approximately 25 minutes to produce results, whereas
RCG completed in 10 seconds. We also find that increas-
ing k did not consistently improve accuracy by comparing
RCG-0 with RCG-1 and RCG-2. In some cases, accuracy
declined due to less reliable CI tests with larger separating
sets, leading to incorrect parent node conditioning and in-
accurate rankings. This aligns with our insight that relying
on high-order CI tests with small interventional samples
is not ideal. In the additional experiment in Appendix G.1,
we demonstrate that RCD heavily relies on high-order CI
tests after failure, which compromises its performance. In
contrast, our extended version of RCG (see Algorithm 2)
leverages a partial causal structure learned from observed
data using CI tests with small conditioning sets and requires
only marginal invariance tests after failure.

For RCG, we note that there is a trade-off between the time
complexity of computing CMI and the granularity of the
input structure provided to RCG if we take the time to ob-
tain the input into account. For example, when using the
PC algorithm Spirtes et al. [2000] to construct a CPDAG
as input, the resulting graph is typically sparser than a k-
essential graph, a graphical representation that only uses CI
tests up to order k to construct, leading to more efficient
CMI computations due to smaller conditioning sets. In con-



MI cRCA RUN BARO RCD RCG-0 RCG-1
RCG-
Expert

top-1

Carts 0.79 0.80 0.00 1.00 0.56 0.40 0.81 0.30
Catalogue 0.11 0.40 0.00 1.00 0.18 0.98 0.09 0.81
Orders 0.36 0.40 0.00 1.00 0.68 0.57 0.37 0.96
Payment 0.27 0.40 0.00 1.00 0.65 0.76 0.24 0.93
User 1.00 1.00 0.00 1.00 1.00 0.56 1.00 0.87
Avg. 0.51 0.60 0.00 1.00 0.61 0.66 0.50 0.77

top-3

Carts 1.00 0.80 0.42 1.00 0.87 0.42 1.00 1.00
Catalogue 0.92 0.60 0.39 1.00 0.47 1.00 0.45 1.00
Orders 1.00 0.40 0.07 1.00 0.92 0.6 1.00 1.00
Payment 1.00 0.40 0.14 1.00 0.88 0.76 1.00 1.00
User 1.00 1.00 0.06 1.00 1.00 0.64 1.00 1.00
Avg. 0.98 0.64 0.22 1.00 0.77 0.68 0.89 1.00

top-5

Carts 1.00 1.00 0.62 1.00 0.82 0.42 1.00 1.00
Catalogue 0.93 0.60 0.58 1.00 0.51 1.00 0.58 1.00
Orders 1.00 0.60 0.15 1.00 0.87 0.62 1.00 1.00
Payment 1.00 0.40 0.20 1.00 0.86 0.76 1.00 1.00
User 1.00 1.00 0.11 1.00 1.00 0.70 1.00 1.00
Avg. 0.99 0.72 0.33 1.00 0.81 0.70 0.92 1.00

Table 1: The table shows the top-l accuracy of different baselines on the data collected from the Sock-shop application after
injecting a CPU hog into a given microservice.

Outage RCG-0 RCG-1 RCG-2 MI BARO RCD

A 7 - - - 9 -
B 1 6 - 9 6 -
C 1 1 1 1 8 1
D 5 5 6 3 - 2

Table 2: Rank of the root cause among the top 10 nodes for
each baseline, with a rank of 1 indicating the highest-ranked
node and a dash indicating the root cause was not found.
RCG-0 consistently outperforms BARO and performs com-
parably with MI, but higher values of k lead to a less reliable
causal graph and decreased consistency.

Outage Nodes
Normal
Samples

Failure
Samples

Duration
(hours)

A 152 4783 918 15
B 141 4626 1217 20
C 149 3464 110 2
D 146 7165 567 5

Table 3: Summary of outages from a real-world production
application.

trast, a k-essential graph often results in larger conditioning
sets, making CMI computations more costly. This efficiency
gap, however, is not obvious when CPDAGs are obtained
from other discovery algorithms besides PC.

8 CONCLUSION

Identifying the root cause of system failures is a critical
challenge in software systems. We argue that leveraging a
system’s partial causal structure can provide valuable in-
sights for diagnosing failures. First, we demonstrate the
value of the causal graph by showing that it can significantly
reduce the number of invariance tests required. We establish
a lower bound on the number of marginal CI tests necessary
to identify the root cause, given the correct causal graph,
for any algorithm that relies solely on marginal invariance
tests. Then, we argue that a system’s normal operational
time can be leveraged to learn a partial causal graph. Based
on this, we introduce an algorithm that systematically uti-
lizes the partial causal graph to identify the root cause using
a linear number of invariance tests. Our proposed algorithm
RCG can incorporate a wide range of causal discovery algo-
rithms and its performance will improve alongside with the
advancement of causal discovery from observational data.
Empirical results show that our approach outperforms state-
of-the-art methods, improving fault detectability. We believe
RCG shows promise for RCA under latent confounding by
integrating causal discovery algorithms capable of learning
from observational data with unobserved confounders. An
interesting future direction is to explore how to effectively
leverage multiple unknown interventional distributions for
RCA within the framework of modeling the failure as a soft
intervention. As mutual information performs well in our
experiments, it is also worthwhile to explore the conditions
under which mutual information will be most efficient in
terms of both sample and time complexity for RCA.
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A GRAPH NOTATIONS

Definition A.1. A graph D = (V,E) consists of a set of nodes (variables) V and a set of edges E. We use (X,Y ) to
denote an edge between a variable X and another variable Y in D. A directed graph has only directed edges (→). A partially
directed graph may have both undirected (−) and directed edges (→). A graph D′ = (V′,E′) is a subgraph of D = (V,E)
and D is a supergraph of D′ if V′ ⊆ V and E′ ⊆ E. D′ is an induced subgraph of D if E′ are all edges in E between
nodes in V′. A mixed graph consists of directed edges (→), undirected edges (−) and bidirected edges (↔).

Definition A.2 (Path). Two vertices in a graph are said to be adjacent if there is an edge between them. Given a partially
directed graph D, a path from V0 to Vn in D is a sequence of distinct vertices ⟨V0, V1, . . . , Vn⟩ such that for 0 ≤ i ≤ n− 1,
Vi and Vi+1 are adjacent. It is called a causal (or directed) path from V0 to Vn in D if Vi is a parent of Vi+1 for 0 ≤ i ≤ n−1.

Definition A.3 (Skeleton). A skeleton of a causal graph is the undirected graph obtained by making every adjacent pair
connected via an undirected edge.

Definition A.4 (Colliders). A consecutive triple of nodes ⟨X,Y, Z⟩ on a path is called a collider if both the edge between
X and Y and the edge between Y and Z have arrowheads pointing to Y . If additionally X and Z are not adjacent, it is
called unshielded collider. Any other consecutive triple is called a non-collider. If additionally, the two end vertices of the
triple are not adjacent, it is called a unshielded non-collider.

Definition A.5 (Ancestrality). In a graph D, for any two nodes X,Y in D, if there is a directed edge X → Y , then X is
a parent of Y and Y is a child of X in D. If there is a causal path from X to Y , then X is called an ancestor of Y and
Y is called a descendant of X . We denote a set of parents of X , a set of children of X , a set of ancestors of X , a set of
descendants of X and a set of non-descendants of X in D as PaD(X), ChD(X), AnD(X), DeD(X) and NDeD(X)
respectively. By convention, X is both an ancestor and a descendant of X in D. A source (or root) node has no parents. A
sink node does not have any child.

For learning Daug , we need to leverage distributional invariances across the normal and anomalous datasets via the following
two assumptions. For a more detailed discussion on these assumptions, please see Jaber et al. [2020].

Assumption A.6 (Ψ-Markov conditions). Let P denote an ordered tuple of distributions and let I be an ordered tuple of the
children of F-NODE. P is called Ψ-Markov relative to a graph Daug = (V,E) if the following holds for Y,Z,W ⊆ V:

1. For Ii ∈ I: Pi(y|w, z) = Pi(y|w) if Y ⊥⊥ Z|W in Daug

2. For Ii, Ij ∈ I: Pi(y|w) = Pj(y|w) if Y ⊥⊥ K|WK in DaugWK,R(W)

, where K := (Ii \ Ij) ∪ (Ij \ Ii), WK := W ∩K,R := K \WK, and R(W) ⊆ R are non-ancestors of W in Daug .

Assumption A.7 (c-faithfulness). A tuple of distributions P are said to be c-faithful to Daug if the converse of each of the
Ψ-Markov conditions holds.
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B RELATED WORK

Root Cause Analysis in Microservices. Root Cause Analysis (RCA) is done both online [Wang et al., 2023a] and
offline [Deng and Hooi, 2021], often relying on system dependency graphs [Chen et al., 2014]. Previous approaches have
used statistical techniques, deep neural networks, and graph representation [Brandón et al., 2020, Capozzoli et al., 2015, Ma
et al., 2020]. For instance, [Lin et al., 2018] uses z-scores to compare the distributions of normal operation and anomalous
system data. The method finds the root cause by identifying nodes that deviate the most between two distributions, but it
imposes normality assumptions on the data and it is sensitive to outliers. Li et al. [2022] also uses similar techniques with
a call graph provided by expert knowledge to adjust the scores. Pham et al. [2024] improves this idea by using median
and interquartile range instead, but the method does not leverage any causal knowledge. Wang et al. [2023b] used both
individual and topological time series data to capture interdependencies between microservices, while Xin et al. [2023]
introduced a gradient-based causal structure learning method to generate weighted causal graphs and developed a root cause
inference method called CausalRCA. Strobl and Lasko [2023] assume an invertible non-linear SCM with additive noise
terms such as non-Gasussian error terms and quantify the root cause contributions using Shapley values based on conditional
distributions on the error terms. Strobl [2024] later extends it to settings where counterfactual distributions can be derived.
Budhathoki et al. [2022] assume a causal graph with fully specified functional relationships to quantify the contribution of
each variable to the target outlier score. Budhathoki et al. [2022] define a root cause to be the variable where its value is
being detected to be an outlier among all the values that are jointly observed by other variables. Later, Okati et al. [2024]
extends it by providing a more efficient method when the causal graph is known and a heuristic when the causal graph is
unknown under the single root cause assumption. Okati et al. [2024] also assumes there is only a single observation available
in the anomalous regime. Assaad et al. [2023] uses a fully oriented acyclic summary causal graph with loops learned from
time-series data or provided by experts. They impose linearity for each directed edge in the given graph. Recently, Lin et al.
[2024] proposed RUN, a method that forecasts time series by constructing a neural network for each system metric and then
uses the forecasted data to build a Granger causal graph. During the diagnosis stage, RUN, like other algorithms, applies a
weighted personalized PageRank algorithm to traverse the graph and identify the root cause. A closely related work to ours
is RCD [Ikram et al., 2022], where Ikram et al. [2022] presented a causal framework that treats failure as an intervention.
They developed a hierarchical approach to causal discovery by randomly partitioning the set of observed variables and using
a series CI tests in each partition to produce a set of potential root causes. This approach is particularly relevant to our work,
as it also employs CI tests to localize and pinpoint the failure’s root cause. However, despite the innovative contributions of
these recent studies, we argue that a critical aspect has been overlooked: the opportunity to utilize normal operation periods
to develop a more efficient and effective RCA method for failure periods.

Causal Discovery with Background Knowledge for RCA. One common approach to learning the causal structure is to
incorporate expert knowledge [Chakraborty et al., 2023, Gong et al., 2024, Lin et al., 2024, Xin et al., 2023]. However, it
may not always be feasible to obtain expert knowledge. A data-driven approach to causal structure learning then becomes a
more viable solution. A key point is that learning causal structures does not require interventional data [Spirtes et al., 2000,
Chickering, 2002, Shimizu et al., 2006, Zheng et al., 2018]. We can leverage the vast amounts of observed data generated
during the system’s normal operation to construct the causal graph, rather than waiting for a failure.

Causal Discovery with Observational Data. A wide class of causal discovery algorithms that learn a CPDAG is mainly
score-based or constraint-based Chickering [2002], Spirtes et al. [2000]. For score-based methods, learning a causal structure
can be extremely time-consuming [Chickering et al., 2004]. Fortunately, there are recent advances that speed up the
processing of constructing an essential graph in the score-based methods [Chickering, 2020, Ramsey et al., 2017, Nazaret
and Blei, 2024]. Lam et al. [2022] also provide an efficient algorithm named GRaSP to exploit permutation reasoning to
search for a causal graph that is guaranteed to be in the Markov equivalence class of the ground truth. Andrews et al. [2023]
extends GRaSP by using Grow-Shrink Tree to make the algorithm more accurate and scalable. With further assumptions,
Montagna et al. [2023] also provides a scalable causal discovery algorithm based on score matching to recover a causal
graph.

Given that the use of CI tests is a central aspect of our work, we also provide a brief overview of recent advances in causal
discovery, particularly those focused on using CI tests. Causal discovery often relies on a series of CI tests to determine
relationships between variables. However, this approach can be problematic, as the statistical power of CI tests diminishes
with a finite sample size or when the conditioning set is large [Shah and Peters, 2020]. Also, they often involve conditioning
on large sets of nodes to identify possible separating sets for each node [Spirtes et al., 2000]. This time-consuming aspect
of causal discovery is particularly undesirable in our context, where time is critical following a failure, and the goal is to
quickly pinpoint the root cause. A promising direction in addressing this issue has been the exploration of methods to restrict
the size of the conditioning set. In the absence of latent confounders, Wienöbst and Liskiewicz [2020] introduced a sound



and complete algorithm known as Low-Order Causal Inference (LOCI), which learns a graphical representation based on CI
relations of order k or lower. Similarly, Kocaoglu [2023] provided a novel characterization of the graphical representation
termed the k-essential graph, along with a sound learning algorithm to construct it. Building on these ideas, Lee et al. [2024]
proposed an approach that further restricts the conditioning sets for all CI tests so long these tests include all marginal
tests. Our work integrates these recent advancements to develop and utilize a more robust causal graph than the current
state-of-the-art in RCA literature.

C THEOREMS AND PROOFS

For the sack clarity, we first provide the Theorem 1 from Shangqi et al. [2023] and Theorem 2 from Tao et al. [2019].
Shangqi et al. [2023] term the IGS problem as the POMS problem and they refer to a DAG as an input graph.

Theorem C.1. Shangqi et al. [2023] For the POMS problem, let n represent the number of vertices in the input graph D
and d denote the maximum vertex out-degree in D. Both of the following statements are true:

• There is an algorithm that can find the target in O(log1+k n+ (d/k) log1+d n) probs.

• Any POMS algorithm must perform Ω(log1+k n+ (d/k) log1+d n) probs to find the target in the worse case.

Theorem C.2. Tao et al. [2019] Let h be the length of the longest path in the DAG the and n be the number of variables.
Both of the following statements are true about the IGS problem:

• DFS-interleave asks at most ⌈log2 h⌉ · (1 + ⌊log2 n⌋) + (d− 1) · ⌈logd h⌉ questions.

• Any algorithm must ask at least (d− 1) · ⌊logd h⌋ questions in the worst case.

We provide the pseudocode of DFS-interleave, which has been modifed for RCA, in Algorithm 4.

Lemma 4.1. Given a DAG D, if (F ⊥⊥ X)P for some X ∈ V, then A ̸∈ ChDaug
(F ) for all A ∈ AnD(X), where P is

any joint distribution between variables on Daug .

Proof. For the sake of contradiction, suppose F → A in Daug for some A ∈ AnD(X). Since A is an ancestor of X in
D, there must be a directed path q from A to X in D. Thus, q must also exist in Daug. Consider the path obtained by
concatenating F → A with q in Daug . This path must be d-connecting in Daug . Thus, it must be that (F ̸⊥⊥ X)Daug

. From
interventional faithfulness, we have that (F ̸⊥⊥ X)P , which is a contradiction.

Lemma 4.2. Given a DAG D, if (F ̸⊥⊥ X)P for some X ∈ V, then then Q ̸∈ ChDaug (F ) for all Q ∈ NAnD(X), where
P is any joint distribution between variables on Daug .

Proof. For the sake of contradiction, suppose F → Q in Daug for some Q ∈ NAnD(X). Since Q is a non-ancestor of X
in D, without loss of generality, there are several cases: (i) there exists a directed path q from X to Q in G (ii) there is no
path between Q and X in D and (iii) any path p between X and Q must have a collider on p in D.

For case (i), q must also exist and be directed in D. By concatenating the path from X to Q and F → Q, we see the
path from F to X is blocked. Thus, we have (F ⊥⊥ X)D, which implies (F ⊥⊥ X)P by Assumption A.6, which is a
contradiction.

For case (ii), there is no path between X and Q in D, which implies (F ⊥⊥ X)D so that we reach the same contradiction.

For case (iii), every collider on any path p between Q and X must also be in D such that we have (F ⊥⊥ X)D by
concatenating F → Q with p, which implies (F ⊥⊥ X)P by Assumption A.6, which is a contradiction.

Lemma 4.3. Consider a DAG D = (V,E) with a single sink node and D′ be a DAG by reversing every edge direction in
εk(), let Q(X) be a query to the oracle on whether some X ∈ V has a directed path to an unknown target node R ∈ V.

Q(X) = yes⇔ (F ̸⊥⊥ X)P (1)

Therefore, if Q(X) = yes, then X ∈ AnD′(R). If Q(X) = no, then X ∈ NAD′(R).



Proof. Consider some nodes X ∈ V, suppose (F ⊥⊥ X)P , then X ∈ NDeD(R) by Lemma 4.1. Note that NDeD(R) =
NAnD′(R) due to DeD(R) = AnD′(R) by the given conditions for D and D′. Therefore, X ∈ NAnD′(R). As
NAnD′(R)⇔ Q(X)= no. We have that (F ⊥⊥ X)P ⇒ Q(X) = no. Similarly, suppose (F ̸⊥⊥ X)P , then X ∈ DeD(R)
by Lemma 4.2. As DeD(R) = AnD′(R), we have that (F ̸⊥⊥ X)P ⇒ X ∈ AnD′(R), which is equivalent to Q(X) =
yes.

Theorem 4.4. Given a DAG D with a single sink node, any algorithm the only uses marginal invariance tests must perform
Ω(log2 n+ d log1+d n) many tests to find the single root cause in the worst case, where d is the maximum in-degree of D
and n is the number of nodes. There exists an algorithm that finds the root cause with O(log2 n + d log1+d n) marginal
invariance tests.

Proof. This follows from Lemma 4.3 and Theorem 1 in [Shangqi et al., 2023], which says that any algorithm must ask
Ω(log2 n+ d log1+d n) queries to identify the target node selected by an adversary in a DAG D′ with a single root node for
the problem of IGS, where d is the maximum out-degree in D′ and there is an algorithm that can find the target node in
O(log2 n+ d log1+d n) number of queries.

C.1 PROOF OF THEOREM 5.1

We first leverage an existing result from Wienöbst and Liskiewicz [2020] (see Lemma C.3). Then, we will prove Lemma
C.4. While Lemma C.3 ensures the correctness of lines 5-6 in Algorithm 1, Lemma C.4 proves the correctness of using
possible parent sets to rank the top root causes under a more fine-grained representation of CPDAGs due to the orientations
that take place in lines 6-7 in Algorithm 1.

Lemma C.3. Wienöbst and Liskiewicz [2020] Given a distribution P defined over a DAG D, for any X,Y ∈ V and
Z ∈ V \ {X,Y }, |Z| ≤ k for some k ≥ 0, if (X ⊥⊥ Y |Z )P , (X ⊥̸⊥W |Z )P , then no DAG faithful to P contains the edge
W → Y .

Lemma C.4. Let M be the graph returned by lines 6-7 in Algorithm 1, F is not adjacent to X in Daug if and only if F is
d-separated with X given PossPaM (X) in Daug .

Proof. We first prove the if (⇒) direction.

We first give a critical insight. We note that if F-NODE points to any variable that is a collider H on some paths p in Daug ,
then running marginal tests must have allowed us to orient F → H ← U and F → H ← Q for some variables U,Q on p
in the given CPDAG C(D) due to Lemma C.3. Thus, we call this resulting graph M rather than C(D). If F is marginally
independent with all members in the adjacency set of H , then the result follows.

Suppose there is more than one node being marginally dependent on F . We call this set Z. Then, we know F must have a
directed path to all such nodes Z ∈ Z in Daug as there is no incoming edges to F and each of these nodes is marginally
dependent with F . We will prove the claim that if F is not adjacent to Z in Daug, then F is d-separated with Z given
PossPaM (Z) in Daug for all Z ∈ Z.

For the sake of contradiction, assume that F is d-connecting with Z given PossPaM (Z) in Daug. First, we note that
PossPaM (Z) must contain all parents of Z in Daug . Since there exists a directed path from F to Z, we call this path r as
shown below:

F → T → . . .→W → ...→ Z. (2)

Since PossPaM (Z) must contain all parents of Z, we consider two cases: (i) conditioning on PossPa(Z) opens an active
path from F to Z through the backdoor of some ancestors of PossPa(Z) e.g., W by concatenating a subpath of r as
follows :

F → T → . . .→W ← Q→ . . .→ Z (3)

and case (ii): there exists a d-connecting path from F to Z given some variables K as follows

F → T → . . .→W → . . .→ K ← Z (4)

Case (i) - conditioning on PossPa(Z) opens an active path from F to Z through the backdoor of some ancestors of
PossPa(Z) by concatenating with a subpath of r: We will first show a contradiction in this case. Note that we cannot have



Q ∈ AnDaug (Z). To see that, suppose Q and Z is adjacent in C(D), then Q must be in PossPaM (Z) as (F ̸⊥⊥ Z)P so
that Algorithm 1 will not change the orientation of this edge in M . This yields a contradiction as Q ∈ PossPaM (Z) would
have blocked this path. Suppose they are not adjacent in C(D), as any directed path from Q to Z would have been blocked
by conditioning on PossPaM (Z), there exists a collider U1 on a path from Q to Z with a member in DeDaug

(U1) must be
in PossPaM (Z) in order for the path in (8) to be a d-connecting path from F to Z as follows.

F → T → . . .→W ← Q→ . . .→ U1 ← . . . Z (5)

Consider U1 is a descendant of Z. This means there exists another backdoor path being active by conditioning on
PossPaM (Z) where some members J ⊆ PossPaM (Z) are descendants of U1. We first note that U1 cannot have a
directed path to Z due to acyclicty. That implies J must be children of Z in Daug . Note that there cannot be any descendant
R of U1 that forms an unshielded collider with any member in J because it will orient Z → C for any such child C in J
such that they will not be in PossPaM (Z). Thus, for any J in J and some descendants R of U1, we must have shielded
colliders ⟨R, J, Z⟩. This implies that U1 must be adjacent to Z, which implies that U1 is a child of Z. It also implies that the
backdoor path in (10) is active due to conditioning on a child of U1, which is also in PossPaM (Z). We call this child H .
Consider the variable U2 that is closest to U1 on the path in (10) e.g.

F → T → . . .→W ← Q→ . . .→ U2 → U1 ← Z (6)

Suppose U2 is adjacent to Z in Daug, if U2 ← Z is in Daug, then we can use the same argument by treating U2 as U1

repeatedly until we reach Q to be the closest node such that we reach the conclusion that conditioning on Q would have
blocked the backdoor path to reach the same contradiction. If U2 → Z is in Daug , then U2 is in PossPaM (Z) such that the
backdoor path would not be active either by conditioning on PossPaM (Z). Thus, Z and U2 cannot be adjacent in Daug.
Suppose U2 is not adjacent to H in Daug, then U2 → U1 → H must have been oriented in C(D) by first Meek rule such
that Z → H is also oriented in C(D) due to acyclicity, which leads to a contradiction as H ∈ PossPaM (Z). Thus, U2

is adjacent to H in Daug. This implies that U2 → H is in Daug due to acyclicity. Since Z and U2 cannot be adjacent in
Daug, then U2 → H ← Z must have been oriented in C(D) such that U2 → H ← Z is also in M . Then, H will not be in
PossPaM (Z), which is a contradiction.

Case (ii): Consider the path in (9). We will use a similar argument we made in case (i). That is, there cannot be any
descendant R of W that forms an unshielded collider with any member C in PossPaM (Z) because it will orient Z → C
for any such child C such that they will not be in PossPaM (Z). Thus, for the variable J that is the descendant closest to
W and is a child of Z must form a shielded collider e.g. ⟨W,J, Z⟩. However, since W has a directed path to Z, that implies
W → Z must also be in Daug such that W ∈ PossPaM (Z), which leads to a contradiction as the path (9) is no longer
d-connecting.

For the only if direction, for the sake of contradiction, assume F and X are adjacent in Daug . Since F and X are d-separated
given the possible parents set of X in M , then there is no d-connecting path from F to X given the possible parents set of
X , which is a contradiction as F is adjacent to X .

Theorem 5.1. Given a CPDAG output by any sound causal discovery algorithms and under causal sufficiency and the
extended faithfulness assumption, Algorithm 1 returns the true root cause variables.

Proof. The proof is based on Lemmas C.3 and C.4. Lemma C.3 proves the correctness of the orientation rules in Algo-
rithm 1 to refine the given CPDAG. Lemma C.4 proves the correctness of lines 10-13 in Algorithm 1 where we use the
highest CMI value e.g. I(F ;X|PossPaM (X)) to identify the true root causes. Specifically, Assumption A.7 ensures
that the non-root cause R̄ will have low CMI value e.g. I(F ; R̄|PossPaM (R̄)) relative to the true root causes R e.g.
I(F ;R|PossPaM (R)) > I(F ; R̄|PossPaM (R̄)).

D DISCUSSION ON INCORPORATING OTHER PARTIAL CAUSAL STRUCTURES

In this section, we will briefly introduce what other partial causal structures can be incorporated into our Algorithm 1.
Then, we will discuss the main differences between these structures and a CPDAG. These structure are called k-CPDAG
Wienöbst and Liskiewicz [2020] and k-essential graphs Kocaoglu [2023]. These graphical representation are mainly for
characterizing a set of causal graphs that share the same d-separation constraints with a bounding conditioning set size up
to k e.g. (X ⊥⊥ Y |Z)D, |Z| ≤ k for some causal graphs D. For the sake of clarity, we call these degree-k d-separation
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Figure 5: Kocaoglu [2023] Two k-Markov equivalent DAGs for k = 0 with the same k-essential graph. As Ck(D1) is
Markov equivalent to Ck(D2), they have the same k-essential graphs εk(D1)=εk(D2)=εk, obtained as the edge union
of their k-closures. (b): the k-closure graph of D1, where k = 0. (d): the k-closure graph of D2, where k = 0. (e): the
k-essential graph of the two k-closures graphs Ck(D1), Ck(D2).

statements. As k-essential graphs carry strictly more information about the set of causal graphs that entail the set of degree-k
d-separation statements than k-CPDAG (see Section D.6 in Kocaoglu [2023]), any result that we extend to k-essential graphs
in this section will also be applicable to k-CPDAG. Thus, our discussion will focus on k-essential graphs for the rest of this
section. These partial causal structures are developed for practical scenarios where there is only very limited sample, which
can quickly compromise the reliability of CI tests due to the lack of statistical power. Kocaoglu [2023] has provided an
algorithm known as k-PC for learning k-essential graphs from observed data. By letting k = |V| − 2, a k-essential graph
will resemble a CPDAG. Thus, one can view it as a more general form of the CPDAG.

D.1 BACKGROUND ON k-ESSENTIAL GRAPHS

For readability, we provide the definitions and theorems from Kocaoglu [2023] that are necessary to facilitate the discussion.
For details, please refer to Kocaoglu [2023]. We begin by introducing several key concepts: k-covered, k-closure graphs,
and their relationships with k-essential graphs.

Definition D.1. Kocaoglu [2023] Given a DAG D = (V,E) and an integer k, a pair of nodes X,Y are said to be k-covered
if ∃Z ⊂ V : |Z| ≤ k and (X ⊥⊥ Y |Z )D.

Definition D.1 says that two variables are k-covered if there is no separating set of size up to k that can d-separate them. The
idea of having two nodes being k-covered is to facilitate the construction of an augmented graphical representation of a
DAG known as k-closure graphs.

Definition D.2. Kocaoglu [2023] Given a DAG D = (V,E) and an integer k, the k-closure of D is defined as the graph
shown by Ck(D) that satisfies the following:

1. If: X,Y are k-covered in D
i) if X ∈ AnD(Y ), then X → Y in Ck(D), ii) if Y ∈ AnD(X), then X ← Y in Ck(D),
iii) else X ↔ Y in Ck(D)

2. Else: X,Y are non-adjacent in Ck(D)

Kocaoglu [2023] provides a graphical way to help determine whether two k-closure graphs are Markov equivalent. Kocaoglu
[2023] also proved that the k-closure graph of a DAG D induces the same set of degree-k d-separation statements as D.

Corollary D.3. Kocaoglu [2023] Two k-closure graphs K1,K2 are Markov equivalent if and only if

1. They have the same skeleton and

2. They have the same unshielded colliders.

Lemma D.4. Kocaoglu [2023] k-closure Ck(D) of a DAG D entails the same degree-k d-separation statements as the
DAG, i.e., (X ⊥⊥ Y |Z )D ⇐⇒ (X ⊥⊥ Y |Z )Ck(D),∀Z ⊂ V : |Z| ≤ k.

Moreover, k-Markov equivalence of two DAGs can be reduced to checking Markov equivalence of their k- closure graphs.
Based on this result, Kocaoglu [2023] shows that one can only hope to learn up to the equivalence class of k-closure graphs
just by CI tests.



Theorem D.5. Kocaoglu [2023] Two DAGs D1, D2 are k-Markov equivalent if and only if Ck(D1) and Ck(D2) are Markov
equivalent.

Kocaoglu [2023] uses the following edge union to represent a set of Markov equivalent k-closure graphs.

Definition D.6 (edge unions: —, o—o, o→ [Kocaoglu, 2023]). The edge union operations of a set of k-closure graphs are
defined as: (i) X — Y := X → Y ∪X ← Y , (ii) X o—o Y := X → Y ∪X ← Y ∪X ↔ Y , (iii) X o→ Y := X →
Y ∪X ↔ Y . A wildcard mark ∗ denotes it can be a circle, a tail, or an arrowhead mark.

Definition D.7 (k-essential graph). Kocaoglu [2023] For any DAG D, the edge union of all k-closure graphs that are
Markov equivalent to Ck(D) is called the k-essential graph of D, shown by εk(D).

Figure 5 illustrates the difference between DAGs, k-closure graphs, and k-essential graphs.

D.2 THEOREMS AND PROOFS FOR EXTENDING OUR RESULTS TO k-ESSENTIAL GRAPHS

We will first prove a result that is similar to C.3 for k-essential graphs. We will leverage an existing result from Wienöbst
and Liskiewicz [2020].

Lemma D.8. Wienöbst and Liskiewicz [2020] Given a distribution P defined over a DAG D, for any X,Y ∈ V and
Z ∈ V \ {X,Y }, |Z| ≤ k for some k ≥ 0, if (X ⊥⊥ Y |Z )P , (X ⊥̸⊥W |Z )P , (W ⊥̸⊥ Y |Z )P , then no DAG k-faithful to P
contains a causal path from W to Y .

Lemma D.9. Given a distribution P defined over a DAG D, for any X,Y ∈ V and Z ∈ V \ {X,Y }, |Z| ≤ k for some
k ≥ 0, if (X ⊥⊥ Y |Z )P , (X ⊥̸⊥ W |Z )P , then the k-essential graph εk(D) of all k-closure graphs that are Markov
equivalent to Ck(D) does not contain W → Y .

Proof. By design of k-essential graphs εk(D), two nodes X,Y are adjacent in εk(D) only when (X ⊥̸⊥ Y |Z)D for all
Z ⊆ V, |Z| ≤ k. It is because by design, there exists at least one k-closure graph that is Markov equivalent to Ck(D) where
X and Y are adjacent, which implies X and Y are k-covered in D. Given that (X ⊥⊥ Y |Z )P , (X ⊥̸⊥ W |Z )P , we have
that εk(D) does not contain W → Y by Lemma D.8.

Next, we will prove a result for k-essential graphs that is similar to Lemma C.4 to show the correctness of conditioning on
the possible parents in the more fine-grained k-essential graph in Algorithm 2.

Lemma D.10. Let M be the graph returned by lines 6-9 in Algorithm 2, F is not adjacent to X in Daug if and only if F is
d-separated with X given PossPaM (X) in Daug .

Proof. We first prove the if (⇒) direction.

We first give a critical insight. We note that if F-NODE points to any variable that is a collider H on some paths p in Daug ,
then running marginal tests must have allowed us to orient F∗→ H ←∗U and F∗→ H ←∗Q for some variables U,Q on p
in the given k-essential graphs εk(D) due to Lemma D.9. Thus, we call this resulting graph M rather than εk(D). If F is
marginally independent with all members in the adjacency set of H , then the result follows.

Suppose there is more than one node being marginally dependent on F . We call this set Z. Then, we know F must have a
directed path to all such nodes Z ∈ Z in Daug as there is no incoming edges to F and each of these nodes is marginally
dependent with F . We will prove the claim that if F is not adjacent to Z in Daug, then F is d-separated with Z given
PossPaM (Z) in Daug for all Z ∈ Z.

For the sake of contradiction, assume that F is d-connecting with Z given PossPaM (Z) in Daug. First, we note that
PossPaM (Z) must contain all parents of Z in Daug . Since there exists a directed path from F to Z, we call this path r as
shown below:

F → T → . . .→W → ...→ Z. (7)

Since PossPaM (Z) must contain all parents of Z, we consider two cases: (i) there exists a backdoor active path from F to
Z by concatenating with a subpath of r as follows:

F → T → . . .→W ← Q→ . . .→ Z (8)



and case (ii): there exists a d-connecting path from F to Z given some variables K as follows

F → T → . . .→W → . . .→ K ← Z (9)

Case (i) - there exists a backdoor active path from F to Z by concatenating with a subpath of r: We will first show a
contradiction in this case. Note that we cannot have Q ∈ AnDaug (Z). To see that, suppose Q and Z is adjacent in εk(D),
then Q must be in PossPaM (Z) as (F ̸⊥⊥ Z)P so that Algorithm 2 will not change the orientation of this edge in M . This
yields a contradiction as Q ∈ PossPaM (Z) would have blocked this path. Suppose they are not adjacent in εk(D), as any
directed path from Q to Z would have been blocked by conditioning on PossPaM (Z), there exists a collider U1 on a path
from Q to Z with a member in DeDaug

(U1) must be in PossPaM (Z) in order for the path in (8) to be a d-connecting path
from F to Z as follows.

F → T → . . .→W ← Q→ . . .→ U1 ← . . . Z (10)

Consider U1 is a descendant of Z. This means there exists another backdoor path being active by conditioning on
PossPaM (Z) where some members J ⊆ PossPaM (Z) are descendants of U1. We first note that U1 cannot have a
directed path to Z in Daug due to acyclicty. That implies J must be children of Z in Daug. Note that there cannot be any
descendant R of U1 that forms an unshielded collider with any member in J because it will orient Z → C for any such
child C in J such that they will not be in PossPaM (Z). Thus, for any J in J and some descendants R of U1, we must have
shielded colliders ⟨R, J, Z⟩. This implies that U1 must be adjacent to Z, which implies that U1 ←∗Z is in M .

It also implies that the backdoor path in (10) is active due to conditioning on a variable that is adjacent to U1 and it is in
PossPaM (Z). Let us call this variable H . Consider the variable U2 that is closest to U1 on the path in (10) in Daug e.g.

F → T → . . .→W ← Q→ . . .→ U2 → U1 ← Z (11)

Suppose U2 is adjacent to Z in M , if U2 ←∗Z is in M , then we can use the same argument by treating U2 as U1 repeatedly
until we reach Q to be the closest node such that we reach the conclusion that conditioning on Q would have blocked
the backdoor path to reach the same contradiction. If U2∗→ Z or U2o—oZ is in M , then U2 is in PossPaM (Z) such
that the backdoor path would not be active either by conditioning on PossPaM (Z) in Daug. Thus, Z and U2 cannot be
adjacent in M . Suppose U2 is not adjacent to H in Daug, if U2 and H are not k-covered, then U2∗→ U1∗→ H must have
been oriented in εk(D) by first Meek rule in k-PC algorithm Kocaoglu [2023] such that Z∗→ H is also oriented in εk(D)
due to acyclicity, which leads to a contradiction as H ∈ PossPaM (Z). Thus, U2 is adjacent to H in M . This trivially
also holds if U2 and H are k-covered. This implies that U2 → H is in Daug. Since Z and U2 cannot be adjacent in M ,
then U2∗→ H ←∗Z must have been oriented in εk(D) such that U2∗→ H ←∗Z is also in M . Then, H will not be in
PossPaM (Z), which is a contradiction.

Case (ii): Consider the path in (9). We will use a similar argument we made in case (i). That is, there cannot be any
descendant R of W that forms an unshielded collider with any member C in ChM (Z) because it will orient Z∗→ C for
any such child C such that they will not be in PossPaM (Z). Thus, for the variable J that is the descendant closest to W
and is a child of Z must form a shielded collider e.g. ⟨W,J, Z⟩ in M . However, since W has a directed path to Z, that
implies W∗→ Z must also be in M such that W ∈ PossPaM (Z), which leads to a contradiction as the path (9) is no
longer d-connecting.

For the only if direction, for the sake of contradiction, assume F and X are adjacent in Daug . Since F and X are d-separated
given the possible parents set of X in M , then there is no d-connecting path from F to X given the possible parents set of
X , which is a contradiction as F is adjacent to X .

Theorem D.11. Given the k-essential graph of the true DAG D and under causal sufficiency and the extended faithfulness
assumption, Algorithm 2 returns the true root cause variables.

Proof. The proof is based on Lemmas D.9 and D.10. Lemma D.9 proves the correctness of the orientation rules in Algorithm
2 to refine the given k-essential graph. Lemma D.10 proves the correctness of lines 16-19 in Algorithm 2 where we use
the highest CMI value e.g. I(F ;X|PossPaM (X)) to identify the true root causes. Specifically, assumption A.7 ensures
us that the non-root cause R̄ will have low CMI value e.g. I(F ; R̄|PossPaM (R̄)) relative to the true root causes R e.g.
I(F ;R|PossPaM (R)) > I(F ; R̄|PossPaM (R̄)).



E ALGORITHMS

Algorithm 2 RCA with Causal Graphs (Extended RCG)

input Observational data D, interventional data D⋆, a k-essential graph εk(D) = (V,E), Max. no of root causes l,
output Top-l root causes
1: Concatenate D and D⋆ with a binary indicator variable F .
2: for X ∈ V do
3: AX ← I(F ;X)
4: A←Sort X ∈ V by AX in ascending order
5: Create an empty list V⋆

s

6: for α ∈ A do
7: G← εk(D)
8: for X,Y ∈ V do
9: if I(F ;X) < α and I(F ;Y ) ≥ α then

10: If X ← Y is in G, remove X ← Y
11: If X − Y is in G, orient X → Y
12: If Xo—oY is in G, orient Xo→ Y
13: If X ←oY is in G, orient X ↔ Y
14: for X ∈ V do
15: CMIX ← I(F ;X|PossPaG(X))
16: Vs ←Sort X ∈ V by CMIX in descending order
17: if ∃X that has I(F ;X) < α and CMIX is ranked on top-l in Vs then
18: Return the first l root causes from V⋆

s .
19: V⋆

s ← Vs

20: Return the first l root causes from V⋆
s .

Algorithm 3 CONSTRUCT-HEAVY-PATH-DFS-TREE Tao et al. [2019]

input DAG D = (V,E)
output A heavy-path-DFS-tree T

1: Create a stack S with the root node R in D and mark R visited.
2: repeat
3: J ← get the top member in the stack.
4: if J has any child A that has not been visited previously then
5: A′ ← Find the child that can reach the highest number of nodes that have not been visited via a directed path.
6: Push A′ into the stack S and mark it visited.
7: else
8: Pop J out of the stack S.
9: until S is empty



Algorithm 4 Modified IGS (DFS-Interleave Tao et al. [2019]) for RCA

input DAG D = (V,E), interventional data D, CI tester,
output A root cause R

1: if D has more than one sink node then
2: D ← Add a dummy vertex S to D where all the sink nodes in D point to S.
3: D ← Reverse all the edges in D
4: T ← CONSTRUCT-HEAVY-PATH-DFS-TREE(D) {See Algorithm 3}
5: R̂← Select the root of T
6: repeat
7: π ← Select the leftmost R̂-to-leaf path of T
8: U ← Perform binary search on π to find the last node U that gives (F ⊥̸⊥ U)P .
9: W ← Find the leftmost child of U in T where (F ̸⊥⊥W )P .

10: if W does not exists then
11: return U
12: else
13: update R̂←W
14: until R̂ has not been updated.

F SAMPLE RUN OF RCD Ikram et al. [2022]

X1 X2 X3

X4F

Figure 6: An example to show how RCD works. RCD would need increase the size of the separating set to 2 to find the root
cause (X2). However, we can leverage the causal graph to know precisely the separating set for every node.

RCD is based on the observation that a failure in a microservice can be treated as an intervention in the underlying causal
graph. By treating the root cause as the interventional target, RCD leverages recent advances in causal discovery to identify
the root cause. Consistent with the broader causal discovery literature, RCD determines the interventional target (the root
cause) through a series of CI tests. RCD operates by introducing a special node, referred to as F, into the dataset and
connecting it to every other node in a complete undirected graph. The algorithm’s primary goal is to trim down the children
of F, as the true root cause will ultimately be the sole remaining child. However, due to the lack of information about the
underlying graphical structure, RCD must condition on every possible set of variables until it identifies a separating set that
can exclude a potential node as the root cause.

For instance, consider the ground truth causal graph shown in Figure 6, where the root cause is X2. Initially, RCD constructs
an undirected graph with F having outgoing edges to every node. It begins with a separating set of size 0 and executes all
possible CI tests. After conducting the tests (F ⊥⊥ X1)P and (F ⊥⊥ X4)P , RCD removes the edges between F and both X1

and X4. At this point, only two candidates for the root cause remain: X2 and X3. To narrow it down to the true root cause,
RCD increases the size of the separating set. If it tests X2, it runs (F ⊥̸⊥ X2|X3)P . Since X2 is the root cause, it cannot
be independent of F. When testing X3 by running (F ⊥̸⊥ X3|X2)P , conditioning on X2 opens a backdoor path from F to
X3, preventing its elimination. RCD then increases the size of the separating set once more and runs (F ⊥⊥ X3|X2, X4)P ,
which removes the edge between F and X3. Finally, RCD stops, identifying X2 as the root cause.

Since RCD lacks access to the causal graph, it must perform CI tests on all possible conditioning sets (up to size 2) to
identify the root cause, resulting in an exponential growth in tests and higher computational costs. To address this, RCD
limits the conditioning set size using a hyperparameter, though this can lead to incomplete results. We propose that knowing
the causal graph can significantly reduce the number of required CI tests. A causal graph provides precise separating sets,
allowing the root cause to be identified with at most n CI tests, where n corresponds to the number needed for validation of
the structure.
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Figure 7: The number of CI tests executed by RCD and the size of the separating set used in those tests. As the number of
nodes increases, RCD relies on higher-order CI tests to identify the root cause. However, these higher-order tests are less
reliable with limited samples, which diminishes RCD’s effectiveness.
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Figure 8: Top-l accuracy and the runtime of extended version of RCG (see Algorithm 2) compared to the baselines. The
input graph in this experiment was learned from the data using k-PC.

G ADDITIONAL EXPERIMENTS

G.1 RCD WITH HIGHER-ORDER CI TESTS

Figure 7 illustrates the number of CI tests executed by RCD alongside the size of the separating sets used. RCD identifies
the root cause by gradually increasing the size of these sets. However, the statistical power of CI tests diminishes with larger
separating sets, particularly when sample sizes are limited, as is often the case in RCA, where quick failure resolution is
crucial [Shah and Peters, 2020, Kocaoglu, 2023]. This reliance on higher-order CI tests leads to poorer performance with
an increasing number of nodes, as discussed in Section 6 of the main paper. In contrast, we demonstrate the utility of the
extended version of RCG (see Algorithm 2), which mitigates this issue by using k-PC, which is more effective than full
graph learning. It relies solely on n marginal invariance tests after failure.

G.2 EXPERIMENTS WITH SAMPLED VERSION

Figure 8 illustrates the performance of RCG in comparison to MI and RCD. Similar to the experiment using the ground truth
causal graph, we utilized 10,000 samples for the observational dataset and only 1000 samples for the interventional dataset.
Additionally, we included RCG-0 and RCG-1 based on Algorithm 2 to demonstrate the performance across different values
of k for k-PC, where uses all the separating set of size up to k. We did not include RUN in this experiment, as it requires
continuous data, while our dataset in this experiment is discrete. Furthermore, RCG(IGS) and RCG(CPDAG) were omitted
since we cannot derive a complete DAG from the samples, and learning the full CPDAG from the samples is exceedingly
time-consuming Ikram et al. [2022].

The results align with our earlier findings presented in the main paper. RCD exhibits poor performance because it lacks
access to causal relationships, leading it to condition on all nodes until a separator is found. This results in lower accuracy
for RCD. In contrast, RCG yields better results as the value of k increases. Notably, RCG-1 consistently outperforms RCD,
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Figure 9: Top-1 accuracy with 50- and 100-nodes graphs with varying number of interventional samples. RCG (CPDAG)
(Algorithm 1) uses the ground truth CPDAG.
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Figure 10: The execution time of ranking top-1 root cause with three competing approaches with varying number of
interventional samples.

while RCG-0 occasionally produces results similar to RCD, but sometimes fails to identify the root cause. This inconsistency
arises because RCG-0 struggles to learn a sufficiently sparse graph, resulting in conditioning on a larger set of nodes, which
diminishes the reliability of the conditional independence test.

G.3 ACCURACY WITH LARGER GRAPHS

Figure 9 presents the top-1 accuracy of the three approaches across 50- and 100-node graphs with varying sample sizes. As
we can see the performance of RCG, when graph complexity increases with more nodes, a larger number of samples is
required to accurately estimate relationships and identify the root cause.

G.4 EXECUTION TIME WITH VARYING NUMBER OF SAMPLES

Figure 10 presents the execution time of RCG alongside MI and RCD given ground truth CPDAG. MI maintains a consistent
runtime as it computes a fixed number of mutual information scores. In contrast, RCD’s runtime grows sharply beyond 1000
samples due to an increasing number of dependencies detected by CI tests, leading to a larger number of subsets for analysis.
RCG shows the highest but stable runtime. This is because, as RCG has access to more samples, the CMI scores given a
separating set become more reliable, enabling RCG to explore different values of α and achieve a more consistent ranking.



H MEMORY LEAK FAILURE IN SOCK-SHOP

MI cRCA RUN BARO RCD RCG-0 RCG-1
RCG-
Expert

top-1

Carts 0.87 0.20 0.02 1.00 0.58 1.00 0.87 0.36
Catalogue 0.10 0.20 0.00 1.00 0.20 0.97 0.12 0.49
Orders 1.00 0.00 0.00 1.00 1.00 0.95 0.98 0.95
Payment 0.99 0.40 0.00 1.00 0.93 0.88 0.99 1.00
User 0.98 0.40 0.00 1.00 1.00 0.44 0.98 0.97
Avg. 0.79 0.24 0.00 1.00 0.74 0.85 0.79 0.75

top-3

Carts 1.00 0.60 0.40 1.00 0.76 1.00 1.00 1.00
Catalogue 0.98 0.25 0.30 1.00 0.46 0.99 0.58 1.00
Orders 1.00 0.00 0.09 1.00 0.96 0.97 0.99 1.00
Payment 1.00 0.40 0.10 1.00 0.98 0.89 1.00 1.00
User 1.00 0.62 0.11 1.00 1.00 0.51 1.00 1.00
Avg. 1.00 0.37 0.20 1.00 0.83 0.87 0.93 1.00

top-5

Carts 1.00 0.80 0.66 1.00 0.77 1.00 1.00 1.00
Catalogue 0.99 0.52 0.60 1.00 0.49 1.00 0.69 1.00
Orders 1.00 0.00 0.16 1.00 1.00 0.97 1.00 1.00
Payment 1.00 0.40 0.19 1.00 0.96 0.89 1.00 1.00
User 1.00 0.67 0.26 1.00 1.00 0.68 1.00 1.00
Avg. 1.00 0.48 0.37 1.00 0.84 0.91 0.94 1.00

Table 4: The table presents the top-l accuracy of various baselines on data collected from the Sock-shop application after
injecting a memory leak failure into a specific microservice.
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