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Abstract

Large Language Models (LLMs) face significant computational bottlenecks during
inference due to the quadratic complexity of self-attention mechanisms, particu-
larly as context lengths increase. We introduce SpecAttn, a novel training-free
approach that seamlessly integrates with existing speculative decoding techniques
to enable efficient sparse attention in pre-trained transformers. Our key insight
is to exploit the attention weights already computed by the draft model during
speculative decoding to identify important tokens for the target model, eliminat-
ing redundant computation while maintaining output quality. SpecAttn employs
three core techniques: KL divergence-based layer alignment between draft and
target models, a GPU-optimized sorting-free algorithm for top-p token selection
from draft attention patterns, and dynamic key-value cache pruning guided by
these predictions. By leveraging the computational work already performed in
standard speculative decoding pipelines, SpecAttn achieves over 75% reduction
in key-value cache accesses with a mere 15.29% increase in perplexity on the
PG-19 dataset, significantly outperforming existing sparse attention methods. Our
approach demonstrates that speculative execution can be enhanced to provide
approximate verification without significant performance degradation.

1 Introduction

Transformer architectures have become the de-facto standard for sequence modeling across natu-
ral language processing tasks, owing to their ability to capture long-range dependencies via self-
attention Vaswani et al.| [2023]]. However, the self-attention mechanism incurs time and memory costs
that scale quadratically with sequence length, severely constraining model throughput and context
window sizes in practice. To alleviate these inference bottlenecks, system-level engines such as
vLLM employ optimized batching, GPU utilization, and key—value cache management to deliver
1.8-2.7x speedups over standard frameworks, yet they continue to execute full dense attention over
the entire context(Kwon et al.|[2023]].

Complementary algorithmic solutions introduce sparse attention patterns to reduce pairwise token
interactions. The Longformer work |Beltagy et al.|[2020] adopts sliding-window and global attention
spans to achieve linear complexity with respect to sequence length while BigBird [Zaheer et al.|[2021]]
combines local, random, and global attention heads to extend effective context lengths by up to eight
times, with theoretical guarantees of universal approximation.

Despite their efficiency gains, these sparse architectures depend on predetermined attention patterns
that are agnostic to individual input content and require model retraining or fine-tuning to adapt to
new domains, limiting their flexibility for dynamic inference scenarios.

An alternative paradigm, speculative decoding, uses a lightweight draft model to generate candidate
token sequences in parallel, which a larger verifier model then validates |Leviathan et al.| [2023]]. This

Preprint. Under review.



draft-and-verify approach achieves throughput improvements on large transformer models without
altering output distributions or requiring weight updates.

While prior research has treated speculative decoding and sparse attention as orthogonal optimization
strategies, the attention patterns computed by draft models during speculative execution contain rich
information about token importance that can be leveraged for dynamic, content-aware key-value
cache pruning without much additional computational overhead.

‘We summarize our contributions below:

* We provide a method to map draft model’s layers to verifier model layers so that sparse
attention can be speculated, using KL divergence as the similarity metric between attention
distributions.

* We introduce a Triton kernel that identifies top-p nucleus tokens from the draft model’s
attention distribution without requiring sorting operations, enabling efficient GPU utilization
by eliminating the computational overhead of explicit sorting.

2 Related Works

System-Level Optimization. Recent research has developed numerous techniques to accelerate LLM
inference without sacrificing much accuracy. Microsoft’s DeepSpeed library [Rasley et al.| [2020]
introduces kernel fusion and customized GPU kernels to speed up inference, achieving significant
speedups on models like GPT-2 and BERT compared to PyTorch baseline inference. However,
kernel fusion still computes the full attention matrix, making its latency grow steeply with sequence
length. High-throughput KV-cache management in frameworks such as vLLM Kwon et al.| [2023]]
and optimized servers like HuggingFace’s Text Generation Inference harness smart batching and
prefix caching to maximize GPU utilization and reuse computed states. FlashAttention Dao et al.
[2022], Dao| [2023]], Shah et al.| [2024] leverages on-chip tiling and softmax fusion to reduce memory
traffic and yields substantial latency reductions on long sequences. These methods deliver significant
speedups on popular LLMs with minimal changes to existing models, but they still execute the full
O(n?) attention: every query—key pair is computed regardless of its eventual impact on output quality.

Sparse Attention Architectures. Parallel to system-level advances, sparse-attention architectures
and dynamic, content-dependent pruning approaches have aimed to break the quadratic barrier by
only attending to a subset of tokens. Static sparse models such as Longformer Beltagy et al.| [2020]
and BigBird |[Zaheer et al.|[2021]] impose hand-crafted patterns—sliding windows, global tokens, or
random blocks—to achieve linear or near-linear complexity, but require retraining with those fixed
masks and cannot adapt to the unique needs of each input. More recent inference-time methods
such as Mlnference Jiang et al.| [2024] and SpargeAttn [Zhang et al.|[2025] select top-k keys or
apply two-stage filtering to drop low-importance attention links on the fly, offering faster prompt
processing without retraining. Additional approaches include Quest|Tang et al.|[2024]], which uses
query-aware KV cache page selection, StreamingL.LLM |Xiao et al.| [2023]], which leverages attention
sinks for infinite sequence length generalization, and Twilight|Lin et al.|[2025]], which applies adaptive
top-p pruning for hierarchical attention sparsity. However, these semi-dynamic schemes still rely on
predetermined head patterns or incur extra prediction overhead, and their benefits diminish on shorter
contexts or during the token-by-token generation phase.

Speculative Decoding. Speculative decoding [Leviathan et al.| [2023]],(Chen et al.|[2023]] offers an
orthogonal speedup by pairing a small ’draft” model with the full-scale LLM: the draft proposes
tokens in batches that the verifier then checks, reducing the number of verifier model invocations.
While this approach avoids retraining the main model, it does not change its internal attention cost
and depends heavily on the draft’s accuracy. Previous works have addressed speculative decoding
and sparse attention as separate acceleration techniques, yet the attention distributions inherent to
draft model computation provide a natural signal for identifying salient tokens. SpecAttn is motivated
by these gaps: it unites speculative decoding’s training-free paradigm with fully dynamic, content-
aware sparse attention. By exploiting the attention weights already computed by the draft model to
score and select the most informative tokens at each generation step, SpecAttn prunes the KV-cache
significantly without any model modifications, preserving output fidelity while delivering end-to-end
latency improvements.



3 Method

In this section, we present the methodology behind SpecAttn, our novel approach for accelerating
inference in LLMs through dynamic sparse attention. We first introduce the problem formulation and
then describe our framework in detail.

3.1 Problem Formulation
3.1.1 Sparse Attention Formulation

Let M, denote the verifier model with m layers and M  denote the draft model with n layers. During
the decoding phase of language model inference, we have the query vector Q € R'*? and the
key-value cache K,V € R*? where d is the head dimension and L is the context length.

In standard dense attention, the output is computed as:

T
O = softmax <Q\§(§> V=WV )
QKT

where W = softmax ( 73 ) € RY*L represents the normalized attention weights.

The computational complexity of this operation is O(L?d), which becomes prohibitively expensive
for long sequences. To reduce this complexity, we introduce sparse attention by selecting only a
subset of tokens to attend to.

3.1.2 Sparse Attention with Token Selection

Let 7 be the set of selected token indices. We define the sparse attention operation as:

T
O = softmax (%ﬁ%) AV = WALV 2)

where A7 € RE*1 is a diagonal mask matrix defined as:

1 ifi=jandieZ
0 otherwise

Adli = { %)

The theoretical error bounds and optimization objectives for this formulation are detailed in Ap-
pendix

3.2 SpecAttn Framework Overview

Our SpecAttn framework leverages the complementary strengths of a lightweight draft model and a
high-capacity verifier model in a cooperative inference pipeline. The core insight is that the attention
patterns in the draft model often provide a good approximation of the important tokens that the
verifier model should attend to. Figure [I]illustrates the overall architecture of our approach.

The SpecAttn framework consists of three key steps:

1. Layer Mapping: Establish correspondence between draft and verifier model layers using
KL divergence similarity between attention distributions.

2. Token Selection: Identify important tokens using sorting-free top-p nucleus selection from
draft model attention patterns.

3. Sparse Attention Computation: Perform sparse attention computation by attending only
to selected tokens in the previous step.

The overall workflow of SpecAttn is summarized in Algorithm[3.2]
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Figure 1: SpecAttn framework. Layer specific tokens are dynamically selected during runtime from
draft model to prune KV cache of target model. Notice that a layer draft model can be mapped
to multiple layers in verifier model. Also, the sorting described here is just for illustration, the
implementation described in this paper performs the selection without sorting, Algo[2]

3.3 Layer Mapping via KL Divergence

A critical challenge in our approach is establishing an optimal mapping between the layers of the
draft model and the verifier model, especially when these models have different depths. We formulate
this as finding the layer in the draft model that has the most similar attention distribution to each layer
in the verifier model. Note that this mapping is formed offline using a representative dataset (wikitext

Merity et al.|[2016]) and does not change during runtime.

Let AY € RL and Aj € R represent the attention distributions from layer i of the draft model and
layer j of the verifier model, respectively. We define the similarity between these layers using the KL
divergence:

Aj[K]
Af[K]

Sij = —DirL(AY]|A]) = ZA“ “

For each verifier layer j, we find the best matching draft layer while keeping the index chosen for
draft layer monotonically increasing. The intuition behind monotonic mapping is that the attention
patterns are similar for different models as one moves up the models’ layers. The mapping problem
is a modification to dynamic time warping and can be efficiently solved by dynamic programming
techniques. Pseudo code and more details regarding the mapping can be found in appendix [B]

3.4 Sorting-Free Top-p Nucleus Selection

Once we have established the layer mapping, we leverage the draft model’s attention distributions
to determine which tokens the verifier model should attend to. Traditional top-p selection requires



Algorithm 1 SpecAttn: Speculative Sparse Attention Framework

1: Input: Input sequence x € RE, draft model M, verifier model M, lookahead 7, threshold p

2: Qutput: Generated sequence y

3: Initialization:

4: Initialize KV caches: Kg4, Vy for draft, IC,,, V, for verifier

5: Compute layer mapping f : [m] — [n] via arg max; KL—sim(A}’,Af)

6: Prefill both models: My(x) — Ky, Va; My (x) = Ky, Vo

7y — X, [x] > Initialize output and position counter

8: while ¢t < T,,,, and not EOS do

9: // Speculative Generation Phase
10: S+ {LA<{} > Initialize buffers
11: for s = 1to~ydo > Generate - speculative tokens
12: Zs < yi_1 if s=1 else S5_1 > Use last accepted token
13: ol A{, | + Mqy(z,,cache = Kg,Vy)
14: S + SuU {argmax(o?)} > Store draft token
15: A+— AU {A(li:n,s} > Store attention patterns
16: Update g, Vg with S_1 > Update draft model’s KV cache
17: end for
18: // Sparse Attention Mask Creation
19: for j = 1tomdo > For each verifier layer
20: < f(y) > Get corresponding draft layer index
21: 7T; + SortingFreeNucleus({ A% })_,.p) > Algorithm 2]
22: M + CreateSparseMask(7}, |IC,|) > Binary attention mask
23: end for
24: // Verification with Sparse Attention
25: H", 0" <~ M,(S, masks = { M}, cache = IC;,, V)
26: V1y+41 < argmax(O?) > Verifier predictions
27: // Token Verification & Acceptance
28: Naee <— CheckAcceptance (S, ¥1.v) > Count accepted tokens
29: Vitlittnaee < Slingee > Accept verified tokens
30: t<t+nge+1 > Update position counter

31: /I Cache Management

32: Update KCq, Vg with accepted tokens y;—,,. .t
33: Update C,,, V,, with accepted tokens y;_,, ...t
34: end while

35: returny

sorting the attention weights, which can be computationally expensive on GPUs. We propose a
sorting-free algorithm for efficient nucleus identification inspired from work in|Lin et al.|[2025].

This binary search approach finds the optimal threshold without explicit sorting, making it more
GPU-friendly. For each layer j in the verifier model, we:
1. Extract attention weights a ;) € R% from the corresponding draft model layer f (7).

2. Apply Algorithm [2|'|to find the minimal subset of tokens 7; C {1,..., L} such that:
ZkeTj as(j),x > p where p € (0, 1] is a predefined threshold (e.g., p = 0.95).

This approach corresponds to performing top-p (nucleus) sampling over the attention weights,
ensuring that we retain tokens accounting for at least p fraction of the total attention mass. The
parameter p allows us to control the trade-off between computational efficiency and output quality.

3.5 Sparse Attention Computation

To compute sparse attention with the selected tokens, we employ the sparse attention kernel from
Flashinfer|Ye et al.|[2025]. The generated mask containing selected tokens is converted to compressed

'the implementation in this work uses a fixed number of iterations (i.e., 10)



Algorithm 2 Sorting-Free Top-p Nucleus Selection

1: procedure SORTINGFREENUCLEUS(Ajqyer € {R*E},, p € (0,1))
2 T+ {} > Initialize combined token set
3 for s = 1to~ydo > Process each speculative step
4 as — Aiayer,s > Get attention weights for step s
5: Migrget < - Ele Qs > Target attention mass
6: Onigh < max(as), 1oy < 0 > Binary search bounds
7 e+ 107 > Convergence tolerance
8 while ehigh — 10w > €do
9: 0,5 Onigh+0iow
10: M vrrent i1y > Omsa O > Mass above threshold
11: if Mcur’rent < Mta'l“get then
12: Ohigh < Omia > Lower threshold
13: else
14: Orow < Omid > Raise threshold
15: end if
16: end while
17: Ts < {i:asi > Omiat > Selected tokens for step s
18: T TUT, > Union with global token set
19: end for
20: return 7 > Return combined token indices

21: end procedure
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Figure 2: Heatmap of KL divergence between layers of TinyLlama-1.1B as small model (draft
model) and Llama-2-7b-hf as large model (verifier model). Red boxes denote the draft layer selected
for the corresponding verifier layer.

sparse row (CSR) format, which introduces additional latency during generation, before being used
for sparse attention computation.



4 Experiments

We have conducted all our experiments using a single NVIDIA RTX 4090 GPU, with 24GB VRAM.
For all experiments in this section, we use TinyLlama-1.1B7]as draft model and Llama-2-7b-hf|as
the target model. The mapping for these models obtained by method described in[3.3]is shown in Fig
For analsyis of perplexity, we use PG-19 dataset|Rae et al.|[2019] truncated to 2048 tokens, out of
which 10% are used for prefill and other 90% are used for evaluating decoding process, simulating
long generation scenarios. We also measure KV computation reduction and end-to-end latency on
LongBench Bai et al.| [2024] task gov_report to compare SpecAttn with full attention speculative
decoding (with the similar prefill and decoding setup as for perplexity analysis).

4.1 Perplexity Evaluation

We evaluate the perplexity of different sparse attention methods to assess their impact on generation
quality. Table[T|shows the comparison between our method and existing sparse attention techniques.
Note that the first 2 layers use full attention for all methods due to diffused attention found in initial
layers (described in [Tang et al.[[2024])). Further the chunk size of SpecAttn is set to 16 for fair
comparison with Quest (Tang et al.| [2024]]). It can be observed that SpecAttn (p=0.95) reduces KV
cache loading by 78.4% while increasing perplexity by mere 0.984 (15.29% relative increase), which
significantly improves upon other sparse attention methods.

Table 1: Performance Comparison of Sparse Attention Methods

Method Perplexity Perp. Diff. Rel. Increase KV Reduction
Full Attention 6.435 - - -
StreamingLLM (Xiao et al. [2023]) 186.242 +179.807 +2794.32% 77.4%
Quest (Tang et al.|[2024]) 7.823 +1.389 +21.58% 77.4%
SpecAttn (p=0.95) 7.419 +0.984 +15.29% 78.4%
SpecAttn (p=0.97) 6.720 +0.285 +4.43% 68.8%
SpecAttn (p=0.99) 6.471 +0.036 +0.56 % 44.3%

4.2 Speedup Analysis

We show the speedup achieved by using sorting-free triton kernel (as described in[2)) when compared
to sorting-based algorithm, in Fig[3] It can be observed that there is at least 4x speedup till KV cache
size 8192 by uing sorting-free trtion kernel. For computing sparse attention, we use Flashinfer’s|Ye
et al.| [2025] BlockSparseAttention In Fig we show the speedup obtained when using p=0.97
as compared to p=1.0 (full attention). It shows an increasing trend of speedup as prompt length
increases, with more than 4x speedup for prompt length 2048.

We also evaluated SpecAttn using end-to-end latency comparison with full attention speculative
decoding (Table[2). The end-to-end latency seems to be higher for SpecAttn, and this can be attributed
to high mask generation time (Algo[2) which is compensated through sparsity in KV cache. However,
the trend in Fig ] gives promising direction of increasing the context length for the experiments, since
that would lead to further reduction of latency in attention computation, compensating for the mask
generation time.

Table 2: Throughput experiments

Method Tokens/sec (T) KV Reduction (1)
No Spec. Decoding (flashattn) 42.00 -

Spec. Decoding (Full Attention) 68.26 -
SpecAttn (p=0.97) 59.95 71.89%

Zhttps://huggingface.co/TinyLlama/TinyLlama- 1.1B-intermediate-step-1431k-3T
3https://huggingface.co/meta-llama/Llama-2-7b-hf
*https://docs.flashinfer.ai/api/sparse.html



Execution Time: Sorting PyTorch vs Sorting-free Triton
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5 Conclusion

In this work, we introduced SpecAttn, a training-free framework that fuses speculative decoding with
dynamic sparse attention to drastically reduce the key-value (KV) cache usage in LLM inference. By
mapping layers using KL divergence similarity and employing a sorting-free top-p token selection
mechanism at each decoding step, SpecAttn achieves significant KV cache reductions and maintains
competitive perplexity compared to existing sparse attention methods.

Our empirical evaluations demonstrate that SpecAttn can reduce KV cache access by up to 78%
while maintaining reasonable perplexity degradation (15.29% relative increase for p=0.95). The
method excels at balancing efficiency and quality, outperforming existing methods like Quest at
similar sparsity levels through context-aware and dynamic pruning.

6 Limitations and Future Work

Several promising directions remain for future investigation. While we focused on KL divergence for
layer mapping, exploring alternative similarity metrics (jaccard similarity, other distribution distances,
etc.) could potentially improve the quality of layer correspondences between draft and verifier models.
Additionally, extending our evaluation to much longer contexts (10K+ tokens) would provide better
understanding of SpecAttn’s scaling properties and effectiveness in truly long-context scenarios
where the quadratic attention cost becomes more prohibitive. Finally, integrating SpecAttn into
production serving frameworks like VLLM to leverage PagedAttention and emerging dynamic token
caching (DTC) capabilities would enable comprehensive benchmarking and real-world deployment
validation.
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A  Error Bounds and Optimization Objective

In this appendix, we provide the theoretical foundation for our sparse attention formulation introduced
in the main paper. We establish error bounds for the sparse attention approximation and derive the
optimization objective that motivates our top-p token selection strategy.

A.1 Problem Context and Motivation

Large language models compute attention over increasingly long sequences, leading to quadratic
computational complexity O(L?d) where L is the sequence length and d is the head dimension. Our
sparse attention framework addresses this by selecting only a subset of tokens to attend to, reducing
both computational cost and memory requirements.

QKT
Vd
tion O = WAZV where T represents selected token indices, we seek to minimize the approximation

error while maximizing computational savings.

Given the standard dense attention output O = softmax ( ) V' = WYV and our sparse approxima-

A.2 Error Bound and Optimization Objective

The output error can be bounded as follows:

L=[0-0| =Wl - I )V| §)
< WAz = Ipx)| - V]l ©)
Our objective becomes minimizing |W(Az — Irxz)|| = 1 — >_,.7 W/[i]. This means we want to

select tokens that maximize the sum of attention weights, preserving the most important attention
mass.

A.3 From Top-k to Top-p Sparse Attention

Traditional approaches to sparse attention use a fixed budget B (top-k) to select tokens:

L
7 =arg m2ax2 WAz st |Z|=B @)

However, a major limitation of the top-k approach is that it cannot adapt to different attention weight
distributions. Attention patterns can vary significantly between flat (diffuse) and peaked (focused)
distributions. A fixed budget B would either be inefficient for peaked distributions or insufficient for
flat distributions.

To address this issue, we propose using a top-p (nucleus) approach for token selection:

T arg min IZ| st ;WM >p ®

where p € (0, 1] is a threshold parameter. This formulation dynamically adjusts the number of tokens
based on the attention distribution, selecting just enough tokens to capture p fraction of the total
attention mass.

The top-p approach provides a theoretical error bound of (1 — p) - ||V||, making it possible to control
the trade-off between computational efficiency and output quality by adjusting the parameter p.

B Layer Mapping Algorithm

The layer mapping problem can be formulated as finding an optimal monotonic alignment between
draft model layers and verifier model layers. Given a similarity matrix S € R™*" where S|, j]
represents the compatibility score between draft layer ¢ and verifier layer j, we seek a mapping func-
tion f: {1,2,...,n} — {1,2,...,m} that maximizes the total alignment score 2?21 S1f(9),7]

10
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Figure 5: Perplexity (lower is better) comparison across different sparse attention methods. Here
Baseline refers to the vanilla full attention decoding (StreamingL LM is omitted due to relatively high

perplexity).

subject to monotonicity constraints. The monotonicity requirement ensures that f(j;) < f(j2) for
all 71 < jo, preserving the relative ordering of layer correspondences. Crucially, this formulation
permits draft layer skipping, meaning that some draft layers may remain unmapped while others can
be mapped to multiple verifier layers. This flexibility accommodates the common scenario where
draft and verifier models have different depths and architectural characteristics. The problem is solved
using dynamic programming where each state (7, j) represents the minimum cost of aligning draft
layers up to ¢ with verifier layers up to j, considering three transition options: diagonal matching
(one-to-one layer correspondence), horizontal repetition (mapping the same draft layer to consecu-
tive verifier layers), and vertical skipping (advancing through draft layers without correspondence).
Pseudo code to solve layer mapping problem is given in Algo

Algorithm 3 Monotonic Dynamic Time Warping for Layer Mapping

1: procedure MONOTONICDTW(S € R™*™)

2: Input: Score matrix S where S[i, j] is similarity between draft layer ¢ and verifier layer j

3 Output: Mapping from draft layers to verifier layers

4: Convert to distance matrix: D = —5 > For maximization
5: Initialize DP table: dp[0, 0] = 0, all other entries = oo
6.
7
8

Initialize backtrack table for path reconstruction

for i = 1tom do > For each draft layer
: for j =1tondo > For each verifier layer
9: cost =D[i—1,j — 1]
10: // Consider three alignment options:
11: diagonal = dpli — 1,j — 1] + cost > Match current layers
12: left = dpli,j — 1] + cost > Repeat draft layer
13: above = min},_, dplk,j — 1] + cost > Skip draft layers
14: dpli, j] = min(diagonal, le ft, above)
15: Record best choice in backtrack table
16: end for
17: end for
18: Find minimum cost in last column: min; dpl[i, n]
19: Backtrack from optimal endpoint to reconstruct path
20: Convert path to layer mapping
21: return layer mapping, total score

22: end procedure

C Stepwise cumulative perplexity

Fig 5] shows trends of log cumulative perplexity while decoding (on PG-19 dataset Rae et al| [2019]).
Notice how Quest diverges faster than SpecAttn as the decoding step increases.
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