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Abstract

The choice of a graph learning (GL) model (i.e., a GL algorithm and its hyperpa-
rameter settings) has a significant impact on the performance of downstream tasks.
However, selecting the right GL model becomes increasingly difficult and time
consuming as more and more GL models are developed. Accordingly, it is of great
significance and practical value to equip users of GL with the ability to perform a
near-instantaneous selection of an effective GL model without manual interven-
tion. Despite the recent attempts to tackle this important problem, there has been
no comprehensive benchmark environment to evaluate the performance of GL
model selection methods. To bridge this gap, we present GLEMOS in this work,
a comprehensive benchmark for instantaneous GL model selection that makes
the following contributions. (i) GLEMOS provides extensive benchmark data for
fundamental GL tasks, i.e., link prediction and node classification, including the
performances of 366 models on 457 graphs on these tasks. (ii) GLEMOS designs
multiple evaluation settings, and assesses how effectively representative model
selection techniques perform in these different settings. (iii) GLEMOS is designed
to be easily extended with new models, new graphs, and new performance records.
(iv) Based on the experimental results, we discuss the limitations of existing ap-
proaches and highlight future research directions. To promote research on this
significant problem, we make the benchmark data and code publicly available at
https://namyongpark.github.io/glemos.

1 Introduction
Graph learning (GL) methods [43, 48] have achieved great success across multiple domains and appli-
cations that involve graph-structured data [4, 10, 17, 21, 28, 29, 31, 34]. At the same time, previous
studies [30, 40, 46] have shown that there is no universally good GL model that performs best across
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Figure 1: Via instantaneous graph learning model
selection, the best model can be found without per-
forming computationally expensive model training
and evaluations.

all graphs and graph learning tasks. Therefore,
to effectively employ GL given a wide array of
available models, it is important to select the
right GL model (i.e., a GL algorithm and its
hyperparameter settings) that will perform well
for the given graph data and GL task.

Ideally, we would want to be able to select
the best GL model for the given graph near-
instantaneously, that is, without having to train
or evaluate different models multiple times on
the new graph, since even a few such train-
ing and evaluations might take a considerable
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amount of time and resources (Figure 1). Enabling an instantaneous model selection for a completely
new graph involves addressing several technical challenges, which includes modeling how well
different GL methods perform on various graphs, and establishing a connection between the new
graph and observed graphs, such that the best model for the new graph can be estimated in light of
observed model performances on similar graphs.

Problem Formulation. With these considerations, we formally define this important problem, which
we call Instantaneous Graph Learning Model Selection, and the related terms as follows.

Graph: Let G = (V,E,X, Y ) be a graph where V ⊆ N and E = {(i, j) | i, j ∈ V } denote the sets
of nodes and edges, respectively; X denotes the input features, which can be node features (X ∈
R|V |×FN ), edge features (X ∈ R|E|×FE ), or a set of both, where FN and FE denote the dimension of
corresponding input features; and Y denotes node labels (Y ∈ N|V |) or edge labels (Y ∈ N|E|). Note
that input features X and labels Y are considered optional since not all graphs have this information.

Model: A model M refers to a GL method for the given GL task, such as link prediction, with
specific hyperparameter settings. In general, a GL model consists of two components, namely, (graph
embedding method, hyperparameters) and (predictor, hyperparameters), where the former produces
a vector representation of the graph (e.g., node embeddings) and the latter makes task-specific
predictions (e.g., link prediction) given the embeddings. The set M of models, from which the model
selection is made, is normally heterogeneous, where the configuration of each model is unique in the
choice of its two components and their hyperparameter settings.

Performance Matrix: Let P ∈ Rn×m be a matrix containing observed model performances, where
Pij is the performance (e.g., accuracy) of model j on graph i. P can be sparse with missing entries.

Problem 1 (Instantaneous Graph Learning Model Selection).

Given
• a training meta-corpus of n graphs G = {Gi}ni=1 and m models M = {Mj}mj=1 for a GL task

(e.g., link prediction and node classification):
(1) performance matrices {Pk}ℓk=1, i.e., ℓ records of m models’ performance on n graphs
(2) input features of the graphs in G (if available)
(3) configurations (i.e., a GL method and its hyperparameter settings) of m models in M

• an unseen test graph Gtest /∈ G
Select
• the best model M∗ ∈ M for Gtest without training or evaluating any model in M on Gtest.

Status Quo and Our Contributions. In recent years, several methods have been developed for an
efficient selection of GL models. However, most of them cannot tackle Prob. 1 as they require multiple
rounds of model training and evaluations; we review these methods in Sec. 2. Most recently, a subset
of Prob. 1 was studied by MetaGL [30], which proposed a GL model selection technique that assumes
plain graphs without input features, and operates without utilizing model configurations. A few recent
works [5, 32, 46] also provide performances of graph neural networks (GNNs), although they cannot
address Prob. 1. While the datasets used in [5, 30, 32, 46] are available, they fall short of being a
comprehensive benchmark environment to study this significant problem due to the following reasons.

• Limited GL Task and Data. Focusing on link prediction, MetaGL [30] only provides link pre-
diction performances, and does not support other widely-used tasks, such as node classification,
which limits follow-up studies and use of the benchmark for different GL tasks. Also, other related
works [5, 32, 46] are limited in terms of the number and diversity of graphs they cover (Table 1).

• Limited Evaluation Settings. Some important evaluation settings were not considered in MetaGL’s
benchmark, such as out-of-domain and small-to-large settings as we later describe, which can be
useful in evaluating the performance of model selection techniques in different practical settings.

• Limited Extensibility. The sets of models and graphs are assumed to be fixed, and it is not easy to
extend the benchmark with new graphs and models in a consistent and reproducible manner.

In this work, we address these limitations by developing a comprehensive benchmark for instantaneous
graph learning model selection. Overall, the contributions of this work are as follows.

• Extensive Benchmark Data with Multiple GL Tasks. We construct a benchmark dataset that
includes the performances of 366 models on 457 graphs over fundamental GL tasks, i.e., link pre-
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Figure 2: GLEMOS provides a comprehensive benchmark environment, covering the steps required to
achieve effective instantaneous GL model selection, with multiple options for major building blocks.

diction and node classification, which is by far the largest benchmark for Prob. 1 to our knowledge.
The benchmark also provides meta-graph features to capture the structural characteristics of graphs.

• Comprehensive Evaluation Testbeds. We evaluate ten representative methods for Problem 1,
including both classical methods and deep learning-based ones, using multiple evaluation settings
designed to assess the quality of model selection techniques from practical perspectives.

• Extensible Open Source Benchmark Environment. Our benchmark is designed to be easily
extended with new models, new graphs, and new performance records. To promote further research
on this significant problem, we make the benchmark environment publicly available.

• Future Research Directions. We discuss the limitations of existing model selection methods, and
highlight future research directions towards an instantaneous selection of graph learning models.

After reviewing related work in Section 2, we present the proposed benchmark data and testbeds in
Sections 3 to 5. Then we provide experimental results in Section 6, and conclude in Section 7.

2 Related Work
2.1 Model Selection
Model selection refers to the process of selecting a learning algorithm and its hyperparameter settings.
In this section, we review existing model selection approaches, which we divide into two groups
depending on whether they require model evaluations (i.e., performance queries for the new dataset).

Evaluation-Based Model Selection: Most existing approaches to select machine learning models
belong to this group, ranging from simple solutions, such as random search [2] and grid search [23],
to more advanced and efficient ones that employ techniques such as adaptive resource allocation [22],
early stopping [12], and Bayesian optimization [9, 33, 42]. Inspired by these advancements, several
model selection methods were recently developed for graph learning (GL) models. To tackle
challenges involved with GL model selection, these methods adapt existing ideas to GL models, such
as reinforcement learning [11, 20, 50], evolutionary algorithm [3], Bayesian optimization [36], and
hypernets [52], as well as developing techniques specific to graph data, e.g., subgraph sampling [36]
and graph coarsening [14]. Note that all of the above approaches cannot tackle the instantaneous GL
model selection problem (Problem 1) as they rely on multiple model evaluations for performance
queries of different combinations of GL methods and hyperparameter settings on the new dataset.

Instantaneous Model Selection: To select the best model without querying model performances on
the new dataset, methods in this category typically utilize prior model performances or characteristic
features of a dataset (i.e., meta-features). A simple approach [1] finds the globally best model (i.e.,
the one with the overall best performance over all observed datasets), and thus its model selection is
independent of query datasets. This can be refined by narrowing the search scope to similar datasets,
where dataset similarities are modeled in the meta-feature space, e.g., using k-nearest neighbors [27]
or clustering [18]. Another line of methods [30, 45, 49] take a different approach, which aims to
predict the model performance on the given dataset by learning a function that maps meta-features into
estimated model performances. Due to their ability to learn such a function in a data-driven manner,
this second group of methods generally outperformed the first group in previous studies [30, 49].
While the above methods are one of the first efforts to achieve instantaneous GL model selection,
several open challenges remain to be solved, as we discuss in Section 6.2.

Table 1: Comparison of GLEMOS with previous works providing performances of GNN models.

Benchmark
Testbeds

Instantaneous
Selection Methods

Meta-Graph
Features

Graph Learning
Models

# Graph
Datasets

Graph Size
(max # nodes)

# Data
Domains

GNN-Bank-101 [5] ✗ ✗ ✗ GNNs 12 34k 5
NAS-Bench-Graph [32] ✗ ✗ ✗ GNNs 9 170k 4
GraphGym [46] ✗ ✗ ✗ GNNs 32 34k 7

GLEMOS (Ours) ! ! !
GNNs & Non-GNNs

(e.g., node2vec, label prop.) 457 496k 37
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Table 2: Summary statistics of the GLEMOS benchmark.

Node Classification Task Link Prediction Task

Total performance evaluations (Section 3)
(# model performances on benchmark graphs) 41,856 152,070

Total graphs (Sections 3.2 and 3.3) 128 457
Num nodes 34–421,961 34–495,957
Num edges 156–7,045,181 156–7,045,181
Num node feats 2–61,278 2–61,278
Num node classes 2–195 N/A
Num graph domains 25 37

Total GL models (Sections 3.2 and 3.3) 327 350

Total meta-graph features (Section 4) 58–1,074 58–1,074

Total model selection methods (Section 5) 10 10

Total benchmark testbeds (Section 5) 5 5

2.2 Benchmarks for Instantaneous Graph Learning Model Selection
A few recent works [5, 32, 46] address problems related to GL model selection, and provide per-
formances of GNNs on different datasets. However, all of them perform evaluation-based model
selection discussed above, which requires multiple rounds of model evaluations given a new dataset.

As the first benchmark for instantaneous GL model selection (Prob. 1), GLEMOS provides more than
just a collection of performance records, i.e., (1) benchmark testbeds and (2) existing algorithms
(Section 5) for instantaneous model selection, as well as different sets of (3) meta-graph features
(Section 4). These features (1)-(3) are not provided by these previous works [5, 32, 46]. Furthermore,
GLEMOS provides more comprehensive and diverse performance records than these works in several
aspects (e.g., in terms of included GL models and graph data distributions), as summarized in Table 1.

The two major components for instantaneous GL model selection are historical model performances
of the GL task of interest (e.g., accuracy for node classification), and meta-graph features to quan-
tify graph similarities. For each component, GLEMOS provides several options to choose from.
Once these components are chosen, users select a model selection algorithm, as well as a benchmark
testbed to perform evaluation, out of several options available in GLEMOS. Fig. 2 summarizes these
steps to use GLEMOS. In the next sections, we describe what GLEMOS provides for these steps.

3 Graph Learning Tasks and Performance Collection
Prior model performances play an essential role in instantaneous GL model selection algorithms,
as they can estimate a candidate GL model’s performance on the new graph based on its observed
performances on similar graphs. GLEMOS provides performance collections for two fundamental
graph learning tasks, i.e., node classification and link prediction. Below we discuss how the graphs
and models are selected, and describe how model performances are evaluated for each GL task.

3.1 Graphs and Models
Graphs. Our principle of selecting the graphs in GLEMOS is to include diverse graph datasets, in
terms of both the size and domain of the graph. The size of selected graphs ranges from a few hundred
edges to millions of edges, and the graph set covers various domains, e.g., co-purchase networks,
protein networks, citation graphs, and road networks. As listed in Table 1, the resulting graph set
outperforms existing data banks in terms of the number and size of graphs, as well as the diversity of
data domain. Table 2 shows the summary statistics of graphs, and the graph list is given in Appendix.

Models. Our principle for selecting the models to include in GLEMOS is to cover representative and
widely-used GL methods. We include graph neural network methods (e.g., GCN [19], GAT [37], and
SGC [41]), random walk-based node embeddings (e.g., node2vec [13]), self-supervised graph repre-
sentation learning methods (e.g., DGI [38]), and classical methods (e.g., spectral embedding [25]).
The resulting model set is more diverse than previous works, which considered GNNs alone (Table 1).

3.2 Node Classification

Graph Set. A subset of the graphs have node labels. Excluding the graphs without node labels, the
node classification graph set is comprised of 128 graphs from 25 domains.
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Table 3: Graph learning methods and their hyperparameter settings that comprise the model set M.
NC: Applicable for node classification. LP: Applicable for link prediction.

Method NC LP Hyperparameter Settings Count

GCN [19] ! ! act a ∈ {relu, tanh, elu}, dropout d ∈ {0.0, 0.5}, hidden channels h ∈ {16, 64}, num layers ℓ ∈
{1, 2, 3}

30

GraphSAGE [15] ! ! act a ∈ {relu, tanh}, aggr g ∈ {mean, max}, hidden channels h ∈ {16, 64}, jumping knowl-
edge j ∈ {none, last}, num layers ℓ ∈ {1, 2}

24

GAT [37] ! ! concat c ∈ {true, false}, dropout d ∈ {0.0, 0.5}, heads n ∈ {1, 4}, hidden channels h ∈
{16, 64}, num layers ℓ ∈ {1, 2, 3}

40

GIN [44] ! ! eps e ∈ {0.0}, hidden channels h ∈ {16, 64}, num layers ℓ ∈ {1, 2, 3}, train eps t ∈
{true, false}

10

EGC [35] ! ! aggregators a ∈ {[sum], [mean], [symnorm], [min], [max], [var], [std]}, hidden channels h ∈
{16, 64}, num bases b ∈ {4, 8}, num layers ℓ ∈ {2}

28

SGC [41] ! ! bias b ∈ {true, false}, num hops k ∈ {1, 2, 3, 4, 5} 10
ChebNet [8] ! ! Chebyshev filter size k ∈ {1, 2, 3}, hidden channels h ∈ {16, 64}, normalization r ∈

{none, sym, rw}, num layers ℓ ∈ {1, 2}
27

PNA [7] ! ! aggregators a ∈ {[sum], [mean], [max], [var]}, hidden channels h ∈ {16}, num layers ℓ ∈ {1, 2},
scalers s ∈ {[identity], [amplification], [attenuation], [linear]}, towers t ∈ {1}

32

Spectral Emb. [25] ! ! num components h ∈ {16, 64}, tolerance t ∈ {0.1, 0.01, 0.001, 0.0001} 8
GraRep [6] ! ! num components h ∈ {16, 32, 64}, power p ∈ {1, 2} 6
DGI [38] ! ! encoder act a ∈ {prelu, relu, tanh}, hidden channels h ∈ {16, 64}, summary s ∈

{mean, max, min, var}
24

node2vec [13] ! ! context size w ∈ {5, 10}, hidden channels h ∈ {16, 64}, p ∈ {1, 2, 4}, q ∈ {1, 2, 4}, walk
length l ∈ {10, 20}

72

Label Prop. [53] ! alpha α ∈ {0.99, 0.9, 0.8, 0.7}, num layers ℓ ∈ {1, 2, 3, 4} 16
Jaccard’s Coeff. [24] ! - 1
Resource Alloc. [51] ! - 1
Adamic/Adar [24] ! - 1
SEAL [47] ! GNN conv c ∈ {GCN, SAGE, GAT}, GNN hidden channels g ∈ {16, 64, 128}, k ∈ {0.6, 0.1},

MLP hidden channels m ∈ {32, 128}, num hops n ∈ {1}
36

Total Count 366

Model Set. Most methods in GLEMOS are applicable for both node classification and link prediction.
In addition to these common methods, we also include label propagation [53], which can be used
for node classification. The GL models evaluated for node classification and their hyperparameter
settings are listed in Table 3. In total, 327 models comprise our model set for node classification.

Performance Collection. For node classification, supervised models are optimized to produce the
class distribution. For unsupervised models, we first train them to produce latent node embeddings
based on their own objective, and apply a trainable linear transform to transform embeddings into
the class distribution. More details on the experimental settings are given in the Appendix. To
evaluate performance, we calculate multiple classification metrics, including accuracy, F1 score,
average precision, and ROC AUC score. Given the graph set G and model set M described above, we
construct the performance matrix P by evaluating every modelMj ∈ M on every graphGi ∈ G, i.e.,

Pij = Performance (e.g., accuracy, and ROC AUC) of model Mj ∈ M on graph Gi ∈ G. (1)

Splitting: We generate the train-validation-test node splits with a ratio of 64%-16%-20%, respectively,
and train each model applying validation-based early stopping. For reproducibility, we release all
data splits, such that future model evaluations can be done using the same node splits.

3.3 Link Prediction
Graph Set. As link prediction task does not require node labels for evaluation, we greatly expand
the graph set used for node classification by adding 329 more graphs. With these graphs, the link
prediction graph set consists of 457 graphs from 37 domains. The full list is given in the Appendix.

Model Set. All models used for node classification are used for link prediction, except for label prop-
agation, which requires node labels. We also add models designed for link prediction, e.g., SEAL [47]
and Adamic/Adar [24]. In total, 350 models comprise the link prediction model set(Table 3).

Performance Collection. For link prediction, GL models are optimized to produce latent node
embeddings, and we apply a dot product scoring between the two node embeddings, followed by
a sigmoid function, to obtain the link probability between the corresponding nodes. We calculate
multiple evaluation metrics to measure the link prediction performance, including average precision,
ROC AUC score, and NDCG (normalized discounted cumulative gain) [39].

Splitting: We randomly split edges into train-validation-test sets, with a ratio of 64%-16%-20%,
which form positive edge sets. For positive edges, we randomly select the same amount of negative
edges (i.e., nonexistent edges), which form negative edge sets. Again, we release all edge splits.
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4 Collection of Meta-Graph Features
Instantaneous model selection algorithms carry over historical model performances on various graphs
to estimate how GL models would perform on a new graph. In that process, performance transfer can
be done more effectively when we consider graph similarities, such that the performance transfer
would be done adaptively based on the similarities between graphs. Structural meta-graph features
provide an effective way to that end by summarizing a graph into a fixed-size feature vector in terms
of its structural characteristics. GLEMOS provides various meta-graph features, which can capture
important graph structural properties. Below we first discuss how GLEMOS generates fixed-length
meta-graph features, as depicted in Figure 3, and then describe the structural features included in
GLEMOS, which are organized into three sets for convenience.
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Figure 3: Meta-graph features sum-
marize structural graph characteris-
tics into a fixed-size feature vector.

Feature Generation. GLEMOS produces meta-features in two
steps, following an earlier work [30].

◦ Step 1—Structural Feature Extraction: A structural meta-
feature extractor ψk is a function that transforms an input graph
G into a vector, which represents a distribution of structural fea-
tures over nodes or edges. For example, degree and PageRank
scores of all nodes correspond to node-level feature distribu-
tions, and triangle frequency for each edge corresponds to an
edge-level feature distribution. In general, we apply a set of such extractors Ψ = {ψ1, . . . , ψK} to
the graph G, obtaining a set Ψ(G) = {ψ1(G), . . . , ψK(G)} of multiple feature distributions.

◦ Step 2—Statistical Feature Summarization: Since the number of nodes or edges in each graph
determines the size of the output from the meta-feature extractors ψk(G), those structural feature
distributions cannot be directly used to compare graphs with different number of nodes or edges.
Step 2 addresses this issue via statistical feature summarization, which applies a set Σ of statistical
functions (e.g., mean, entropy, skewness, etc) that summarize feature distributions ψk(G) of varying
size into fixed-length feature vectors; i.e., dim(Σ(ψk(Gi))) = dim(Σ(ψk(Gj))) for two graphs Gi

and Gj . By combining all K summaries, graph G’s meta-graph feature m is obtained to be m =
[Σ(ψ1(G)); · · · ; Σ(ψK(G))]. The statistical functions Σ used in GLEMOS are listed in Appendix.

Collection of Meta-Graph Features. Different graph features may capture different structural prop-
erties. Thus, GLEMOS aims to provide representative and diverse graph features, which have been
proven effective in earlier studies, while making it easy to work with any set of features. For the con-
venience of the users, we group the currently supported features into the following three sets: Mregular
includes widely used features that capture structural characteristics of a graph at both node and graph
levels; Mgraphlets considers features based on the frequency of graphlets, as they can provide additional
information; Mcompact is intended to use the least space, while providing several important features
that capture node-, edge-, and graph-level characteristics. The details of each set are as follows.

Mregular: This set includes 318 meta-graph features. We derive the distribution of node degrees,
k-core numbers, PageRank scores, along with the distribution of 3-node paths (wedges) and 3-node
cliques (triangles). Given these five distributions, we summarize each using the set of 63 statistical
functions Σ, giving us a total of 315 features. We include three additional features based on the
density of graph G and the density of the symmetrized graph, along with the assortativity coefficient.

Mgraphlets: This set includes 756 meta-graph features. First, we derive the frequency of all 3 and
4-node graphlet orbits per edge in G. Next, we summarize each of the 12 graphlet orbit frequency
distributions using the set of 63 statistical functions Σ, giving us a total of 756 meta-graph features.

Mcompact: This set consists of 58 total meta-graph features, including 9 simple statistics such as
number of nodes and edges, density of the graph G, max vertex degree, average degree, assortativity
coefficient, and the maximum k-core number of G, along with the mean and median k-core number
of a vertex in G. We also include the global clustering coefficient, total triangles, as well as the mean
and median number of triangles centered at an edge. We further include the total 4-cliques as well
as the mean and median number of 4-cliques centered at an edge. Besides the above 16 features,
we also compute the frequency of all 3 and 4-node graphlet orbits per edge, and from these 12
frequency distributions, we derive the mean, median, and max. We also derive the graphlet frequency
distribution from the counts of all six 4-node graphlets and include those values directly as features.

Note that the framework is flexible, and users can choose to use any set of features, either a subset of
the current features (e.g., to further improve efficiency and use less space), or their superset (e.g., to
capture distinct structural characteristics using different features in addressing new tasks).
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5 Benchmark Testbeds and Algorithms
5.1 Benchmark Testbeds
GLEMOS provides multiple benchmark testbeds (i.e., evaluation settings and tasks) designed to
assess model selection performance in different usage scenarios. We describe them in detail below.

Fully-Observed Testbed. In this setup, model selection algorithms are provided with a full perfor-
mance matrix P for the given graph learning task, i.e., without any missing entry in P. Accordingly,
this testbed measures model selection performance in the most information-rich setting, where all
models in the model set M have been evaluated on all observed graphs.

Splitting: We apply a stratified 5-fold cross validation, i.e., graphs are split into five folds, which are
(approximately) of the same size, and balanced in terms of graph domains, and then as each fold
(20%) is held out to be used for testing, the other folds (80%) are used for model training. Note that
graph splits are used to split the performance matrix P and meta-graph features M.

Sparse Testbed. The performance matrix P in this setting is sparse and partially observed, i.e., we
may only have a few observations for each graph. This setting is important since it can be costly to add
a new model to the benchmark, which requires training and evaluating the model multiple times on
the graphs in the benchmark. By dealing with model selection using a sparse P, this testbed addresses
significant practical considerations, e.g., making it more cost-effective to be able to add new models
to the benchmark. Using this testbed, researchers can develop and test specialized algorithms capable
of learning from such partially-observed performances. To construct a sparse performance matrix P′,
we sample uniformly at random pm values from each row of P, where p is the fraction of values to
sample and m is the total number of models. This graph-wise sampling strategy ensures the same
number of observations for each graph, which matches the practical motivation that we have a limited
budget per graph. For this benchmark, we use different sparsity levels p ∈ {0.1, 0.3, 0.5, 0.7, 0.9}.

Splitting: We use the same stratified 5-fold cross validation as in Fully-Observed testbed. Algorithms
are trained using a sparse split of P, and evaluated with fully-observed performances of the test split.

Out-Of-Domain Testbed. Graphs from a particular domain (e.g., road graphs, social networks, and
brain networks) often have similar characteristics to each other. In other words, graphs from a certain
domain can be considered as having its own distribution, which makes model selection for graphs
from a new domain a challenging task. This testbed evaluates the effectiveness of model selection
methods for such an out-of-distribution setting by holding out graphs from a specific network domain,
and trying to predict for the held-out domain by learning from graphs from all the other domains.

Splitting: We use a group-based 5-fold cross validation for this testbed such that each domain appears
once in the test set across all folds.

Small-To-Large Testbed. Training a GL model can take a lot of time and resources, especially for
large-scale graphs. While model selection methods may benefit from having more prior performances,
having to obtain performance records for large graphs presents a significant computational bottleneck.
The meta-training process can be made significantly faster by enabling model selection algorithms to
learn from relatively small graphs to be able to predict for larger graphs. This testbed focuses on this
challenging yet practical setting, which evaluates the ability to generalize from small to large graphs.

Splitting: Graphs with less than ϵ nodes form a small-graph set used for training. The other graphs
with at least ϵ nodes form a large-graph set, which is used for evaluation. We evaluate using a
threshold value ϵ of 10000 for this testbed.

Cross-Task Testbed. The above testbeds operate on the model performances measured for one
specific type of GL task. By contrast, in this testbed, model selection methods learn from performances
of one GL task (e.g., node classification), and are evaluated by predicting performances of a different
GL task (e.g., link prediction). This task present an additional challenge to model the relation between
two different, yet related GL tasks, and utilize the learned knowledge for transferable model selection.

Splitting: We first choose the source and target tasks, and split the graphs into the two sets, i.e., the
source task set and the target task set. Then the graphs in the source set are used for training, and the
graphs in the target set are used for testing.
5.2 Model Selection Algorithms
GLEMOS provides state-of-the art algorithms for instantaneous model selection, which are listed
in Table 4. These algorithms are selected such that the benchmark covers representative techniques
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Table 4: GLEMOS provides representative algorithms for instantaneous model selection. Algorithm
characteristics denote whether they utilize meta-graph features (C1) and observed model performances
(C2) for model selection, and whether they are optimizable (i.e., have trainable parameters) (C3).

Characteristics
Algorithm Random

Selection
GB-Avg
Perf [49]

GB-Avg
Rank [30]

ISAC
[18]

AS
[27]

Spv. Surro.
(S2) [45]

ALORS
[26]

NCF
[16]

MetaOD
[49]

MetaGL
[30]

C1. Use meta-features ✗ ✗ ✗ ! ! ! ! ! ! !

C2. Use prior performances ✗ ! ! ! ! ! ! ! ! !

C3. Optimizable ✗ ✗ ✗ ✗ ✗ ! ! ! ! !

Table 5: Fully-Observed testbed results for link prediction (top) and node classification (bottom) tasks.
Higher (↑) scores are better. The best result is in bold, and the second best result is underlined.

(a) Link prediction

Perf. Metric RandSel GB-Perf GB-Rank ISAC AS S2 ALORS NCF MetaOD MetaGL

AUC (↑) 0.524 0.735 0.730 0.807 0.864 0.809 0.843 0.728 0.764 0.875
MRR (↑) 0.016 0.087 0.064 0.134 0.371 0.198 0.201 0.073 0.096 0.295
NDCG@1 (↑) 0.813 0.942 0.934 0.944 0.957 0.950 0.961 0.943 0.937 0.969

(b) Node classification

Perf. Metric RandSel GB-Perf GB-Rank ISAC AS S2 ALORS NCF MetaOD MetaGL

AUC (↑) 0.518 0.747 0.744 0.746 0.762 0.772 0.734 0.745 0.581 0.740
MRR (↑) 0.029 0.102 0.124 0.118 0.181 0.110 0.103 0.124 0.041 0.129
NDCG@1 (↑) 0.747 0.865 0.860 0.885 0.892 0.916 0.886 0.883 0.839 0.863

for model selection, in terms of whether they use meta-graph features (C1, Section 4) and prior model
performances (C2, Section 3), and whether they are optimizable with trainable parameters (C3).
Random Selection (RandSel) is used as a baseline to see how well model selection algorithms perform
in comparison to random scoring. Global Best (GB)-AvgPerf and GB-AvgRank select a model that
performed globally well on average. In contrast, ISAC [18] and ARGOSMART (AS) [27] perform
model selection more locally with respect to the given graph, using meta-features. As GB methods
rely only on prior performance, comparisons against them can help with investigating the effectiveness
of meta-graph features. Supervised Surrogates (S2) [45], ALORS [26], NCF [16], MetaOD [49], and
MetaGL [30] are optimizable algorithms, which learn to estimate model performance by capturing
the relation between meta-features and observed performances. In comparison to the simpler, non-
optimizable algorithms above, we can investigate the advantages of different optimization components
for instantaneous model selection. A more detailed description of each algorithm is given in Appendix.

6 Experiments
In this section, we report how model selection methods perform in different testbeds. Based on those
observations, we discuss the limitations of existing methods and future research directions.
6.1 Model Selection Performance
Evaluation Protocol. To measure how well model selection methods perform on the testbeds pre-
sented in Section 5, we evaluate their top-1 prediction results (i.e., the model predicted to be the best
for the query graph) as model selection aims to find the best performing model as accurately as possi-
ble. Specifically, top-1 prediction performance is measured in terms of AUC, MAP (mean average pre-
cision), and NDCG (normalized discounted cumulative gain), all of which range from zero to one, with
larger values indicating a better performance. We apply AUC and MAP by treating the task as a binary
classification problem, in which the top-1 model is labeled as one, and all other models are labeled
as zero. For NDCG, we report NDCG@1, which evaluates the ranking quality of the top-1 model.
We evaluate these metrics multiple times for the data splits each testbed provides, and report the
averaged performance. For reproducibility, GLEMOS provides the data splits of all testbeds.

Fully-Observed Testbed (Table 5). Comparison between methods where meta-graph features are
either used (e.g., AS, MetaGL) or not used (e.g., GB-Perf) shows the benefits of utilizing meta-graph
features for GL model selection. While optimizable methods (e.g., NCF, MetaOD) have the additional
flexibility to adaptively tune their behavior based on data, they are outperformed by relatively simple
methods like ISAC and AS. At the same time, the best results on link prediction in the majority of
metrics are achieved by another optimizable method, MetaGL, which shows the promising potential of
optimizable framework for model selection. In node classification results, the performance decrease

8



Table 6: Sparse testbed results for link prediction (top) and node classification (bottom) tasks.
Higher (↑) scores are better. The best result is in bold, and the second best result is underlined.

(a) Link prediction

Perf. Metric Sparsity RandSel GB-Perf GB-Rank ISAC AS S2 ALORS NCF MetaOD MetaGL

AUC (↑)

10% 0.524 0.733 0.732 0.804 0.829 0.813 0.831 0.735 0.743 0.865
30% 0.524 0.728 0.738 0.798 0.763 0.811 0.827 0.739 0.703 0.871
50% 0.524 0.704 0.730 0.790 0.690 0.839 0.814 0.739 0.669 0.866
70% 0.524 0.708 0.730 0.778 0.618 0.814 0.795 0.757 0.630 0.866
90% 0.524 0.717 0.732 0.720 0.547 0.464 0.687 0.656 0.599 0.811

(b) Node classification

Perf. Metric Sparsity RandSel GB-Perf GB-Rank ISAC AS S2 ALORS NCF MetaOD MetaGL

AUC (↑)

10% 0.518 0.746 0.744 0.744 0.748 0.766 0.727 0.727 0.575 0.761
30% 0.518 0.743 0.738 0.734 0.680 0.769 0.741 0.735 0.533 0.736
50% 0.518 0.726 0.739 0.687 0.592 0.739 0.730 0.713 0.485 0.709
70% 0.518 0.692 0.738 0.653 0.571 0.684 0.694 0.709 0.483 0.662
90% 0.518 0.626 0.697 0.592 0.535 0.620 0.654 0.660 0.490 0.659

Table 7: Out-Of-Domain testbed results for link prediction (top) and node classification (bottom) tasks.
Higher (↑) scores are better. The best result is in bold, and the second best result is underlined.

(a) Link prediction

Perf. Metric RandSel GB-Perf GB-Rank ISAC AS S2 ALORS NCF MetaOD MetaGL

AUC (↑) 0.517 0.809 0.811 0.850 0.786 0.837 0.820 0.837 0.681 0.871
MRR (↑) 0.018 0.110 0.101 0.125 0.237 0.116 0.109 0.109 0.047 0.148
NDCG@1 (↑) 0.820 0.956 0.954 0.951 0.935 0.953 0.953 0.952 0.918 0.951

(b) Node classification

Perf. Metric RandSel GB-Perf GB-Rank ISAC AS S2 ALORS NCF MetaOD MetaGL

AUC (↑) 0.495 0.726 0.727 0.701 0.684 0.750 0.668 0.741 0.571 0.705
MRR (↑) 0.019 0.074 0.086 0.046 0.060 0.089 0.056 0.066 0.044 0.082
NDCG@1 (↑) 0.722 0.828 0.836 0.848 0.828 0.901 0.796 0.842 0.810 0.848

of optimizable methods are notable (e.g., MetaGL). One potential reason for this is that the graph set
for node classification is relatively small compared to the graphs applicable for link prediction, which
limits the effectiveness of optimizable algorithms that are more prone to overfitting in such cases.

Sparse Testbed (Table 6). As the sparsity of the performance matrix P increases, model selection
methods perform increasingly worse. In particular, while AS achieves the best or the second
best results in the Fully-Observed testbed, its performance quickly declines as sparsity increases.
Since AS performs model selection based on the most similar observed graph, it cannot operate
effectively in a highly sparse setting. Global averaging methods (e.g., GB-Perf), or more sophisticated
optimizable methods show more stable results. Due to the additional requirement for node labels,
node classification task in this setup presents the most data sparse, yet practically important regime.

Out-Of-Domain Testbed (Table 7). Graphs in the same or similar domains are often more similar to
each other than graphs in different domains. As this testbed requires addressing additional challenges
to achieve out-of-distribution generalization, most methods perform worse than in other in-distribution
testbeds. For instance, AS, which are sensitive to the availability of observed graphs similar to the
query graph, perform worse than in Table 5. On the other hand, optimizable methods show more
promising results as they learn to extrapolate into new domains by learning from observed domains.

Small-To-Large Testbed (Table 8). In comparison to the Fully-Observed testbed, the performance
decreases overall in this testbed. However, considering that methods learn only from small graphs,
model selection for large graphs still performs quite well, often achieving a similar level of perfor-
mance. Successful methods in this testbed can make the model selection pipeline much more efficient
as performance collection for small graphs can be done much more efficiently than for large graphs.

Additional Results. We provide additional results in the Appendix, including the results of the
Cross-Task testbed, and results obtained with other meta-graph features, e.g., Mgraphlets and Mcompact.
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Table 8: Small-To-Large testbed results for link prediction (top) and node classification (bottom) tasks.
Higher (↑) scores are better. The best result is in bold, and the second best result is underlined.

(a) Link prediction

Perf. Metric RandSel GB-Perf GB-Rank ISAC AS S2 ALORS NCF MetaOD MetaGL

AUC (↑) 0.522 0.798 0.797 0.842 0.827 0.767 0.812 0.796 0.667 0.870
MRR (↑) 0.031 0.072 0.061 0.132 0.368 0.074 0.209 0.047 0.075 0.260
NDCG@1 (↑) 0.841 0.958 0.960 0.957 0.951 0.953 0.947 0.956 0.921 0.964

(b) Node classification

Perf. Metric RandSel GB-Perf GB-Rank ISAC AS S2 ALORS NCF MetaOD MetaGL

AUC (↑) 0.508 0.724 0.726 0.711 0.761 0.664 0.701 0.697 0.467 0.736
MRR (↑) 0.011 0.058 0.082 0.109 0.095 0.036 0.042 0.034 0.016 0.071
NDCG@1 (↑) 0.795 0.861 0.896 0.902 0.883 0.855 0.862 0.864 0.830 0.857

6.2 Discussion on Limitations and Future Directions
Limitations. In principle, using GLEMOS to select a GL model to employ for a new graph is based
on the assumption that similar graph datasets exist in the benchmark. Therefore, it may not be very
effective if the new graph is significantly different from all graphs in the benchmark (e.g., the new
graph is from a completely new domain). However, as the benchmark data continue to grow over time,
such cases will be increasingly less likely, while model selection performances will likely improve
with the addition of more data. Furthermore, while GLEMOS currently supports two fundamental
GL tasks, namely, node classification and link prediction, it can be further extended with additional
tasks (e.g., graph classification). Incorporating them into GLEMOS is one of the future plans.

Future Directions. Below we list promising research directions to further improve the algorithms as
well as the benchmark for instantaneous GL model selection.

Direction 1: enabling model selection methods to use additional graph data. While existing
methods utilize model performances and graph structural information captured by meta-features,
they currently do not take other available graph data into account, such as node and edge features,
timestamps in the case of dynamic graphs, and node and edge types (e.g., knowledge graphs). These
data can be useful for modeling graph similarities, and the benchmark can further be enriched with
such additional data.

Direction 2: developing data augmentation techniques. Adding new performance records to
the benchmark can improve the effectiveness of model selection methods. However, it is often
computationally expensive to train and evaluate GL models on non-trivial graphs. Data augmentation
techniques for GL model performances can be helpful in this data sparse regime, especially for
optimizable methods that require a lot of data to learn effectively.
Direction 3: handling out-of-distribution settings. Existing model selection methods are mainly

designed for an in-distribution setup, as they assume that there exist observed graphs similar to a
query graph. Thus their performance is suboptimal when a query graph comes from a new distribution.
Investigating how to achieve generalization in such an out-of-distribution scenario would be beneficial.
Direction 4: effective performance collection. When we have a limited budget for performance mea-

surements on new graphs, selecting which pairs of graphs and models to evaluate and include in the
benchmark can greatly influence the learning of model selection methods. Thus the ability to find a
small set of representative pairs can lead to a fast and effective performance collection. Challenges
include how to make such selections from a heterogeneous model set with multiple GL methods.

7 Conclusion
The choice of a GL model has a significant impact on the performance of downstream tasks. Despite
recent efforts to tackle this important problem, there exists no benchmark environment to evaluate the
performance of GL model selection methods, and to support the development of new methods. In this
work, we develop GLEMOS, the first benchmark environment for instantaneous GL model selection.
• Extensive Benchmark Data. Among others, GLEMOS provides an extensive collection of model

performances on fundamental GL tasks, i.e., link prediction and node classification, which is by far
the largest and most comprehensive benchmark for Prob. 1 to the best of our knowledge.

• Algorithms and Testbeds. GLEMOS provides representative algorithms for Prob. 1, as well as
multiple testbeds to assess model selection performance in practical usage scenarios.

• Extensible Open Source Environment. GLEMOS is designed to be easily extended with new GL
models, new graphs, new performance records, and new GL tasks, while allowing reproducibility.
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