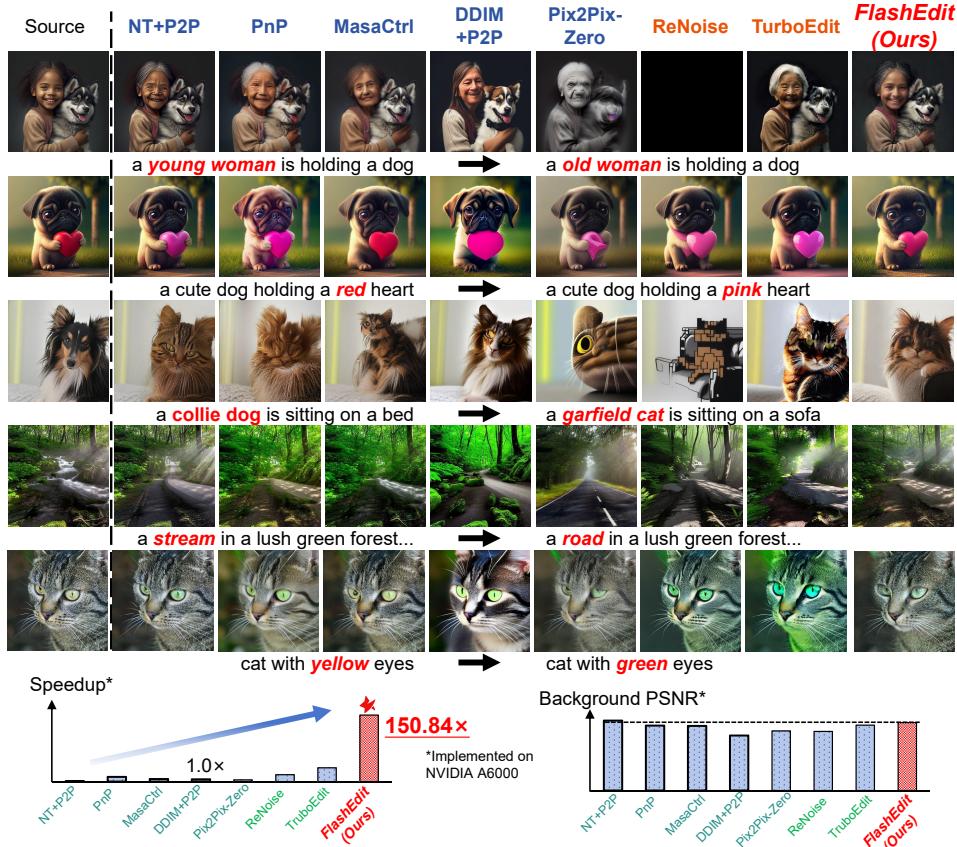


FLASHEDIT: DECOUPLING SPEED, STRUCTURE, AND SEMANTICS FOR PRECISE IMAGE EDITING

000
001
002
003
004
005 **Anonymous authors**
006 Paper under double-blind review
007
008
009



037 Figure 1: **FlashEdit** produces superior visual results for text-guided image editing, addressing back-
038 ground instability and semantic entanglement with an over $150\times$ speedup against DDIM (Song et al.
039 (2020b)) + P2P (Hertz et al. (2022)).

ABSTRACT

040
041
042 Text-guided image editing with diffusion models has achieved remarkable qual-
043 ity but suffers from prohibitive latency, hindering real-world applications. We
044 introduce **FlashEdit**, a novel framework designed to enable high-fidelity, real-
045 time image editing. Its efficiency stems from three key innovations: (1) a **One-**
046 **Step Inversion-and-Editing (OSIE)** pipeline that bypasses costly iterative pro-
047 cesses; (2) a **Background Shield (BG-Shield)** technique that guarantees back-
048 ground preservation by selectively modifying features only within the edit region;
049 and (3) a **Sparsified Spatial Cross-Attention (SSCA)** mechanism that ensures
050 precise, localized edits by suppressing semantic leakage to the background. Ex-
051 tensive experiments demonstrate that FlashEdit maintains superior background
052 consistency and structural integrity, while performing edits in under 0.2 seconds,
053 which is an over $150\times$ speedup compared to prior multi-step methods. Our code
 will be made publicly available.

054
055

1 INTRODUCTION

056
057
058
059
060
061
062
Text-guided image editing with diffusion models (Brooks et al. (2023),Dong et al. (2023)) has
demonstrated remarkable capabilities, allowing users to perform complex semantic modifications
with high fidelity. The standard methodology is built upon a two-stage inversion-denoising pipeline:
an initial inversion process maps a source image to its corresponding noise latent, which is then pro-
gressively denoised to generate the edited output according to a target prompt (Ju et al. (2023),Cao
et al. (2023)). The objective is to achieve high fidelity in both content preservation and target prompt
alignment, which often necessitates a computationally intensive, multi-step process.063
064
065
066
067
068
069
070
071
072
073
Recent research has pursued several distinct strategies to improve accuracy and speed. To tackle
the latency of the multi-step denoising process, methods based on model distillation have been
proposed to enable editing in a faster way (Deutch et al. (2024)). These approaches must carefully
address challenges such as mismatched noise statistics and insufficient editing strength that arise
when adapting multi-step frameworks to fast samplers (Mokady et al. (2023b),Miyake et al. (2025)).
To improve edit precision and prevent semantic leakage into the background, another category of
work modifies the model’s internal mechanisms, primarily by re-weighting or replacing attention
maps to ensure the edit is spatially constrained (Fang et al. (2024); Xu et al. (2024)). Recognizing
that the final edit quality is highly dependent on the starting point, other approaches focus on refining
the inversion technique itself (Ju et al. (2023)). These methods aim to find a more accurate initial
latent vector, with recent insights revealing that separating the objectives of content preservation and
edit fidelity can yield significant performance gains and speedups (Wang et al. (2025b)).074
075
076
077
078
079
080
However, these existing methods approach speed and quality as a trade-off rather than as inter-
connected components of a singular, complex control problem. They offer partial solutions like
accelerating the sampler at the cost of inversion fidelity, or preserving the background without ad-
dressing the precision of the foreground edit. This results in a fragmented landscape of techniques
that fail to deliver a solution that is simultaneously fast, robust, and precise. A truly practical editing
framework requires a more holistic methodology that addresses control at every level of editing.081
082
083
084
085
086
087
088
089
090
091
092
093
To address this multifaceted challenge, we introduce a novel editing methodology that establishes
control at three progressively finer levels of granularity. At the foundational level, we tackle the
macro-problem of **temporal control**. We propose a **One-Step Inversion-and-Editing (OSIE)**
pipeline, built upon an ”Anchor-and-Refine” training strategy, which conquers the prohibitive la-
tency of prior work and makes real-time interaction possible. With this temporal control established,
we address the meso-level problem of **spatial control**. Our **Background Shield (BG-Shield)** mech-
anism provides structural integrity by performing a surgical intervention in the self-attention layers.
It uses a background memory and foreground-core querying to create a hard separation between
edited and unedited regions, guaranteeing background stability. Finally, with speed and structure
secured, we target the micro-level problem of **semantic control**. We develop **Sparsified Spatial**
Cross-Attention (SSCA), a refinement of the cross-attention mechanism that prunes irrelevant text
tokens pre-softmax, ensuring the edit is guided by a clean, unambiguous semantic signal. Each com-
ponent logically builds upon the last, forming a cohesive solution (Figure 1). Our main contributions
can be summarized as follows:094
095
096
097
098
099
100
101
102
103
104
105
106
107

- We propose a novel, multi-level methodology for image editing that cohesively integrates control over three distinct levels: the temporal latency of the pipeline, the spatial structure of the image, and the semantic content of the edit with an over $150\times$ speedup compared to prior multi-step methods.
- At the temporal level, we introduce the **One-Step Inversion-and-Editing (OSIE)** pipeline and its ”Anchor-and-Refine” training strategy, which for the first time enables high-fidelity inversion for one-step diffusion models.
- At the spatial level, we propose **Background Shield (BG-Shield)**, a structural intervention in self-attention that uses memory caching and selective core querying to enforce pixel-perfect background preservation, ensuring the structural integrity of the edit.
- At the semantic level, we develop **Sparsified Spatial Cross-Attention (SSCA)**, a cross-attention mechanism that performs pre-softmax token pruning. This provides the final layer of fine-grained control, eliminating attribute bleeding and enabling precise edits with complex text prompts.

108

2 RELATED WORKS

109

2.1 DIFFUSION MODELS

110 Recent advances in image synthesis have been largely driven by diffusion models (Peebles & Xie
 111 (2023),Kulikov et al. (2024)), which have become a leading paradigm for generating high-fidelity
 112 images from text. The core mechanism involves an iterative denoising process that progressively
 113 refines a random noise vector into a coherent image conditioned on a text prompt. A landmark
 114 contribution in this area is Stable Diffusion (Rombach et al. (2021)), a Latent Diffusion Model
 115 (LDM) (Rombach et al. (2022)) that performs the computationally intensive denoising process in a
 116 lower-dimensional latent space, making the technology widely accessible. Parallel to this, alternative
 117 frameworks have emerged, such as Flow Matching models like Flux (Labs (2024)). Instead of an
 118 iterative refinement process, these models learn to map noise to an image via a more direct, straight-
 119 line trajectory, representing a different theoretical foundation for high-quality generative modeling.
 120

121 To mitigate the high computational cost of these iterative models, various acceleration techniques
 122 have been proposed. Model quantization (Li et al. (2024a;b;c); Yan et al. (2025b)), cache mecha-
 123 nism (Xu et al. (2025); Pan et al. (2025)), sparse attention (Li et al. (2025a)), pruning (Wang et al.
 124 (2025a),Yan et al. (2025a)), and distillation (Hinton et al. (2015)) are general acceleration techniques
 125 for deep learning model. In diffusion models, specifically, one primary category is *model quanti-*
 126 *zation* (Li et al. (2025b)), which reduces memory footprint and computational load by converting
 127 full-precision model weights and activations into lower-bit representations. Another category in-
 128 volves *cache mechanisms* (Liu et al. (2025); Xu et al. (2018)), which enhance inference efficiency
 129 by exploiting temporal redundancy. These methods reuse intermediate features computed at earlier
 130 denoising steps to avoid redundant calculations in later steps. While effective in isolation, recent
 131 work like QuantCache (Wu et al. (2025)) demonstrates a unified framework can yield greater gains.

132

2.2 EDITING MODELS

133 The task of editing real images with pre-trained generative models introduces the fundamental chal-
 134 lenge of *inversion*: finding a latent representation that can faithfully reconstruct a given source im-
 135 age. This problem was first extensively studied in the context of Generative Adversarial Networks
 136 (GAN) Inversion (Wang et al. (2022),Zhu et al. (2020),Zhu et al. (2016)). In comparison, **DDIM**
 137 **Inversion** (Song et al. (2020b)) provides a deterministic method to find a corresponding noise la-
 138 tent for a source image. Once this latent is obtained, various editing mechanisms are employed
 139 during the denoising process to apply the desired changes. A prominent family of methods focuses
 140 on *attention control*, where the cross-attention maps between text and image are manipulated. For
 141 example, to change a “photo of a red car” to a “blue car,” Prompt-to-Prompt (Hertz et al. (2022))
 142 identifies the attention weights corresponding to the word “red” and replaces them with those for
 143 “blue,” preserving the attention for “car” and the background. Another powerful technique is *fea-*
 144 *ture injection*, exemplified by Plug-and-Play (PnP) (Zhang et al. (2021)). To preserve the identity
 145 of a subject, PnP injects the self-attention features—which encode structure and appearance—from
 146 the source image’s generation process into the edited one. A third approach is *mask-based editing*,
 147 where methods like DiffEdit (Couairon et al. (2022)) generate a mask indicating the region to be
 148 altered and then apply the denoising process only within that area. Despite these advances, a core
 149 challenge persists in perfectly disentangling the edited foreground from the unedited background.

150

3 METHOD

151

3.1 ONE-STEP INVERSION-AND-EDITING

152 **Challenge: A Dual-Constraint Optimization Problem.** The task of learning an effective inversion
 153 mapping is fundamentally a dual-constraint optimization problem. The predicted noise latent, ε_{inv} ,
 154 must simultaneously satisfy two competing objectives. The first is a *fidelity constraint*, requiring
 155 ε_{inv} to encode sufficient information to perfectly reconstruct the source image. The second is a
 156 *distributional constraint*, requiring ε_{inv} to adhere to the generator’s prior distribution, $\mathcal{N}(0, I)$, to
 157 ensure editability. While both constraints can be explicitly supervised when using synthetic data,
 158 the distributional constraint becomes non-trivial and unsupervised for real-world images where the
 159 ground-truth noise is unknown. Naively optimizing for fidelity alone causes a severe violation of
 160 the distributional constraint, leading to uneditable latents.

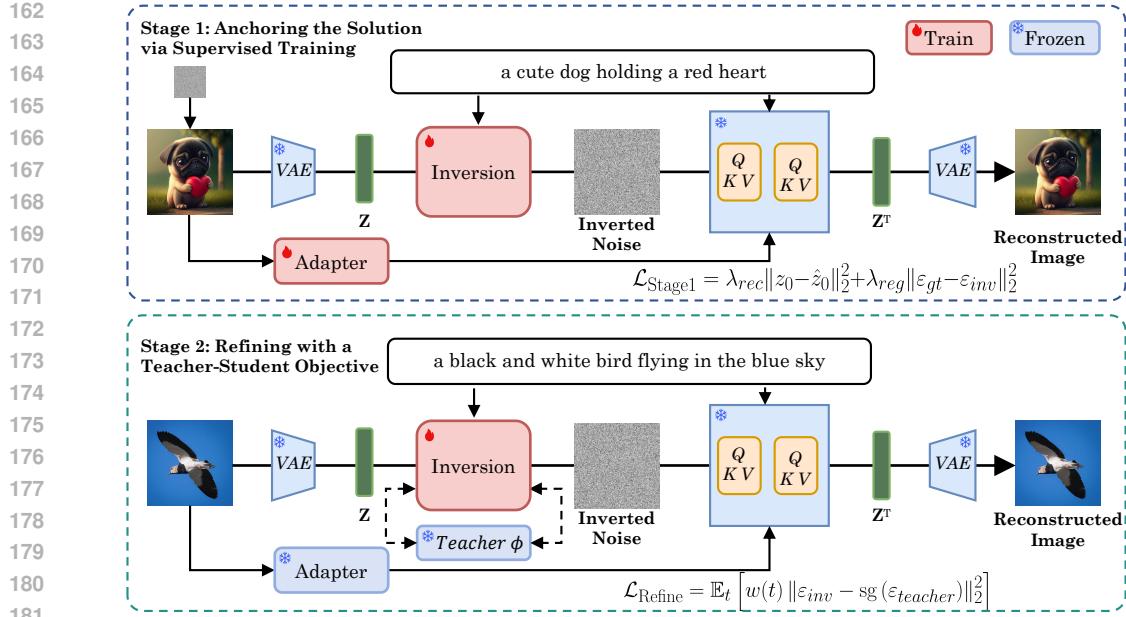


Figure 2: Overview of our **One-Step Inversion-and-Editing framework**, which introduces a direct image conditioning branch, trained via a two-stage “Anchor-and-Refine” strategy that uses direct supervision for synthetic data (Stage 1) and a teacher-student objective for real images (Stage 2).

Motivation. Our motivation is to design a training strategy that explicitly decouples and progressively solves these two constraints. We posit that the network must first learn to jointly satisfy both objectives in a fully-supervised setting before it can be adapted to handle the unsupervised nature of real-image inversion. This leads to our “Anchor-and-Refine” approach. The “Anchor” stage uses synthetic data to ground the network in a parameter space that respects both constraints. The “Refine” stage then adapts this mapping to real images, where we introduce a powerful generative prior from a teacher model to act as a proxy for the now-unsupervised distributional constraint. This ensures that even for real images, fidelity is pursued without sacrificing editability.

Proposed Method. Shown in Figure 2, our primary architectural modification is designed to resolve a fundamental tension in the inversion process. The inverted noise vector is typically burdened with two conflicting tasks: perfectly preserving the source image’s identity and remaining generic enough for subsequent editing. To decouple these roles, we introduce a dedicated visual adapter which provides the decoder D with a direct visual information from the source image.

This way, the decoder’s output—the reconstructed latent z' —becomes a function of three distinct inputs: the inverted noise n , the text condition c_t , and the explicit image features c_i . By directly supplying the visual identity via c_i , we liberate the noise vector n from its strict reconstruction duty. It can now remain closer to a pure Gaussian distribution, drastically improving its malleability for downstream editing tasks.

Stage 1: Anchoring the Solution via Supervised Training. The first stage aims to find a robust initialization, or “anchor,” for the inversion network I_θ . We use a synthetic dataset of (ε_{gt}, z_0) tuples from the base generator G , which allows for direct and strong supervision. The training objective is twofold:

$$\mathcal{L}_{Stage1} = \lambda_{rec} \|z_0 - \hat{z}_0\|_2^2 + \lambda_{reg} \|\varepsilon_{gt} - \varepsilon_{inv}\|_2^2. \quad (1)$$

The regression term \mathcal{L}_{reg} is critical in this stage. It constrains the network to a region of the loss landscape where its outputs naturally conform to the target distribution $\mathcal{N}(0, I)$. During this stage, we train both the inversion network I_θ and the newly introduced image adapter. This teaches the adapter how to effectively provide visual priors that aid in reconstruction. This anchoring step prevents the network from converging to trivial solutions in the next stage.

Stage 2: Refining with a Teacher-Student Objective. With the network anchored, the second stage refines its mapping for the complexities of real-world images where the ground-truth noise ε_{gt} is unknown. To prevent the distribution of ε_{inv} from drifting, we introduce a regularization scheme

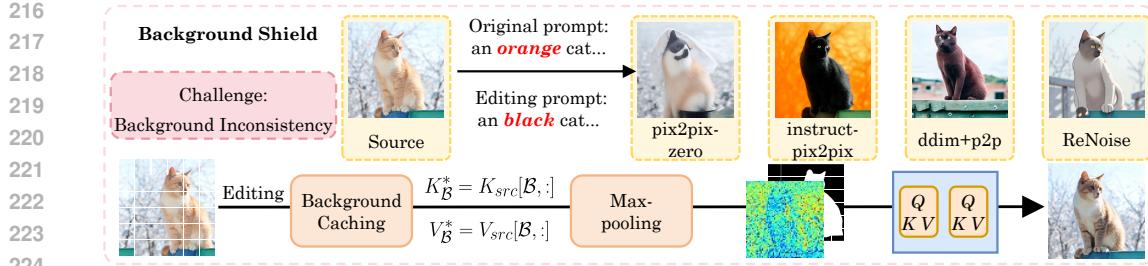


Figure 3: Illustration of our **Background Shield (BG-Shield)** mechanism. The top of the figure illustrates the problem of *background inconsistency* in standard editing, while the bottom details the pipeline of our method designed to solve it.

framed as a **teacher-student distillation** process. We leverage a pre-trained "teacher" model, ϕ , to provide a dynamic, supervisory signal for our "student" inversion network, I_θ .

For each real image latent z_0 , we first create a noisy version $z_t = \alpha_t z_0 + \sigma_t \varepsilon_{inv}$ at a random timestep t . The teacher model ϕ then predicts the noise from this input, yielding a "pseudo-ground-truth" target, $\varepsilon_{teacher}$:

$$\varepsilon_{teacher} = \phi(\alpha_t z_0 + \sigma_t \varepsilon_{inv}, t, c). \quad (2)$$

We then define a refinement loss, $\mathcal{L}_{\text{Refine}}$, that minimizes the L2 distance between our network's output ε_{inv} and the teacher's prediction. Crucially, we treat the teacher's output as a fixed target by applying a stop-gradient operator.

$$\mathcal{L}_{\text{Refine}} = \mathbb{E}_t \left[w(t) \|\varepsilon_{inv} - \text{sg}(\varepsilon_{teacher})\|_2^2 \right], \quad (3)$$

where $\text{sg}(\cdot)$ denotes the stop-gradient operation. This formulation turns the problem into a simple regression task where the student (I_θ) is trained to produce a noise latent that the teacher (ϕ) would have predicted. This distillation-style loss effectively regularizes the training, ensuring that for any given real image, the predicted noise ε_{inv} is a solution that is not only perceptually accurate (as enforced by a parallel perceptual loss) but also highly plausible under the teacher's learned world model.

3.2 BACKGROUND SHIELD

Challenge: Background Inconsistency. A critical challenge in localized image editing is maintaining strict background consistency. We observe that even with precise masks, many methods fail at this task. For instance, in Figure 3 when performing a seemingly simple edit such as changing "an orange cat" to "a black cat", the background suffers from unintended alterations, leading to shifts in color, lighting, or style. We identify the root cause of this instability as the inherent nature of the self-attention mechanism. As a global operator that computes all-to-all relationships between image tokens, it allows the strong semantic signal from the foreground edit to propagate and contaminate the background features, undermining the goal of a truly localized edit.

Motivation. Having identified the global nature of self-attention as the cause of this background inconsistency, our motivation is to move beyond merely scaling influences and propose a direct structural intervention. To achieve background stability, a hard constraint that structurally isolates the background from the editing process is required. We introduce **Background Shield (BG-Shield)**, a method designed to enforce this consistency by replacing the background's feature computation with a direct recall from a "background memory".

Proposed Method. Shown in Figure 3, BG-Shield operates as a two-pass mechanism within self-attention layers. Let $X \in \mathbb{R}^{S \times D}$ be the input feature sequence, and let a binary mask $M \in \{0, 1\}^S$ define the foreground indices \mathcal{F} and background indices \mathcal{B} .

Background Memory Caching. During a forward pass with the source prompt c_{src} , we compute the Key and Value matrices, K_{src}, V_{src} . We then extract and cache the background-specific key-value pairs:

$$K_{\mathcal{B}}^* = K_{src}[\mathcal{B}, :], \quad V_{\mathcal{B}}^* = V_{src}[\mathcal{B}, :]. \quad (4)$$

This cached memory, $(K_{\mathcal{B}}^*, V_{\mathcal{B}}^*)$, serves as a high-fidelity record of the original background state.

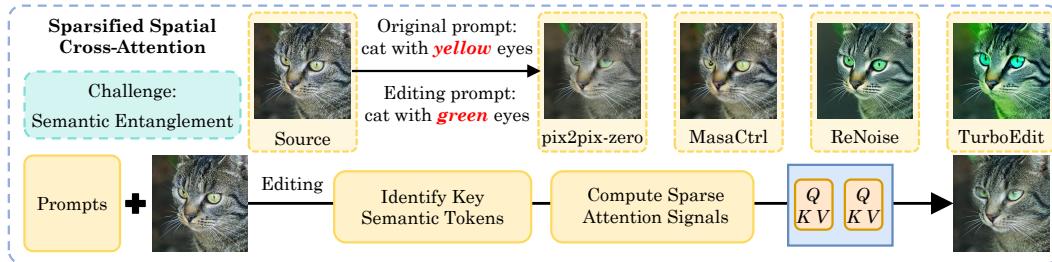


Figure 4: Illustration of our **Sparsified Spatial Cross-Attention (SSCA)** method resolving *semantic entanglement*. The top row demonstrates how standard attention fails on precise edits, resulting in edit attenuation and attribute leakage. The bottom row details our SSCA mechanism, which prevents this by computing attention only over a subset of relevant text tokens to ensure a clean edit.

Mask-Driven Recomposition and Selective Querying. During the editing pass with the target prompt c_{tgt} , we compute new queries, keys, and values ($Q_{tgt}, K_{tgt}, V_{tgt} \in \mathbb{R}^{S \times d_k}$). We then construct a spatially-aware, full key-value set, K_{full}, V_{full} , by combining the background memory with the current foreground features:

$$K_{full}[j, :] = \begin{cases} K_{\mathcal{B}}^*[\text{rank}_{\mathcal{B}}(j), :] & \text{if } j \in \mathcal{B} \\ K_{tgt}[j, :] & \text{if } j \in \mathcal{F} \end{cases}, \quad V_{full}[j, :] = \begin{cases} V_{\mathcal{B}}^*[\text{rank}_{\mathcal{B}}(j), :] & \text{if } j \in \mathcal{B} \\ V_{tgt}[j, :] & \text{if } j \in \mathcal{F} \end{cases}, \quad (5)$$

where $\text{rank}_{\mathcal{B}}(j)$ ensures correct positional alignment. To mitigate boundary artifacts, we introduce a *foreground core* by applying a morphological erosion to the mask M . This is implemented using a 2D max-pooling operation (with kernel size k , stride s , and padding p) on the inverted mask. The resulting core mask M_{core} is binarized with a threshold τ to yield the core index set $\mathcal{F}_c \subset \mathcal{F}$:

$$M_{core} = \mathbf{1} - \text{MaxPool2d}(\mathbf{1} - M, \text{kernel_size}, \text{stride}, \text{padding}), \quad (6)$$

$$\mathcal{F}_c = \{i \mid (M_{core})_i > \tau\}. \quad (7)$$

The attention computation is then performed *only* for queries within this core region. Let $Q_{tgt,c} = Q_{tgt}[\mathcal{F}_c, :]$ be the subset of queries corresponding to the core indices. The attention output for this region, $H_c \in \mathbb{R}^{|\mathcal{F}_c| \times d_k}$, is computed as:

$$H_c = \text{softmax} \left(\frac{Q_{tgt,c} K_{full}^T}{\sqrt{d_k}} \right) V_{full}. \quad (8)$$

The full output matrix $H \in \mathbb{R}^{S \times d_k}$ is then constructed by scattering the computed values H_c back to their original positions, while all other positions corresponding to the background and boundary are set to zero.

Residual Fusion. The sparse output matrix H is projected and added back to the input features: $Y = \text{Proj}(H) + X$. Since $H_i = 0$ for all $i \notin \mathcal{F}_c$, this step functions as an identity map for the background and boundary regions, ensuring they are perfectly preserved.

3.3 SPARSIFIED SPATIAL CROSS-ATTENTION

Challenge: Semantic Entanglement in Image Editing. A key challenge in precise editing is *semantic entanglement*, where textual attributes are not cleanly bound to their intended objects. This is clearly demonstrated in Figure 4, where the task is to change “a cat with yellow eyes” to “a cat with green eyes.” Standard models often fail, resulting in either *edit attenuation*, where the eyes are incompletely colored, or significant *attribute leakage*, causing an unnatural green tint to bleed onto the cat’s face. This failure stems from the competitive nature of the softmax function in **cross-attention**. It forces all text tokens to compete for influence over each pixel, allowing the powerful “green” signal to suppress the essential structural tokens like “cat,” which leads to the incorrect generalization.

Motivation. Based on this diagnosis, we contend that semantic concepts must be disentangled *before* the attention softmax allows them to interfere. Our motivation is to implement a **pre-emptive disentanglement** strategy. Instead of allowing all text tokens to participate in the attention calculation for the foreground, we introduce Sparsified Spatial Cross-Attention (SSCA), a method that

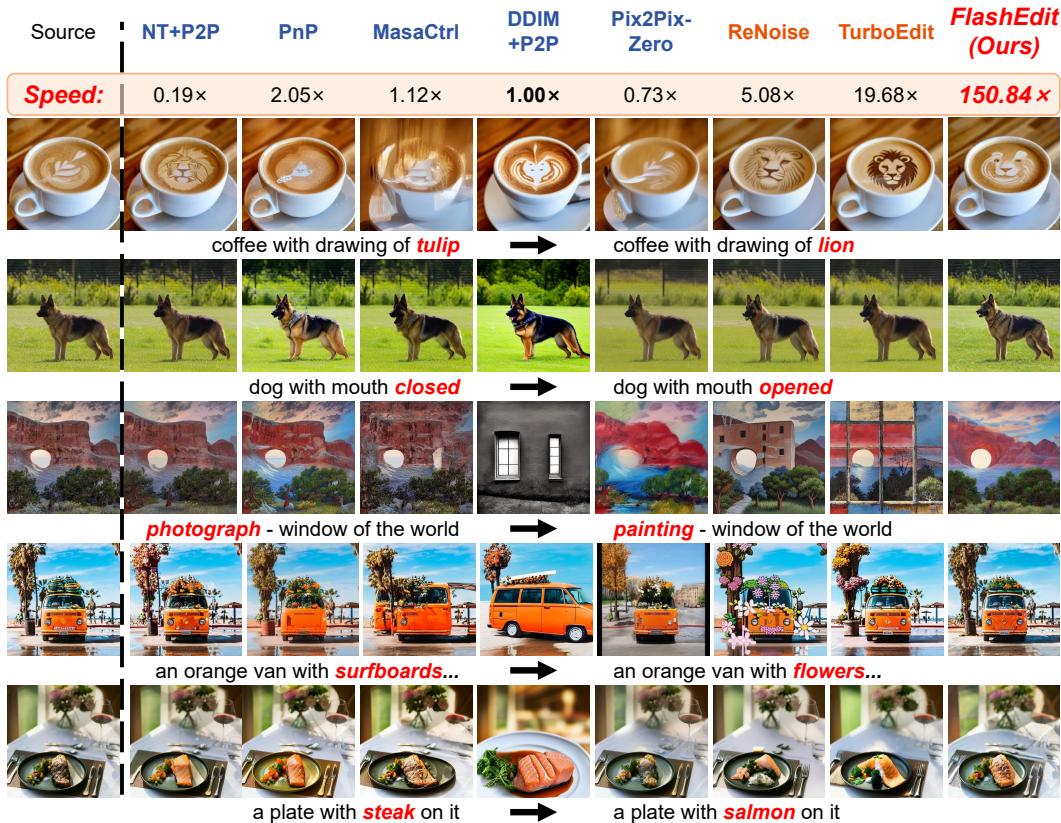


Figure 5: Qualitative comparison of editing results. Each row corresponds to a unique editing task, with the source image displayed in the first column and the source/target prompts listed below. forces the softmax to operate only on a clean, disentangled subset, thus preventing attribute leakage at its source.

Proposed Method. Our Sparsified Spatial Cross-Attention (SSCA) mechanism fundamentally redefines the text attention computation by breaking it down into three sequential steps: identifying key semantic tokens, computing a focused sparse attention signal, and integrating this signal into the final feature map, shown in Figure 4.

Identifying Key Semantic Tokens. Before computing attention, we first identify the most relevant tokens from the text prompt y for the given edit region M . We compute the similarity between the set of image queries within the mask, $Q_{l,M}$, and all text keys K_y . The top-k text key-value pairs that exhibit the highest aggregate similarity are selected. This pre-selection step acts as a filter, creating a task-relevant subset of textual information, denoted as (K_y^k, V_y^k) .

Computing Sparse Attention Signals. With the pruned set of text tokens, we then compute a sparse attention result, A_{sparse} , only for the image queries within the edit region, $Q_{l,M}$. This ensures that the computationally expensive attention operation is focused where it is needed most.

$$A_{\text{sparse}} = \text{softmax} \left(\frac{Q_{l,M}(K_y^k)^T}{\sqrt{d}} \right) V_y^k. \quad (9)$$

The resulting matrix $A_{\text{sparse}} \in \mathbb{R}^{|\mathcal{F}| \times d}$ contains a highly precise and disentangled guidance signal, where $|\mathcal{F}|$ is the number of foreground pixels. **Constructing and Integrating the Full Attention Matrix.** The sparse signal A_{sparse} must be placed into a full-size matrix to be used in the model. We construct the final text attention matrix, $A_{\text{SSCA}} \in \mathbb{R}^{S \times d}$, by scattering the values from A_{sparse} into a zero matrix according to the mask indices \mathcal{F} . This structurally enforces that the text prompt has zero influence on the background.

$$A_{\text{SSCA}}[i, :] = \begin{cases} A_{\text{sparse}}[\text{rank}_{\mathcal{F}}(i), :] & \text{if } i \in \mathcal{F} \\ \mathbf{0} & \text{if } i \notin \mathcal{F}, \end{cases} \quad (10)$$

378
 379 Table 1: Comprehensive comparison of editing quality, evaluating background preservation and
 380 CLIP similarity across various methods.

Method		Background Preservation			CLIP Similarity		
Inverse	Editing	PSNR \uparrow	LPIPS $\times 10^3 \downarrow$	MSE $\times 10^4 \downarrow$	SSIM $\times 10^2 \uparrow$	Whole \uparrow	Edited \uparrow
DDIM	P2P	17.87	208.80	219.88	71.14	25.01	22.44
NT-Inv	P2P	27.03	60.67	35.86	84.11	24.75	21.86
DDIM	MasaCtrl	22.17	106.62	86.97	79.67	23.96	21.16
Direct Inversion	MasaCtrl	22.64	87.94	81.09	81.33	24.38	21.35
DDIM	P2P-Zero	20.44	172.22	144.12	74.67	22.80	20.54
Direct Inversion	P2P-Zero	21.53	138.98	127.32	77.05	23.31	21.05
DDIM	PnP	22.28	113.46	83.64	79.05	25.41	22.55
Direct Inversion	PnP	22.46	106.06	80.45	79.68	25.41	22.62
ReNoise(SDXL)		20.85	176.84	51.78	72.44	24.41	21.88
TurboEdit		22.51	107.27	9.32	80.09	25.49	21.82
FlashEdit		25.29	62.55	4.36	83.21	25.43	22.13
FlashEdit(w/ GT masks)		25.26	62.78	4.39	83.08	25.53	22.25

398 where $\text{rank}_{\mathcal{F}}(i)$ maps the global index to its local index within the foreground. Finally, this purified
 399 text guidance is integrated with the source image condition, A_{img} , to compute the updated hidden
 400 state h_l :

$$h_l = s_y \cdot A_{SSCA} + s_{edit} \cdot M \odot A_{img} + s_{non-edit} \cdot (1 - M) \odot A_{img}. \quad (11)$$

402 This multi-step process provides a maximally disentangled and precise guidance signal for the edit.

4 EXPERIMENT

4.1 EXPERIMENTAL SETUP

408 **Implementation Details.** Our inversion network, I_θ , is initialized from SwiftBrush (Nguyen & Tran
 409 (2024), Dao et al. (2024)). Inspired by (Song et al. (2024), Ye et al. (2023), Zhang et al.), the image
 410 conditioning branch is based on an adapter, utilizing a pre-trained CLIP image encoder. We train
 411 the model using the Adam optimizer (Kingma & Ba (2014)) with a learning rate of 2e-5, weight
 412 decay of 2e-4, and an Exponential Moving Average (EMA). Anchoring the Solution via Supervised
 413 Training runs for 150k iterations on synthetic data from SwiftBrush. Refining with a Teacher-Student
 414 Objective continues for 200k iterations using real images from CommonCanvas (Gokaslan et al.
 415 (2024)). All experiments were conducted on a single NVIDIA A6000 GPU.

416 **Metrics.** We evaluate our method on the PieBench benchmark (Zhang et al. (2021)), which features
 417 700 samples across 10 editing types. We report metrics along two primary axes. As for **Background**
 418 **Preservation**, We compute PSNR (Huynh-Thu & Ghanbari (2008)), LPIPS (Zhang et al. (2018)),
 419 MSE and SSIM (Wang et al. (2004)) on the unedited regions to measure fidelity to the source image.
 420 As for **Semantic Alignment**, We report CLIP-Whole (Radford et al. (2021)) for prompt-image
 421 alignment and CLIP-Edited (Radford et al. (2021)) for alignment within the masked edit region.

422 **Baselines.** We compare our method against state-of-the-art **multi-step** and **few-step** baselines.
 423 For multi-step methods, we evaluate Prompt-to-Prompt (P2P) (Hertz et al. (2022)), MasaCtrl (Cao
 424 et al. (2023)), Pix2Pix-Zero (Parmar et al. (2023)), and Plug-and-Play (PnP) (Zhang et al. (2021)),
 425 paired with powerful inversion techniques like DDIM (Song et al. (2020a)), Null-text Inversion
 426 (NT-Inv) (Mokady et al. (2023a)), and Direct Inversion (Ju et al. (2023)). For few-step methods, we
 427 compare against Renoise (Garibi et al. (2024)) and TurboEdit (Deutch et al. (2024)).

4.2 QUANTITATIVE ANALYSIS

431 As shown in Table 1, our method establishes a new state-of-the-art for accelerated editing. FlashEdit
 significantly outperforms recent **few-step methods** like ReNoise (Garibi et al. (2024)) and Tur-

432
 433 **Table 2: Ablation Study on Core Model Components.** We evaluate the contribution of each
 434 module by measuring the impact on background preservation and semantic similarity (CLIP Score).
 435 The final row represents our full method.

436	Components			Background Preservation			CLIP Similarity	
	437 OSIE	BG-Shield	SSCA	438 PSNR↑	LPIPS _{×10³} ↓	MSE _{×10⁴} ↓	SSIM _{×10²} ↑	439 Whole↑
439	✓	-	-	23.33	92.37	6.60	79.97	24.14
440	✓	✓	-	24.63	75.36	5.01	81.65	24.77
441	✓	✓	✓	25.29	62.55	4.36	83.21	25.43

442
 443 boEdit (Deutch et al. (2024)) across all reported metrics. Crucially, it also achieves quality on par
 444 with, and in several metrics superior to, top-performing but prohibitively slow **multi-step methods**.
 445 This high fidelity is delivered with an extraordinary efficiency gain of over **150×** (Table 3). Furthermore,
 446 an experiment using ground-truth (GT) masks reveals a negligible performance difference,
 447 confirming the high accuracy of our self-guided masking mechanism.
 448

449 4.3 QUALITATIVE ANALYSIS

450 Visual comparisons in Figure 5 reinforce our quantitative findings. The
 451 outputs from FlashEdit consistently
 452 exhibit high semantic fidelity to the
 453 target prompt while maintaining pristine
 454 background integrity, avoiding
 455 the “bleeding” artifacts common in
 456 other methods. In contrast, other
 457 baselines often display noticeable
 458 quality degradation or fail to preserve
 459 background details. FlashEdit is
 460 unique in providing both state-of-the-
 461 art visual quality and the real-time
 462 performance that multi-step methods
 463 lack.

464 4.4 ABLATION STUDIES

465 To validate the contribution of each component in our framework, we conduct a comprehensive abla-
 466 tion study, with the results presented in Table 2. Our baseline, consisting of the **OSIE** pipeline alone,
 467 establishes a strong performance foundation. Integrating **BG-Shield** brings a marked improvement
 468 across background preservation metrics, confirming its effectiveness in isolating background fea-
 469 tures. The final addition of **SSCA** further boosts metrics. It substantially enhances semantic align-
 470 ment, evidenced by a large increase in the CLIP-Edited score, which validates our pre-softmax token
 471 pruning strategy. **SSCA** also improves reconstruction quality, suggesting a synergistic effect where
 472 cleaner textual guidance benefits the entire process. This demonstrates that all three components are
 473 critical and work in concert to achieve the final state-of-the-art performance of **FlashEdit**.
 474

475 5 CONCLUSION

476 This paper introduces **FlashEdit**, a new paradigm for text-guided image editing that redefines the
 477 performance standard for real-time generative applications. We demonstrate that the long-standing
 478 trade-off between speed and quality is not fundamental but can be overcome with a holistic, multi-
 479 level control strategy. Our approach begins by establishing temporal control with a foundational
 480 **OSIE** pipeline for one-step inversion and editing. It then enforces spatial control with **BG-Shield**
 481 and fine-grained semantic control with **SSCA**. Together, these components transform diffusion-
 482 based editing from a slow, offline process into an interactive and expressive creative tool.
 483

484 Table 3: Efficiency comparison of individual editing meth-
 485 ods, with the denoising steps and speedup factor for each
 486 specific combination.

Method		Denoising Steps	Speedup
Inverse	Editing		
DDIM	P2P		1.00×
NT-Inv	P2P		0.19×
DDIM	MasaCtrl		1.12×
Direct Inversion	MasaCtrl	Multi-steps	0.88×
DDIM	P2P-Zero		0.73×
Direct Inversion	P2P-Zero		0.73×
DDIM	PnP		2.06×
Direct Inversion	PnP		2.03×
ReNoise(SDXL)		Few-steps	5.08×
TurboEdit			19.68×
FlashEdit(Ours)		One-step	150.84×

486 ETHICS STATEMENT
487488 The research conducted in the paper conforms, in every respect, with the ICLR Code of Ethics.
489490 REPRODUCIBILITY STATEMENT
491492 We have provided implementation details in Sec. 4. We will also release all the code and models.
493494 495 LLM USAGE STATEMENT
496497 Large Language Models (LLMs) were used solely for polishing writing. They did not contribute to
498 the research content or scientific findings of this work.
499500 501 REFERENCES
502503 Tim Brooks, Aleksander Holynski, and Alexei A Efros. Instructpix2pix: Learning to follow image
504 editing instructions. In *Proceedings of the IEEE/CVF conference on computer vision and pattern*
505 *recognition*, pp. 18392–18402, 2023.506 Mingdeng Cao, Xintao Wang, Zhongang Qi, Ying Shan, Xiaohu Qie, and Yinqiang Zheng. Masactril:
507 Tuning-free mutual self-attention control for consistent image synthesis and editing. In *Proceed-
508 ings of the IEEE/CVF International Conference on Computer Vision (ICCV)*, pp. 22560–22570,
509 October 2023.510 Guillaume Couairon, Jakob Verbeek, Holger Schwenk, and Matthieu Cord. Diffedit: Diffusion-
511 based semantic image editing with mask guidance. *arXiv preprint arXiv:2210.11427*, 2022.
512513 Trung Dao, Thuan Hoang Nguyen, Thanh Le, Duc Vu, Khoi Nguyen, Cuong Pham, and Anh Tran.
514 Swiftbrush v2: Make your one-step diffusion model better than its teacher. In *European Confer-
515 ence on Computer Vision*, pp. 176–192. Springer, 2024.516 Gilad Deutch, Rinon Gal, Daniel Garabi, Or Patashnik, and Daniel Cohen-Or. Turboedit: Text-based
517 image editing using few-step diffusion models. In *SIGGRAPH Asia 2024 Conference Papers*, pp.
518 1–12, 2024.520 Wenkai Dong, Song Xue, Xiaoyue Duan, and Shumin Han. Prompt tuning inversion for text-driven
521 image editing using diffusion models. In *Proceedings of the IEEE/CVF International Conference*
522 *on Computer Vision*, pp. 7430–7440, 2023.523 Junfeng Fang, Houcheng Jiang, Kun Wang, Yunshan Ma, Shi Jie, Xiang Wang, Xiangnan He, and
524 Tat-Seng Chua. Alphaedit: Null-space constrained knowledge editing for language models. *arXiv*
525 *preprint arXiv:2410.02355*, 2024.527 Daniel Garabi, Or Patashnik, Andrey Voynov, Hadar Averbuch-Elor, and Daniel Cohen-Or. Renoise:
528 Real image inversion through iterative noising. In *European Conference on Computer Vision*, pp.
529 395–413. Springer, 2024.531 Aaron Gokaslan, A Feder Cooper, Jasmine Collins, Landan Seguin, Austin Jacobson, Mihir Patel,
532 Jonathan Frankle, Cory Stephenson, and Volodymyr Kuleshov. Commoncanvas: Open diffusion
533 models trained on creative-commons images. In *Proceedings of the IEEE/CVF Conference on*
534 *Computer Vision and Pattern Recognition*, pp. 8250–8260, 2024.535 Amir Hertz, Ron Mokady, Jay Tenenbaum, Kfir Aberman, Yael Pritch, and Daniel Cohen-Or.
536 Prompt-to-prompt image editing with cross attention control. *arXiv preprint arXiv:2208.01626*,
537 2022.538 Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. *arXiv*
539 *preprint arXiv:1503.02531*, 2015.

540 Q. Huynh-Thu and M. Ghanbari. Scope of validity of psnr in image/video quality assessment.
 541 *Electronics Letters*, 44:800–801, 2008. doi: 10.1049/el:20080522. URL <https://digital-library.theiet.org/doi/abs/10.1049/el%3A20080522>.

542

543 Xuan Ju, Ailing Zeng, Yuxuan Bian, Shaoteng Liu, and Qiang Xu. Direct inversion: Boosting
 544 diffusion-based editing with 3 lines of code. *arXiv preprint arXiv:2310.01506*, 2023.

545

546 Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. *arXiv preprint
 547 arXiv:1412.6980*, 2014.

548

549 Vladimir Kulikov, Matan Kleiner, Inbar Huberman-Spiegelglas, and Tomer Michaeli. Flowedit:
 550 Inversion-free text-based editing using pre-trained flow models. *arXiv preprint arXiv:2412.08629*,
 551 2024.

552 Black Forest Labs. Flux. <https://github.com/black-forest-labs/flux>, 2024.

553

554 Jinhao Li, Jiaming Xu, Shan Huang, Yonghua Chen, Wen Li, Jun Liu, Yaoxiu Lian, Jiayi Pan,
 555 Li Ding, Hao Zhou, et al. Large language model inference acceleration: A comprehensive hard-
 556 ware perspective. *arXiv preprint arXiv:2410.04466*, 2024a.

557

558 Jinhao Li, Jiaming Xu, Shiyao Li, Shan Huang, Jun Liu, Yaoxiu Lian, and Guohao Dai. Fast and
 559 efficient 2-bit llm inference on gpu: 2/4/16-bit in a weight matrix with asynchronous dequan-
 560 tization. In *Proceedings of the 43rd IEEE/ACM International Conference on Computer-Aided
 561 Design*, pp. 1–9, 2024b.

562

563 Xingyang Li, Muyang Li, Tianle Cai, Haocheng Xi, Shuo Yang, Yujun Lin, Lvmin Zhang, Songlin
 564 Yang, Jinbo Hu, Kelly Peng, et al. Radial attention: O (nlog n) sparse attention with energy decay
 565 for long video generation. *arXiv preprint arXiv:2506.19852*, 2025a.

566

567 Zhiteng Li, Xianglong Yan, Tianao Zhang, Haotong Qin, Dong Xie, Jiang Tian, zhongchao shi,
 568 Linghe Kong, Yulun Zhang, and Xiaokang Yang. Arb-llm: Alternating refined binarizations for
 569 large language models, 2024c. URL <https://arxiv.org/abs/2410.03129>.

570

571 Zhiteng Li, Hanxuan Li, Junyi Wu, Kai Liu, Linghe Kong, Guihai Chen, Yulun Zhang, and Xiaokang
 572 Yang. Dvd-quant: Data-free video diffusion transformers quantization, 2025b. URL <https://arxiv.org/abs/2505.18663>.

573

574 Jiacheng Liu, Chang Zou, Yuanhuiyi Lyu, Junjie Chen, and Linfeng Zhang. From reusing to fore-
 575 casting: Accelerating diffusion models with taylorseers. *arXiv preprint arXiv:2503.06923*, 2025.

576

577 Daiki Miyake, Akihiro Iohara, Yu Saito, and Toshiyuki Tanaka. Negative-prompt inversion: Fast
 578 image inversion for editing with text-guided diffusion models. In *2025 IEEE/CVF Winter Con-
 579 ference on Applications of Computer Vision (WACV)*, pp. 2063–2072. IEEE, 2025.

580

581 Ron Mokady, Amir Hertz, Kfir Aberman, Yael Pritch, and Daniel Cohen-Or. Null-text inversion for
 582 editing real images using guided diffusion models. In *Proceedings of the IEEE/CVF conference
 583 on computer vision and pattern recognition*, pp. 6038–6047, 2023a.

584

585 Ron Mokady, Amir Hertz, Kfir Aberman, Yael Pritch, and Daniel Cohen-Or. Null-text inversion for
 586 editing real images using guided diffusion models. In *Proceedings of the IEEE/CVF conference
 587 on computer vision and pattern recognition*, pp. 6038–6047, 2023b.

588

589 Thuan Hoang Nguyen and Anh Tran. Swiftbrush: One-step text-to-image diffusion model with
 590 variational score distillation. In *Proceedings of the IEEE/CVF Conference on Computer Vision
 591 and Pattern Recognition*, pp. 7807–7816, 2024.

592

593 Jiayi Pan, Jiaming Xu, Yongkang Zhou, and Guohao Dai. Specdiff: Accelerating diffusion model
 594 inference with self-speculation, 2025. URL <https://arxiv.org/abs/2509.13848>.

595

596 Gaurav Parmar, Krishna Kumar Singh, Richard Zhang, Yijun Li, Jingwan Lu, and Jun-Yan Zhu.
 597 Zero-shot image-to-image translation. In *ACM SIGGRAPH 2023 conference proceedings*, pp.
 598 1–11, 2023.

594 William Peebles and Saining Xie. Scalable diffusion models with transformers. In *Proceedings of*
 595 *the IEEE/CVF international conference on computer vision*, pp. 4195–4205, 2023.
 596

597 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 598 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 599 models from natural language supervision. In *International conference on machine learning*, pp.
 600 8748–8763. PMLR, 2021.

601 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 602 resolution image synthesis with latent diffusion models, 2021.
 603

604 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 605 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF confer-
 606 ence on computer vision and pattern recognition*, pp. 10684–10695, 2022.

607 Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models.
 608 *arXiv:2010.02502*, October 2020a. URL <https://arxiv.org/abs/2010.02502>.
 609

610 Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. *arXiv
 611 preprint arXiv:2010.02502*, 2020b.

612 Kunpeng Song, Yizhe Zhu, Bingchen Liu, Qing Yan, Ahmed Elgammal, and Xiao Yang. Moma:
 613 Multimodal llm adapter for fast personalized image generation. 2024.

614

615 Hanzhen Wang, Jiaming Xu, Jiayi Pan, Yongkang Zhou, and Guohao Dai. Specprune-vla: Accel-
 616 erating vision-language-action models via action-aware self-speculative pruning, 2025a. URL
 617 <https://arxiv.org/abs/2509.05614>.

618 Jia Wang, Jie Hu, Xiaoqi Ma, Hanghang Ma, Xiaoming Wei, and Enhua Wu. Image editing with
 619 diffusion models: A survey. *arXiv preprint arXiv:2504.13226*, 2025b.

620

621 Tengfei Wang, Yong Zhang, Yanbo Fan, Jue Wang, and Qifeng Chen. High-fidelity gan inversion
 622 for image attribute editing. In *Proceedings of the IEEE/CVF Conference on Computer Vision and
 623 Pattern Recognition (CVPR)*, 2022.

624

625 Zhou Wang, A.C. Bovik, H.R. Sheikh, and E.P. Simoncelli. Image quality assessment: from error
 626 visibility to structural similarity. *IEEE Transactions on Image Processing*, 13(4):600–612, 2004.
 627 doi: 10.1109/TIP.2003.819861.

628

629 Junyi Wu, Zhiteng Li, Zheng Hui, Yulun Zhang, Linghe Kong, and Xiaokang Yang. Quantcache:
 630 Adaptive importance-guided quantization with hierarchical latent and layer caching for video
 631 generation, 2025. URL <https://arxiv.org/abs/2503.06545>.

632

633 Jiaming Xu, Jiayi Pan, Yongkang Zhou, Siming Chen, Jinhao Li, Yaoxiu Lian, Junyi Wu, and Guo-
 634 hao Dai. Specee: Accelerating large language model inference with speculative early exiting. In
 635 *Proceedings of the 52nd Annual International Symposium on Computer Architecture*, pp. 467–
 481, 2025.

636

637 Mengwei Xu, Mengze Zhu, Yunxin Liu, Felix Xiaozhu Lin, and Xuanzhe Liu. Deepcache: Princi-
 638 paled cache for mobile deep vision. In *Proceedings of the 24th annual international conference on
 639 mobile computing and networking*, pp. 129–144, 2018.

640

641 Yu Xu, Fan Tang, Juan Cao, Yuxin Zhang, Xiaoyu Kong, Jintao Li, Oliver Deussen, and Tong-Yee
 642 Lee. Headrouter: A training-free image editing framework for mm-dits by adaptively routing
 643 attention heads. *arXiv preprint arXiv:2411.15034*, 2024.

644

645 Xianglong Yan, Zhiteng Li, Tianao Zhang, Linghe Kong, Yulun Zhang, and Xiaokang Yang. Re-
 646 calkv: Low-rank kv cache compression via head reordering and offline calibration. *arXiv preprint
 647 arXiv:2505.24357*, 2025a.

648

649 Xianglong Yan, Tianao Zhang, Zhiteng Li, and Yulun Zhang. Progressive binarization with semi-
 650 structured pruning for llms, 2025b. URL <https://arxiv.org/abs/2502.01705>.

648 Hu Ye, Jun Zhang, Sibo Liu, Xiao Han, and Wei Yang. Ip-adapter: Text compatible image prompt
649 adapter for text-to-image diffusion models. 2023.
650

651 Kai Zhang, Yawei Li, Wangmeng Zuo, Lei Zhang, Luc Van Gool, and Radu Timofte. Plug-and-play
652 image restoration with deep denoiser prior. *IEEE Transactions on Pattern Analysis and Machine*
653 *Intelligence*, 44(10):6360–6376, 2021.

654 Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image
655 diffusion models.
656

657 Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
658 effectiveness of deep features as a perceptual metric. In *CVPR*, 2018.

659 Jiapeng Zhu, Yujun Shen, Deli Zhao, and Bolei Zhou. In-domain gan inversion for real image
660 editing. In *European conference on computer vision*, pp. 592–608. Springer, 2020.
661

662 Jun-Yan Zhu, Philipp Krähenbühl, Eli Shechtman, and Alexei A Efros. Generative visual manipu-
663 lation on the natural image manifold. In *European conference on computer vision*, pp. 597–613.
664 Springer, 2016.

665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701