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Figure 1: FlashEdit produces superior visual results for text-guided image editing, addressing back-
ground instability and semantic entanglement with an over 150× speedup against DDIM (Song et al.
(2020b)) + P2P (Hertz et al. (2022)).

ABSTRACT

Text-guided image editing with diffusion models has achieved remarkable qual-
ity but suffers from prohibitive latency, hindering real-world applications. We
introduce FlashEdit, a novel framework designed to enable high-fidelity, real-
time image editing. Its efficiency stems from three key innovations: (1) a One-
Step Inversion-and-Editing (OSIE) pipeline that bypasses costly iterative pro-
cesses; (2) a Background Shield (BG-Shield) technique that guarantees back-
ground preservation by selectively modifying features only within the edit region;
and (3) a Sparsified Spatial Cross-Attention (SSCA) mechanism that ensures
precise, localized edits by suppressing semantic leakage to the background. Ex-
tensive experiments demonstrate that FlashEdit maintains superior background
consistency and structural integrity, while performing edits in under 0.2 seconds,
which is an over 150× speedup compared to prior multi-step methods. Our code
will be made publicly available.
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1 INTRODUCTION

Text-guided image editing with diffusion models (Brooks et al. (2023),Dong et al. (2023)) has
demonstrated remarkable capabilities, allowing users to perform complex semantic modifications
with high fidelity. The standard methodology is built upon a two-stage inversion-denoising pipeline:
an initial inversion process maps a source image to its corresponding noise latent, which is then pro-
gressively denoised to generate the edited output according to a target prompt (Ju et al. (2023),Cao
et al. (2023)). The objective is to achieve high fidelity in both content preservation and target prompt
alignment, which often necessitates a computationally intensive, multi-step process.

Recent research has pursued several distinct strategies to improve accuracy and speed. To tackle
the latency of the multi-step denoising process, methods based on model distillation have been
proposed to enable editing in a faster way (Deutch et al. (2024)). These approaches must carefully
address challenges such as mismatched noise statistics and insufficient editing strength that arise
when adapting multi-step frameworks to fast samplers (Mokady et al. (2023b),Miyake et al. (2025)).
To improve edit precision and prevent semantic leakage into the background, another category of
work modifies the model’s internal mechanisms, primarily by re-weighting or replacing attention
maps to ensure the edit is spatially constrained (Fang et al. (2024); Xu et al. (2024)). Recognizing
that the final edit quality is highly dependent on the starting point, other approaches focus on refining
the inversion technique itself (Ju et al. (2023)). These methods aim to find a more accurate initial
latent vector, with recent insights revealing that separating the objectives of content preservation and
edit fidelity can yield significant performance gains and speedups (Wang et al. (2025b)).

However, these existing methods approach speed and quality as a trade-off rather than as inter-
connected components of a singular, complex control problem. They offer partial solutions like
accelerating the sampler at the cost of inversion fidelity, or preserving the background without ad-
dressing the precision of the foreground edit. This results in a fragmented landscape of techniques
that fail to deliver a solution that is simultaneously fast, robust, and precise. A truly practical editing
framework requires a more holistic methodology that addresses control at every level of editing.

To address this multifaceted challenge, we introduce a novel editing methodology that establishes
control at three progressively finer levels of granularity. At the foundational level, we tackle the
macro-problem of temporal control. We propose a One-Step Inversion-and-Editing (OSIE)
pipeline, built upon an ”Anchor-and-Refine” training strategy, which conquers the prohibitive la-
tency of prior work and makes real-time interaction possible. With this temporal control established,
we address the meso-level problem of spatial control. Our Background Shield (BG-Shield) mech-
anism provides structural integrity by performing a surgical intervention in the self-attention layers.
It uses a background memory and foreground-core querying to create a hard separation between
edited and unedited regions, guaranteeing background stability. Finally, with speed and structure
secured, we target the micro-level problem of semantic control. We develop Sparsified Spatial
Cross-Attention (SSCA), a refinement of the cross-attention mechanism that prunes irrelevant text
tokens pre-softmax, ensuring the edit is guided by a clean, unambiguous semantic signal. Each com-
ponent logically builds upon the last, forming a cohesive solution (Figure 1). Our main contributions
can be summarized as follows:

• We propose a novel, multi-level methodology for image editing that cohesively integrates
control over three distinct levels: the temporal latency of the pipeline, the spatial structure
of the image, and the semantic content of the edit with an over 150× speedup compared to
prior multi-step methods.

• At the temporal level, we introduce the One-Step Inversion-and-Editing (OSIE) pipeline
and its ”Anchor-and-Refine” training strategy, which for the first time enables high-fidelity
inversion for one-step diffusion models.

• At the spatial level, we propose Background Shield (BG-Shield), a structural intervention
in self-attention that uses memory caching and selective core querying to enforce pixel-
perfect background preservation, ensuring the structural integrity of the edit.

• At the semantic level, we develop Sparsified Spatial Cross-Attention (SSCA), a cross-
attention mechanism that performs pre-softmax token pruning. This provides the final layer
of fine-grained control, eliminating attribute bleeding and enabling precise edits with com-
plex text prompts.
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2 RELATED WORKS

2.1 DIFFUSION MODELS

Recent advances in image synthesis have been largely driven by diffusion models (Peebles & Xie
(2023),Kulikov et al. (2024)), which have become a leading paradigm for generating high-fidelity
images from text. The core mechanism involves an iterative denoising process that progressively
refines a random noise vector into a coherent image conditioned on a text prompt. A landmark
contribution in this area is Stable Diffusion (Rombach et al. (2021)), a Latent Diffusion Model
(LDM) (Rombach et al. (2022)) that performs the computationally intensive denoising process in a
lower-dimensional latent space, making the technology widely accessible. Parallel to this, alternative
frameworks have emerged, such as Flow Matching models like Flux (Labs (2024)). Instead of an
iterative refinement process, these models learn to map noise to an image via a more direct, straight-
line trajectory, representing a different theoretical foundation for high-quality generative modeling.

To mitigate the high computational cost of these iterative models, various acceleration techniques
have been proposed. Model quantization (Li et al. (2024a;b;c); Yan et al. (2025b)), cache mecha-
nism (Xu et al. (2025); Pan et al. (2025)), sparse attention (Li et al. (2025a)), pruning (Wang et al.
(2025a),Yan et al. (2025a)), and distillation (Hinton et al. (2015)) are general acceleration techniques
for deep learning model. In diffusion models, specifically, one primary category is model quanti-
zation (Li et al. (2025b)), which reduces memory footprint and computational load by converting
full-precision model weights and activations into lower-bit representations. Another category in-
volves cache mechanisms (Liu et al. (2025); Xu et al. (2018)), which enhance inference efficiency
by exploiting temporal redundancy. These methods reuse intermediate features computed at earlier
denoising steps to avoid redundant calculations in later steps. While effective in isolation, recent
work like QuantCache (Wu et al. (2025)) demonstrates a unified framework can yield greater gains.

2.2 EDITING MODELS

The task of editing real images with pre-trained generative models introduces the fundamental chal-
lenge of inversion: finding a latent representation that can faithfully reconstruct a given source im-
age. This problem was first extensively studied in the context of Generative Adversarial Networks
(GAN) Inversion (Wang et al. (2022),Zhu et al. (2020),Zhu et al. (2016)). In comparison, DDIM
Inversion (Song et al. (2020b)) provides a deterministic method to find a corresponding noise la-
tent for a source image. Once this latent is obtained, various editing mechanisms are employed
during the denoising process to apply the desired changes. A prominent family of methods focuses
on attention control, where the cross-attention maps between text and image are manipulated. For
example, to change a “photo of a red car” to a “blue car,” Prompt-to-Prompt (Hertz et al. (2022))
identifies the attention weights corresponding to the word “red” and replaces them with those for
“blue,” preserving the attention for “car” and the background. Another powerful technique is fea-
ture injection, exemplified by Plug-and-Play (PnP) (Zhang et al. (2021)). To preserve the identity
of a subject, PnP injects the self-attention features—which encode structure and appearance—from
the source image’s generation process into the edited one. A third approach is mask-based editing,
where methods like DiffEdit (Couairon et al. (2022)) generate a mask indicating the region to be
altered and then apply the denoising process only within that area. Despite these advances, a core
challenge persists in perfectly disentangling the edited foreground from the unedited background.

3 METHOD

3.1 ONE-STEP INVERSION-AND-EDITING

Challenge: A Dual-Constraint Optimization Problem. The task of learning an effective inversion
mapping is fundamentally a dual-constraint optimization problem. The predicted noise latent, εinv ,
must simultaneously satisfy two competing objectives. The first is a fidelity constraint, requiring
εinv to encode sufficient information to perfectly reconstruct the source image. The second is a
distributional constraint, requiring εinv to adhere to the generator’s prior distribution, N (0, I), to
ensure editability. While both constraints can be explicitly supervised when using synthetic data,
the distributional constraint becomes non-trivial and unsupervised for real-world images where the
ground-truth noise is unknown. Naively optimizing for fidelity alone causes a severe violation of
the distributional constraint, leading to uneditable latents.
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Figure 2: Overview of our One-Step Inversion-and-Editing framework, which introduces a direct
image conditioning branch, trained via a two-stage “Anchor-and-Refine” strategy that uses direct
supervision for synthetic data (Stage 1) and a teacher-student objective for real images (Stage 2).

Motivation. Our motivation is to design a training strategy that explicitly decouples and progres-
sively solves these two constraints. We posit that the network must first learn to jointly satisfy both
objectives in a fully-supervised setting before it can be adapted to handle the unsupervised nature
of real-image inversion. This leads to our ”Anchor-and-Refine” approach. The ”Anchor” stage
uses synthetic data to ground the network in a parameter space that respects both constraints. The
”Refine” stage then adapts this mapping to real images, where we introduce a powerful generative
prior from a teacher model to act as a proxy for the now-unsupervised distributional constraint. This
ensures that even for real images, fidelity is pursued without sacrificing editability.

Proposed Method. Shown in Figure 2, our primary architectural modification is designed to resolve
a fundamental tension in the inversion process. The inverted noise vector is typically burdened
with two conflicting tasks: perfectly preserving the source image’s identity and remaining generic
enough for subsequent editing. To decouple these roles, we introduce a dedicated visual adapter
which provides the decoder D with a direct visual information from the source image.

This way, the decoder’s output—the reconstructed latent z′—becomes a function of three distinct
inputs: the inverted noise n, the text condition ct, and the explicit image features ci. By directly
supplying the visual identity via ci, we liberate the noise vector n from its strict reconstruction duty.
It can now remain closer to a pure Gaussian distribution, drastically improving its malleability for
downstream editing tasks.

Stage 1: Anchoring the Solution via Supervised Training. The first stage aims to find a robust
initialization, or ”anchor,” for the inversion network Iθ. We use a synthetic dataset of (εgt, z0) tuples
from the base generator G, which allows for direct and strong supervision. The training objective is
twofold:

LStage1 = λrec∥z0 − ẑ0∥22 + λreg∥εgt − εinv∥22. (1)

The regression term Lreg is critical in this stage. It constrains the network to a region of the loss
landscape where its outputs naturally conform to the target distribution N (0, I). During this stage,
we train both the inversion network Iθ and the newly introduced image adapter. This teaches the
adapter how to effectively provide visual priors that aid in reconstruction. This anchoring step
prevents the network from converging to trivial solutions in the next stage.

Stage 2: Refining with a Teacher-Student Objective. With the network anchored, the second
stage refines its mapping for the complexities of real-world images where the ground-truth noise εgt
is unknown. To prevent the distribution of εinv from drifting, we introduce a regularization scheme
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Figure 3: Illustration of our Background Shield (BG-Shield) mechanism. The top of the figure
illustrates the problem of background inconsistency in standard editing, while the bottom details the
pipeline of our method designed to solve it.

framed as a teacher-student distillation process. We leverage a pre-trained ”teacher” model, ϕ, to
provide a dynamic, supervisory signal for our ”student” inversion network, Iθ.

For each real image latent z0, we first create a noisy version zt = αtz0+σtεinv at a random timestep
t. The teacher model ϕ then predicts the noise from this input, yielding a ”pseudo-ground-truth”
target, εteacher:

εteacher = ϕ(αtz0 + σtεinv, t, c). (2)
We then define a refinement loss, LRefine, that minimizes the L2 distance between our network’s
output εinv and the teacher’s prediction. Crucially, we treat the teacher’s output as a fixed target by
applying a stop-gradient operator.

LRefine = Et

[
w(t) ∥εinv − sg (εteacher)∥22

]
, (3)

where sg(·) denotes the stop-gradient operation. This formulation turns the problem into a simple
regression task where the student (Iθ) is trained to produce a noise latent that the teacher (ϕ) would
have predicted. This distillation-style loss effectively regularizes the training, ensuring that for any
given real image, the predicted noise εinv is a solution that is not only perceptually accurate (as
enforced by a parallel perceptual loss) but also highly plausible under the teacher’s learned world
model.

3.2 BACKGROUND SHIELD

Challenge: Background Inconsistency. A critical challenge in localized image editing is main-
taining strict background consistency. We observe that even with precise masks, many methods fail
at this task. For instance, in Figure 3 when performing a seemingly simple edit such as changing “an
orange cat” to “a black cat”, the background suffers from unintended alterations, leading to shifts in
color, lighting, or style. We identify the root cause of this instability as the inherent nature of the
self-attention mechanism. As a global operator that computes all-to-all relationships between image
tokens, it allows the strong semantic signal from the foreground edit to propagate and contaminate
the background features, undermining the goal of a truly localized edit.

Motivation. Having identified the global nature of self-attention as the cause of this background in-
consistency, our motivation is to move beyond merely scaling influences and propose a direct struc-
tural intervention. To achieve background stability, a hard constraint that structurally isolates the
background from the editing process is required. We introduce Background Shield (BG-Shield),
a method designed to enforce this consistency by replacing the background’s feature computation
with a direct recall from a “background memory”.

Proposed Method. Shown in Figure 3, BG-Shield operates as a two-pass mechanism within self-
attention layers. Let X ∈ RS×D be the input feature sequence, and let a binary mask M ∈ {0, 1}S
define the foreground indices F and background indices B.

Background Memory Caching. During a forward pass with the source prompt csrc, we compute
the Key and Value matrices, Ksrc, Vsrc. We then extract and cache the background-specific key-
value pairs:

K∗
B = Ksrc[B, :], V ∗

B = Vsrc[B, :]. (4)
This cached memory, (K∗

B, V
∗
B ), serves as a high-fidelity record of the original background state.
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Figure 4: Illustration of our Sparsified Spatial Cross-Attention (SSCA) method resolving semantic
entanglement. The top row demonstrates how standard attention fails on precise edits, resulting in
edit attenuation and attribute leakage. The bottom row details our SSCA mechanism, which prevents
this by computing attention only over a subset of relevant text tokens to ensure a clean edit.

Mask-Driven Recomposition and Selective Querying. During the editing pass with the target
prompt ctgt, we compute new queries, keys, and values (Qtgt,Ktgt, Vtgt ∈ RS×dk ). We then
construct a spatially-aware, full key-value set, Kfull, Vfull, by combining the background memory
with the current foreground features:

Kfull[j, :] =

{
K∗

B[rankB(j), :] if j ∈ B
Ktgt[j, :] if j ∈ F , Vfull[j, :] =

{
V ∗
B [rankB(j), :] if j ∈ B

Vtgt[j, :] if j ∈ F , (5)

where rankB(j) ensures correct positional alignment. To mitigate boundary artifacts, we introduce
a foreground core by applying a morphological erosion to the mask M . This is implemented using
a 2D max-pooling operation (with kernel size k, stride s, and padding p) on the inverted mask. The
resulting core mask Mcore is binarized with a threshold τ to yield the core index set Fc ⊂ F :

Mcore = 1− MaxPool2d(1−M,kernel size, stride, padding), (6)

Fc = {i | (Mcore)i > τ}. (7)
The attention computation is then performed only for queries within this core region. Let Qtgt,c =
Qtgt[Fc, :] be the subset of queries corresponding to the core indices. The attention output for this
region, Hc ∈ R|Fc|×dk , is computed as:

Hc = softmax

(
Qtgt,cK

T
full√

dk

)
Vfull. (8)

The full output matrix H ∈ RS×dk is then constructed by scattering the computed values Hc back
to their original positions, while all other positions corresponding to the background and boundary
are set to zero.

Residual Fusion. The sparse output matrix H is projected and added back to the input features:
Y = Proj(H) + X . Since Hi = 0 for all i /∈ Fc, this step functions as an identity map for the
background and boundary regions, ensuring they are perfectly preserved.

3.3 SPARSIFIED SPATIAL CROSS-ATTENTION

Challenge: Semantic Entanglement in Image Editing. A key challenge in precise editing is
semantic entanglement, where textual attributes are not cleanly bound to their intended objects.
This is clearly demonstrated in Figure 4, where the task is to change “a cat with yellow eyes” to
“a cat with green eyes.” Standard models often fail, resulting in either edit attenuation, where the
eyes are incompletely colored, or significant attribute leakage, causing an unnatural green tint to
bleed onto the cat’s face. This failure stems from the competitive nature of the softmax function
in cross-attention. It forces all text tokens to compete for influence over each pixel, allowing the
powerful “green” signal to suppress the essential structural tokens like “cat,” which leads to the
incorrect generalization.

Motivation. Based on this diagnosis, we contend that semantic concepts must be disentangled be-
fore the attention softmax allows them to interfere. Our motivation is to implement a pre-emptive
disentanglement strategy. Instead of allowing all text tokens to participate in the attention calcu-
lation for the foreground, we introduce Sparsified Spatial Cross-Attention (SSCA), a method that
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Figure 5: Qualitative comparison of editing results. Each row corresponds to a unique editing task,
with the source image displayed in the first column and the source/target prompts listed below.
forces the softmax to operate only on a clean, disentangled subset, thus preventing attribute leakage
at its source.

Proposed Method. Our Sparsified Spatial Cross-Attention (SSCA) mechanism fundamentally re-
defines the text attention computation by breaking it down into three sequential steps: identifying
key semantic tokens, computing a focused sparse attention signal, and integrating this signal into the
final feature map, shown in Figure 4.

Identifying Key Semantic Tokens. Before computing attention, we first identify the most relevant
tokens from the text prompt y for the given edit region M . We compute the similarity between the
set of image queries within the mask, Ql,M , and all text keys Ky . The top-k text key-value pairs that
exhibit the highest aggregate similarity are selected. This pre-selection step acts as a filter, creating
a task-relevant subset of textual information, denoted as (Kk

y , V
k
y ).

Computing Sparse Attention Signals. With the pruned set of text tokens, we then compute a sparse
attention result, Asparse, only for the image queries within the edit region, Ql,M . This ensures that
the computationally expensive attention operation is focused where it is needed most.

Asparse = softmax

(
Ql,M (Kk

y )
T

√
d

)
V k
y . (9)

The resulting matrix Asparse ∈ R|F|×d contains a highly precise and disentangled guidance signal,
where |F| is the number of foreground pixels. Constructing and Integrating the Full Attention
Matrix. The sparse signal Asparse must be placed into a full-size matrix to be used in the model. We
construct the final text attention matrix, ASSCA ∈ RS×d, by scattering the values from Asparse into
a zero matrix according to the mask indices F . This structurally enforces that the text prompt has
zero influence on the background.

ASSCA[i, :] =

{
Asparse[rankF (i), :] if i ∈ F
0 if i /∈ F , (10)

7
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Table 1: Comprehensive comparison of editing quality, evaluating background preservation and
CLIP similarity across various methods.

Method Background Preservation CLIP Similarity

Inverse Editing PSNR ↑ LPIPS
×103

↓ MSE
×104

↓ SSIM
×102

↑ Whole ↑ Edited ↑

DDIM P2P 17.87 208.80 219.88 71.14 25.01 22.44
NT-Inv P2P 27.03 60.67 35.86 84.11 24.75 21.86
DDIM MasaCtrl 22.17 106.62 86.97 79.67 23.96 21.16
Direct Inversion MasaCtrl 22.64 87.94 81.09 81.33 24.38 21.35
DDIM P2P-Zero 20.44 172.22 144.12 74.67 22.80 20.54
Direct Inversion P2P-Zero 21.53 138.98 127.32 77.05 23.31 21.05
DDIM PnP 22.28 113.46 83.64 79.05 25.41 22.55
Direct Inversion PnP 22.46 106.06 80.45 79.68 25.41 22.62

ReNoise(SDXL) 20.85 176.84 51.78 72.44 24.41 21.88
TurboEdit 22.51 107.27 9.32 80.09 25.49 21.82

FlashEdit 25.29 62.55 4.36 83.21 25.43 22.13
FlashEdit(w/ GT masks) 25.26 62.78 4.39 83.08 25.53 22.25

where rankF (i) maps the global index to its local index within the foreground. Finally, this purified
text guidance is integrated with the source image condition, Aimg , to compute the updated hidden
state hl:

hl = sy ·ASSCA + sedit ·M ⊙Aimg + snon−edit · (1−M)⊙Aimg. (11)

This multi-step process provides a maximally disentangled and precise guidance signal for the edit.

4 EXPERIMENT

4.1 EXPERIMENTAL SETUP

Implementation Details. Our inversion network, Iθ, is initialized from SwiftBrush (Nguyen & Tran
(2024),Dao et al. (2024)). Inspired by (Song et al. (2024),Ye et al. (2023),Zhang et al.), the image
conditioning branch is based on an adapter, utilizing a pre-trained CLIP image encoder. We train
the model using the Adam optimizer (Kingma & Ba (2014)) with a learning rate of 2e-5, weight
decay of 2e-4, and an Exponential Moving Average (EMA). Anchoring the Solution via Supervised
Training runs for 150k iterationson synthetic data from SwiftBrush. Refining with a Teacher-Student
Objective continues for 200k iterations using real images from CommonCanvas (Gokaslan et al.
(2024)). All experiments were conducted on a single NVIDIA A6000 GPU.

Metrics. We evaluate our method on the PieBench benchmark (Zhang et al. (2021)), which features
700 samples across 10 editing types. We report metrics along two primary axes. As for Background
Preservation, We compute PSNR (Huynh-Thu & Ghanbari (2008)), LPIPS (Zhang et al. (2018)),
MSE and SSIM (Wang et al. (2004)) on the unedited regions to measure fidelity to the source image.
As for Semantic Alignment, We report CLIP-Whole (Radford et al. (2021)) for prompt-image
alignment and CLIP-Edited (Radford et al. (2021)) for alignment within the masked edit region.

Baselines. We compare our method against state-of-the-art multi-step and few-step baselines.
For multi-step methods, we evaluate Prompt-to-Prompt (P2P) (Hertz et al. (2022)), MasaCtrl (Cao
et al. (2023)), Pix2Pix-Zero (Parmar et al. (2023)), and Plug-and-Play (PnP) (Zhang et al. (2021)),
paired with powerful inversion techniques like DDIM (Song et al. (2020a)), Null-text Inversion
(NT-Inv) (Mokady et al. (2023a)), and Direct Inversion (Ju et al. (2023)). For few-step methods, we
compare against Renoise (Garibi et al. (2024)) and TurboEdit (Deutch et al. (2024)).

4.2 QUANTITATIVE ANALYSIS

As shown in Table 1, our method establishes a new state-of-the-art for accelerated editing. FlashEdit
significantly outperforms recent few-step methods like ReNoise (Garibi et al. (2024)) and Tur-
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Table 2: Ablation Study on Core Model Components. We evaluate the contribution of each
module by measuring the impact on background preservation and semantic similarity (CLIP Score).
The final row represents our full method.

Components Background Preservation CLIP Similarity

OSIE BG-Shield SSCA PSNR↑ LPIPS×103↓ MSE×104↓ SSIM×102↑ Whole↑ Edited↑

✓ - - 23.33 92.37 6.60 79.97 24.14 21.23
✓ ✓ - 24.63 75.36 5.01 81.65 24.77 21.22
✓ ✓ ✓ 25.29 62.55 4.36 83.21 25.43 22.13

boEdit (Deutch et al. (2024)) across all reported metrics. Crucially, it also achieves quality on par
with, and in several metrics superior to, top-performing but prohibitively slow multi-step methods.
This high fidelity is delivered with an extraordinary efficiency gain of over 150× (Table 3). Further-
more, an experiment using ground-truth (GT) masks reveals a negligible performance difference,
confirming the high accuracy of our self-guided masking mechanism.

4.3 QUALITATIVE ANALYSIS
Table 3: Efficiency comparison of individual editing meth-
ods, with the denoising steps and speedup factor for each
specific combination.

Method Denoising Steps Speedup
Inverse Editing

DDIM P2P

Multi-steps

1.00×
NT-Inv P2P 0.19×
DDIM MasaCtrl 1.12×
Direct Inversion MasaCtrl 0.88×
DDIM P2P-Zero 0.73×
Direct Inversion P2P-Zero 0.73×
DDIM PnP 2.06×
Direct Inversion PnP 2.03×

ReNoise(SDXL) Few-steps 5.08×
TurboEdit 19.68×

FlashEdit(Ours) One-step 150.84×

Visual comparisons in Figure 5 rein-
force our quantitative findings. The
outputs from FlashEdit consistently
exhibit high semantic fidelity to the
target prompt while maintaining pris-
tine background integrity, avoiding
the “bleeding” artifacts common in
other methods. In contrast, other
baselines often display noticeable
quality degradation or fail to preserve
background details. FlashEdit is
unique in providing both state-of-the-
art visual quality and the real-time
performance that multi-step methods
lack.

4.4 ABLATION STUDIES

To validate the contribution of each component in our framework, we conduct a comprehensive abla-
tion study, with the results presented in Table 2. Our baseline, consisting of the OSIE pipeline alone,
establishes a strong performance foundation. Integrating BG-Shield brings a marked improvement
across background preservation metrics, confirming its effectiveness in isolating background fea-
tures. The final addition of SSCA further boosts metrics. It substantially enhances semantic align-
ment, evidenced by a large increase in the CLIP-Edited score, which validates our pre-softmax token
pruning strategy. SSCA also improves reconstruction quality, suggesting a synergistic effect where
cleaner textual guidance benefits the entire process. This demonstrates that all three components are
critical and work in concert to achieve the final state-of-the-art performance of FlashEdit.

5 CONCLUSION

This paper introduces FlashEdit, a new paradigm for text-guided image editing that redefines the
performance standard for real-time generative applications. We demonstrate that the long-standing
trade-off between speed and quality is not fundamental but can be overcome with a holistic, multi-
level control strategy. Our approach begins by establishing temporal control with a foundational
OSIE pipeline for one-step inversion and editing. It then enforces spatial control with BG-Shield
and fine-grained semantic control with SSCA. Together, these components transform diffusion-
based editing from a slow, offline process into an interactive and expressive creative tool.
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