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ABSTRACT

Most classifiers based on deep neural networks associate their class prediction
with a confidence, usually defined as the maximum predicted output value. This
value is often a by-product of the learning step and may not correctly estimate
the classification accuracy, which impacts real-world usage. To be reliably used,
the confidence requires a post-processing calibration step. Data-driven methods
have been proposed to calibrate the confidence of already-trained classifiers. Still,
many methods fail when the number of classes is high and per-class calibration
data is scarce. To deal with a large number of classes, we propose to reformu-
late the confidence calibration of multiclass classifiers as a single binary clas-
sification problem. Our fop-versus-all reformulation allows the use of the bi-
nary cross-entropy loss for scaling calibration methods. Contrary to the standard
one-versus-all reformulation, it also allows the application of binary calibration
methods to multiclass classifiers with efficient use of scarce per-class calibra-
tion data and without degradation of the accuracy. Additionally, we solve the
problem of scaling methods overfitting the calibration set by introducing a reg-
ularization loss term during optimization. We evaluate our approach on an ex-
tensive list of deep networks and standard image classification datasets (CIFAR-
10, CIFAR-100, and ImageNet). We show that it significantly improves the
performance of existing calibration methods. Code to replicate some of the ex-
periments can be consulted at https://anonymous.4open.science/r/
top-versus—all-calibration-6898.

1 INTRODUCTION

The huge performance increase of modern deep neural networks (DNN) and their potential de-
ployment in real-world applications (medical, transportation, or military) has made the question of
reliably estimating the probability of wrong decisions a key concern. When such components are
expected to be embedded in safety-critical systems, estimating this probability is crucial to mitigate
catastrophic behavior.

One way to address this issue is to solve it as an uncertainty quantification problem (Abdar et al.,
2021} |Gawlikowski et al.l 2023)), where the uncertainty value computed for each prediction is typi-
cally used either as a confidence to accept or reject the decision proposed by the DNN for selective
classification (Geifman & El-Yaniv, [2017) or out-of-distribution detection (Hendrycks & Gimpel,
2017)), or as a measure to control active learning (Li & Sethi, 2006) or reinforcement learning based
systems (Zhao et al., 2019).

Uncertainty quantification can also be wrong: a common way to assess the quality of uncertainty
values is to measure their ability to predict the true probability of a correct decision, i.e., their
accuracy. In this case, a predictive system is said to be calibrated, which means that taking a decision
according to its uncertainty will induce an accuracy with the same value: uncertainty values can then
be used as a reliable control of decision-making.

We are interested in producing an uncertainty indicator for decision problems where the input is
high dimensional and the decision space large, typically image classifiers with hundreds or thou-
sands of classes. For this kind of problem, DNNs are common predictors, and their outputs can be
used to provide at no cost an uncertainty value — i.e., without necessitating heavy estimation such
as Bayesian sampling or ensemble methods. Indeed, most neural architectures for classification
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instantiate their decision as a soft-max layer, where the maximum value can be interpreted as the
maximum of the posterior probability and, therefore, as a confidence.

Unfortunately, uncertainty values computed in this way are often miscalibrated. DNNs have been
shown to be over-confident (Guo et al.|[2017)), meaning their confidence is higher than their accuracy:
predictions with 90% confidence might be correct only 80% of the time. A later study (Minderer
et al.,[2021) suggests that model architecture impacts calibration more than model size, pre-training,
and accuracy.

These studies show that it is difficult to anticipate the calibration level of confidences computed
directly from DNNs, and argue for a complementary post-processing calibration. This calibration
process can be seen as a learning step that exploits data from a calibration set, distinct from the
training set, and is used to learn a function that remaps classifier outputs into better-calibrated values.
This process is typically lightweight and decoupled from the issue of improving model performance.
A standard baseline for post-processing calibration is temperature scaling (Guo et al., 2017), where
the penultimate logit layer is scaled by a coefficient optimized on the calibration set.

Many post-processing calibration methods have been developed for binary classification models
(Zadrozny & Elkan, 2001;2002; |Platt, | 1999). Applying them to multiclass classifiers requires some
adaptation. One standard approach reformulates the multiclass setting into many one-versus-all
binary problems (one per class) (Zadrozny & Elkan, 2002)). One limitation of this approach is that it
does not scale well. When the number of classes is large, the calibration data is divided into highly
unbalanced subsets that do not contain enough positive examples to solve the one-versus-all binary
problems.

The main idea of our work is to reformulate the multiclass setting into a single binary problem.
It can be phrased as: “Is the prediction correct?”. In this new setting, the prediction becomes a
scalar value: the confidence (which is defined as the maximum class probability), and the label
becomes binary: 1 if the predicted class was correct, 0 otherwise. The objective is that the confi-
dence accurately describes whether the prediction was correct, regardless of the class. We show that
this novel approach, which we call rop-versus-all (TvA), significantly improves the performance of
standard calibration functions: temperature and vector scaling (Guo et al., 2017), Dirichlet calibra-
tion (Kull et al.} 2019)), histogram binning (Zadrozny & Elkan| [2001), isotonic regression (Zadrozny
& Elkan, |2002)), Beta Calibration (Kull et al.l [2017), and Bayesian Binning into Quantiles (Naeini
et al.,[2015). We also introduce a simple regularization for vector or Dirichlet scaling that mitigates
overfitting when the number of classes is high relative to the calibration data size. We demonstrate
the approach on several image classification datasets: CIFAR-10, CIFAR-100, and ImageNet, with
many different modern pre-trained models.

Our main contributions are:

* We develop the top-versus-all approach to the confidence calibration of multiclass classi-
fiers, transforming the problem into a single binary classification. This setting significantly
improves the performance of scaling methods (such as temperature scaling, vector scaling,
and Dirichlet calibration). It also allows binary methods (such as histogram binning, iso-
tonic regression, and beta calibration) to efficiently use scarce per-class calibration data and
preserve the classifier’s accuracy. It can be applied to many existing calibration functions.

* We introduce a simple regularization, allowing the competitive performance of vector scal-
ing and Dirichlet calibration when the number of classes is high.

* We demonstrate the scalability of our approach by conducting extensive experiments with
state-of-the-art image classification models on CIFAR-10, CIFAR-100, and ImageNet.

2 RELATED WORK

Calibration Different variations of the calibration problem exist. One can consider confidence
(Guo et al., [2017), class-wise (Kull et al., 2017), top-r (Gupta et al.l 2021)), top-label (Gupta &
Ramdas, 2022), or strong (Vaicenavicius et al., 2019; Widmann et al., [2019) calibration. In this
work, we tackle the problem of confidence calibration. This problem is less difficult and demanding
than the others because it only considers the confidence whereas other problems consider up to the
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full probability vector. Still, confidence calibration is enough for many practical use cases. For
recent surveys on calibration, we refer to [Filho et al.| (2023)); 'Wang] (2023)).

Training calibrated networks A family of approaches aims to train a neural network in specific
ways to improve their calibration. They generally design a loss term to train better-calibrated net-
works [Kumar et al.| (2018)); Thulasidasan et al.| (2019); [Cheng & Vasconcelos| (2022); |Karandikar,
et al.|(2021). While these methods can directly optimize calibration during the training phase of the
neural networks, they require a high development time and often compromise accuracy.

Post-processing (or post hoc) calibration Another family of approaches aims to calibrate
already-trained networks. This lowers the development time and decouples the accuracy optimiza-
tion and the calibration. Some methods optimize some parameters to scale the logits. They include
Platt scaling (Platt, |1999), temperature and vector scaling (Guo et al., [2017). [Kull et al.| (2019);
Zhang et al.|(2020) developed ensemble temperature scaling. Scaling can be combined with binning
(Kumar et al.| [2019). Instead of using the network logits or probabilities, its features can also be
leveraged (Lin et al., [2022). Gaussian processes can be used but are more computationally heavy
during inference (Wenger et al.,2020). Large vision-language models can also be calibrated (LeVine
et al.,2023)). Many methods were developed for the binary classification setting. They include his-
togram binning (Zadrozny & Elkan, [2001), isotonic regression (Zadrozny & Elkan|[2002), Bayesian
binning with quantiles (Naeini et al.||2015)), and beta calibration (Kull et al.,2017)). We include more
details on the methods we used in the paper in Section [3.1]

Scaling methods for calibration Temperature scaling (Guo et al., 2017)) is a popular post-
processing calibration method derived from Platt scaling (Platt, 1999). The logits vector z is scaled
by a single temperature coefficient 7'. The scaled logits vector then passes through the o softmax
layer, and the temperature value affects the resulting probabilities as o(z/T"). A temperature greater
than 1 makes the probability vector more uniform, reducing the overconfidence of the networks,
while a temperature less than 1 reduces their underconfidence. Since this scaling does not change
the ranking of the logits and probabilities, the class prediction is unchanged when applying the de-
cision after calibration. Because of its simplicity and good performance, temperature scaling is the
default baseline for post-processing calibration. Vector scaling (Guo et al., 2017)) is another multi-
class extension of Platt scaling. This time, the logits vector is multiplied element-wise by another
vector v € RE: (2 o v), where o is the Hadamard product. Vector scaling is more expressive
than temperature scaling because each class logit has a different scaling coefficient. Since scaling
the classes differently can change the ranking of the class probabilities, it is possible that the class
prediction can change. Several works show that vector scaling has good performance in many cases
(Guo et al.| 2017; |[Nixon et al., [2019; [Kull et al., 2019). Matrix scaling can also be considered for
additional expressiveness but is difficult to apply without overfitting (Guo et al., 2017). Dirichlet
calibration (Kull et al.,2019) proposes a regularization strategy for matrix scaling.

Binary methods for calibration Many methods have been developed for the binary setting. His-
togram Binning (Zadrozny & Elkan, 2001) divides the prediction into B bins according to the pre-
dicted probability. For each bin, a calibrated probability is computed from the calibration data.
The probability becomes discrete: it can only take B values. The method usually follows the one-
versus-all approach of multiclass models by learning a different histogram for each class. Some
modifications can make it outperform scaling methods (Gupta & Ramdas}, |2022; |Patel et al., [2020).
Isotonic regression (Zadrozny & Elkanl [2002) is a generalization of histogram binning that learns a
piecewise constant function to remap probabilities. Bayesian binning with quantiles (Naeini et al.,
2015) brings Bayesian model averaging to histogram binning. Beta calibration (Kull et al.| [2017)
uses a beta distribution to obtain a calibration mapping. Venn-Abers predictors (Vovk & Petejl[2012)
apply to binary classifiers and are always well calibrated.

Multiclass to Binary Using binary calibration methods for a multiclass classifier requires adapt-
ing the multiclass setting. This is usually done with a one-versus-all approach (Zadrozny & Elkan,
2002; |Guo et al.L 2017). The multiclass setting is decomposed into L one-versus-all problems: one
binary problem for each class. L calibrators are derived, each one independently calibrating the
probability of one class. One problem of this approach is the lack of calibration data for each of the
L problems for many classes (if we take 25000 ImageNet samples for calibration, each of the 1000
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binary calibration problems has only 25 images available). Another issue is that because each com-
ponent of the probability vector is changed independently, the model prediction may change. |Gupta
& Ramdas| (2022) introduce the notion of top-label calibration, i.e. confidence calibration with
an additional conditioning on the predicted class (top-label). They describe a general multiclass-
to-binary to develop top-label calibrators. In their framework, one calibrator is learned for each
predicted class so it suffers from the same issues as the one-versus-all framework described above.
Patel et al.| (2020); |[Zhang et al.| (2020) merge the classwise calibration sets into a single one. This
is similar to TVA, except our approach only considers the confidence, as other probabilities are
unimportant for confidence calibration. On the opposite side, Cheng & Vasconcelos| (2022) derive
L(L — 1)/2 pairwise binary problems. The approach requires training the classifier from scratch,
and its performance is negatively affected by a growing number of classes (only tested up to 100).

3 TOP-VERSUS-ALL APPROACH TO CONFIDENCE CALIBRATION

3.1 PROBLEM SETTING

Confidence calibration of a classifier We consider the image classification problem where an
input image « is associated with a class label y € ) = {1, 2, ..., L}. Let us define a neural network
image classifier f(x) where the last layer is a softmax. The softmax function o transforms logits z
of the neural network into probabilities o(z) = f(x). The classifier prediction is the most probable
class § = argmax;ey f;(x) with f;(x) referring to the probability of class j, and the confidence
is p = max, ey fj(z). Note that the confidence is the maximum class probability, and we use
these terms interchangeably. With y the real label, we consider the classical confidence calibration
definition (Guo et al.,[2017) that says that the classifier f is calibrated on a given data distribution if:

Plg=ylp=p) =p, VYpecl0,1] (1)

where the probability is over the data distribution. It means the probability of being correct when the
confidence is around p is indeed p. For instance, if we consider all predictions with a confidence of
90%, they should be correct 90% of the time. Because 1| cannot be computed from a finite number
of samples, empirical approximations are required. The Expected Calibration Error [2]is a way to
compute the calibration error. We focus on confidence calibration and not the calibration of the
full probability vector. This is because calibrating the full probability vector is much more difficult,
especially when the number of classes is high, and is useless for many applications. Indeed, many
applications only use confidence values, such as selective classification (Geifman & EI-Yaniv,2017),
out-of-distribution detection (Hendrycks & Gimpel, [2017)), or active learning (Li & Sethi, [2006).

Post-processing calibration We are interested in the case where a classifier has already been
trained, and the goal is to improve its calibration, i.e., we address post-processing calibration. Post-
processing calibration methods aim to remap the classifier probabilities to better-calibrated values
without modifying the classifier. They typically use a calibration set different from the training set to
optimize parameters or learn a function. We focus on post-processing calibration because it allows
better use of off-the-shelf models, and it decouples the model training (optimizing for accuracy)
and calibration. Both of these advantages significantly lower the development cost to obtain a well-
performing and well-calibrated model in opposition to optimizing calibration at training time.

Metrics To quantify the calibration errors, several metrics exist. The most common is the Ex-
pected Calibration Error (ECE) (Naeini et al.| 2015)). It approximates the calibration error by parti-
tioning the predictions into B bins according to the confidence. The absolute difference between the
accuracy and confidence is computed for each subset of data contained in the bins. The final value
is a weighted sum of the differences of each bin.

B
ECE = Z %|acc(b) — conf(b)| (2)
b=1

where n;, is the number of samples in bin b, N is the total number of samples, acc(b) is the accuracy
in bin b, and conf(d) is the average confidence in bin b. ECE can be interpreted visually by looking
at diagrams in Figure [t ECE computes the sum of the red bars (difference between bin accuracy
and average confidence) ponderated by the proportion of samples in the bin. ECE has flaws: the
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estimation quality is influenced by the binning scheme, and it is not a proper scoring rule (Gneiting &
Rafteryl|2007; |Vaicenavicius et al.,[2019; Nixon et al.,[2019). Variants of ECE have been developed.
For instance, |[Kull et al.| (2019) define a classwise-ECE, [Nixon et al.| (2019)); Minderer et al. (2021)
use bins with equal mass (same number of samples per bin). (Gupta & Ramdas| (2022) defines top-
label-ECE, similar to ECE but additionally conditioned on the predicted class. Despite its flaws,
ECE remains the standard comparison metric and fits well with the confidence problem that we
tackle.

3.2 TOP-VERSUS-ALL APPROACH

Algorithm T Top-versusall General presentation We note that the defini-

Input:
Seat: {(wi, i)}, the calibration set
[ the classifier
g: the calibrator
Pre-processing:
o max;ey f; > Build binary classifier
s fb(x) > Compute confidences
; < argmax;cy f;(x;) > Compute class predictions
¢ <+ ly—y, > Compute predictions correctness
8%« {(si,c;)}Y, > Build binary calibration set
Learn calibrator:
if ¢ is scaling method then

loss | := Binary Cross-Entropy

if ¢ is vector or Dirichlet scaling then

loss I <= [ 4 Alyeg > Add regularization

end if

Learn g to calibrate f* by minimizing loss
else if g is binary method then

Learn g to calibrate f° by following method
end if
Inference:

tion [I| and the standard metrics ECE only con-
sider whether the confidence reflects the probabil-
ity of making an accurate prediction. The remain-
ing probabilities are not taken into account. How-
ever, many calibration methods use all probabili-
ties, not just confidence. We aim to simplify the
process of confidence calibration by reformulating
the problem of calibrating multiclass classifiers into
a single binary problem. This problem can be for-
mulated as: “Is the prediction correct?”. In this
setting, we transform the model prediction from a
probability vector to a scalar: the confidence (the
maximum class probability). The remaining proba-
bilities are discarded. We transform the label from
a class label (or one-hot encoding) to a binary num-
ber (1 or 0) representing whether the class predic-
tion was correct. The goal is that the confidence ac-

curately describes whether the prediction was cor-
rect, regardless of the class. More formally, the
classification output for our binary problem becomes the confidence s(x) = max;cy f;(x). The
ground truth label becomes a binary representation of the prediction correctness: y, = 1y—, with
§ = argmax;cy f;(z) and 1 the indicator function. Algorithmrecapitulates our approach.

With our approach, only the confidence needs to be calibrated, and it does so by efficiently using
all the samples in the calibration set. The standard approaches, both for scaling methods and binary
methods with one-versus-all, consider classes separately. Calibration data is divided between the
classes, which becomes an issue for data sets with many classes.

In the following paragraphs, we explain how top-versus-all applies to scaling and binary methods.

Use calibrator g to calibrate confidences from f®

Top-versus-all for scaling methods Now let us see how top-versus-all applies to scaling methods.
The temperature 7' and the vector v are typically optimized to lower the cross-entropy loss on a
calibration set separate from the training set. In our top-versus-all setting, the output becomes a
scalar and the label binary. The natural loss for this formulation is the binary cross-entropy:

Ice(z,y) = —(y - log s(z) + (1 — ) - log(1 — s(x))) 3)
Minimizing this loss results in confidence estimates that more accurately describe the probability of
being correct, regardless of the L — 1 less likely class predictions. Using the binary cross entropy
as a calibration loss makes an important difference when compared to the usual multiclass cross
entropy or negative log-likelihood (Guo et al.l 2017). The multiclass cross-entropy loss takes
into account the probability of the correct class, while the binary cross-entropy takes into account
the probability of the predicted class (i.e., the confidence). When the predicted class is correct,
minimizing both losses directly increases the confidence. A different behavior occurs when the
prediction is wrong: minimizing the cross-entropy loss increases the probability of the correct
class (thus only indirectly decreasing the confidence), but minimizing the binary cross-entropy loss
directly decreases the confidence.

Top-versus-all for binary methods Methods such as histogram binning, isotonic regression,
Bayesian Binning into Quantiles, and beta calibration originally apply to binary settings. Using
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them in a multiclass setting is typically done with a one-versus-all approach, inappropriate for a
high number of classes, as discussed in Section 2] Our reformulation transforms the multiclass set-
ting into a single binary problem. This allows binary calibration methods to be applied using the
full calibration data set (not just the per-class subsets). Another advantage is that since calibration
methods now operate on confidence alone, the class prediction is already done. In contrast to the
one-versus-all approach, the classifier’s prediction and accuracy are unaffected.

Regularization of scaling methods for a high number of parameters In addition to the top-
versus-all reformulation, we present here another contribution. Many current works on calibration
evaluate their approach on the CIFAR dataset, which contains 10 or 100 classes. After experimenting
on more complex datasets such as ImageNet which contains L = 1000 classes, we found that vector
scaling (L parameters) and Dirichlet calibration (L? + L parameters) overfit the calibration set.
Overfitting can be reduced with a simple L2 regularization that penalizes when the vector coefficients
are far from the reference value 1. We propose to add a complementary loss term for vector scaling
and Dirichlet calibration:

L
1

Ia(v) = ZZ;(UZ» —1)? (4)

This regularization allows these methods to take advantage of their additional expressiveness without

being subject to overfitting. The loss for vector scaling becomes I(z,y,v) = lgcr(x,y) + M2(v)
where ) is a hyperparameter. Dirichlet calibration uses this loss plus matrix regularization terms.

4 EXPERIMENTS
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Figure 1: Reliability diagrams for ResNet-50 and ViT-B/16 when using temperature scaling (TS),
vector scaling (VS), and histogram binning (HB) on ImageNet. The subscript tys signifies that
the TvA reformulation was used, and r; means our regularization E was applied. As the methods
improve the calibration, the accuracy per bin will get closer to the true accuracy and the average
confidence will get closer to the global accuracy.

Datasets We experimented on three image classification datasets. CIFAR-10 and CIFAR-100
(Krizhevskyl 2009) contain 60000 32x32 images corresponding to 10 and 100 classes. Data is split
into subsets of 45000/5000/10000 images for train/validation/test. We follow the standard practice
of using the validation set as the calibration set and evaluate the results on the test set. ImageNet
contains 1.3 million images from 1000 classes. We randomly split the validation
test of 50000 images into a calibration set and a test set for evaluation. We used a calibration set of

size 25000 (with the test set containing the rest), following (2017).
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Table 1: ECE in % (lower is better). The best method for a given model is in bold. Mean relative
improvements from TvA are shown (negative values mean the ECE has been reduced). Methods in
purple impact the model prediction, potentially degrading accuracy; methods in teal do not. Accu-
racies can be seen in Table E}

(a) CIFAR-10
Model Uncal. I-Max | TS TSy, | VS VSguy | DC DCypy | HB HBy, | Iso TIsop, | Beta Betay,, | BBQ BBQ,

ResNet-50  1.82 1.28 1.12 078 | 098  0.92 0.98 0.93 1.06 125 | 1.31 128 | 240 133 | 093 1.34
ResNet-110  2.56 0.56 1.30 136 | 1.28 1.34 1.28 1.34 096 034 | 130 0.69 | 2.83 1.79 1.23 1.20

WRN 1.25 0.34 095 095 | 1.02 1.11 1.02 1.11 0.58 028 | 099 045 | 149 1.07 0.68 0.38
DenseNet 1.53 0.77 129 146 | 1.23 1.42 1.20 1.41 1.04 0.62 | 1.16 0.69 | 2.15 1.92 1.05 1.05
Mean improvement | -3% | 6% | 7% | -35% | -36% | -30% | -1%
(b) CIFAR-100
Model Uncal. I-Max | TS TSt | VS VSierw | DC DCiyry | HB HBy, | Iso  Isoy, | Beta Beta,, | BBQ BBQ,

ResNet-50  6.52 0.82 483 263 | 530 2.30 529 231 8.60 134 | 544 099 | 533 348 9.14 2.65
ResNet-110  7.88 1.23 4.68 397 | 525 3.00 5.20 3.03 985 139 | 6.04 1.68 | 5.63 457 7.83 1.67

WRN 4.31 0.83 422 281 | 426 2.00 4.26 1.96 9.67 111 |452 092 | 432 291 9.88 0.72
DenseNet ~ 5.17  1.03 | 405 217 | 435 200 |431 198 |9.09 1.12 |452 119 |471 258 |992 138
Mean improvement | -35% | -52% \ -52% | -87% | 7% \ -33% \ -82%

(c) ImageNet
Model Uncal. I-Max | TS TSy, | VS VSgq, | DC DCyp | HB HBy, | Iso  Isop, | Beta Beta,, | BBQ BBQy,
VGG16 269 053 | 184 1.83 | 1.69 195 | 492 461 |848 079 | 401 092 | 333 113 | 893 087
Mean improvement VGG | -1% | 16% | -6% | -91% | -17% | -66% | -90%

ResNet-18 272 0.57 1.88 1.88 | 1.76 2.13 351 3.63 9.04 0.87 |3.87 093 | 329 1.22 | 9.68 0.90
ResNet-34 3.63 0.62 1.78 1.81 | 1.85 2.01 3.51 3.13 8.61 071 | 408 0.84 | 381 1.07 9.17 0.87
ResNet-50 41.1 2.62 323 1.61 | 328 0.94 3.26 0.94 466 048 | 123 067 | 473 205 8.44 0.66
ResNet-101 13.6 0.46 376 224 | 423 1.58 4.21 1.57 564 0.62 | 3.01 071 | 422 1.66 6.35 0.61

Mean improvement ResNet | -22% -26% -35% -90% | -69% | -63% -91%

EffNet-B7 12.6 0.39 3.69 297 | 385 1.37 3.86 1.40 435 052 [ 293 065 | 546 1.85 6.93 0.58
EffNetV2-S 16.9 0.50 3.57 334 | 392 1.45 3.92 1.44 465 056 | 297 067 | 530 224 | 7.66 0.68
EffNetV2-M 249 0.72 373 269 | 3.84 1.16 3.84 1.16 397 055 | 289 075 | 444 132 | 654 0.76
EffNetV2-L  8.48 037 | 283 132 | 3.08 1.03 3.04 1.02 429 043 | 251 065 |3.87 102 | 506 0.54

Mean improvement EffNet | -27% -66% -66% -88% | -76% | -67% -90%

ConvNeXt-T  16.9 0.89 3.03 146 | 349 1.17 3.49 1.15 513  0.69 | 255 087 | 3.26 1.33 7.34 0.70
ConvNeXt-S  17.6 0.62 371 227 | 418 1.32 4.18 1.30 477 0.60 | 3.06 0.70 | 441 1.64 7.46 0.68
ConvNeXt-B  18.8 0.42 3.80 248 | 409 1.32 4.11 1.38 445 059 | 303 077 | 435 1.53 7.72 0.70
ConvNeXt-L  12.5 0.50 403 268 | 443 1.66 4.43 1.64 421 049 | 326 067 | 493 1.27 7.12 0.62

Mean improvement ConvNeXt | -40% | -66% | -66% | -87% | -74% | -65% | -91%
ViT-B/32 6.37 0.52 397 217 | 468 1.80 4.65 1.78 7.67 072 | 358 084 | 445 1.40 9.51 0.73
ViT-B/16 5.61 0.52 377 324 | 429 1.97 4.28 1.89 6.13 0.62 339 079 | 532 1.88 5.88 0.71
ViT-L/32 4.27 0.73 501 3.89 | 537 2.54 5.37 251 771 0.64 | 443 076 | 5.75 2.04 9.31 0.79
ViT-L/16 5.17 0.80 576 4.65 | 5.28 2.62 527 2.59 751 070 | 410 085 | 6.89 2.87 6.83 0.78
ViT-H/14 0.60 0.48 1.84 0.89 | 1.95 1.21 2.00 1.23 283 047 | 247 062 | 538 049 1.67 0.63
Mean improvement ViT | -31% | -51% | -52% | -89% | -78% | -69% | -85%
Swin-T 6.82 0.51 3.08 1.82 | 3.44 1.39 343 1.34 551 050 | 294 072 | 414 1.15 6.72 0.67
Swin-S 3.65 0.61 3.63 293 | 418 1.77 4.17 1.73 466 070 | 329 0.77 | 530 1.92 7.20 0.80
Swin-B 4.77 0.46 390 345 | 421 1.99 4.21 1.95 4.03 061 | 333 075 | 581 1.95 6.83 0.68

SwinV2-T 8.31 0.49 358 224 | 392 1.53 3.92 1.47 533 057 | 3.08 081 | 453 139 | 7.81 0.79
SwinV2-S 6.07 0.46 377 332 | 425 1.73 4.24 1.72 442 053 | 316 074 | 528 200 | 7.18 0.67
SwinV2-B 5.50 0.45 378 3.68 | 425 1.78 423 1.76 382 056 | 334 0.67 | 543 225 6.78 0.63

Mean improvement Swin | 21% \ -58% \ -59% \ -87% \ -77% \ -65% \ -90%

Models Because we study post-processing calibration, we use pre-trained models. For CIFAR,
we use the architectures ResNet (He et al., 2016), Wide-ResNet-26-10 (WRN) (Zagoruyko & Ko-
modakis), 2016), and DenseNet-121 (Huang et al., | 2017). Weights come from (Mukhoti et al.,|2020),
following training with the Brier loss as it gives better-calibrated models than those trained with the
cross-entropy loss. For ImageNet, we use the architectures VGG (Simonyan & Zisserman, |2015),
ResNet, ViT (Dosovitskiy et al.,[2020), ConvNeXt (Liu et al., 2022b)), EfficientNet (Tan & Le,2019;
2021)), and Swin (Liu et al.;, 2021} [2022a). We use the models and weights from torchvision.

Baselines Our top-versus-all (ty4) reformulation and regularization (¢) can be applied to differ-
ent calibration methods. We have tested with scaling methods: Temperature Scaling (TS), Vector
Scaling (VS), and Dirichlet Calibration (DC). We also considered binary methods: Histogram Bin-
ning (HB), Isotonic Regression (Iso), Beta Calibration (Beta), and Bayesian Binning into Quantiles
(BBQ). For Dirichlet calibration, we use the best-performing variant Dir-ODIR, which regularizes
off-diagonal and bias coefficients. We also include I-Max binning with shared class-wise strategy
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Patel et al.| (2020), a state-of-the-art method for ImageNet. This method is a competitive approach
to ours because it reformulates the problem of calibrating multiclass classifiers using a shared class-
wise strategy instead of our top-versus-all approach. The method includes an optimization process
to minimize accuracy degradation, while our approach preserves the accuracy of binary methods.
More implementation details can be found in

Metrics Our main metric is the ECE (2) with 15 equal-width bins, which is the most widely used
in the literature. We do not use classwise metrics because we tackle the confidence calibration
problem and because they do not scale well when per-class test data is scarce (=~ 25 for ImageNet).
We discuss this issue in more detail in the appendix [A.T]

4.1 TOP-VERSUS-ALL

For visual qualitative results, we display a few reliability diagrams (Niculescu-Mizil & Caruana,
2005) in Figure [I We observe that originally ResNet-50 is highly underconfident and ViT-B/16
slightly underconfident. Applying TS and VS solves the underconfidence and even makes the mod-
els slightly overconfident. TvA further improves these methods, and the average confidence and
accuracy are much closer. HBry4 is even better, and miscalibration is almost invisible on the dia-
grams.

Table[T|shows the results of applying the top-versus-all reformulation to several calibration methods.
Experiments results are averaged over 5 different random seeds that generate different calibration
datasets. In most cases, the TvA reformulation significantly lowers the ECE by dozens of percent.
Without TvA, binary methods often perturb the prediction and degrade the classifier’s accuracy by
more than 1%, making them inapplicable in a practical setting. TvA solves the issue as it only scales
the confidence (after the prediction is made) and makes binary methods outperform scaling methods.
We also found that Dirichlet calibration is sensitive to hyperparameter tuning, and its performance
is usually not much better than vector scaling. This observation is consistent with the results in |[Kull
et al|(2019). ECE computed with equal-mass bins gives similar values as seen in Table[3]

The most competitive approach, I-Max, also has some of the best results. Compared to our approach,
it is more complex (our approach does not modify the histogram binning algorithm) and may change
the prediction. When the initial calibration error is large (e.g. ResNet-50 on ImageNet in table [I)),
its calibration tuning is less effective than ours. In addition, [Lin et al.| (2022)) found that I-Max
produces unusable probability vectors (they do not sum to 1, and normalizing them degrades the
method’s performance).

In most cases, TvA also lowers the Brier score, except for Isotonic regression, which has the lowest
Brier score overall. The appendix shows full results in Table[6]

We observed that ImageNet networks are

> P N PYPPPS TSta
mostly underconfident, in accordance with Vs
Galil et al| (2023). This observation goes — VS,
against previous knowledge on overconfidence, X VStia
which was believed to be linked to network size = VSregmea
(Guo et al.l |2017). Full results can be seen in §
Table[3]in the appendix. 8
To summarize the results for practical use, e N e
our experiments show that histogram binning RN ot emannn
(within the TvA or I-Max setting) is the best A
calibration method overall and the one we ad- ‘ ‘ ‘ ‘
vise to use. However, if the underlying applica- 50 100 150 200
tion requires a confidence with continuous val- epochs

ues, e.g., to rank the predictions in the case of
selective classification, then we advise using a Figure 2: ECE evolution during training with
method that also improves the AUROC, shown  goiNet_50 on ImageNet. Combining regulariza-

in @.such as temperature scaling or isotonic oo 4T A prevents overfitting.
regression.
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Figure 3: Influence of the calibration set size for ResNet-101 on ImageNet.

4.2 SOLVING OVERFITTING WITH REGULARIZATION AND TVA

On ImageNet, vector scaling and Dirichlet calibration seem to overfit the calibration set, degrading
the calibration on the test set. The lower performance of vector scaling relative to temperature
scaling indicates this overfitting. As visualized in Figure 2] combining the binary cross entropy
loss used in the TvA reformulation and an additional regularization term prevents overfitting. We
fixed the value A = 0.01 as it works well across models. We also found that initializing the vector

coefficients (or diagonal coefficient for Dirichlet) to % with T obtained by temperature sampling

(with TvA) helps further improve performance. On the other hand, penalizing values far from %

instead of 1 degrades the performance.

4.3 INFLUENCE OF THE CALIBRATION SET SIZE

The size of the calibration set influences the performance of the different methods, as seen in Fig-
ure 3] Temperature scaling (original and top-versus-all) does not require much data and does not
benefit from more data due to its low expressiveness. Vector scaling and Dirichlet calibration do
not improve because of the overfitting problem. With regularization and TvA, vector scaling and
Dirichlet calibration benefit from more calibration data. With enough data (= 15000), they out-
perform temperature scaling. Binary methods (histogram binning, isotonic regression, and Bayesian
binning with quantiles; beta calibration was omitted for figure clarity) using the standard one-versus-
all approach have bad performance and need a large amount of data to be competitive. With the TvA
reformulation, they get great performance with little data.

5 CONCLUSION

Reducing the miscalibration of neural networks is important to improve the trust in their predictions.
This can be done after a model is trained with an optimization using calibration data. However, many
current calibration methods do not scale to more complex datasets: binary methods under the one-
versus-all setting do not have enough per-class calibration data, and scaling methods with many
parameters overfit the calibration data. We solve the overfitting issue of vector scaling by adding
a regularization term. We demonstrate that reformulating the confidence calibration of multiclass
classifiers as a single binary problem significantly improves the performance of baseline calibration
techniques. Our TvA reformulation increases the competitiveness of scaling methods and allows
binary methods to efficiently use per-class calibration data without altering the model accuracy. In
short, it enhances many existing calibration algorithms without modifying them. Extensive exper-
iments on state-of-the-art classification models on ImageNet demonstrate the scalability of our ap-
proach. Our TvA reformulation could be a basis for developing future methods that further improve
confidence calibration for classifiers with many classes.
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A APPENDIX

discusses the limits of classwise-ECE and top-label-ECE for a high number of classes.
[A.2|shows the impact of different calibration methods on selective classification.

describes implementation details.
displays additional results. Table [3|reports the confidences, Table [ the accuracies, Table [5] the
ECE with equal-mass bins, Table E] the Brier score.

A.1 LIMITS OF CLASSWISE-ECE AND TOP-LABEL-ECE FOR A HIGH NUMBER OF CLASSES

Let us define the ECE for class j:
B
ny . .
ECE; = — b, j) — conf(b
j = 3 et ) — cont(b )
The difference compared to is that now acc(b, j) corresponds to the accuracy of class j in the bin
b: the proportion of samples predicted as j which actually are j. Also, conf(b, j) now is the average
probability given to class j for all samples in the bin.
Then, classwise-ECE (Kull et al., 2019) takes the average for all classes:

L
ECE.y, = Z ECE;
j=1

Classwise-ECE considers the full probabilities vectors: all the class probabilities for each prediction.
This metric does not scale to large numbers of classes. Let us see why with an example.

Let us use a test set of 25000 samples, 25 for each of the 1000 ImageNet classes, and a high-accuracy
classifier fairly calibrated. For class j, there are 25000 predicted probabilities: around 25 of which
are close to 1 (the correct predictions, for which confidence is usually high because accuracy is
high), and the 24975 remaining are mostly close to 0 (because the predicted class is not class j, and
the number of classes is high). Now those samples are partitioned into 15 equal mass bins of 1666
samples. For the last bin (with the highest confidences), because of the high imbalance between the
25 positive samples and the rest, the average probability is = 0, and class occurrence is ~ 0. For all
the other bins, the average probability is also ~ 0, and the class occurrence is ~= 0. When the number
of classes is high, because the classifier predictions with high confidence do not significantly impact
the metric, classwise ECE only measures whereas confidences close to 0 are calibrated. We argue
this is not what we are interested in: what matters more is the calibration of the predicted class,
which mostly corresponds to high values of confidence. [Nixon et al.| (2019)); [Patel et al.| (2020)
discuss thresholding to filter out small probabilities. However, the value of the threshold has to be
tuned, which makes comparisons with other works more difficult.

Top-label ECE (Gupta & Ramdas| [2022) is another interesting metric that does not scale to large
numbers of classes either. Top-label-ECE divides data into subsets according to the predicted class,
computes the ECEs of these subsets, and averages them. For an ImageNet test set of 25000 samples
(25 per class), data is divided into 1000 subsets of ~ 25 samples each (the classifier is high-accuracy,
most of the time class predicted = true class). The ECE is computed for each subset containing only
25 samples. To compute the ECE, samples are typically partitioned into 15 bins. The number of
samples per bin does not allow a correct estimation of the average confidence or accuracy.

A.2 IMPACT ON SELECTIVE CLASSIFICATION

Selective classification aims to improve a model’s prediction performance by trading-off coverage:
a reject option allows to discard data that might result in wrong predictions, thus improving the
accuracy on the remaining data. A strong standard baseline uses thresholding on the maximum
softmax probability outputted by the classifier (Geifman & El-Yaniv, |[2017). Improving confidence
calibration means uncertainty is better quantified and should result in better selective classification.

Results in Table [T| show the superiority of histogram binning (applied with the right framework) in
reducing the calibration error ECE. Unfortunately, it does not translate into improvements in selec-
tive classification. AUROC is a standard metric for selective classification (Galil et al.,[2023)). Table
[2) shows that histogram binning actually degrades the AUROC, while the best method is isotonic
regression. Our TvA framework does not significantly impact the AUROC.

13
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Table 2: AUROC in % (higher is better). Methods in purple impact the model prediction, potentially
degrading accuracy; methods in teal do not. Improvements from the uncalibrated model are colored
in blue while degradations are colored in orange

(a) CIFAR-10

Model Uncal. I-Max | TS TS, | VS VSiema | DC DCiry | HB HBy,, | Iso Isor,, | Beta  Beta,, | BBQ BBQ,
ResNet-50  91.12 90.05 | 91.04 91.01 | 91.67  91.67 | 91.66 ~ 91.65 | 7892 90.16 | 90.79 90.72 | 90.74 9112 | 7519 8332
ResNet-110 9232 91,58 | 9224 9222 | 9221 9243 | 92,19 9243 | 7646 9048 | 9234 9221 | 90.64  92.32 | 76.66  84.00
WRN 91.08 8997 | 91.11 91.09 | 9138 9234 | 91.39 9234 | 77.74 9024 | 91.93 90.93 | 90.95 91.08 | 76.78  86.41
DenseNet ~ 90.03  89.29 | 90.08 90.04 | 90.24  90.83 | 90.26  90.83 | 80.03 8871 | 91.20 89.28 | 89.76  90.03 | 72.70  86.90
(b) CIFAR-100
Model Uncal. I-Max | TS TSi. | VS VS | DC DC,,r | HB HB,,, | Iso Iso,, | Beta  Beta,, | BBQ BBQy,
ResNet-50  85.55 8493 | 8548 8536 | 85.69 8599 | 8571  86.01 81.60 8540 | 86.90 8546 | 8547 8555 | 81.19 8515
ResNet-110  84.83  83.64 | 84.74  84.65 | 84.65  85.09 | 84.62 8506 | 8224 84.64 | 86.34 8479 | 8456 84.83 | 79.86  84.50
WRN 87.98 87.19 | 87.97 87.85 | 87.98  88.14 | 87.99  88.18 | 8403 &7.71 | 88.88 &7.80 | 87.57 8798 | 8333  86.76
DenseNet 86.61 8554 | 86.56 8642 | 86.85 87.36 | 86.86  87.38 | 84.12 8643 | 87.57 86.56 | 86.53  86.61 | 83.06 8591

(c) ImageNet

Model Uncal. I-Max | TS TSny | VS VSgu | DC HB  HB,, | Iso  Iso;, | Beta Betay,

VGG16 86.68  86.50 | 80.61 86.61 | 86.34  86.41 85.44
ResNet-18 8573 8540 | 85.64 8565 | 8505 85.88 | 85.16
ResNet-34 86.18 8582 | 80.11  80.10 | 86.24  86.41 | 8591
ResNet-50 80.53  80.06 | 85.92 85.69 | 85.62 85.60 | 85.59
ResNet-101 84.18 8362 | 8596 8571 | 8539  85.55 | 85.37
EffNet-B7 84.92 8414 | 86.61 86.34 | 85.19 8551 | 85.21
EffNetV2-S 8577 8482 | 87.02 86.86 | 85.30  85.65 | 8531
EffNetV2-M 8236 8159 | 8526 84.92 | 83.65 84.17 | 83.65
EffNetV2-L  84.63 8398 | 86.33 86.04 | 8576 8595 | 85.72
ConvNeXt-T 8235 81.72 | 8546 85.16 | 85.61 8557 | 85.60
ConvNeXt-S 8229 81.88 | 8526 84.87 | 8478 85.03 | 84.81

83.96 86.52 | 86.73 86.67 | 8599  86.68
83.98 85.60 | 86.11 85.69 | 8531 85.73
8324  86.01 | 86.40 86.14 | 8578  86.18
83.42 8030 | 8691 80.48 | 83.00 80.53
81.92 84.03 | 87.09 84.18 | 83.58 84.18
80.99 84.69 | 87.14 84.87 | 83.59  84.92
81.16 8555 | 87.42 8574 | 84.10  85.77
79.78 82.11 | 86.51 8232 | 81.42 8236
80.73 84.30 | 86.70 84.58 | 83.51 84.63
81.94  82.08 | 86.97 8229 | 82.83 8235
80.69 82.06 | 86.98 8223 | 82.20 82.29

ConvNeXt-B  82.27 81.74 | 85.12 84.74 | 84.41 84.88 84.43 80.38 82.01 | 87.01 82.25 | 82.08 82.27
ConvNeXt-L 8235 8147 | 84.82 84.38 | 84.04 8459 | 84.05 7978 82.11 | 86.79 8234 | 81.67 8235
ViT-B/32 85.57 85.09 | 86.30 86.13 | 8595 8597 | 85.93 83.07 85.40 | 87.16 85.55 | 84.73  85.57
ViT-B/16 8552 8481 | 86.32 86.12 | 8536  85.56 85.36 81.39 85.32 | 87.19 8548 | 83.78 85.52
ViT-L/32 8542 8473 | 8593 85.73 | 85.19  85.29 85.20 81.44 8529 | 87.25 8541 | 83.81 8542
ViT-L/16 85.85 84.80 | 86.16 86.00 | 84.33 8466 | 8431 80.10 8562 | 86.97 8582 | 83.27 85.85
ViT-H/14 87.28 86.44 | 87.53 8734 | 86.74  86.73 | 86.79 79.99 86.94 | 86.66 87.21 | 84.62 87.28
Swin-T 85.68 85.13 | 86.50 86.34 | 85.77 85.84 85.78 8172 8548 | 87.10 85.66 | 84.48  85.68
Swin-S 8537 8477 | 85.99 8578 | 85.01 8522 | 85.01 80.48 8522 | 86.92 8537 | 83.42 8537
Swin-B 84.11 8339 | 85.26 8491 | 8390  84.19 83.92 7941 84.12 | 86.55 84.17 | 81.95 84.11

SwinV2-T 8580 85.17 | 86.74 86.55 | 85.81 86.06 | 85.82 81.56 85.57 | 87.29 85.77 | 84.55 85.80
SwinV2-S 8575 8508 | 86.61 86.38 | 85.19 8552 | 85.20 80.75 8558 | 87.18 8575 | 83.78  85.75
SwinV2-B 85.15 8415 | 86.07 85.82 | 84.42 8468 | 8440  84.69 79.75 8495 | 86.99 85.14 | 8242 85.15

A.3 IMPLEMENTATION DETAILS

» We used the library netcal (Kiippers et al.,[2020)) for their implementation of binary methods
and adapted their reliability diagrams code.

* We took inspiration from the official implementation of temperature scaling: https:
//github.com/gpleiss/temperature_scaling.

* We took inspiration from the official implementation of Dirichlet calibration: https:
//github.com/dirichletcal/experiments_dnn.

* We used the official implementation of I-Max: https://github.com/
boschresearch/imax-calibration.

e For evaluation, we used codes from https://github.com/JeremyNixon/
uncertainty-metrics-1 and https://github.com/IdoGalil/
benchmarking-uncertainty-estimation-performance.

* We used PyTorch 2.0.0 and model weights are from torchvision 0.15 https://github.
com/pytorch/visionl

* We used CIFAR models and weights from Mukhoti et al.| (2020) https://github.

com/torrvision/focal calibration.

A.4 ADDITIONAL RESULTS
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Table 3: Average confidence in %. Methods in purple impact the model prediction, potentially
degrading accuracy; methods in teal do not. Overconfidence (average confidence > accuracy) is
shown in violet and underconfidence (average confidence < accuracy) in brown.

(a) CIFAR-10

Model Acc. | Uncal. | I-Max | TS TS, | VS VSiera | DC DCryry | HB HBy, | Iso  Isop, | Beta Beta,, | BBQ BBQ,
ResNet-50  95.0 | 96.7 | 947 [958 954 |959 957 |959 957 |950 947 |953 948 | 972 955 | 947 948
ResNet-110 945 | 97.1 | 946 | 957 953 | 957 957 | 957 957 |951 945 |953 946 | 972 947 | 950 948
WRN 9591960 |[959 |967 963|967 962 |967 962 |962 958 | 964 958 |972 963 | 959 959
DenseNet 949 | 957 | 950 |96.1 957 | 961 956 | 961 956 |955 950 |956 951 |970 952 | 952  95.1
(b) CIFAR-100
Model Acc. | Uncal. | I'Max | TS~ TSy, | VS VSgp | DC DCyuy | HB HBy, | Iso  Isoy, | Beta Beta,, | BBQ BBQy,
ResNet-50  76.6 | 82.7 | 76.6 | 80.7 76.6 |81.1 772 |81.0 772 | 764 765 |812 765 | 799 774 | 738 765
ResNet-110 749 | 826 | 750 | 792 751 | 797 758 |79.6 758 | 738 748 |80.0 748 |78.6 754 | 716 748
WRN 794 | 828 | 790 | 825 789 | 827 792 |827 792 |788 792 [829 792 |809 788 | 76.1 792
DenseNet 762 | 81.1 | 76.1 | 79.8 76.1 | 802 766 | 802 766 | 749 76.1 |802 76.1 | 789 760 | 726  76.1
(c) ImageNet
Model Acc. | Uncal. | I'Max | TS~ TSy, | VS VSgp, | DC DCyry | HB  HBy, | Iso  Isor, | Beta Beta,, | BBQ BBQy,
VGG16 715|740 | 703 | 712 713|722 723 | 738 725 | 716 716 | 750 71.6 | 702 715 | 677 716
ResNet-18 69.8 | 720 | 693 | 694 697|703 708 | 714 708 | 693 69.8 | 73.1 698 | 683 696 | 653 698
ResNet-34 732|768 | 729 | 734 731 | 744 743 | 753 742 | 737 733 | 768 733 | 721 731 | 703 733
ResNet-50 80.8 | 39.7 | 779 | 840 822 | 842 802 | 842 802 |76.6 809 |81.6 809 | 761 8Ll | 711 809
ResNet-101  81.9 | 683 | 81.5 | 856 834 |86.0 831 |8.0 831 |[81.5 820 |845 820 | 796 819 | 782 820
EffNet-B7 858 | 71.6 | 84.0 | 878 857 | 883 856 |883 855 |847 841 |87.0 840 |81.0 841 | 822 84l
EffNetV2-S  84.2 | 673 | 840 | 878 856 | 882 853 | 882 852 |843 842 |868 842 |814 844 | 812 842
EffNetV2-M 843 | 602 | 847 | 888 865 | 89.1 859 |89.1 858 |852 852 |877 852|819 852 |&l8 852
EffNetV2-L 851 | 773 | 854 | 88.6 869 | 889 867 |89 866 |86.6 856 |81 856|835 856 | 842 856
ConvNeXt-T 82.5 | 65.6 | 81.7 | 855 839 | 859 833 |859 832 |821 825 |87 825 798 826 | 789 825
ConvNeXt-S  83.6 | 66.0 | 832 | 873 852 | 87.8 847 |87.8 847 | 837 837 |863 836 804 839 | 807 836
ConvNeXt-B  84.0 | 653 | 837 | 878 856 |82 850 |882 850 |840 840 |867 840 |81.6 841 |812 841
ConvNeXt-L  84.4 | 719 | 843 | 884 862 | 888 858 | 888 858 |849 845 |874 845 [819 847 | 826 845
ViT-B/32 759 | 69.6 | 756 | 799 772 | 804 774 | 804 773 | 751 759 [789 759 | 747 756 | 710 759
ViT-B/16 81.0 | 755 | 81.0 | 848 826|853 8.8 |83 827 |815 810 | 8.0 810|795 811 |788 810
ViT-L/32 770 | 742 | 772 | 81.6 788 | 822 790 |82 790 |77.1 769 |808 769 | 769 769 | 739 769
ViT-L/16 79.6 | 78.8 | 80.0 | 844 81.6 | 851 821 | 851 821 |[805 797 [836 797 | 782 799 | 783 797
ViT-H/14 88.6 | 89.0 | 885 | 904 893 |905 895 |905 895 |89.8 886 |90.8 886 | 837 885 | 887 886
Swin-T 81.5 | 747 | 811 | 845 825|850 827 |80 86 |81.8 815 |840 815|795 814 | 788 815
Swin-S 832 | 799 | 83.1 | 868 84.6 | 873 847 | 873 847 |838 832 | 861 3.1 |812 830 | 817 831
Swin-B 83.6 | 79.7 | 837 | 875 854 |80 856 | 8.0 8.5 |845 835 |867 835|812 836 | 828 835
SwinV2-T 82.0 | 737 | 819 | 856 833 |8.0 834 |8.0 834 |823 822 |847 822|796 822 | 794 822
SwinV2-S 83.7 | 777 | 837 | 875 852 | 88.0 854 | 880 854 |84.6 837 |867 837 |823 837 | 823 837
SwinV2-B 84.1 | 789 | 84.1 | 879 857 | 884 858 | 884 858 | 850 841 |87.1 842 | 822 840 | 831 841
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Table 4: Accuracy in % (higher is better). Methods in purple impact the model prediction, potentially
degrading accuracy; methods in teal do not. Because classifiers can be well calibrated when not
accurate (by having low accuracy and low confidence), it is important to monitor the accuracy. It is

even better when the methods preserve the accuracy by design.

(a) CIFAR-10

Model Uncal. I-Max | TS TSn. | VS VSiema | DC DCiyrs | HB HByy, | Iso Isor,, | Beta  Beta,, | BBQ BBQ,
ResNet-50  95.00 9499 | 95.00 95.00 | 9494 9496 | 9495 94.97 | 9449 95.00 | 94.82 95.00 | 9496 95.00 | 94.65  95.00

ResNet-110 9452 9450 | 94.52 9452 | 9444 9442 | 9445 9441 | 9413 94.52 | 9440 94.52 | 9445 94.52 | 9418 9452

WRN 9592 9587 | 9592 9592 | 9586 9584 | 9586 9584 | 9576 9592 | 9580 95.92 | 95.84 9592 | 9578 9592

DenseNet ~ 94.89 9492 | 9489 94.89 | 9498 9499 | 9498  94.99 | 94.59 94.89 | 94.82 94.89 | 9492 94.89 | 9471 94.89

(b) CIFAR-100

Model Uncal. I-Max | TS TSy, | VS VS | DC DC,ra | HB HB,,, | Iso Isor,, | Beta  Betan, | BBQ  BBQq,
ResNet-50  76.61 7659 | 76.61 76.61 | 7637 7636 | 7638 7635 | 7410 76.61 | 76.06 76.61 | 76.52 76.61 | 75.92  76.61

ResNet-110 7490  74.86 | 7490 7490 | 7460 7473 | 7464 7475 | 7215 74.90 | 7436 74.90 | 7475 7490 | 74.17  74.90

WRN 7941 7937 | 7941 7941 | 79.12 79.06 | 79.11  79.03 | 77.00 79.41 | 7880 79.41 | 79.26 79.41 | 7854 79.41

DenseNet 7625 7642 | 7625 7625 | 76.18 76.14 | 76.18 7613 | 7403 7625 | 7582 76.25 | 76.26  76.25 | 75.60  76.25

(c) ImageNet

Model Uncal. I-Max | TS TSy | VS VSguu | DC DCir | HB HByy, | Iso Isor,, | Beta  Beta,, | BBQ BBQ,
VGG16 71.54 7034 | 71.54 71.54 | 71.53  70.89 | 68.96 68.05 | 68.15 7154 | 71.00 71.54 | 71.65 71.54 | 7030 71.54
ResNet-18  69.77  69.37 | 69.77 69.77 | 69.79 6922 | 68.05 67.51 | 66.01 69.77 | 69.24 69.77 | 69.99 69.77 | 68.34  69.77
ResNet-34 7323 7273 | 7323 7323 | 7320 7268 | 7191 7132 | 69.87 7323 | 72.81 7323 | 7330 7323 | 72.21 7323
ResNet-50  80.85 80.26 | 80.85 80.85 | 80.92 80.79 | 80.94 80.79 | 78.20 80.85 | 80.47 80.85 | 80.79 80.85 | 78.13  80.85
ResNet-101  81.86  81.52 | 81.86 81.86 | 81.77 81.65 | 81.78 81.64 | 79.32 81.86 | 81.44 81.86 | 81.88 81.86 | 80.82 81.86
EffNet-B7 84.16 84.04 | 84.16 84.16 | 84.44 8430 | 84.43 8430 | 8223 8416 | 8409 84.16 | 8436 84.16 | 8371 84.16
EffNetV2-S  84.27 84.02 | 8427 84.27 | 84.33 8424 | 8432 8424 | 8230 84.27 | 83.88 8427 | 84.34 8427 | 8352 84.27
EffNetV2-M  85.06 8491 | 8506 85.06 | 8528 85.19 | 8528 8518 | 83.39 8506 | 8487 8506 | 85.17 85.06 | 8419  85.06
EffNetV2-L 8580 85.64 | 8580 85.80 | 8589 85.83 | 8592 8584 | 83.99 85.80 | 8558 85.80 | 86.00 85.80 | 8523  85.80
ConvNeXt-T 8250 8219 | 8250 8250 | 8243 8229 | 8244 8228 | 79.94 82.50 | 82.10 82.50 | 82.51 82.50 | 81.51 8250
ConvNeXt-S  83.65 8338 | 83.65 83.65 | 83.64 8354 | 83.63 8354 | 81.33 83.65| 83.28 83.65 | 83.67 83.65 | 82.89  83.65
ConvNeXt-B  84.04 8378 | 84.04 84.04 | 8409 8398 | 84.08 8397 | 81.88 84.04 | 83.68 84.04 | 84.13 84.04 | 83.22 84.04
ConvNeXt-L 8438 8425 | 8438 8438 | 8441 8431 | 8441 8431 | 8244 8438 | 8412 8438 | 8449 84.38 | 83.98 8438
ViT-B/32 75.95 7569 | 75.95 7595 | 7581  75.66 | 75.82  75.66 | 72.66 7595 | 7536 7595|7598 7595 | 7459 7595
ViT-B/16 81.04 80.88 | 81.04 81.04 | 81.00 80.87 | 81.00 80.90 | 78.56 81.04 | 80.63 81.04 | 81.08 81.04 | 80.38 81.04
VIT-L/32 76.96  76.83 | 76.96 76.96 | 76.80  76.73 | 76.79 7671 | 7420 76.96 | 76.37 76.96 | 76.98 76.96 | 76.04  76.96
ViT-L/16 79.64  79.55 | 79.64 79.64 | 79.81  79.67 | 79.82 79.66 | 7744 79.64 | 7947 79.64 | 7976 79.64 | 79.20 79.64
ViT-H/14 88.62 88.54 | 88.62 88.62 | 88.62 88.49 | 88.58 8846 | 87.00 88.62 | 8834 8862 | 88.68 88.62 | 8833 83.62
Swin-T 8149 8127 | 8149 8149 | 81.56 8142 | 81.56 8139 | 7896 81.49 | 81.07 8149 | 81.58 81.49 | 80.77 81.49
Swin-S 8321 83.04 | 8321 8321 | 83.12 8301 |83.13 8303 |81.02 8321 | 8279 8321 | 8326 8321 | 8274 8321
Swin-B 83.60 8351 | 83.60 83.60 | 83.77 83.60 | 83.77 83.60 | 81.69 83.60 | 8339 83.60 | 83.72 83.60 | 83.40  83.60
SwinV2-T 8202 8181 | 8202 8202 | 8213 8197 | 8212 8200 | 79.69 82.02 | 81.66 82.02 | 82.18 82.02 | 81.27  82.02
SwinV2-S 8374 83.65 | 8374 8374 | 83.80 8371 | 83.80 8372 | 8203 83.74 | 8356 8374 | 83.82 8374 | 8334 83.74
SwinV2-B 84.10 84.02 | 84.10 84.10 | 84.14 84.07 | 84.16 84.05 | 82.27 84.10 | 83.81 84.10 | 84.18 84.10 | 83.79  84.10
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Table 5: ECE with 15 equal mass bins in % (lower is better). Methods in purple impact the model

prediction, potentially degrading accuracy; methods in teal do not.

(a) CIFAR-10

Model Uncal. I-Max | TS TSt | VS VSiers | DC DCiyry | HB HBy, | Iso  Isoy, | Beta Beta,, | BBQ BBQ,
ResNet-50 174 1.05 | 125 1.2 | 128 121 1.27 120 | 221 127 | 130 1.01 | 227 142 | 196 1.09
ResNet-110 261 059 | 1.74 165 | 1.70  1.77 | 1.68 177 | 269 039 | 1.02 062 | 279 1.74 | 2.61 1.12
WRN 1.69 0.10 1.63  1.64 | 1.23 1.34 1.23 1.35 1.86 043 | 079 058 | 1.62 1.82 1.54 0.23
DenseNet 1.98 0.45 194 197 | 148 1.65 1.48 1.65 270 035 | 083 071 | 2.12 2.24 2.39 0.81
(b) CIFAR-100
Model Uncal. I-Max | TS TSiy | VS VS | DC DCipr | HB HB;, | Iso  Iso, | Beta Beta,,, | BBQ BBQy,
ResNet-50  6.58 0.78 492 340 | 5.08 2.17 5.06 2.17 10.88 1.70 | 533 1.57 | 532 3.68 9.84 1.99
ResNet-110  7.73 1.17 5.12 394 | 5.15 3.00 5.13 2.98 11.06 1.76 | 6.08 1.74 | 548 496 9.51 1.25
WRN 420 074 | 403 275 | 422 198 | 421 1.95 1038  1.10 | 441 089 | 426 290 | 9.76 1.60
DenseNet 5.08 0.98 4.03 224 | 431 2.05 4.29 2.03 1039  1.03 | 442 135 | 4.65 2.67 10.71 1.42
(c) ImageNet

Model Uncal. I-Max | TS TSy, | VS VS | DC DCyuy | HB HBy, | Iso Tsop, | Beta Betay, | BBQ BBQq,
VGG16 262 047 | 184 1.81 | 1.60 189 |484 455 |971 080 | 400 092|331 105 |98  0.80
ResNet-18 2.59 0.54 1.86 1.83 | 1.69 2.08 343 3.59 9.63 0.89 | 3.85 075 | 3.21 1.03 9.84 0.66
ResNet-34 3.61 0.58 175 1.75 | 1.79 1.97 343 3.05 9.68 0.76 | 404 0.72 | 3.71 1.04 9.17 0.68
ResNet-50 4115 263 | 317 174 | 325 L1l | 323 112 | 463 0.64 | 129 076 | 489 204 | 824 098
ResNet-101 13.55 046 373 235 | 421 1.58 4.19 1.55 6.62 0.73 | 3.01 0.64 | 4.08 1.94 7.84 1.00
EffNet-B7 12.60  0.46 382 294 | 3.83 1.60 3.84 1.56 6.13 071 | 293 056 | 532 1.96 6.91 0.71
EffNetV2-S 1692 039 | 402 3.32 | 391 1.67 | 3.91 1.67 | 620 072 | 296 065|513 215 | 758 092
EffNetV2-M  24.88 0.72 374 266 | 3.84 1.35 3.83 1.35 520 0.77 | 2.88 0.73 | 436 1.46 6.68 1.01
EffNetV2-L  8.48 0.43 2.81 147 | 3.05 0.93 3.03 0.93 524 070 | 251 062 | 372 1.21 6.03 0.78
ConvNeXt-T 1695 095 |3.03 1.62 |348 1.19 |[347 121 6.11 085 | 255 082|325 149 | 7.64 099
ConvNeXt-S  17.60 0.58 376 255 | 4.17 1.44 4.17 1.43 6.06 0.76 | 3.06 0.71 | 4.28 1.90 7.36 0.79
ConvNeXt-B 1877  0.46 378 2.67 | 4.08 1.48 4.09 1.49 5.86 0.78 | 3.03 0.73 | 4.25 1.97 7.48 1.04
ConvNeXt-L  12.51 043 | 403 289 | 442 184 | 442 1.83 | 6.02 064 | 326 063|496 152 | 705 078
ViT-B/32 637 050 | 406 246 | 464 189 | 462 185 |883 076 | 358 0.71 | 433 148 | 924 074
ViT-B/16 5.56 0.50 4.17 3.8 | 4.27 2.12 4.26 2.03 7.66 0.76 | 3.38 0.70 | 5.25 1.99 7.68 0.93
ViT-L/32 413 073 | 531 420 | 537 267 |537 266 |895 082 442 072|581 233 |9.18 1.04
ViT-L/16 517 0.64 | 592 519 | 528 275 |526 274 |879 087 |410 076 | 697 3.09 | 782 129
ViT-H/14 0.61 0.42 1.76  0.84 | 1.88 1.10 1.95 1.10 458 058 | 245 0.60 | 5.21 0.49 3.95 0.53
Swin-T 6.82 0.53 3.09 1.81 | 342 1.33 342 1.28 697 0.63 | 294 0.71 | 4.07 1.30 7.52 0.90
Swin-S 357 058 | 392 298 | 418 184 | 417 179 | 706 076 | 329 059 | 524 205 | 678 0.83
Swin-B 4.65 0.35 437 372 | 421 2.09 4.20 2.04 6.74 0.80 | 333 0.63 | 5.84 242 6.50 0.78
SwinV2-T 8.31 0.49 359 219 | 391 1.60 3.92 1.55 6.80 0.66 | 3.07 0.71 | 448 1.48 7.97 0.67
SwinV2-S 606 044 | 417 332 | 424 190 | 424 185 |6.63 072 |3.15 056|533 209 | 7.04 079
SwinV2-B 5.27 0.37 440 3.67 | 4.24 1.93 4.22 1.92 6.55 0.68 | 3.33 0.7 | 5.56 2.34 6.56 0.75
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Table 6: Brier score of the predicted class in 10~2 (lower is better). Methods in purple impact the

model prediction, potentially degrading accuracy; methods in teal do not.

(a) CIFAR-10

Model Uncal. I-Max | TS TSty | VS VSierw | DC DCiyry | HB HBy, | Iso  Isog, | Beta Beta,, | BBQ BBQ,
ResNet-50  3.79 3.76 374 3.72 | 3.74 3.73 3.74 3.73 4.02 378 | 3.77 375 | 391 3.76 4.01 3.84
ResNet-110 4.02 376 | 3.84 3.81 | 381 381 |38l 381 |431 376 |372 374 | 407 3.84 | 425 4.02

WRN 3.02 2.95 3.06 3.03 | 3.09 3.03 3.09 3.03 325 3.03 | 295 297 | 311 3.06 322 3.03

DenseNet 3.75 3.64 378 3.76 | 3.72 3.70 3.72 3.69 4.08 3.68 | 3.65 3.64 | 3.85 3.77 4.13 3.67

(b) CIFAR-100
Model Uncal. I-Max | TS TSn. | VS VS.ema | DC DC,, 1 | HB HB,, | Iso Isor,, | Beta  Beta,, | BBQ BBQ,
ResNet-50 12.86  12.13 | 12.55 12.26 | 12.56  12.18 12.55 12.17 13.73  12.15 | 12.21 1212 | 1257 1229 | 1430 12.24
ResNet-110  13.89  12.84 | 13.30 1298 | 13.35 1290 | 13.36 12.91 14.18 12.82 | 1298 12.77 | 13.33  13.11 15.09 12.84
WRN 11.00 1073 | 10.97 10.80 | 10.97 10.76 | 10.96 10.74 | 12.27 10.68 | 10.78 10.65 | 11.03 10.74 | 12.69 10.78
DenseNet 1229 12.02 | 1212 1193 | 12.18 11.80 | 12.17 11.79 1323 11.87 | 11.89 11.84 | 1220 1191 | 13.99 1191
(c) ImageNet

Model Uncal. I-Max | TS TSn, | VS VSiema | DC DCiyrs | HB HBy, | Iso  Ison, | Beta  Beta,, | BBQ BBQ,
VGG16 13.18 1315 | 13.18 13.18 | 13.29 1339 | 1446 1452 | 1478 13.15| 13.32 13.11 | 1336  13.11 | 15.09 13.15
ResNet-18 13.93  13.84 | 1394 1393 | 1392 13.92 14.57 14.61 1520 13.89 | 13.89 13.87 | 14.02 1386 | 1556 13.90
ResNet-34 13.15 1299 | 13.04 13.05 | 1298 13.04 13.53 13.53 1458 13.03 | 13.13 1299 | 13.15 1298 | 1492 13.01
ResNet-50 29.79 1233 | 10.95 10.88 | 10.98 1091 | 10.98 1092 | 11.46 12.08 | 10.71 12.02 | 11.69 12.06 | 11.90 12.08
ResNet-101 ~ 12.65 10.77 | 10.66 10.51 | 10.70  10.51 | 10.70 1051 | 11.48 10.75 | 10.35 10.71 | 10.84 10.75 | 11.72 10.74
EffNet-B7 11.28  9.68 9.71 9.55 9.72 9.51 9.73 9.51 10.50  9.66 9.41 9.60 9.94 9.67 10.71 9.62
EffNetV2-S 1239  9.50 9.66 948 | 9.71 9.50 9.71 950 | 1043 948 | 937 943 | 979 951 | 10.64  9.46
EffNetV2-M  16.05 9.82 9.58 9.43 9.54 9.33 9.54 9.32 10.13  9.78 9.18 9.72 9.80 9.75 10.40 9.75
EffNetV2-L  9.80 9.07 8.90 8.81 8.93 8.83 8.94 8.84 9.85 9.05 8.81 9.00 9.11 9.01 9.96 9.01
ConvNeXt-T 14.02 10.97 | 1039 1033 | 1040 10.33 | 1040 1032 | 11.28 10.94 | 10.13 10.87 | 10.73 10.88 | 11.61  10.90
ConvNeXt-S  13.62 1035 | 10.15 10.01 | 10.16 9.95 10.16 9.95 10.88 1037 | 9.78 10.32 | 1040 10.36 | 11.27 10.35
ConvNeXt-B  13.86 10.20 | 10.04 9.89 | 10.01 9.79 10.01 9.79 10.65 1021 | 9.60 10.14 | 10.22 10.18 | 11.11  10.18
ConvNeXt-L  11.58 9.97 9.92 9.76 9.99 9.70 9.99 9.69 10.54  9.96 946 988 | 10.15 9.91 10.96 9.90
ViT-B/32 1268 1226 | 1234 12.17 | 12.53 1233 | 1253 12.33 | 13.57 1227 | 1211 1224 | 12.60 1225 | 13.72 1225
ViT-B/16 11.02 10.71 | 10.88 10.72 | 11.02  10.83 11.01 10.83 12.08 10.70 | 10.59 10.66 | 11.14 10.69 | 12.09 10.67
ViT-L/32 1215 12,02 | 1235 1211 | 1249 1221 | 1249 1221 | 1356 1198 | 11.92 1193 | 12.64 1198 | 1387 11.96
VIiT-L/16 1139 1118 | 11.73 1146 | 11.88 1157 | 11.88 11.56 | 12.71 11.17 | 11.13 1111 | 12.06 11.23 | 1321 1115
ViT-H/14 7.46 7.51 7.49 7.46 7.57 7.58 7.58 7.59 8.53 7.54 7.58 7.47 7.94 7.46 8.60 7.48
Swin-T 11.09 10.65 | 10.63 10.53 | 10.72 10.64 10.71 10.63 11.89 10.65 | 10.51 10.61 | 10.82 10.62 | 11.89 10.63
Swin-S 10.14  10.03 | 1023 10.06 | 10.32 10.12 | 10.31 1012 | 11.22 10.03 | 9.95 9.98 | 1047 10.03 | 11.48 10.00
Swin-B 10.18  10.00 | 10.21 10.05 | 1023  10.10 | 10.23 10.10 11.07  9.99 982 991 | 1052 9.98 11.46 9.93
SwinV2-T 11.06 1037 | 1045 10.29 | 10.54 10.37 10.54 10.38 11.58 1040 | 10.25 1034 | 10.65 10.36 | 11.69 10.36
SwinV2-S 10.05  9.66 991 972 | 1001 977 | 10.00  9.78 10.78  9.66 | 9.57 9.62 | 10.11 9.68 | 11.13  9.64
SwinV2-B 10.00 9.71 996  9.79 | 10.04 9.83 10.04 9.82 10.86  9.70 959 9.64 | 1022 972 11.21 9.66

Table 7: Computing time of the calibration; in seconds. The first column denotes the data prepro-

cessing time, which includes computing the model logits for all calibration examples.

(a) ImageNet
Model Preproc. I-Max | TS TSy, | VS VSgq | DC DCpura | HB HBy, | Iso  Isoy, | Beta Betas,, | BBQ BBQy,
ResNet-50 141 543 | 215 218 [ 214 217 [226 226 | 129 1 66 1 873 22 | 1156 2
ViT-B/16 151 524|225 226 | 217 222 [232 235 | 127 | 61 1 917 23 1169 2
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