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Abstract
Training neural networks on randomly generated
artificial datasets yields Bayesian models that cap-
ture the prior defined by the dataset-generating
distribution. Prior-data Fitted Networks (PFNs)
are a class of methods designed to leverage this
insight. In an era of rapidly increasing computa-
tional resources for pre-training and a near stag-
nation in the generation of new real-world data
in many applications, PFNs are poised to play a
more important role across a wide range of ap-
plications. They enable the efficient allocation of
pre-training compute to low-data scenarios. Orig-
inally applied to small Bayesian modeling tasks,
the field of PFNs has significantly expanded to ad-
dress more complex domains and larger datasets.
This position paper argues that PFNs and other
amortized inference approaches represent the fu-
ture of Bayesian inference, leveraging amortized
learning to tackle data-scarce problems. We thus
believe they are a fruitful area of research. In
this position paper, we explore their potential and
directions to address their current limitations.

1. Introduction
The computing costs to pre-train neural networks continue
to rapidly decrease, especially through improvements in
GPU manufacturing (Epoch AI, 2024a), as well as hardware-
utilization, optimization, and neural network architectures
(Ho et al., 2024).

However, the amount of available real-world data does not
scale at the same pace as compute in various domains. In this
work, we argue that training on vast quantities of synthetic
data is ideally suited to utilize the rapidly increasing amount
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Figure 1. (a) The PFN learns to approximate the Bayesian predic-
tion offline by training on datasets sampled from the prior and
transfers to real-world data. (b) In a typical PFN architecture train-
ing samples (xi, yi) can attend only to each other; test positions
(x4 and x5) attend only to the training positions.

of available computational resources for neural network
pre-training in these areas.

Initially, the most prominent application of synthetic data in-
volved modest modifications of real-world datasets through
data augmentation techniques. These techniques have, for
instance, become indispensable in image classification tasks
with limited data (Deng et al., 2009; Cubuk et al., 2019;
Müller & Hutter, 2021). Since then, the use of completely
artificial data, defined by human-designed algorithms, has
expanded to various domains, including tabular supervised
learning (Hollmann et al., 2023; 2025), symbolic regression
(d’Ascoli et al., 2022; Kamienny et al., 2022), geometric
reasoning (Trinh et al., 2024), and causal discovery (Lorch
et al., 2022). This widespread adoption underscores the
versatility and effectiveness of pre-training on synthetic data
to leverage compute in order to improve performance.
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In this paper, we advocate for a general approach for ex-
ploiting synthetic data in pre-training: Prior-Data Fitted
Networks (PFNs, Müller et al., 2022). PFNs are a Bayesian
prediction method. They directly approximate the poste-
rior predictive distribution (PPD), diverging from traditional
Bayesian methods that depend on explicit likelihood func-
tions, intricate sampling or variational inference techniques.
Instead, PFNs utilize neural networks trained through super-
vised learning to perform Bayesian prediction directly via
in-context learning (ICL). PFNs are thus distinct from other
large-scale neural networks: they are solely trained on arti-
ficial data, and only conditioned on real-world data. PFNs
were shown to be over 200× faster than previous methods
at Bayesian prediction on small scale data (Müller et al.,
2022) and over 10 000× faster for Bayesian learning curve
extrapolation (Adriaensen et al., 2023).

PFNs are neural networks, directly optimized to perform
Bayesian predictions in context: Given a set of observed
data points and a query point, they predict the posterior pre-
dictive distribution for that query, as exemplified in Figure
1a. They learn to do this by training on samples from an
artificial prior distribution over datasets (Figure 1). While
pre-training the PFN for a given prior can be expensive, the
application to a new dataset is fast: it corresponds only to a
forward pass for the current PFN architectures (Müller et al.,
2022; Hollmann et al., 2025).

PFNs dramatically expand the space of possible priors that
can be practically used in Bayesian inference. Traditional
methods typically require priors with, for example, tractable
likelihood functions. In contrast, PFNs only require the
ability to sample from the prior, which can be specified im-
plicitly by a generative process or simulation. This enables
Bayesian modeling based on rich, domain-specific model-
ing assumptions that would be intractable with conventional
approaches.

PFNs are already being applied to domains as diverse as time
series forecasting (Verdenius et al., 2024; Hoo et al., 2025;
Bhethanabhotla et al., 2024), outlier detection (Shen et al.,
2024), Bayesian optimization (Müller et al., 2023c; Rako-
toarison et al., 2024), tabular regression (Hollmann et al.,
2025) and classification (Hollmann et al., 2023; Müller et al.,
2023a; Xu et al., 2024), learning curve extrapolation (Adri-
aensen et al., 2023), biology applications (Scheuer et al.,
2024; Ubbens et al., 2023; Czolbe & Dalca, 2023).

Position

This paper argues that Prior-Data Fitted Net-
works (PFNs) are a fruitful area of research, as
they will dominate most applications of Bayesian
prediction and create new ones in the future.

A central reason for this belief is the existing trend in the

domain where PFNs were first applied: tabular data. The
poster child of PFNs is TabPFN (Hollmann et al., 2023;
2025), a breakthrough in tabular machine learning, as the
first deep learning model that consistently outperforms clas-
sic methods like XGBoost (Chen & Guestrin, 2016) on small
tabular datasets with up to 10 000 examples, yielding better
performance in 5 seconds than any baseline reached with 4
hours of tuning (Hollmann et al., 2025). Moreover, PFNs
have enabled various new applications of Bayesian methods
for predictions in domains as diverse as RNA folding times
(Scheuer et al., 2024), computer-chip latencies (Carstensen
et al., 2024), and metagenomics data (Perciballi et al., 2024).
On a fundamental level, PFNs are uniquely positioned to
leverage abundant pre-training compute in data-scarce en-
vironments. However, realizing their full potential requires
addressing key open challenges, which we outline to guide
future research.

2. Background
In this section, we detail PFNs and place them into context.

2.1. Prior-data Fitted Networks

Prior-data Fitted Networks (PFNs) are pre-trained (prior-
fitted) to approximate the posterior predictive distribution
(PPD) and thus perform Bayesian predictions for a particular
prior. They directly approximate the PPD without instantiat-
ing a posterior over latents unlike most generic Bayesian pre-
diction methods. During pre-training, we assume that there
is a sampling scheme for the prior, such that we can sample
datasets of inputs and outputs: D ∼ p(D). This requirement
is easily satisfied for a large class of priors. In most cases
discussed in this paper, we model the prior over datasets us-
ing a prior p(ξ) over latent variables ξ. These variables can
take various forms, such as graphs, finite and infinite vectors,
among others, as well as mixtures of these (Hollmann et al.,
2023; Müller et al., 2022). We then sample the dataset as
D ∼ p(D|ξ), based on a sampled ξ. We repeatedly sample
synthetic datasets D = {(xi, yi)}i∈{1,...,n} ∼ p(D) and
optimize the PFN's parameters θ to make predictions for
(xtest, ytest) ∈ D, conditioned on the rest of the dataset
Dtrain = D \ {(xtest, ytest)}. The PFN qθ can be con-
sidered an approximation to the PPD. It accepts a training
set as well as a test input and returns a distribution over
outcomes for the test input. The loss in PFN pre-training is
the cross-entropy on the held-out examples

ℓ = E
{(xtest,ytest)}∪Dtrain

∼p(D)

[−log qθ(ytest|xtest, Dtrain)].

Minimizing this loss approximates the true posterior pre-
dictive distribution (PPD) (Müller et al., 2022; Goodfellow
et al., 2016), as it is the KL-divergence to the true PPD
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across datasets in the prior

ℓ = E
x,Dtrain
∼p(D)

[KL(p(·|x,D), qθ(·|x,D))] + C.

This loss can incorporate Bayesian models with latents
easily by sampling the latents ξ ∼ p(ξ) first and us-
ing the data likelihood to sample datasets based on them
p(D) ∼ p(D|ξ). Crucially, this prior-fitting phase is per-
formed only once for a given prior p(D) as part of algorithm
development. It can be viewed as an initial phase to learn
how to learn on new data, similar to meta-learning meth-
ods (Finn et al., 2017; Santoro et al., 2016) but trained on
synthetic instead of real-world data. For technical details of
the training procedure for the experiments in this position
paper, we refer to Appendix A.

2.2. Examples of PFN Priors

The crucial aspect of PFNs is the synthetic data generation
process, which implicitly defines the prior p(D). Below, we
detail a few illustrative examples.

Bayesian Neural Network Priors Multiple works (Müller
et al., 2022; 2023c; Hollmann et al., 2023) explored a
Bayesian neural network (BNN) prior, using a multi-layer
perceptron (MLP) architecture. The prior here is defined
over the BNN’s weights. The PFN trained on this prior
will approximate the predictions of a BNN, an MLP with
uncertainty over it’s weight and a prior N (0, σ2) over its
weights. Synthetic datasets are generated by:

1. Sampling the MLP weights ξ i.i.d. from a prior distribu-
tion, e.g., ξjk ∼ N (0, σ2).

2. Sampling input features xi i.i.d. from a simple distribu-
tion, e.g., U([0, 1]d).

3. Generating target values yi by passing xi through the
sampled neural network fϕ(xi).

This prior is very broad, encompassing all functions repre-
sentable by the chosen MLP architecture and weight prior.

Gaussian Process Priors Müller et al. (2022) and
Müller et al. (2023c) utilized Gaussian Process (GP) pri-
ors to approximate GPs that are Bayesian over their hyper-
parameters with PFNs, as they are a popular choice for
surrogate modeling in BO. This can be particularly useful
for Bayesian optimization (BO), as shown by Müller et al.
(2023c). As it is fully Bayesian over hyperparameters, it
involves a “meta” prior over the GP hyperparameters (e.g.,
length scales, kernel types, output scale). The generation
of one synthetic dataset D = {(xi, yi)} during pre-training
proceeds as follows:

1. Sample GP hyperparameters ξ from their respective
hyper-prior distributions (e.g., uniform over a range).

2. Sample input features xi ∼ U([0, 1]d).

3. Sample target values yi from the GP defined by the sam-
pled hyperparameters ξ: y ∼ N (0,Kξ), where Kξ is
the kernel matrix.

This process generates diverse datasets, reflecting a wide
range of possible underlying functions one might encounter
in, e.g., BO.

The TabPFN Prior While the previous two examples
tread close to priors used with other Bayesian methods,
TabPFN (Hollmann et al., 2023; 2025) employs a highly
sophisticated prior tailored to PFNs. This prior was build
to perform well for supervised learning on tabular data.
It is a prior over structural causal models (SCM), which
are computation graphs with linear connections, activation
functions in each node, noise in each node. The features and
target are the values read off at random nodes in the graph.
This is a prior unthinkable to approximate the posterior for
with traditional methods, as the latent involves a complex
graph and a large set of possible activation functions. Key
characteristics include:

A Learning Curve Prior Adriaensen et al. (2023) de-
signed a prior specifically to mimic learning curves observed
in machine learning training processes, capturing typical
shapes like power laws or sigmoidal functions.

A Time Series Prior Dooley et al. (2023) developed
a prior for time-series forecasting that includes common
temporal patterns, such as seasonality (e.g., weekly or yearly
cycles) and trends.

These examples show how domain knowledge can be en-
coded into the data generation process to create specialized
PFNs, but also broad models applicable to large domains.
The prior is implicitly defined by the algorithm that gener-
ates synthetic datasets. This declarative approach allows
practitioners to tailor the PFN’s inductive biases to the prob-
lem domain by controlling the characteristics of the data it
learns from during pre-training.

2.3. Relationship of PFNs to Traditional Bayesian
Prediction Methods

Traditionally, Bayesian inference and prediction are con-
ducted using methods that operate on a per-dataset basis and
do not amortize across datasets for a particular prior. Promi-
nent methods for supervised learning are the following:

i) Markov Chain Monte Carlo (MCMC, Neal, 1996; An-
drieu et al., 2003; Welling & Teh, 2011) methods, such
as NUTS (Hoffman et al., 2014), provide accurate but
sometimes very slow approximations of the posterior;
and

ii) Variational Inference (VI, Jordan et al., 1999; Wain-
wright & Jordan, 2008; Hoffman et al., 2013) methods
approximate the posterior using a tractable distribu-
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tion, such as a factorized normal distribution, which
inherently limits the exactness of such methods.

iii) Finally, Gaussian processes (GPs, Rasmussen &
Williams, 2006) are a method to allow predicting with
infinite-dimensional latents, namely all smooth func-
tions.

We believe that PFNs hold great promise to supersede these
methods for (supervised) prediction tasks, as they are not
only the only method that allows defining the prior declar-
atively as outlined in Section 3, but additionally the only
method that can do all of the following:

Simplicity of implementation MCMC and VI methods can
be hard to implement correctly. In contrast, PFNs simply
execute a forward pass on a relatively standard neural archi-
tecture, a highly standardized procedure that could even be
compiled to ONNX (developers, 2021).

Handle complex latent distributions PFNs can handle
probabilistic models with very complex latent distributions,
as the latents are never modeled explicitly. This contrasts
with MCMC, which can converge very slowly for large la-
tent dimensions, and VI, for which one needs to explicitly
parameterize the latent distribution, including interactions
between latent variables. For example, while a Bayesian
treatment of neural networks typically only aims for a poste-
rior distribution of the weights of a fixed architecture, PFNs
trivially allow defining a prior over architectures as well.
In MCMC, this would require advanced techniques like re-
versible jumps (Green, 1995), and in VI parameterizing a
variational posterior over different architectures can incur
various problems (Rudner et al., 2022).

Approximate a large class of priors Unlike GPs, PFNs,
as well as MCMC and VI, can be used for a large class of
priors. The prerequisites for PFNs are slightly different;
they require the ability to sample datasets from the prior,
whereas MCMC and VI typically necessitate the ability to
compute both the density of the data p(D|ξ) and the prior
probability p(ξ), where ξ denotes the latent variables.

Return Predictions without Sampling Unlike VI and
MCMC, PFNs and GPs model the predictive distribution
directly and thus do not need to sample latents from the
posterior to approximate it (Blundell et al., 2015).

We further think that PFNs hold great promise to supersede
other methods for (supervised) prediction tasks, as they can
effectively utilize neural network training compute, which
we believe to continue to scale exponentially and faster than
specialized inference compute due to the intense focus on it
in the industry (Epoch AI, 2024b;a; Liu et al., 2024).

Further, we believe that the amortization of compute across
tasks is still underexplored in most applications of Bayesian
inference: many areas could amortize compute to perform a

lot of different Bayesian predictions.

2.4. Relationship of PFNs to Other Amortized Deep
Learning Methods

While this paper focuses on PFNs, which work on datasets
and make predictions for test samples, PFNs are just part
of a larger development of using deep learning to amortize
probabilistic models on simulated data. Other prominent
candidates from this field include the following approaches.

Amortized Simulation-Based Inference Simulation-
based inference (SBI; Cranmer et al., 2020) performs
Bayesian inference for the latent parameter ξ that deter-
mines the behavior of scientific simulations. While simula-
tors allow sampling from the joint distribution p(ξ,x) of the
latent ξ and data x, SBI methods aim to obtain insight into
the typically multivariate posterior p(ξ|x∗), where typically
one specific dataset x∗ is considered. Recently, amortized
neural posterior estimation (NPE) methods have substan-
tially gained importance (Papamakarios & Murray, 2016;
Greenberg et al., 2019), where the goal is to approximate
p(ξ|x) with a model qθ(ξ|x) for arbitrary x ∼ p(x). In
NPE, the objective function is given by

E(ξ,x)∼p(ξ,x) [− log qθ(ξ|x)] . (1)

This is very similar to the PFN objective, but PFNs model
the simple posterior predictive instead of the posterior of
the latent ξ. Besides using NPE with normalizing flows
(Papamakarios, 2019; Wirnsberger et al., 2022), current
approaches utilize diffusion and flow matching (Gloeckler
et al., 2024; Wildberger et al., 2024) to model the latent’s
posterior. Unlike PFNs, SBI methods typically target high-
dimensional complex posterior distributions of parameters
within scientific simulations and are often closely moti-
vated by specific applications, for example in physics (Geb-
hard et al., 2025), or neuroscience (Lueckmann et al., 2019;
Manzano-Patrón et al., 2024).

Causal Discovery Beyond posterior distributions arising
from scientific simulations, amortized inference has been ap-
plied to causal structure learning (Lorch et al., 2022), where
an objective analogous to Equation 1 is used to learn the
structure of causal graphs based on synthetically generated
pairs of causal graphs and observational or interventional
data.

Amortized Symbolic Regression and Reasoning A dif-
ferent field that models latents by training on randomly
generated data, like the methods above, are neural symbolic
regression approaches. Here, the latent is a formula de-
scribing an input-output relation (Kamienny et al., 2022)
or a recurrence (d’Ascoli et al., 2022). The focus is thus
less on approximating the distribution, but rather on finding
a single formula that models the data at hand. Symbolic
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regression methods typically model the multi-dimensional
latent distribution using a transformer encoder (Kamienny
et al., 2022; d’Ascoli et al., 2022). Symbolic regression
is of utmost interest in many scientific applications. How-
ever, in practical applications where the prediction quality is
the main concern, direct modeling of the simple prediction
distribution in PFNs is an advantage.

Neural Processes Neural processes (NPs, Garnelo et al.,
2018a;b) are neural networks that function as stochastic
processes, materializing in a permutation invariance in both
training and testing samples. The neural network architec-
tures used for PFNs, as exemplified in Figure 1b, typically
also meet the criteria of conditioned stochastic processes,
thus of NPs. Additionally, PFNs have, similar to Conditional
NPs (Garnelo et al., 2018a) a fully factorized output distri-
bution treating each output separately, see Figure 1b. The
architectural similarity is particularly evident when com-
paring the original PFN architecture (Müller et al., 2022)
to the port of the PFN architecture to NP applications, the
Transformer NP (Nguyen & Grover, 2022).

While architecturally related to neural processes, PFNs are
a method to perform amortized inference with a particular
focus on designing data generation processes. Rather than
learning from fixed real-world datasets, like NPs, PFNs
learn-to-learn and thus approximate Bayesian prediction
from synthetic data sampled from a prior.

3. Scope and Limitations of PFNs
In this section we outline what PFNs already offer and what
their current limitations are.

Declarative programming of prediction algorithms
Unlike traditional prediction algorithms, such as random
forests (Breiman, 2001), that are defined imperatively, PFNs
enable the declarative definition of algorithms by specify-
ing prior distributions p(D) over datasets. This allows the
direct encoding of assumptions (e.g., Gamma-distributed
noise, linear relationships, imbalance or missing values) by
including corresponding examples during pre-training. This
declarative approach simplifies domain-specific model en-
gineering by allowing practitioners to directly incorporate
relevant dataset characteristics into the prior.

Unlimited data Real-world data tends to run out in many
domains compared to compute, which scales exponentially
(Epoch AI, 2024b;a). PFNs are thus a timely approach to
use more compute to improve performance without relying
on more real-world data. PFNs currently already excel on
small data problems, small Bayesian optimization problems
(Müller et al., 2023c) and tabular supervised learning (Holl-
mann et al., 2025), but one can expect that the area where
these models excels grows as the divide between compute
and real-world data availability widens.

No Possibility for Data Leakage As PFNs are pre-trained
on synthetic data, there is no possibility for data leakage to
occur. This can be of high relevance for domains, where
both PFNs and foundation models trained on real-world
data exist. We can see this advantage already playing out
for time series forecasting with foundation models, where
dataset leakage is a big problem, and a PFN is among the
top-performing models (Hoo et al., 2025).

Current Limitations Current PFNs also have downsides
for use in new applications, compared to traditional methods.
Here, we list currently known shortcomings and references
to ideas for how to address them.

1. PFNs can be less interpretable compared to traditional
methods, as they hide the latent from the user. See Sec-
tions 4.4 and 5.4 for approaches to alleviate this problem.

2. The support set of datasets and their generating distribu-
tions is typically limited and less well defined for PFNs
compared to other Bayesian methods. Therefore, it is
less clear what data they work well on. This problem can
be addressed in different ways, detailed in Section 5.

3. Currently, PFNs work best for smaller datasets and are
commonly outperformed on large datasets. While there
are potentially fundamental limitations in learning from
large-scale data in context, we believe most of the current
reasons are efficiency- and compute-related, which we
can make progress on as described in Section 6.1.

4. PFNs are not well positioned for tasks where fast infer-
ence of new test datapoints is crucial. Their inference
times tend to be much slower compared to traditional
methods in tabular settings, for example (Hollmann et al.,
2025). This is mostly an engineering challenge, though,
and not fundamental as we outline in Section 6.3.

5. Current PFN architectures exhibit specific modeling lim-
itations, which we address in Section 6.5.

In the following sections, we will explore exciting research
opportunities with PFNs.

4. PFN Extensions
4.1. Incorporating Extra Inputs

PFNs can be extended to accept additional contextual inputs
beyond the dataset itself, enabling adaptive behavior based
on user preferences and domain knowledge. The PFN then
learns to approximate the PPD p(y|x, D, ρ) conditioned on
this extra information ρ. Recent work has already demon-
strated the practical value of this approach: Müller et al.
(2023c) incorporated user beliefs about optima in black-box
optimization, Helli et al. (2024) used a distribution indicator
to handle distribution shifts, and FairPFN (Robertson et al.,
2024) achieved approximate counterfactual fairness (Kusner
et al., 2017) through protected feature inputs.
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Algorithm 1 Latent Prior and Sampling Functions
1: function latent prior()
2: w ∼ N (0, I)
3: return w
4: end function
5: function sample single example(w)
6: x ∼ N (0, I)
7: y ∼ w⊤x+N (0, 0.1 · I)
8: return (x, y)

9: end function

This flexibility opens exciting possibilities for user-friendly
prediction systems. Promising input types include noise
levels, functional constraints (e.g., homogeneity), extrema
characteristics, complexity and smoothness parameters, and
feature-output relationship specifications.

4.2. An In-Context Interpreter

Building upon the additional user inputs presented above,
we propose to upgrade PFNs to be in-context interpreters for
probabilistic model definitions. Here, users can specify their
knowledge through code that implicitly defines a prior over
datasets p(D). The PFN models the PPD p(y|x, D, ρ) con-
ditioned on a program ρ specified at prediction time. This
moves PFNs beyond fixed priors to become in-context in-
terpreters for probabilistic programming languages (PPLs).
As a first step, this could be a PPL for supervised learning
with a latent-based prior, as exemplified in Algorithm 1. A
latent prior() function specifies how global latents are sam-
pled, and a sample single example() function describes how
to use the dataset-level latent to generate one sample. In
Algorithm 1, we use this format to define a linear regression
prior. The training process would involve sampling a large
set of random programs ρ along with datasets sampled with
them and amortize over different programs.

Current PFNs simplify the definition of prediction algo-
rithms by specifying them as data generation mechanisms
and then training on these mechanisms. The proposed ap-
proach simplifies this further by removing the training step,
decreasing turnaround times in algorithm development dra-
matically. This might, for example, allow the definition of a
new TabPFN (Hollmann et al., 2025) in a single prompt.

4.3. Bayesian Optimization via Reinforcement Learning

Bayesian Optimization is a blackbox optimization technique
with the goal to find a maximal point of an unknown function
f after K queries xk, k < K. The goal commonly is
defined as maximizing g =

∑
0<k≤K E[f(xk)]. The key

idea of Bayesian optimization is to assume the function
was sampled from a known prior p(f). Even under this
assumption, though, approximating the optimal next query
for queries more than a few steps away from K is infeasible

with current methods (Garnett, 2023).

The first work on PFNs for Bayesian optimization (Müller
et al., 2023c) attempted to approximate Bayesian optimiza-
tion by stacking lookahead models. However, this approach
involves training numerous models, each relying on the
output of the preceding model, which tends to degrade per-
formance with an increasing number of steps. We believe
that there is much to gain by taking inspiration from the
advancements in “reasoning” language models (Kimi et al.,
2025; DeepSeek-AI et al., 2025) and trying to use simple
reinforcement learning (Sutton & Barto, 2018) to teach the
model to trade-off exploration and exploitation on prior
functions using the goal g summed only over future steps as
reward, after an initial classical PFN training phase.

4.4. Latent Prediction

PFNs, unlike other amortized inference methods, do not
model the latent. This is an advantage for most predic-
tion settings, as predictive distributions are commonly one-
dimensional, while the latent is high-dimensional. The draw-
back of this direct approach is that one can only access the
model's internal posterior representation via its predictions.

While PFNs were already shown to effectively learn poste-
rior distributions over latent variables (Reuter et al., 2025),
there might be positive transfer between both tasks. And
users of prediction models could benefit from understanding
the model's reasoning better through latents. Most priors
will have a complex latent, but an auto-regressive model-
ing approach, as proposed by d’Ascoli et al. (2022) and
Kamienny et al. (2022), can still model that. For modeling
graph-based latents, like in TabPFN, or real-valued vector-
based latents, one can consider the methods proposed by
Lorch et al. (2022) and Reuter et al. (2025), respectively.
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Figure 2. We show the average standard deviation of 100 datasets
sampled from our prior, each normalized by its final standard
deviation. We can see that the standard deviations tend to shrink in
the first few steps of each roll-out. This should not be the case for
a Bayesian predictor, but it stabilizes after some steps, as expected.
Further, the deviations in standard deviation are small in absolute
terms, compared to an average standard deviation of 0.21.
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5. Understanding PFNs
It was previously shown that PFNs and similar ICL setups
can perform Bayesian prediction on many priors (Müller
et al., 2022; Bai et al., 2024). Still, the behavior of PFNs is
not clear in many circumstances, and understanding their
behavior in general is crucial for researchers to trust them.

5.1. Martingale Perspective

The most relevant question in understanding PFNs, in our
opinion, is which features of true Bayesian predictions they
fulfill and which they don't in which circumstances. Re-
cently, the Martingale property (Falck et al., 2024) was
proposed to do this for in-context learners. The Martingale
property states that the models’ posterior prediction distri-
bution approximation qθ(y|x,D) is roughly equal to the
approximation after sampling from their output distribution
n times sequentially, where we condition on the previous
samples:

q′θ(y|x,D) ≈ Exi∼p(x); yi∼p(yi|xi,D∪{(xj ,yj)}0<j<i)

[qθ(y|x,D ∪ {(xj , yj)}0<j<n)].

Both should approximate the PPD, so both should be
roughly equal. Falck et al. (2024) found that language mod-
els do not fulfill this property well. We started an exploration
on this in Figure 2, where we can see that models do on
average tend to slightly decrease their average standard de-
viation for the first few steps in violation of the Martingale
property, but stabilize after that, fulfilling the Martingale
property. We show some example trajectories in the Ap-
pendix in Figure 4. While this is only a very small-scale
experiment, we include it to show the kind of directions one
might take to better understand PFNs.

5.2. Limit Behavior

A crucial question is under what conditions PFNs can learn
from additional data, particularly when it is outside their
prior. Nagler (2023) published an initial paper examining
some PFN architectures at scale, revealing potential for
PFN architectures to surpass current large-scale approaches,
warranting further exploration.

5.3. Impact of Prior Density

PFNs approximate Bayesian prediction, which fundamen-
tally requires the dataset to have support in the prior. While
PFNs generally inherit this dependency, they sometimes
can, similar to other neural networks, generalize beyond
the prior's support (Hollmann et al., 2023). However, this
generalization capability is complex: PFNs might yield poor
approximations even within the support, as they only ap-
proximate Bayesian predictions. Understanding when and
why these approximation failures occur remains an open

challenge.

Further of interest is analyzing how the sample-generating
distribution's support of a specific dataset affects prediction
quality. This relates to a broader phenomenon: while exact
Bayesian inference converges to a nearby (in KL-div.) but
necessarily wrong latent (Burt et al., 2020), neural networks
have demonstrated an ability to gracefully model distribu-
tions that are similar to, but distinct from, their training
distributions (Lake & Baroni, 2023; Raventos et al., 2023).

5.4. Interpretability of PFNs

PFNs present unique interpretability challenges compared
to MCMC or VI, or also established domain-specific al-
gorithms, such as random forests or linear regression for
tabular ML, as they don't explicitly instantiate interpretable
latents. We identify two key dimensions for improving PFN
interpretability in future research.

Dataset-Level Interpretability focuses on explaining in-
dividual predictions by understanding how the prior and
observed data interact. Key approaches include:

• Based on the knowledge available about the latent ξ gen-
erating the dataset, train the PFN to predict the impact of
features on predictions.

• Counterfactual analysis through systematic dataset modi-
fications, e.g., computing Shapley values (Rundel et al.,
2024; Muschalik et al., 2024).

• Allowing PFNs to return an approximation of the latent
posterior it uses internally, as outlined in Section 4.4.

• A gradient-based assessment of the importance of individ-
ual data points on predictions. While this would be very
costly or not possible for traditional methods, for PFNs
a single backpropagation is enough to obtain data point
importance indicators.

Mechanistic Interpretability examines how PFNs inter-
nally process priors and datasets not based on approxima-
tions, but by analyzing the model’s state on particular inputs.
Directions worth further exploration include:

• Analyzing internal representations of function classes and
noise models, e.g., the question whether there are neurons
representing the mean of latent variables or labels.

• Studying the attention distributions for datasets to under-
stand how PFNs gather information.

• Developing architectures with interpretable components.
• Creating verification methods for properties like calibra-

tion.
• Finding commonalities and differences in the way PFNs

handle data across different priors, seeds, architectures
and training steps.
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Figure 3. On the left (top), we outline our prior, sampling a probability p for heads (green) and generating samples by coin flips. At test
time (left, bottom), we condition on varying counts of coins displaying heads. On the right, we can see that the transformer-based PFN
model is not able to approximate the posterior, as it would need to count the number of examples in the context, which are all identical.

6. Improving PFNs
The previous sections explored how we can extend and
understand PFNs. In this section, we want to explore how
we can improve current PFNs.

6.1. Scaling to More Samples

Despite the fact that current PFNs already handle up to
10,000 examples (Hollmann et al., 2025), scaling to larger
datasets presents two main challenges.

Compute The quadratic scaling of transformer-based
architectures with sample size can be mitigated with meth-
ods such as the Perceiver (Jaegle et al., 2021), state-space
models (Gu & Dao, 2023), or linear attention (Wang et al.,
2020a; Qin et al., 2022), which reduce the scaling to linear.
While training models on more samples likely necessitates
training on more datasets, TabPFN v2’s pre-training effi-
ciency (2,700 GPU hours) indicates a lot of potential for
further computational scaling (Hollmann et al., 2025).

Prior Larger datasets generally diminish the influence
of the prior in Bayesian models. This phenomenon occurs
as the the posterior becomes more peaked with more evi-
dence, due to the data likelihood dominating the influence
of the prior as outlined for PFNs by Müller et al. (2024).
Several factors suggest that this won’t limit the effectiveness
of PFNs soon, though. i) First, the success of ensembles in
large-scale vision models (Kondratyuk et al., 2020; Wang
et al., 2020b) hints at wider posteriors to yield benefits in
large-scale settings. These ensembles approximate a pos-
terior over weights that is not a dirac-delta, but wider. ii)
Secondly, tree-based methods in large-scale tabular data
(McElfresh et al., 2023) tend to outperform neural networks.
Even though the neural networks are powerful and very
likely able to fit the training set perfectly. This hints at the
fact that the prior (inductive bias) underlying tree-based
methods is better than that of neural networks, thus hint-
ing that priors remain important when scaling the number
of samples. For larger PFNs, we recommend using more
general priors that support complex functions, enabling mod-
eling of intricate functions with increased data.

Ensembling and fine-tuning PFNs post-pre-training offers
further scalability (Thomas et al., 2024; Breejen et al., 2023;
Feuer et al., 2024a), presenting a promising research avenue.
Especially, fine-tuning might be a way to combine the gen-
erality and stability of PFNs with domain knowledege, in
domains where a lot of related datasets are available, like
forecasting or tabular prediction.

6.2. Focus Pre-Training on Hard Datasets

Presently, PFNs are trained directly by sampling from the
prior. Most priors (Hollmann et al., 2023; Rasmussen &
Williams, 2006) favor simple functions, aligning with Oc-
cam’s razor principles. The probability a latent holds is
proportional to the compute spent learning the datasets it
represents, and thus common trained PFNs focus predomi-
nantly on simple datasets.

To address this, importance sampling could be employed.
PFN training allows precise control over data generation, en-
abling hyperparameter adjustments in a well-defined param-
eter space, unlike when training on real-world data. A sec-
ondary model that accommodates distribution shifts, such
as Drift-resilient TabPFN (Helli et al., 2024), could estimate
gradient magnitudes across different prior settings, guiding
a proposal distribution proportional to these magnitudes.
Another proposal distribution source could be the model’s
performance improvements from training on specific prior
regions; regions with greater improvements may yield fur-
ther advancements. Additionally, given that language model-
ing faces similar issues, advancements in training efficiency
through data direction could be applicable.

6.3. Fast Inference

PFNs face slow inference times due to their architecture
combining dataset fitting with prediction. Three main ac-
celeration approaches have emerged: caching training set
states with multi-query attention (Hollmann et al., 2025;
Shazeer, 2019), distilling datasets into fewer tokens (Feuer
et al., 2024b), and using hypernetworks to predict an infer-
ence network (Müller et al., 2023b). Notably, caching can
be viewed as predicting network weights. The caching in
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Hollmann et al. (2025), for example, effectively functions
as a hypernetwork predicting a transformer with attention
across features. In detail, this predicted transformer has an
additional sublayer per layer, though, which contains a set
of two-layer MLPs using attention as activation function,
whose outputs are concatenated and linearly projected. Fu-
ture work should focus on architectural modifications for
efficient caching and exploring offline approximation tech-
niques like sparse attention through nearest neighbor search
(Johnson et al., 2019).

6.4. Adaptive Compute Exertion

Not all predictions necessitate equal computational effort.
Recent advancements in language models (Wei et al., 2022;
DeepSeek-AI et al., 2025; Kimi et al., 2025) suggest PFNs
can be enhanced for multi-step reasoning through: (i) iter-
ative sampling with intermediate points (see Section 5.1)
ideally situated between the query point and the training
set, (ii) pre-training with variable-length causally masked
tokens (Fan et al., 2019), incorporated as needed during
inference, and (iii) reinforcement learning to optimize the
computation-accuracy trade-off (DeepSeek-AI et al., 2025).
This may also involve predicting a discretized “reasoning”
path, offering insights into discrete “reasoning” processes.

6.5. Architectural Limitations

While PFNs aim to model Bayesian predictions (PPDs) for
any prior, current architectures face two key limitations.

First, encoder-only transformers without positional embed-
dings struggle to count identical examples (Barbero et al.,
2024; Yehudai et al., 2024). This limitation is clearly
demonstrated in Figure 3, where the original PFN archi-
tecture (Müller et al., 2022) fails to process repeated in-
puts correctly. While TabPFN v2 (Hollmann et al., 2025)
offers a workaround using inference-time noise features,
more robust architectural solutions remain unexplored. A
promising first step could be incorporating zero attention
(add zero attn in PyTorch; Paszke et al., 2019).

Second, PFNs struggle with heterogeneous data distribu-
tions. Specifically, they perform poorly when mixing well-
behaved centered distributions with heavy-tailed features,
requiring prior knowledge of feature distributions for pre-
processing. This limitation is particularly problematic for
tabular prediction, where feature scales are often unknown
beforehand. Future generations of (Tab)PFNs would greatly
benefit from a novel encoder that automatically adapts to
varying feature distributions.

7. Alternative Views
View 1: Traditional Bayesian Methods are Supe-
rior Critics may argue that traditional Bayesian meth-

ods, such as MCMC and VI, remain the gold standard for
Bayesian inference due to their interpretability, access to the
latent, and theoretical foundations. Furthermore, MCMC is
correct in the compute limit.

Response: While MCMC and VI still dominate for
Bayesian inference in general, we do not believe they will
do so much longer for prediction tasks, for the reasons listed
in Section 2.3.

View 2: PFNs Do Not Scale Critics may argue that PFNs
are constrained by their quadratic scaling in sample size.
This could prevent their application in domains requiring
larger datasets, where methods like neural networks trained
with stochastic gradient descent (or tree-based methods)
may be more suitable.

Response: First, other Bayesian methods typically scale
even worse (see Section 2.3), and multiple promising ap-
proaches exist to address PFNs’ scaling limitations (see
Section 6.1). We do believe, though, that PFNs will not be
the solution to all machine learning problems. Large-scale
problems, such as language modeling, will likely always
rather profit from a non-Bayesian treatment.

View 3: PFNs Lack Interpretability Critics may ar-
gue that PFNs sacrifice the interpretability of traditional
Bayesian methods by not explicitly modeling the latent.

Response: While this poses a challenge for PFNs, Sec-
tion 4.4 outlines possibilities for modeling the latent space,
and Section 5.4 outlines numerous promising approaches
to enhance PFN interpretability, including dataset-level and
mechanistic interpretability methods. Moreover, as dis-
cussed in Section 3, PFNs’ declarative nature allows prac-
titioners to explicitly encode domain knowledge through
prior specification, providing a different but valuable form
of interpretability.

8. Conclusion
In this position paper, we argue that PFNs represent a
transformative approach to Bayesian prediction. By en-
abling declarative programming through prior specifica-
tion and synthetic pre-training, PFNs make sophisticated
Bayesian methods both accessible and computationally effi-
cient. Their effectiveness across domains, from tabular to ge-
netics data, and particular strength in data-scarce scenarios
position them as a robust alternative to traditional Bayesian
methods and a promising avenue towards probabilistic foun-
dation models. While challenges remain, promising re-
search directions like in-context interpreters and latent pre-
diction methods suggest that PFNs will become increasingly
central to probabilistic machine learning.
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A. Experimental Setup
We conducted all experiments using the original PFN architecture (Müller et al., 2022). A grid search identified the model
with the best final training loss. We searched across 4 and 8 layers, batch sizes of 32 and 64, Adam learning rates of 0.0001,
0.0003, and 0.001, embedding sizes of 128, 256, and 512, and step counts of 100 000, 200 000, and 400 000. Training set
sizes were uniformly sampled from 1 to 100.

A.1. Priors

GP Prior for Section 5 For the analysis on the Martingale property in Section 5, we utilized the standard GP proposed
by Müller et al. (2022) with an RBF-Kernel, length scale of 0.1, output scale of 1.0, and noise standard deviation of 10−4.
Inputs were uniformly sampled between 0 and 1.

Coin Flipping Prior for Section 6.5 To illustrate the PFN architecture’s limitation in counting duplicated samples, we
trained a PFN on random coin flips in Section 6.5. This simple prior asks the model to predict a coin's probability of landing
heads, where a coin with a different head probability uniformly chosen from {0.01, 0.02, . . . , 0.99} is sampled to generate
each dataset. As shown in Figure 3, when feeding only samples that landed heads, the neural network’s prediction remains
static despite the posterior’s expected evolution to assume a higher probability of head. This demonstrates the network’s
failure to update its beliefs with new evidence, as it can't count duplicated samples.

B. Martingale Properties of PFNs
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Figure 4. We train a model on two distinct classes of functions, sines and sloped lines, only (left). It not only learns fit both function
classes well (center), but also learns to model slightly sloped sines, when prompted with a data from a sloped sine.
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