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ABSTRACT

Hyperspectral reconstruction (HSR) from RGB images is a fundamentally ill-posed
problem due to severe spectral information loss. Existing approaches typically rely
on a single RGB image, limiting reconstruction accuracy. In this work, we propose
a novel multi-image-to-hyperspectral reconstruction (MI-HSR) framework that
leverages a triple-camera smartphone system, where two lenses are equipped with
carefully selected spectral filters. Our configuration, grounded in theoretical and
empirical analysis, enables richer and more diverse spectral representations than
conventional single-camera setups. To support this new paradigm, we introduce
Doomer, the first dataset for MI-HSR, comprising aligned images from three
smartphone cameras and a hyperspectral reference camera across diverse scenes.
We show that the proposed HSR model achieves consistent improvements over
existing methods on the newly proposed benchmark. In a nutshell, our setup allows
30% towards more accurately estimated spectra compared to an ordinary RGB
camera. Our findings suggest that multi-view spectral filtering with commodity
hardware can unlock more accurate and practical hyperspectral imaging solutions.

Figure 1: Proposed low-cost mobile spectral imaging system that transforms a standard smartphone
into a spectrally diverse capture device via external filters on auxiliary cameras. This configuration
enables simultaneous, multi-channel acquisition without internal hardware modification, supporting
practical and scalable hyperspectral reconstruction.

1 INTRODUCTION

Hyperspectral imaging provide dense spectral measurements at each spatial pixel forming a 3D
cube IHS ∈ Rh×w×n, where n ≫ 3. This enables fine-grained analysis of material properties in
applications ranging from remote sensing (Xu et al., 2016), to medical diagnostics (Wang et al.,
2023), to historical preservation (Kim et al., 2011), to ISP improvement (Zhou et al., 2024; Glatt

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

et al., 2024), to food quality assessment (Sun et al., 2024; Ahmed et al., 2024). However, acquiring
such high-dimensional data typically requires hardware expensive, bulky, and often reliant on time-
consuming scanning thus fundamentally limiting the usability of hyperspectral imaging in dynamic
or consumer settings.

An increasingly studied alternative is hyperspectral reconstruction (HSR): recovering IHS from an
RGB observation IRGB ∈ Rh×w×3 captured via a sensor with spectral sensitivity matrix S ∈ R3×n

under noise N:
IRGB(x, y) = S · IHS(x, y) + N(x, y).

This inverse problem is highly ill-posed and advances in deep learning-based HSR (Cai et al., 2022;
Zhao et al., 2020), reconstructing IHS from a single RGB view remains fundamentally limited by the
low spectral observability.

Several efforts have aimed to improve this observability. Learned or optimized multispectral filter
arrays (MSFAs) (Wu et al., 2019), end-to-end spectral sensitivity learning (Nie et al., 2018), and
joint sensor-network co-design (Fu et al., 2018) have all been proposed. However, these methods
assume control over sensor hardware and manufacturing thus making them impractical for scalable
or consumer-level deployment.

One underexplored but promising path is to leverage the multi-camera systems found in modern
smartphones. These devices already include multiple rear cameras with different lenses and spectral
sensitivities. In principle, such a setup can be treated as a low-cost, multi-spectral capture system thus
capable of observing a scene through multiple, distinct sensitivity matrices. However, prior works on
leveraging multiple cameras (Sharma et al., 2023; Oh et al., 2016) do not tackle with unavoidable
image misalignment.

Can we turn a multi-camera smartphone into a compact, spectrally diverse imaging system, without
altering its internal hardware? Our key insight is that by modulating the spectral response of the
auxiliary cameras using carefully chosen external filters, we can create an imaging system that allows
richer spectral representations. Unlike synthetic MSFAs or custom hardware, our approach requires
no internal modification and enables real-time, parallel acquisition. Critically, this setup is easy to
deploy, manufacturable at scale, and compatible with existing mobile infrastructure.

We select filters using spectral information loss minimization with respect to a prior hyperspectral
distribution. The resulting setup produces spatially misaligned but spectrally rich multi-view data
thus posing a new fusion problem that we address via alignment-aware learning. An overview of
our physical configuration is shown in Fig. 1, which illustrates how external filters are applied to the
auxiliary lenses of a standard smartphone to create a spectrally diverse input set. The combination
of low-cost physical augmentation and learning-based reconstruction represents a practical path
toward deployable hyperspectral imaging in unconstrained environments. We propose a complete,
low-cost pipeline for multi-image-to-hyperspectral reconstruction (MI-HSR) using a filter-modified
smartphone. Specifically, the contributions are three-fold:

• A novel smartphone-based acquisition system that uses two custom spectral filters over
auxiliary cameras, converting a consumer-grade smartphone into a 9-channel imaging device.
We analyze and justify our filter choices via information-theoretic criteria. To the best of our
knowledge, such a configuration has not been previously explored in HSR literature. Our
system significantly outperforms RGB-only and naive multi-view baselines.

• The Doomer dataset, the first benchmark for MI-HSR. It contains 4 captures per scene: three
from each of smartphone’s camera and the fourth from the hyperspectral camera.

• A principled reformulation of transformer-based HSR architecture for our setting, showing
that spatial-first attention enables implicit alignment and effective fusion of misaligned
inputs across camera viewpoints.

2 RELATED WORK

Low-cost multispectral imaging Numerous approaches have aimed to capture multispectral or
hyperspectral information without expensive hardware. Early work by Helling et al. (2004) employed
a grayscale camera with a rotating filter wheel, while Valero et al. (2007) used an RGB camera with
three interchangeable filters. Oh et al. (2016) captured scenes with three different cameras, leveraging
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the variation in their spectral sensitivities. More recently, Sharma et al. (2023) demonstrated that
consumer mobile devices with both RGB and NIR sensors can achieve extended spectral capture
(400–1000 nm). Although these systems reduce costs, they either involve long capture times or
assume no misalignment between successive captures.

Hyperspectral reconstruction from RGB Traditional HSR methods model spectra using sparse
coding (Arad & Ben-Shahar, 2016), dictionary learning (Aeschbacher et al., 2017), or manifold
embeddings (Jia et al., 2017), based on the low-dimensional structure of hyperspectral data and the
rarity of metamers (Foster et al., 2006). These approaches are computationally efficient but often
lack the capacity to incorporate global context from the input image, making them less robust to
complex natural scenes. Recent methods based on deep learning have achieved significant advances,
particularly those developed through the NTIRE spectral reconstruction challenges (Arad et al.,
2018; 2020; 2022). Early deep models used CNNs (Zhao et al., 2020; Shi et al., 2018; Xiong
et al., 2017; Zhang et al., 2020; Stiebel et al., 2018; Galliani et al., 2017), while newer transformer-
based approaches like MST++ (Cai et al., 2022) and MSFN (Wu et al., 2024) introduced attention
along spectral or spatial dimensions. However, nearly all research relies on synthetic RGB inputs
rendered from hyperspectal images (HSIs) using color matching functions (CMFs), assuming perfect
alignment and access to camera parameters. These assumptions do not hold in practice, limiting
model generalizability. We address these limitations training and evaluating on real-world data with
acquisition artifacts and misalignment.

Hyperspectral datasets Several datasets support HSR research. Early datasets like CAVE (Ya-
suma et al., 2010) and Harvard (Chakrabarti & Zickler, 2011) provided controlled hyperspectral
measurements. Later datasets such as ICVL (Arad & Ben-Shahar, 2016), KAUST (Li et al., 2021),
and ARAD_1K (Arad et al., 2022) focused on enabling data-driven HSR methods. These datasets
contain either radiance or reflectance data, but most lack real RGB images and instead simulate RGB
via CMFs, which fails to capture the characteristics of camera pipelines. Moreover, they often assume
perfect alignment, which does not hold in practical settings. Recent datasets like BeyondRGB (Glatt
et al., 2024) and MobileSpec (Zhou et al., 2024) address some of these issues by including real RGB
captures. BeyondRGB includes color charts and lightsource spectrum estimation, while MobileSpec
offers aligned RGB-HSI pairs. However, they still face trade-offs between alignment, diversity,
and color reference availability.We build on these efforts by introducing Doomer dataset with real
RGB images, misaligned hyperspectral data, and in-scene color references thus enabling realistic
reconstruction under natural capture conditions.

Handling misalignment Misalignment between inputs and ground truth is a well-known challenge
in video and reference-based super-resolution tasks. Optical flow (OF) (Kim et al., 2018; Chan
et al., 2021), deformable convolutions (Tian et al., 2020; Wang et al., 2019), and attention mecha-
nisms (Wang et al., 2021) have been proposed to mitigate this. In our context, misalignment also
arises due to ground truth HSIs being not spatially aligned with the RGB input. Zhang et al. (2021)
addressed this by warping ground truth toward the input using OF, enabling pixel-level evaluation.
Elezabi et al. (2024) proposed contextual losses and pseudo-aligned inputs as training strategies. We
adopt the interpretable and evaluation-friendly approach (Zhang et al., 2021) of warping the ground
truth to the input using OF, allowing accurate pixel-wise supervision and metric computation.

3 PROPOSED IMAGING SYSTEM

3.1 SYSTEM OVERVIEW

Our goal is to improve HSR by increasing the number of spectrally distinct measurements captured
simultaneously, using only consumer-grade hardware. Rather than relying on custom sensor arrays or
coded optics, we build upon multi-camera smartphones, which are already equipped with multiple
rear-facing cameras featuring different lenses and spectral sensitivity functions (SSFs).

To amplify spectral diversity, we augment the auxiliary cameras with external filters. As illustrated
in Fig. 1, this converts each RGB camera into a spectrally modulated sensor. The resulting device
captures nine distinct spectral channels: three from each RGB camera, modified by its filter without
requiring scanning or internal hardware changes.
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Dataset # scenes Spectral data Color reference Spectral sampling
Range (step), nm

Corresponding
RGBs

CAVE (Yasuma et al., 2010) 32 Reflectance Color chart or no 400–700 (10) simulated BMP
Harvard (Chakrabarti & Zickler, 2011) 79 Radiance No 400–720 (10) No

ICVL (Arad & Ben-Shahar, 2016) 200 Radiance Color chart or no 400–1000 (10) simulated JPEG
KAUST (Li et al., 2021) 409 Reflectance White patch 400–730 (10) No

ARAD_1K (Arad et al., 2022) 950 Radiance No 400–700 (10) simulated JPEG
Beyond RGB (Glatt et al., 2024) 1680 Radiance Color chart 380–730 (20) 2× real RAW
MobileSpec (Zhou et al., 2024) 200 Radiance No 400–1000 (10) real RAW

Doomer
(proposed) 143 Radiance Gray ball 400–730 (10) 3× real RAW

Table 1: Comparison of existing hyperspectral datasets. Our proposed Doomer dataset uniquely
offers real multi-view RGB images with spectral filters, misalignment, and in-scene gray reference
under diverse conditions.

Formally, let Si ∈ R3×n be the SSF of camera i, and fi ∈ [0, 1]n the spectral transmittance of the
filter applied to that camera. The effective per-camera response becomes Si ⊙ fi, and the overall
system response is:

SF =
[
(S1 ⊙ f1)

⊤; . . . ; (Sk ⊙ fk)
⊤]⊤ ∈ R3k×n,

where F = [f⊤
1 ; . . . ;f⊤

k ] is the filter configuration and ⊙ is element-wise multiplication. In our
prototype, k = 3, with one unfiltered camera (f1 = (1, . . . , 1)⊤) and two filtered cameras. This
design simplifies dataset collection (Sec. 4) while still significantly enriching spectral representations.

This configuration has two practical advantages. First, all channels are captured simultaneously under
natural illumination, making it suitable for dynamic scenes. Second, it relies entirely on off-the-shelf
hardware components. However, as each camera has a distinct physical position, the resulting images
are spatially misaligned. This necessitates learning-based alignment modules, which we incorporate
into our reconstruction pipeline (Sec. 5).

3.2 FILTER SELECTION VIA SPECTRAL UNCERTAINTY MINIMIZATION

The effectiveness of our imaging system critically depends on the choice of spectral filters. Since we
train on fully real-world data, the filter configuration must be fixed prior to data collection.

Given a library of N = 65 candidate filters available in our lab, we exhaustively evaluate all 65× 64
ordered filter pairs for the two auxiliary cameras. The optimal pair should minimize spectral ambiguity
— i.e., the uncertainty in the latent spectrum r ∈ Rn given a measurement c = SF r+ n, where n is
sensor noise.

Following Reutskii & Ershov (2024), we use the expected conditional variance of the spectrum as
our selection criterion:

v(F ) = Ec [tr Varr(r | c)] .

This criterion reflects the average spectral uncertainty remaining after observing c. Lower v(F )
implies more informative measurements and improved reconstructability.
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Figure 2: Filters selected for
Tele and Wide cameras.

To compute this metric, we sample spectra r from a uniform distri-
bution over pixels in a publicly available hyperspectral dataset (Li
et al., 2021). We use precise SSFs for our smartphone cameras
and spectrophotometer-measured filter transmittances (see Sec. A.2
for details). The final filter pair (Fig. 2) is selected as the one that
minimizes v(F ).

To verify the proposed filter selection strategy, we trained the MI-
HSR method in simulated settings with 12 different filter sets. See
Sec. A.3 for details.
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4 DOOMER DATASET

Overview. To support training and evaluation for the MI-HSR task introduced in Sec. 3, we collect a
new dataset, which we call Doomer1. Existing hyperspectral datasets are not suited for our setup:
none provide spatially misaligned multi-view RGB observations. Furthermore, no existing dataset
aligns with our specific hardware configuration (a triple-camera smartphone with custom spectral
filters), making new data collection a necessity.

Doomer contains 143 real-world scenes captured using a Huawei Mate 40 Pro smartphone equipped
with Main, Tele, and Wide cameras, along with a Specim IQ hyperspectral camera for ground truth.
In each scene, we record three smartphone RAW images, two with custom spectral filters and one
unfiltered as well as a 111-band (400 – 730 nm) hyperspectral image. Example captures are shown in
Fig. 3.

Scenes include a mix of indoor and outdoor environments under varying illumination conditions
(e.g., halogen and LED lighting indoors; overcast and sunny weather outdoors), and span a range of
objects including food, printed material, architectural surfaces, and color calibration charts. Each
scene includes a gray ball reference for future work on illumination estimation. While the gray ball is
visible in Wide and Main cameras, it falls outside the Tele field of view and is cropped out during
preprocessing. Non-preprocessed versions will be included in the public release.

Main Wide HSITele Main Wide HSITeleMain Wide HSITele Main Wide HSITele

Figure 3: Sample scenes from the Doomer dataset. Smartphone images are rendered to sRGB using
device-specific color matrices; hyperspectral images are rendered using CIE RGB CMF.

Gray ball reference makes the proposed dataset potentially useful in research on illumination estima-
tion, automatic white balance and color space transform (see Sec. A.4 for more detailed proposals).

Capture setup The data acquisition rig consists of a Specim IQ hyperspectral camera, a Huawei
Mate 40 Pro smartphone mounted in a 3D-printed case with slots for spectral filters and a gray
reference sphere (VFX ball).

The entire system is mounted on a tripod, with the phone positioned to rotate along a vertical axis
for alternating captures (Fig. 4). This design allows the smartphone and hyperspectral camera to
image scenes from nearly identical viewpoints, minimizing parallax and occlusion. The gray ball is
connected to a rigid rod that allows to regulate the position of the ball in the scene.

Image acquisition proceeds sequentially: first, all three smartphone cameras capture RAW images;
then, the smartphone case is moved to make hyperspectral image. Most smartphone settings (e.g.,
ISO, shutter speed) are controlled automatically, except in scenes with poor red signal where we
manually adjusted Tele exposure to avoid excessive noise.

Preprocessing pipeline Each four-image scene group (three RGB + one HSI) undergoes standard-
ized preprocessing (see Sec. A.4). We also normalize field of view and resolution across sensors.
Specifically, we estimate pairwise homographies between each RGB image and the Tele view using
SIFT keypoints and RANSAC. All images are then warped to the Tele frame and cropped accord-
ingly. When automatic registration fails, manual alignment is used. Despite this correction, residual
geometric misalignment remains due to parallax and non-planar scene structure — motivating our
use of alignment-aware HSR models. Finally, all images are downsampled to match the hyperspectral
resolution, originally 194×259 cropped to 192×256 for convenience, and spectral grid is resampled
to conventional 400–730 nm, n = 34, to optimize computational costs.

1The name Doomer is inspired by the subcultural aesthetic: most scenes were collected under gloomy or
overcast weather conditions, in contrast to the brightly lit existing datasets.
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Wide

Tele

Main
(a) Hyperspectral mode (b) Mobile multi-camera mode (c) Filters

Specim IQ

Huawei Mate 40 Pro

Illumination

reference

Figure 4: Capture setup for the Doomer dataset. (a) Smartphone holder rotated to allow hyperspectral
capture via Specim IQ. (b) Smartphone repositioned for simultaneous multi-camera RGB capture. (c)
External spectral filters mounted on Tele and Wide cameras to induce spectral diversity.

5 METHOD

The task of MI-HSR involves predicting a hyperspectral image aligned to a target viewpoint (the
Main camera), given RGB images from multiple spatially offset sensors:

IMain, ITele, IWide ∈ Rh×w×3.

This setup introduces two key challenges: (i) the input views are misaligned due to differing camera
geometries, and (ii) the available hyperspectral supervision IHS ∈ Rh×w×n corresponds to a reference
sensor not aligned with any RGB input. Our approach addresses both issues, one through pre-
processing, the other through architectural design.

5.1 SUPERVISION WARPING VIA LEARNED OPTICAL FLOW

To leverage the hyperspectral reference image for training, we align it to the Main RGB view using
learned optical flow (OF). Since spectral and RGB images differ in modality, we first compute a color
projection C ∈ Rn×3 to transform IHS into an RGB approximation:

C := argmin
C

∥IHSC − IMain∥22.

Given IHSC and IMain, we estimate a dense correspondence field D ∈ Rh×w×2 using a pre-trained
OF model F (Sun et al., 2018):

D := F(IHSC, IMain).

This flow is used to warp the hyperspectral GT to the Main view:

IwHS := W(IHS,D), M := ⌊W(J ,D)⌋,
where M is a binary mask indicating valid visible pixels, W is warping operator, J is matrix of ones.
This enables aligned supervision for training and pointwise loss computation L1(IwHS⊙M , ÎHS⊙M)

5.2 IMPLICIT CROSS-VIEW ALIGNMENT IN NETWORK DESIGN

Even with warped supervision, the three input views remain spatially misaligned. Direct calibration
or flow-based alignment is possible but impractical in general-purpose settings. Instead, we encode
alignment into the architecture itself, drawing inspiration from recent findings that transformer
attention can perform implicit alignment across modest viewpoint shifts (Shi et al., 2022).

We adopt MSFN (Wu et al., 2024) as our base model, which consists of spatial and spectral
transformer-based U-Nets. However, its original design applies spectral modeling before spatial,
which is unsuitable for misaligned inputs as spectral attention assumes spatial coherence across input
channels, which multi-camera setups violate.

5.3 PROPOSED ARCHITECTURE: MI-MSFN

We propose a revised architecture, Multi-Image MSFN (MI-MSFN), specifically tailored to address
input misalignment and heterogeneous spatial content. Here, we reverse the order of modules,

6
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applying spatial transformer blocks before spectral ones (Fig. 5). This allows the network to first
establish spatial correspondences across the Main, Tele, and Wide inputs thus effectively aligning
features by attention before fusing spectral information. We also remove the skip paths to enforce
that all feature propagation passes through alignment-aware components.
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Figure 5: Overview of the proposed MI-MSFN architecture for multi-image hyperspectral reconstruc-
tion. It integrates implicit alignment across misaligned inputs via spatial-first attention, followed by
spectral modeling. For detailed module definitions (Spectral FM, Spatial FM), refer to Sec. A.5

6 EXPERIMENTS

6.1 EXPERIMENTAL SETUP

Dataset All the experiments were conducted on our Doomer dataset as it is the only available
one for MI-HSR task. Experiments on single-image HSR were only conducted for comparison to
MI-HSR, thus featuring the same dataset.

Metrics We adopt well-known Peak Signal-to-Noise Ratio (PSNR) and Spectral Angle Mapper
(SAM). We also introduce Normalized Spectral Error (NSE), which serves as an alternative to MRAE
as it does not penalize having few dark bands and reflects the integral nature of radiance:

NSE(r̂, r) =
||r̂ − r||1
||r||1

· 100%, r, r̂ ∈ Rn.

When comparing predictions to warped GT, some pixels were missing or invalid, so we masked out
positions at m(x, y) = 0.

Implementation details We split our dataset into train and test subset in proportion 4:1. In all the
experiments we used Adam optimizer with learning rate of 0.0004 inherited from MSFN (except
for AWAN at Sec. 6.3, which showcased the necessity of polynomial scheduler with power of 1.5
starting at learning rate of 0.0001). We trained all the networks on random 64 × 64 patches for
104 epochs. Every 30 epochs we ran evaluation loop; the final model is the one with the best mean
absolute error on the aligned test set. Each training procedure was re-run 10 times with different
random seeds, yielding 10 distinct quantitative results. We summarize them by reporting mean and
standard deviation.

6.2 RESULTS

We trained the proposed MI-MSFN network using two input configurations: single-image {IMain} and
multi-image {IMain, ITele, IWide}. To validate our supervision alignment (Sec. 5), following (Zhang
et al., 2021), we report metrics both on aligned and original GT in Tab. 2. Our multi-image acquisition
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system improves HSR by 3.56 dB PSNR, 38% SAM, 28% NSE. The lower standard deviation (1–3%
of mean value) underlines the learning stability of the proposed MI-MSFN approach.

Setting Aligned GT Original GT
PSNR, dB ↑ SAM, ° ↓ NSE, % ↓ PSNR, dB ↑ SAM, ° ↓ NSE, % ↓

Single-camera 26.30 ± 0.68 6.11 ± 0.40 12.71 ± 0.46 25.05 ± 0.48 6.25 ± 0.42 14.14 ± 0.67
Multi-camera 29.86 ± 0.21 3.77 ± 0.09 9.14 ± 0.20 27.88 ± 0.15 3.91 ± 0.08 10.35 ± 0.16

Table 2: Evaluations of MI-MSFN in single- and multi-camera settings. Mean and standard deviation
of each metric is computed across 10 re-runs. The use of auxiliary cameras allows highly better HSR.
Fig. 6 presents a qualitative comparison between single-camera and multi-camera configurations. We
show patch-level comparisons at a selected wavelength as well as radiance profiles at specific points
of interest. The multi-camera system consistently recovers finer surface details that the single-camera
setup fails to capture. In the first row, a printed symbol on a book cover is not registered by the
multi-camera system at λ = 700 nm which complies with GT while single image HSR falsely reveals
the symbol. In the second row, the single-camera system introduces spurious noise-like structures
that do not correspond to any physical features. In the third row, the single-image setup fails to
reconstruct radiometric intensity accurately, significantly misestimating the radiance of the paper
sheet. We also showcase a failure case of our system in the fourth row. These results highlight the
improved spatial and spectral fidelity enabled by multi-view fusion in the MI-HSR system.
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Figure 6: Qualitative comparison of MI-MSFN predictions under single-image and multi-image
input settings. For each scene, a specific spectral band, region of interest, and point of interest are
selected. Regions are enlarged and displayed side-by-side to highlight differences in spatial and
spectral reconstruction quality. Note that the grayscale renderings correspond to individual spectral
bands, as shown at the wavelength indicated on the left of each image.

6.3 ABLATION STUDY

We conducted two ablation studies, beginning with replacement of HSR network. We compared
MI-MSFN against several approaches: HSCNN+ (Shi et al., 2018), AWAN (Arad et al., 2020; Li
et al., 2020), MST++ (Cai et al., 2022) (winners of NTIRE 2018 (Arad et al., 2018), 2020 (Arad et al.,
2020), 2022 (Arad et al., 2022) respectively) and MSFN (Wu et al., 2024) as shown in Tab. 3. Since
we evaluate them in our misaligned multi-image setting they were not designed for, we also help them
by warping inputs onto the Main camera view using the same pre-trained OF as before. In particular,
Tab. 3 depicts the superiority of MI-MSFN over MSFN, justifying the proposed architectural changes.
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Method OF PSNR, dB ↑ SAM, ° ↓ NSE, % ↓

HSCNN+ (Shi et al., 2018) – 26.28 ± 0.40 5.66 ± 0.13 12.20 ± 0.13
✓ 26.46 ± 0.64 5.76 ± 0.13 12.23 ± 0.17
– 27.01 ± 0.79 4.56 ± 0.08 10.80 ± 0.10AWAN (Li et al., 2020)
✓ 26.41 ± 1.30 4.49 ± 0.17 10.68 ± 0.20

MST++ (Cai et al., 2022) – 29.01 ± 0.25 4.18 ± 0.15 9.86 ± 0.17
✓ 29.37 ± 0.31 4.11 ± 0.07 9.66 ± 0.11
– 29.18 ± 0.21 3.91 ± 0.13 9.77 ± 0.13MSFN (Wu et al., 2024) ✓ 29.59 ± 0.21 3.93 ± 0.13 9.33 ± 0.23

MI-MSFN (ours) – 29.86 ± 0.21 3.77 ± 0.09 9.14 ± 0.20

Table 3: Ablation study on HSR model showing
MI-MSFN being the best choice for MI-HSR.

Active cameras
Main Tele Wide PSNR, dB ↑ SAM, ° ↓ NSE, % ↓

✓ 26.30 ± 0.68 6.11 ± 0.40 12.71 ± 0.46
✓ ✓ 26.34 ± 0.67 5.77 ± 0.31 12.41 ± 0.46
✓ ✓ 29.63 ± 0.28 3.97 ± 0.11 9.08 ± 0.33
✓ ✓ ✓ 29.86 ± 0.21 3.77 ± 0.09 9.14 ± 0.20

Table 4: Ablation study on cameras configura-
tion. Each camera brings an improvement in
SAM.

The second ablation study evaluates contribution of each auxiliary camera. It extends Tab. 2 by two
more settings: {IMain, ITele} and {IMain, IWide}. Results are given in Tab. 4. We can see that just by
adding the Tele-camera we are already close to the performance of all three. Notably, this camera was
occluded by the red filter (Fig. 2) and most examples from qualitative comparison (Fig. 6) showcase
how our setup handles discrepancy in red spectral range. In terms of NSE-metric, the combination of
Main and Tele even outperforms everything, but statistically insignificantly.

6.4 EFFECT OF NOISE IN HYPERSPECTRAL CAMERA

Hyperspectral image registration is a process of registering photons, which means our GTs are
inherently noisy just like consumer CMOS sensors. Since noise is unpredictable, HSR quality has a
physically-reasoned insurmountable boundary. To quantify this boundary, we captured series of HSIs
of static scenes with color charts under two different light conditions. The metrics were calculated
between a fixed image from a series and the average of remain images, see Tab. 5. The estimated
values should be interpreted as approximate bound for any MI-MSR network trained and tested on
Doomer dataset. Comparable metric values may indicate overfitting or sensitivity to sensor noise.

Light conditions PSNR, dB ↑ SAM, ° ↓ NSE, % ↓

Bright scenario (outdoor sunny) 41.32 ± 3.04 0.71 ± 0.11 3.13 ± 0.55

Medium brightness (indoor LED) 37.81 ± 3.49 1.02 ± 0.12 4.46 ± 1.27

Table 5: Metrics measured between several Specim IQ shots of the same scene. These values suggest
rough estimates of the highest probable quality of HSR on Doomer.

7 LIMITATIONS

The trained models in this work are tightly coupled to the spectral characteristics and quantum
efficiency of the specific RGB sensors and optical filters used in our acquisition setup. As a result,
deploying the system with different hardware configurations would require collecting a new dataset
and retraining the model. This limits immediate out-of-the-box generalization. Future research
could explore strategies such as sensor-specific domain adaptation, transfer learning, or SSF-invariant
reconstruction frameworks to improve reproducibility and portability across different camera systems.

8 CONCLUSION

This work rethinks HSR through the lens of practical acquisition. By moving beyond single RGB
image constraints, we demonstrate that leveraging multiple smartphone cameras with carefully chosen
spectral filters can significantly enrich the input signal and reduce ambiguity in reconstruction. Our
proposed MI-HSR framework shows that spectral diversity even when captured with commodity
hardware can close the gap between simulated and real-world hyperspectral imaging. The introduction
of the Doomer dataset marks an important step forward for benchmarking in this space, enabling
systematic evaluation of multi-view HSR under realistic conditions. Empirical results validate
both our hardware configuration and model design, suggesting a promising direction for low-cost,
deployable hyperspectral imaging systems. Looking ahead, we aim to further explore the temporal
dimension for dynamic scenes, optimize for energy-efficient mobile deployment, and investigate
more principled learning paradigms under limited supervision or device mismatch.
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9 REPRODUCIBILITY STATEMENT

We provide the code of the proposed MI-MSFN model along with the Doomer dataset under a link
given in Sec. A.1. The proposed acquisition setup and the data preprocessing steps are described in
Sec. 4.

REFERENCES

Jonas Aeschbacher, Jiqing Wu, and Radu Timofte. In defense of shallow learned spectral reconstruction from
rgb images. In Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops, 2017.

Md Toukir Ahmed, Ocean Monjur, and Mohammed Kamruzzaman. Deep learning-based hyperspectral image
reconstruction for quality assessment of agro-product. Journal of Food Engineering, 382:112223, 2024.

Boaz Arad and Ohad Ben-Shahar. Sparse recovery of hyperspectral signal from natural rgb images. In
Proceedings of the IEEE/CVF the European Conference on Computer Vision, 2016.

Boaz Arad, Dong Liu, Feng Wu, Charis Lanaras, Silvano Galliani, Konrad Schindler, Tarek Stiebel, Simon
Koppers, Philipp Seltsam, Ruofan Zhou, Majed El Helou, Ohad Ben-Shahar, Fayez Lahoud, Marjan Shahpaski,
Ke Zheng, Lianru Gao, Bing Zhang, Ximin Cui, Haoyang Yu, Yigit Baran Can, Aitor Alvarez-Gila, Joost
van de Weijer, Radu Timofte, Estibaliz Garrote, Adrian Galdran, Manoj Sharma, Sriharsha Koundinya,
Avinash Upadhyay, Raunak Manekar, Rudrabha Mukhopadhyay, Himanshu Sharma, Santanu Chaudhury,
Koushik Nagasubramanian, Luc Van Gool, Sambuddha Ghosal, Asheesh K. Singh, Arti Singh, Baskar
Ganapathysubramanian, Soumik Sarkar, Lei Zhang, Ming-Hsuan Yang, Zhiwei Xiong, Chang Chen, and
Zhan Shi. Ntire 2018 challenge on spectral reconstruction from rgb images. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition Workshops, 2018.

Boaz Arad, Radu Timofte, Ohad Ben-Shahar, Yi-Tun Lin, and Graham D Finlayson. Ntire 2020 challenge on
spectral reconstruction from an rgb image. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition Workshops, 2020.

Boaz Arad, Radu Timofte, Rony Yahel, Nimrod Morag, Amir Bernat, Yuanhao Cai, Jing Lin, Zudi Lin, Haoqian
Wang, Yulun Zhang, et al. Ntire 2022 spectral recovery challenge and data set. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022.

Yuanhao Cai, Jing Lin, Zudi Lin, Haoqian Wang, Yulun Zhang, Hanspeter Pfister, Radu Timofte, and Luc
Van Gool. Mst++: Multi-stage spectral-wise transformer for efficient spectral reconstruction. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022.

Ayan Chakrabarti and Todd Zickler. Statistics of real-world hyperspectral images. In Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer Vision, 2011.

Kelvin CK Chan, Xintao Wang, Ke Yu, Chao Dong, and Chen Change Loy. Basicvsr: The search for essential
components in video super-resolution and beyond. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2021.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image is worth 16x16 words:
Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929, 2020.

Omar Elezabi, Zongwei Wu, and Radu Timofte. Enhanced super-resolution training via mimicked alignment for
real-world scenes. In Proceedings of the Asian Conference on Computer Vision, 2024.

Egor Ershov, Vasily Tesalin, Ivan Ermakov, and Michael S Brown. Physically-plausible illumination distribution
estimation. In Proceedings of the IEEE/CVF International Conference on Computer Vision, 2023.

Alessandro Foi, Mejdi Trimeche, Vladimir Katkovnik, and Karen Egiazarian. Practical poissonian-gaussian noise
modeling and fitting for single-image raw-data. IEEE transactions on image processing, 17(10):1737–1754,
2008.

David H Foster, Kinjiro Amano, Sérgio MC Nascimento, and Michael J Foster. Frequency of metamerism in
natural scenes. Journal of the Optical Society of America A, 23(10):2359–2372, 2006.

Ying Fu, Tao Zhang, Yinqiang Zheng, Debing Zhang, and Hua Huang. Joint camera spectral sensitivity selection
and hyperspectral image recovery. In Proceedings of the IEEE/CVF the European Conference on Computer
Vision, 2018.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Silvano Galliani, Charis Lanaras, Dimitrios Marmanis, Emmanuel Baltsavias, and Konrad Schindler. Learned
spectral super-resolution. arXiv preprint arXiv:1703.09470, 2017.

Ortal Glatt, Yotam Ater, Woo-Shik Kim, Shira Werman, Oded Berby, Yael Zini, Shay Zelinger, Sangyoon Lee,
Heejin Choi, and Evgeny Soloveichik. Beyond rgb: a real world dataset for multispectral imaging in mobile
devices. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2024.

Stephan Helling, Enrico Seidel, and Wolfram Biehlig. Algorithms for spectral color stimulus reconstruction with
a seven-channel multispectral camera. In Conference on Colour in Graphics, Imaging, and Vision. Society of
Imaging Science and Technology, 2004.

Yan Jia, Yinqiang Zheng, Lin Gu, Art Subpa-Asa, Antony Lam, Yoichi Sato, and Imari Sato. From rgb to
spectrum for natural scenes via manifold-based mapping. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, 2017.

Seon Joo Kim, Fanbo Deng, and Michael S Brown. Visual enhancement of old documents with hyperspectral
imaging. Pattern Recognition, 44(7):1461–1469, 2011.

Tae Hyun Kim, Mehdi SM Sajjadi, Michael Hirsch, and Bernhard Scholkopf. Spatio-temporal transformer
network for video restoration. In Proceedings of the IEEE/CVF European Conference on Computer Vision,
2018.

Jiaojiao Li, Chaoxiong Wu, Rui Song, Yunsong Li, and Fei Liu. Adaptive weighted attention network with
camera spectral sensitivity prior for spectral reconstruction from rgb images. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition Workshops, 2020.

Yuqi Li, Qiang Fu, and Wolfgang Heidrich. Multispectral illumination estimation using deep unrolling network.
In Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo. Swin
transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the IEEE/CVF
international conference on computer vision, pp. 10012–10022, 2021.

Shijie Nie, Lin Gu, Yinqiang Zheng, Antony Lam, Nobutaka Ono, and Imari Sato. Deeply learned filter response
functions for hyperspectral reconstruction. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 2018.

Seoung Wug Oh, Michael S Brown, Marc Pollefeys, and Seon Joo Kim. Do it yourself hyperspectral imaging
with everyday digital cameras. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2016.

Daniil Reutskii and Egor Ershov. Spectral filters design for a better hyperspectral reconstruction. In Sixteenth
International Conference on Machine Vision (ICMV 2023). SPIE, 2024.

Neha Sharma, Muhammad Shahzaib Waseem, Shahrzad Mirzaei, and Mohamed Hefeeda. Mobispectral:
Hyperspectral imaging on mobile devices. In Proceedings of the 29th Annual International Conference on
Mobile Computing and Networking, 2023.

Shuwei Shi, Jinjin Gu, Liangbin Xie, Xintao Wang, Yujiu Yang, and Chao Dong. Rethinking alignment in video
super-resolution transformers. Advances in Neural Information Processing Systems, 35:36081–36093, 2022.

Zhan Shi, Chang Chen, Zhiwei Xiong, Dong Liu, and Feng Wu. Hscnn+: Advanced cnn-based hyperspectral
recovery from rgb images. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops, 2018.

Tarek Stiebel, Simon Koppers, Philipp Seltsam, and Dorit Merhof. Reconstructing spectral images from rgb-
images using a convolutional neural network. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition Workshops, 2018.

Da-Wen Sun, Hongbin Pu, and Jingxiao Yu. Applications of hyperspectral imaging technology in the food
industry. Nature Reviews Electrical Engineering, 1(4):251–263, 2024.

Deqing Sun, Xiaodong Yang, Ming-Yu Liu, and Jan Kautz. Pwc-net: Cnns for optical flow using pyramid,
warping, and cost volume. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2018.

Yapeng Tian, Yulun Zhang, Yun Fu, and Chenliang Xu. Tdan: Temporally-deformable alignment network
for video super-resolution. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2020.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Eva M Valero, Juan L Nieves, Sergio MC Nascimento, Kinjiro Amano, and David H Foster. Recovering spectral
data from natural scenes with an rgb digital camera and colored filters. Color Research & Application, 32(5):
352–360, 2007.

Meiling Wang, Yongchang Xu, Zhisheng Wang, and Changda Xing. Deep margin cosine autoencoder-based
medical hyperspectral image classification for tumor diagnosis. IEEE Transactions on Instrumentation and
Measurement, 72:1–12, 2023.

Tengfei Wang, Jiaxin Xie, Wenxiu Sun, Qiong Yan, and Qifeng Chen. Dual-camera super-resolution with
aligned attention modules. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
2021.

Xintao Wang, Kelvin CK Chan, Ke Yu, Chao Dong, and Chen Change Loy. Edvr: Video restoration with
enhanced deformable convolutional networks. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition Workshops, pp. 0–0, 2019.

Renjie Wu, Yuqi Li, Xijiong Xie, and Zhijie Lin. Optimized multi-spectral filter arrays for spectral reconstruction.
Sensors, 19(13):2905, 2019.

Yaohang Wu, Renwei Dian, and Shutao Li. Multistage spatial–spectral fusion network for spectral super-
resolution. IEEE Transactions on Neural Networks and Learning Systems, pp. 1–11, 2024.

Zhiwei Xiong, Zhan Shi, Huiqun Li, Lizhi Wang, Dong Liu, and Feng Wu. Hscnn: Cnn-based hyperspectral
image recovery from spectrally undersampled projections. In Proceedings of the IEEE/CVF International
Conference on Computer Vision Workshops, 2017.

Xiang Xu, Jun Li, Xin Huang, Mauro Dalla Mura, and Antonio Plaza. Multiple morphological component
analysis based decomposition for remote sensing image classification. IEEE Transactions on Geoscience and
Remote Sensing, 54(5):3083–3102, 2016.

Fumihito Yasuma, Tomoo Mitsunaga, Daisuke Iso, and Shree K Nayar. Generalized assorted pixel camera:
postcapture control of resolution, dynamic range, and spectrum. IEEE transactions on image processing, 19
(9):2241–2253, 2010.

Lei Zhang, Zhiqiang Lang, Peng Wang, Wei Wei, Shengcai Liao, Ling Shao, and Yanning Zhang. Pixel-aware
deep function-mixture network for spectral super-resolution. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 34, pp. 12821–12828, 2020.

Zhilu Zhang, Haolin Wang, Ming Liu, Ruohao Wang, Jiawei Zhang, and Wangmeng Zuo. Learning raw-to-srgb
mappings with inaccurately aligned supervision. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, 2021.

Yuzhi Zhao, Lai-Man Po, Qiong Yan, Wei Liu, and Tingyu Lin. Hierarchical regression network for spectral
reconstruction from rgb images. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops, 2020.

Kailai Zhou, Lijing Cai, Yibo Wang, Mengya Zhang, Bihan Wen, Qiu Shen, and Xun Cao. Joint rgb-spectral
decomposition model guided image enhancement in mobile photography. In Proceedings of the IEEE/CVF
European Conference on Computer Vision. Springer, 2024.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A TECHNICAL APPENDICES AND SUPPLEMENTARY MATERIAL

To ensure disambiguation, here is the list of some designations used throughout the main paper and
this document:

• Photometric normalization — division of a camera sensor signal by ISO (if applicable) and
exposure time. Black current subtraction is also applied beforehand.

• c — a photometrically normalized signal (probably noisy) from smartphone camera(s). Can
be ∈ R3 or ∈ R3k depending on context.

• c̄ — a photometrically normalized signal as it would be in an ideal world without noise.
• r — a photometrically normalized radiance spectrum. Is assumed to be noiseless (however,

in Sec. 6.4 of the main paper we discuss the outcomes of this assumption).

A.1 CODE AND DATA

Click here to download.

A.2 ESTIMATION OF SPECTRAL SENSITIVITY FUNCTIONS AND TRANSMITTANCE FUNCTIONS

Spectral sensitivity functions. To estimate SSF of a smartphone camera, we acquired 25 sample
pairs of ci ∈ R3 and ri ∈ Rn corresponding to flat-field illumination (FFI) of narrow-band LED
light sources in an integrating sphere. For each LED i, we took a photo of FFI (Fig. 7), extracted the
central 100×100 patch from it, photometrically normalized it and computed the channel-wise average
to get ci. Then we measured the LED radiance spectrum ri using an X-Rite i1 Pro spectrophotometer
with the help of spotread routine from Argyll color management system.

400 450 500 550 600 650 700
Wavelength, nm

0.0

0.2

0.4

0.6

0.8

1.0

In
te

ns
ity

, a
rb

. u
ni

ts

(a) LEDs’ radiance spectra (b) Sample LED FFI photo

Figure 7: Training data for SSF estimation: (a) spectra of 25 LEDs measured using X-Rite i1 Pro;
(b) an example of raw FFI photo. Notice the vignetting effect. To mitigate this effect, channel-wise
average of a tiny central patch (in red) was used as a sample ci

Given the measurements {ci, ri}25i=1, the spectral sensitivities estimation problem can be formulated
as a regularized quadratic optimization problem:

min
S

25∑
i=1

∥ci − S⊤ri∥22 + λ∥DS∥22

s. t. S ≥ 0

(1)

where the regularization term λ∥DS∥22 imposes smoothness, D is the second-order derivative
operator. The objective (1) was minimized using the Adam optimizer.

To validate the estimated Ŝ, we captured a color rendition chart by the Specim IQ hyperspectral
camera and all three smartphone cameras. The HSI was calibrated (more on that in the next paragraph)
and projected onto each camera’s sensor space to yield RGB predictions. We compared the predicted
and actual RGBs of the color patches: pixels of a patch were pixel-wise averaged (Fig. 12 gives a
sight on how such patches look like). The average angular error of color reproduction was ≈ 1◦ —
indistinguishable to a human eye.

Specim IQ calibration. Spectral measurements of X-Rite i1 Pro and Specim IQ are actually
inconsistent. It is not suprising: Specim IQ is not designed to be photometrically accurate. Instead, it
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(a) Main camera sensitivities
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(b) Tele camera sensitivities
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Figure 8: Estimated smartphone cameras spectral sensitivities.

allows to estimate band-wise relations between the calibration target in a scene and other objects.
However, if we estimate the band-wise calibration divisor between X-Rite i1 Pro and Specim IQ,
we can futher use it to obtain physically-correct HSIs. We illuminated the integration sphere using
a mixture of LEDs that yields even spectral power distribution, obtained X-Rite and Specim IQ
measurements of it and divided one by another:

k = rspecim ⊘ rxrite,

The divisor is applied to every HSI filmed by the Specim IQ in this research.
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Figure 9: The estimated Specim IQ calibration divisor

Since the operational range of Specim IQ is 400–1000 nm and the one of X-Rite is 380–730 nm, all
our spectral measurements are defined on their intersection: 400–730 nm.

Transmittance functions of filters were measured using an SF-2000 spectrophotometer.

A.3 SPECTRAL UNCERTAINTY

The inspiration comes from the well-known conditional entropy H (ξ | η), which quantifies the
information loss of a latent random variable ξ when observing the outcomes of another random
variable η:

H (ξ | η) = Ex∼η H (ξ | η = x) , (2)

where H (ξ | η = x) is the ordinary entropy of ξ given event η = x. However, entropy is designed
especially for discrete-distributed variables of categorical type. When uncertainty of a categorical
random variable is indeed best described by the entropy of its distribution, for continuous random
variables variance is a better choice. When dealing with random vectors, variance becomes a matrix,
so we consider the trace of it as a reasonable summary. If we put the trace of variance instead of the
entropy in (2) and substitute ξ = r, η = c, we get the spectral uncertainty of our filters-modified
optical system:

v(F ) = Ec [tr Varr(r | c)] ,
where the dependence on F is hidden inside the relationship between r and c. However, r and c are
not random variables until we define them so. Let r have a discrete distribution p (ri) over a finite set
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of radiance spectra R = {r1, ..., rN} derived from a dataset of HSIs. Such definition reflects the a
priori information about natural radiance. In the relation c = SF r+ n only noise n is yet to define.
Let c̄ = SF r be an unnoised camera response. We model noise as

n | c̄ ∼ N (0,Σ(c̄)), (3)

Σ(c̄) = diag[σ2
1(c̄1); ...;σ

2
3k(c̄3k)], (4)

where σi(·) is expanded in (5) later in the chapter.

Now, when we defined p (c | r), we can derive from the Bayesian rule:

p (ri | c) =
p (c | ri) p (ri)∑N

i=1 p (c | ri) p (ri) ,
and further:

Er (r | c) =
N∑
i=1

p (ri | c) ri,

trVarr (r | c) =
N∑
i=1

p (ri | c) ∥ri − Er (r | c)∥22 .

Now we have an expression depending on c which we should take Ec of. However, this is intractable.
So we should resort to Monte Carlo method by sampling c according to its definition: first take
random r∗ ∈ R, then sample c from N (SF r

∗,Σ(SF r
∗)). In our experiments, 220 samples were

sufficient to achieve 0.5% of relative standard deviation.

To derive R, we first extracted every 29×29th pixel of the KAUST dataset (Li et al., 2021), which
resulted in 559,921 samples. However, this is a dataset of reflectances, so we converted them to
radiance spectra via multiplying it by a spectrum of gray ball under overcast weather condition. This
way, we assured that R mostly fairly represents our future Doomer dataset. To reduce computational
requirements, we also compressed R to the size of N = 1024 by running K-Means algorithm and
employing clusters’ centers. We assigned p (ri) to be the share of initial 559,921 radiance spectra
that belong to the cluster around ri.

Unfortunately, our initial implementation of spectral uncertainty contained a bug in the code, so the
selected filters pair (Fig. 2) is not actually the best according to the described criterion. The bug has
been spot long after the dataset was collected. In Fig. 10 we show the best filters selected by the
criterion after the bug fix. We also probe those filters in simulated settings in Sec. A.6
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Figure 10: Best filters after the bug fix

Experimental justification. Having the estimated spectral characteristics of our filtered smartphone
cameras setup (SF ) and the sensor noise model (5), we find ourselves in a position where we
can simulate images of the triple-camera setup from HSIs and run experiments on simulated data.
Therefore, we can support the proposed spectral uncertainty criterion by simulating input images
IMain, ITele, IWide given filters, measuring HSR performance and plotting it against v(SF ).

We chose 12 random filter pairs and simulated 12 versions of our dataset. For each version, MI-
MSFN was trained and evaluated. Fig. 11 shows the dependence of three performance metrics on the
proposed spectral uncertainty criterion. A strong correlation is observed, as the Pearson correlation
coefficient has an absolute value greater than 0.8.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5
v(F)

33

34

35

36

37

PS
NR

, d
B

(a) PSNR vs Variance

5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5
v(F)

2.8
3.0
3.2
3.4
3.6
3.8
4.0
4.2

SA
M

(b) SAM vs Variance

5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5
v(F)

4.00
4.25
4.50
4.75
5.00
5.25
5.50
5.75

NS
E,

 %

(c) NSE vs Variance

Figure 11: Relation between PSNR, SAM, NSE in simulated settings and the proposed spectral
uncertainty criterion.

Noise model. Let c̄i be a photometrically-normalized ground-truth signal level at channel i, t be
exposure time, g be ISO. The expected collected charge at image sensor is c̄it. Following Foi
et al. (2008), we model noise of the collected charge as ε ∼ N (0, αic̄it + βi), where αi, βi are
parameters of the model. The final value in the raw image is further amplified by g along with the
noise: (c̄it+ ε)g. Foi et al. also introduce additional noise after amplification, but we neglect it for
simplicity. The observed photometrically-normalized signal is then given by:

ci =
(c̄it+ ε)g

tg
= c̄i +

ε

t
.

To be consistent with (3) and (4), we define σi(x) as:

σi(c̄i) =

√
αic̄it+ βi

t
(5)

We estimate parameters αi, βi of this model by plotting σit against c̄it in Fig. 12.

The only problem left in (5) is the hidden dependence on t. Given simulated c̄ = SF r, we cannot
add noise properly unless we know exposure time t. In real-life setting, exposure time is determined
by a camera automatically depending on the brightness of a scene. For simplicity, we model this in a
piecewise-power fashion. We gathered 1000 raw images from phone’s gallery and plotted t against
the average of photometrically normalized signals across all channels, height and width in an image
c = 1

h×w×3

∑
i,j,k Ii,j,k (Fig. 13). The fitted function allows to estimate t given c̄i.
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Figure 12: Plotting σit against c̄it for the Telephoto camera based on a single shot. Each data point
(24 in total) is given by channel-wise mean and std dev of a color patch (left, in red). In each plot,
point cloud is approximated by a dashed line (5) using least-squares; each color channel i gets its
own noise parameters αi, βi (right).
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Figure 13: How exposure time depends on scene brightness. The piecewise-power function plotted in
red line is used to model the exposure time given the average of a photometrically normalized image.

A.4 MORE ON DOOMER DATASET

In the full public release of Doomer dataset we will provide 3 main versions:

1. RAW version. Images from all cameras before any preprocessing.
2. Single-camera version. Pairs of a Main-camera photo and an HSI. The images are prepro-

cessed and share the same FoV and spatial resolution.
3. Multi-camera version. Quadriples of Main-, Tele- and Wide-camera photos and HSI. The

images are preprocessed and share the same FoV and spatial resolution.

Both the single- and multi-camera versions will also have two subversions depending on what
spectral resolution of an HSI a user needs. Our resources allowed us to capture spectral radiance
with the sampling interval of 3 nm. However, most of hyperspectral images have that of 10 nm as
a compromise between precision and computational efficiency. A short summary of each version
provided in Tab. 6. At the time of submission, only emphasized items are made available.

The preprocessing pipeline of RAW images consists of these steps: demosaicing, black current sub-
traction, flat field calibration and photometric normalization. For hyperspectral images, preprocessing
pipeline includes: black current subtraction, flat field calibration, radial distortion correction and
photometric normalization. The last step involves only division by the exposure time (Specim IQ has
no ISO setting) and band-wise division by the calibration divisor k.

For all HSIs, we will provide a manually annotated binary mask that specifies the location of the gray
ball. The reflectance spectrum of the gray ball, measured with the X-Rite spectrophotometer, will be
included in the dataset. Also, we will expand it by adding more scenes and annotate each scene with
tags depending on its contents.

Unlike previously published datasets, Doomer contains multiple real RGB images along with ground-
truth HSI and illumination reference. This combination enables the exploration of various computa-
tional photography problems, such as:

1. White point estimation both in spectral and RGB forms.
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Dataset
version

Smartphone
images

HSIs
spectral range (step) FoV matching

RAW Main, Tele, Wide Original 400–1000 nm (3 nm) –

1-camera Preprocessed Main
camera image

Preprocessed
400–730 nm (10 nm)

Preprocessed
400–730 nm (3 nm) ✓

3-camera Preprocessed and concatenated
Main, Tele, Wide images

Preprocessed
400–730 nm (10 nm)

Preprocessed
400–730 nm (3 nm) ✓

Table 6: Doomer Dataset versions

2. Illumination distribution estimation. The need to estimate a distribution of illumination in a
scene arises from the complexity of natural scenes. In such environments, a single global
white point may be insufficient for accurate image processing and color correction (Ershov
et al., 2023).

3. Color space transform. Since there is a known white-point for each scene, it is possible to
do precise chromatic adaptation and color signals for different cameras.

4. Hyperspectral Reconstruction. Reconstruction from single or multiple cameras. Reconstruc-
tion of different types of spectra — radiance or reflectance.

The data preprocessing pipeline was described in Sec. 4 and is briefly illustrated in Fig. 14.

Step 2. Crop & Resample

192×256

Main Tele

192×256

HSI

192×256

Wide

192×256

Step 1. SIFT & RANSAC

Tele

3000×4000

HSI

512×512

Main

6144×8192

Wide

3680×5408

Figure 14: Spatial preprocessing pipeline. Left: geometric alignment of RGB views using SIFT +
RANSAC for consistent cross-camera registration. Right: field-of-view normalization and resolution
matching across RGB and hyperspectral modalities.

A.5 REST OF THE MI-MSFN ARCHITECTURE

Since the proposed neural network is rather a minor contribution and differs from MSFN only by the
arrangement of blocks, we only gave a broad view on it in the main part of the paper. Some blocks
were left unexpanded, which we fix by showing the missing details here in Fig. 15.

Conv 1×1

Conv 1×1

+ ×

C

C
on

v 
1×

1GAP Linear
GMP Linear

+ ×
GAP Linear
GMP Linear

+ ×

C

C
on

v 
1×

1GAP Conv 3×3
GMP Conv 3×3

+ ×
GAP Conv 3×3
GMP Conv 3×3

(a) Spectral Fusion Module (b) Spatial Fusion Module

DW Conv
3×3

GELU

GELU

(c) FFN

Figure 15: Illustration of fusion modules and feed-forward network in MI-MSFN. GAP and GMP
stand for global average and max pooling respectively.

The remaining disambiguation consists of abbreviations expansion: S-MSA = spectral multihead
self-attention (Cai et al., 2022); SW-MSA = shifted window multihead self-attention (Liu et al.,
2021); W-MSA = window multihead self-attention (Dosovitskiy et al., 2020).

A.6 ADDITIONAL EXPERIMENTS ON SIMULATED DATA

Unlike the real-life conditions, the simulated images are perfectly aligned to HSI and between each
other. Evaluation on a simulated dataset then gives us a sight on how big the performance increase
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caused by the triple-camera setup could be if there was no misalignment at all. The results are shown
in Tab. 7

Setting PSNR, dB ↑ SAM, ° ↓ NSE, % ↓

Single-camera 28.79 ± 0.46 5.40 ± 0.22 8.46 ± 0.37
Multi-camera 36.84 ± 0.39 2.69 ± 0.02 3.88 ± 0.06

Multi-camera (filters from Fig. 10) 37.90 ± 0.31 2.33 ± 0.06 3.43 ± 0.08

Table 7: Evaluations of MI-MSFN in single- and multi-camera settings on simulated data. Evaluation
of the better filters combination is provided separately

The triple-camera setup in simulated conditions yields ∼ 50% improvement in terms of SAM and
NSE and +8 dB PSNR. Recalling the ∼ 30% improvement in the real-life conditions, we can conclude
that our results in the main part of the paper are reasonable.

Tab. 7 also includes results for the filters selected after we fixed the bug in our code (Fig. 10). It
suggests that if we used those filters for the dataset collection, we could have achieved even better
results on the real data in the main paper. Also, this simulation result strengthens the reasonableness
of spectral uncertainty criterion.

A.7 COMPUTATIONAL RESOURCES

All the network trainings (Tab. 2, 3, 4) were executed on a cluster, allowing us to run up to 20 jobs
in parallel. This was especially handy because we needed to run each experiment 10 times with
different random seeds to ensure statistic significance. The cluster randomly assigned jobs to nodes,
each having multiple GPUs. However, any job only used one GPU at a time. A GPU assigned to a
job could be one of the following: NVIDIA L40, L40s and H100. Every training consumed < 23 GB
of GPU memory and lasted no longer than 8 hours. 5 CPU cores were occupied by data loader; the
total CPU memory consumption was < 8 GB.
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