
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

MEASURE ONCE, MASK ONCE: DELTA REFINED
BLOCK SPARSE ATTENTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Long context inference poses a problem for large language models (LLMs) due to
the high cost of quadratic attention with long input lengths. Efficient long context
inference is a necessity in order to provide low-cost, low-latency LLM serving
endpoints. Sparse attention is one way to mitigate the high cost of long context
prefills. Many recent state-of-the-art sparse attention methods can be applied on
top of pretrained quadratic transformers without any specific finetuning regimen,
however, the main obstacle to overcome when designing sparse attention method
lies in deciding which parts to compute and which parts to ignore during the sparse
computation. Previous works generally make this decision based on heuristics de-
rived from recurring patterns in the attention matrix or pooled block statistics to
select a key-sparse attention mask. We show that these methods result in a sub-
optimal capture of total attention score mass. In another line of work, key-sparse
attention has been shown to induce a distributional shift in attention outputs that
can be mitigated by mixing query-sparse attention with existing key-sparse atten-
tion masks and combining the outputs. In order to save computation, we propose
fusing the query-sparse attention and sparse attention mask generation process,
resulting in a novel, dynamic, and query-dependent sparse mask generation. Our
method calculates a key-sparse block mask while computing query-sparse atten-
tion, and then uses this dynamic attention mask to perform key-sparse attention
before combining the outputs. Our method delivers a 2.5x speedup over Flash
Attention 3 at 1M tokens and results in a total attention capture which is within
1.5% of the oracle block top-k attention.

1 INTRODUCTION

Long context processing is a necessary condition for artificial general intelligence. Without long
context capabilities, all knowledge would need to be encoded directly into model weights at train
time, which is infeasible due to the constantly growing body of knowledge and the long and expen-
sive training times of current LLM foundation models, which can require training on tens of trillions
of tokens (Yang et al., 2025a).

Attention (Vaswani et al., 2017) operations come with a quadratic complexity with respect to the
input size. In a causal transformer, this means that each token in the sequence must be compared
with all previous tokens, leading to a linearly expanding token cache and quadratic computation
complexity. This operation poses a problem for long context tasks, which may span millions of
tokens. Such scenarios imply a high cost of serving and also high latency for the end user. The
expanding memory of a transformer key-value cache (KV cache) is a crucial improvement over re-
current networks (Hochreiter & Schmidhuber, 1997) due to the fact that the cache essentially acts as
an expanding memory module. When combined with quadratic attention, this gives a transformer
the ability to integrate information over long contexts without ever losing direct access to previ-
ously seen tokens. However, attention matrices often come with a high amount of sparsity, which
implies that any computation spent on sparse regions of the attention matrix is wasted. However,
these sparse tokens may prove to be necessary at a later timestep and therefore should remain in
the cache to prevent them from being completely forgotten. Given the quadratic complexity and
naturally occurring sparsity, sparse attention mechanisms have become an active and ongoing topic
of research (Shah et al., 2024; Lee et al., 2024; Jiang et al., 2024; Willette et al., 2025).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Thread Block (SRAM)

Out
Acc.
t=3

Out
Acc.
t=4

Online Top-k Bucket

Block
Indices

Block Scores

Online Top-k Statistics

Running Mean Running Std.

Delta Attention
(Previous)

Measure Once, Mask Once (Ours)

Third Party
Sparse Attention (Black Box)

Query Sparse
Attention

Delta
Correction

Masking
Algorithm

Block Sparse
Attention

Fused Masking and
Query Sparse Attention

Block Sparse
Attention

Delta
Correction

Key
Block
1

Key
Block
2

Key
Block
4

Key
Block
5

Key
Block
6

Key
Block
7

Key
Block
8

Key
Block
9

Key
Block
10

Key
Block
11

Key
Block
12

Key
Block
13

Key
Block
14

Key
Block
15

Key
Block
16

Selected Query-Sparse Attention Matrix Row

Query
Block

Attn.
Score

Value
Block 3

Out

Update Statistics Update Mask

Utilizing Attention Scores Inside of Flash Attention Cursor For Masking

Key
Block

3

Flash
Attention

Cursor

Skipped
Query

Block
2

Skipped
Query

Block
3

Skipped
Query

Block
5

Skipped
Query

Block
6

Query
Block

1

Query
Block

4

Delta Corrections

Sparse Attention Mask

Figure 1: Concept. Our “Measure Once, Mask Once” (MOMO) avoids duplicate computation by
fusing query sparse attention and sparse attention mask generation into the query sparse attention’s
flash attention cursor. The key-sparse attention and delta correction are subsequently computed after
the fused query-sparse kernel.

Attention sparsity may naturally arise when there is a conditional independence between sections
of the input sequence. For instance, consider a synthetic needle-in-a-haystack (NIAH) task or a
retrieval augmented generation (RAG) task where documents are conditionally independent from
one another. Likewise, in long context natural language tasks, the same situation may arise, as a
section of text is unlikely to show high conditional dependence with the entire corpus. In these
cases, there should be limited attention between conditionally independent blocks, inducing a large
amount of sparsity during the prefill phase. However, in the aforementioned cases, it may be crucial
to incorporate fully dense decoding in order to integrate over all the previous tokens in the input
when generating a response. Recent work has shown that switching from sparse attention during
the prefill to dense attention during decoding induces a distributional shift in the attention outputs,
which interferes with the query-key matching during the decoding process (Willette et al., 2025).

The main problem that arises with sparse attention is the need to select which parts of the attention
matrix need to be computed and which should be ignored. Although attention matrices have been
shown to follow certain patterns, such as vertical lines with diagonal slashes (Jiang et al., 2024),
there are still dynamic patterns that may arise since the attention matrix is conditioned on the input.
Figure 2b shows such a pattern with an oracle top-k block selection. The slash indices are not
constant throughout the attention matrix, and the vertical lines also have a limited and dynamic
span. This shows that block-sparse attention should be able to catch dynamic patterns that do not
statically extend through the whole attention matrix as fixed vertical and slash indices do. To solve
this problem, we propose a novel method of generating a block-sparse attention mask. Building
on prior work that combines both key-sparse (KSA) and query-sparse attention (QSA), we devise
a two-step process that first performs attention for a sparse query set with a dense key set. While
computing the QSA, we collect an online top-k of the block indices that have the highest contribution
of attention scores. We then use these collected block indices to compute key-sparse attention and
combine the outputs. Our new form of sparse attention results in a 2.5x speedup over the state-of-
the-art Flash Attention 3 (Shah et al., 2024) for time-to-first-token (TTFT) on 1M token prefills.

Our contributions in this work are as follows:

• We propose Measure Once, Mask Once (MOMO), a novel method of dynamic block-sparse at-
tention, which is 2.5x faster than Flash Attention 3 in TTFT on 1M token prefills.

• We show that our dynamic block selection method captures more of the attention mass than
baseline block-selection methods and is within 1.5% of an oracle top-k mask.

• We provide three different online top-k block selection algorithms implemented at the kernel
level, which achieve O(k), O(log k), and O(1) time complexity per update, respectively.

2 RELATED WORK

MInference (Jiang et al., 2024) found recurring patterns in attention matrices across many common
foundation models, discovering that there are reliably recurring patterns, such as the ‘vertical and

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

0K 6K 12K 19K 25K 32K

Key Token Index

0K

6K

12K

19K

25K

32K

Q
ue

ry
T

ok
en

In
de

x Plain
Attention

(a) Plain Attn. (b) Oracle

0K 6K 12K 19K 25K 32K

Key Token Index

0K

6K

12K

19K

25K

32K

Q
ue

ry
T

ok
en

In
de

x MInference

(c) MInference

0K 6K 12K 19K 25K 32K

Key Token Index

0K

6K

12K

19K

25K

32K

Q
ue

ry
T

ok
en

In
de

x QSA
Top-K

(d) MOMO (Ours)

0 5 10 15 20 25 30

Layer

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
tt

n
S

co
re

.

Captured Attention Score

MOMO128/128

MOMO128/8

Q,K Pooling

MInference

Oracle

(e) Captured Attn. Score

Figure 2: All attention figures show a 32K attention matrix. Each pixel represents a single 32x32
block index of the attention matrix. (d) During query sparse attention, we track block statistics via
an online top-k algorithm. We then use the resulting top-k block indices to generate the key-sparse
mask above. Our method captures the dynamic spans of vertical and diagonal slash indices on-the-
fly. (e) Shows the captured attention mass as compared to the Oracle block mask. All models are
limited to selecting 128 total blocks per row. See Fig. 11 for more examples.

slash‘ patterns that can be seen in Fig. 2. In addition to vertical and slash patterns, they also identify
‘Λ-shaped’ patterns that are similar to sink tokens and a sliding window (Xiao et al., 2023), and
‘block sparse’ patterns, which estimate high-scoring blocks before performing sparse attention on
the identified blocks. The vast majority of heads utilize the ‘vertical and slash’ patterns, which are
dynamically calculated based on an observation window near the end of the attention matrix. This
poses a potential problem, as the observed vertical and slash indices in the final rows of the attention
matrix may not extrapolate to the whole extent of the attention matrix as can be seen in the oracle
top-k matrix in Fig. 2b. Additionally, while these patterns reliably appear in the current generation
of RoPE (Su et al., 2021) based transformers, there is no guarantee that this pattern will continue to
appear in future transformers beyond the current generation. For this reason, it is necessary to have
a more flexible and dynamic method of generating block-sparse attention masks.

One method used to form block sparse patterns by prior works such as MInference, Seer Atten-
tion (Gao et al., 2025), and Sparge Attention (Zhang et al.) involves first pooling blocks of the query
and key matrices via a pooling function ρ : RN×d 7→ RN

b ×d such that the total number of tokens
is reduced by a factor of the block size b. Sum or mean pooling can both be used for this. After
pooling, a compressed attention matrix can be formed Â ∈ R

N
bq

× N
bk . Â can then be used to generate

a block-sparse attention mask due to the fact that within a single arbitrary block index of the queries
and keys Bq(m) and Bk(n), the pooling function ρ results in a sum over all dot products in the
block.

Âmn =
∑

i∈Bq(m)

∑
j∈Bk(n)

Q⊤
i Kj =

 ∑
i∈Bq(m)

Qi

⊤ ∑
j∈Bk(n)

Kj

 = ρm(Q)⊤ρn(K) (1)

A key weakness of this method is that due to relying on the linearity of the sums, it cannot take the
exponential of the softmax into account. For example, consider the case where the block may be
composed of large positive and negative values such that the total sum is 0. The large values may
dictate that this block is important, however the simple sum has hidden this fact. If the exponential
were applied, the large negative values would be squashed to 0 and the large positive values would
not lose their significance. Our method is able to take the exponential into account when computing
block scores.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Delta Attention (Willette et al., 2025) identified a distributional shift arising from the use of sparse
attention. They found that sparse attention outputs show a significant difference in cosine similarities
compared to the outputs of the full attention that the model was trained with. Therefore, if the model
were to switch to dense attention during decoding, a common pattern (Jiang et al., 2024; Acharya
et al., 2024; Yang et al., 2025b; Yao et al., 2024) in many recent works, there will be a mismatch
between sparse/dense attention outputs and therefore a mismatch between queries and keys in later
layers in the model. This was shown to lead to a severe performance degradation, as the model will
be unable to match appropriate keys for a given query. The authors propose to mitigate this problem
by selecting a sparse set of queries Qγ where γ = {i ⇐⇒ i mod γ = 0}, and computing
full attention with all keys K and values V as Oγ = σ(QγK

⊤)V . They then compute attention
between the full query set Q and a sparse set of keys and values K∗, V∗ as O∗ = σ(QK⊤

∗)V∗.
The sparse sets of keys and values are determined by any generic sparse attention method such as
HiP (Lee et al., 2024), MInference (Jiang et al., 2024) or Streaming LLM (Xiao et al., 2023). The
difference ∆ = Oγ − (O∗)γ is then computed, and this difference ∆ is applied as a corrective term
to all queries within the γ window,

O∆
i =

[
σ(QK⊤

∗)V∗
]
i
+∆⌊ i

γ ⌋ (2)

=
[
σ(QK⊤

∗)V∗
]
i
+
[
σ(QγK

⊤)V
]
⌊ i
γ ⌋ −

[
σ(QK⊤

∗)V∗
]
⌊ i
γ ⌋γ (3)

This is done by using two kernel calls, one for the query sparse attention Oγ , and one for the key
sparse attention O∗, which uses a pre-existing sparse attention method. While effective, this delta
correction is inefficient because the chosen sparse attention method which produces K∗ must choose
which keys to compute in the sparse attention procedure. However, during the query sparse QSA
attention, which is key-dense, all of the keys are scanned for a subset of queries. This means that
important block statistics are being computed by the query sparse kernel and then ignored by the
sparse attention method, which must use its own internal algorithm to decide which keys are to be
computed. Therefore, our key insight is that we can collect useful information about the important
blocks during the QSA calculation and return the block indices that are to be used for the key-sparse
portion of the attention. This should result in an informed and efficient block sparse attention mask.

3 METHOD

Building on the prior work of Delta Attention, we utilize a similar flash attention-based query-
sparse-attention kernel. For the query sparsity, we choose queries evenly distributed in a γ window
such that every γth query is selected as an input to the QSA kernel. However, as the QSA kernel is
scanning full rows of key blocks, we perform an additional online top-k algorithm that collects and
stores the identity of the most important key blocks. For an overall algorithm of our method, please
see Algorithm 1. We have implemented three different options for online top-k at the kernel level,
which allow for different accuracy/latency tradeoffs for top-k block selection (shown in Fig. 4). For
each top-k method, we calculate the score for the current block in the same manner. For a given
query Qi, and the current key block index KB(j) with block size β and block indices B(j) =
{βj, . . . , β(j + 1)− 1}, we calculate the block score as,

S(j) = log
∑

l∈B(j)

exp(Q⊤
i Kl) (4)

Online Exact Top-K. For exact top-k, we initialize two buffers in the shared memory (SRAM) of
the GPU, t ∈ Nk for storing the top-k block indices and s ∈ Rk for storing the corresponding block
scores. The block index buffer is initialized to∞ and the score buffer s is initialized to −∞.

Using the calculated score from Eq. (4), we first select the minimum index of the score buffer
µ = argmini si and update the online top-k scores and indices according to the following update
function U ,

U (µ, S(j)) =


sµ > S(j), pass
sµ = S(j), (sµ ← S(j); tµ ← j) iff j < tµ
sµ < S(j), sµ ← S(j); tµ ← j

(5)

In order to avoid unnecessary computation, we perform the argmin over s after the top-k update,
which allows us to quickly check whether sµ > S(i) on the next iteration and avoid any unnecessary

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

43

 7 3 9 4

3Winner 3

Winner 3 Winner 4

47

 7
3 ➡ 8

 9 4

4 Winner 4

Winner 7 Winner 4

Before After

Winner Updated

Figure 3: Tournament (winner) tree showing the update process. (Left): The current state of the
tree at a given timestep. At each depth, the winner (minimum) of the two child nodes are selected
until the root contains the global minimum. (Right): We receive a score update that is higher than
the minimum score in the tree, we must update the tree to properly store this score as one of our
top-k scores. We overwrite the leaf node containing the minimum score, and follow the path to the
root, storing the new minimum at each depth. The new root contains the global minimum for the
tournament tree.

argmin operations over the stored top-k scores and indices buffers s and t. However, as s and t are
stored in the fast SRAM, this places an inherent limit on the size of the buffers which can be stored
and therefore places an upper limit on the values of k which can be used. Therefore, if we are to
make use of the more abundant high bandwidth memory (HBM) for the buffers, we must utilize
more efficient data structures, as it is impractical to perform k loads/stores for the argmin operation
for each block of keys.

Tournament Tree Exact Top-K. In the worst case, the above online top-k algorithm requires O(k)
operations at each step due to the argmin operation over the score buffer size of k which remains in
SRAM. To make use of the more abundant HBM, we may implement the buffer as a partially sorted
set using a tournament tree data structure (Knuth, 1998). A tournament tree is a heap-like data
structure which can track the minimum value within the tree with an insert complexity of O(log k).
For this, we need to initialize a buffer of size 2k for both t and s as well as one additional buffer
t′ to store the index of the minimum among the tree leaves. The buffer of 2k is needed so that the
buffers may be organized into a binary heap-like data structure. Assuming that k is a power of 2,
if we consider the root node (minimum value) to be at index location 1 of the 2k buffer, and the
leaves to be located at the indices [k, . . . , 2k− 1], we may make a comparison between neighboring
nodes and store the result at index ⌊ i2⌋. Treating the score buffer s as the master buffer, we use the
node with the winning score to update block indices t and leaf indices t′ with the correct indices
corresponding to the winning node. This allows us to set a value of k which is not constrained by
the limited amount the SRAM on-chip, with the tradeoff of requiring O(log k) loads and stores to
HBM per update. As is the case with the online top-k, we can store the minimum scores and indices
in SRAM as scalars, and only trigger an update procedure when the current block score is greater
than the current minimum. As shown in Fig. 4, the winner tree starts to show lower latency than the
online exact top-k when k > 128.

16 32 64 128 256 512
Top-k blocks selected

30
40
50

100

200
300
400
500

QS
A

La
te

nc
y

(m
s)

37.2

52.4
64.6

152

488

56.6 68.8
90.5

155 215
290

42.6 42.6 42.7 42.7 43.1

Exactnaive

Exacttree

Est.(kexact=8)

16 32 64 12
8

25
6

51
2

k

0

20

40

60

80

100

Ke
y

Re
ca

ll
Ra

te
 (%

)

Exact
Est.

Figure 4: Comparison of online top-k impls.

Estimated Online Top-K. Online exact
top-k emits O(k) complexity per update,
and the winner tree emits O(log k). Un-
fortunately, both implementations suffer
from expanding compute costs as k in-
creases, as shown in Fig. 4. To this end,
we propose a practical O(1) approximate
top-k estimation algorithm as well. For the
approximate algorithm, we aim to choose
a data-dependent and dynamic acceptance
threshold. When a block score exceeds our
calculated threshold, we can greedily add
it to the indices t and avoid making costly decisions about updating the stored set of indices. This
would produce a constant-time insertion complexity. To this end, we assume that the acceptance

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Algorithm 1 Measure Once, Mask Once (MOMO)

input Queries Q, Keys K, Values V , Query skip size γ, Key block size β, Query block size χ.
1: ▷ Step 1. Fused Query Sparse Attention & Sparse Mask Selection
2: for i ∈ {0, γ, 2γ, . . . } in parallel do
3: for j ∈ {0, 1, 2, . . . , ⌊ i+1

β ⌋ − 1} do
4: Oγ [i/γ,B(j)]← σ(QiK

⊤
B(j))VB(j).

5: S(j)← log
∑

l∈B(j) exp
(
QiK

⊤
l

)
.

6: Update t, s using S(j) using one of the online top-k algorithms.
7: end for
8: end for
9: ▷ Step 2. Union and trim the block masks to match the block-sparse kernel size χ.

10: ▷ For a full specification of trimming, please see Algorithm 2.
11: for i ∈ {0, χ, 2χ, . . . } in parallel do
12: Union selected key blocks for the sparse queries in the range [i, i+ χ).
13: Extract top-ktrim key blocks from the union.
14: end for
15: ▷ Step 3. Compute Block Sparse Attention
16: O∗ ← σ(QK⊤

∗)V∗
17: ▷ Step 4. Apply Delta Correction
18: ∆← Oγ − (O∗)γ .
19: O∆ ← Apply ∆ to O∗ using Eq. (3).
20: return O∆.

threshold of a single block is proportional to the number of remaining slots divided by the number
of remaining blocks in the current row (Eq. (6) RHS). For example, if we have 8 unfilled indices
in our top-k buffer t and 32 remaining blocks in the current row, then we should aim to accept
8/32 = 25% of the remaining tokens in the current row. If we assume that S(j) ∼ N (m(j), σ2(j))
follows a normal distribution, we can utilize the cumulative distribution function (CDF) to estimate
the acceptance threshold (Eq. (6) LHS). For this, we maintain a running mean m(j) and variance
σ2(j) of the S(j)’s, which can be computed in an online manner (Welford, 1962). While scanning
the key blocks, at each step, we pick a threshold sth(j) based on the estimated distribution, and add
S(j) to the final list if it exceeds the threshold,

Pr(S(j) > sth(j)) =
remaining slots(j)

remaining key blocks(j)
, (6)

where remaining slots(j) is the number of remaining slots in the t and s top-k buffers, and
remaining key blocks(j) is the number of key blocks left to scan at the jth step. Solving Eq. (6), the
formula for sth(j) becomes,

sth(j) =
√
2 · σ(j) · erf−1(2p− 1) +m(j), (7)

where p = 1− remaining slots(j)
remaining key blocks(j)

.

See Appendix A for a full derivation.

In our approximation, we assume that the dot product scores Q⊤
i Kl are Gaussian distributed due

to the fact that the dot product is a sum over a product of random variables. By the central limit
theorem (CLT), for a large dimension, these sums tend towards a normal distribution. However,
the scores S(j) consist of a log

∑
l exp(Q

⊤
i Kl) and the inner sum is therefore a sum over log-

normally distributed variables. The exact closed form density function for a sum of log-normals
f(x) =

∑
i exp(N (mi, σi)) is unknown, however, it is known to be approximated well by another

log-normal variable z = exp(N(m̂, σ̂)) (Wu et al., 2005). Therefore, the previously mentioned
mean and variance updates can be understood to be updating the parameters of this approximate
log-normal distribution as,

log
∑

l∈B(j)

exp(Q⊤
i Kl) ≈ log z = log expN (m̂, σ̂) = N (m̂, σ̂) (8)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

In practice, we use a hybrid approach, where we select the top-kexact key blocks using exact top-k,
and the remaining (k − kexact) blocks using the approximate algorithm. This ensures that the most
important key blocks are never missed by a bad initial running statistic. Note that the number of
exact indices is a constant that does not depend on k, thus the insertion complexity remains O(1).
We compare all three top-k methods in Fig. 4. On the left, we compare the latency of the Query
Sparse Attention (QSA) kernel with each top-k method while varying k. On the right, we compare
what percentage of the attention mass is selected by the QSA kernel relative to the setting k =
kexact = 512, with varying values for k. For these comparisons, we use a 131K-token context from a
RULER needle-in-a-haystack task and a block size of β = 64. We observe that while the estimated
top-k algorithm is less precise (right), its impact on latency stays low due to the O(1) insert time-
complexity as k increases (left). Therefore, using a larger k (e.g. 128 instead of 64) can compensate
for the loss of accuracy from using the approximation while maintaining low latency.

Table 1: Effect of Trimming Alg.

Method RULER
(T=128K) Latency (ms)

FA3 77.92 31.5 (-)
Union w/o Trim 77.57 45.0 (-30%)
Union w/ Trim 77.20 26.5 (+19%)

Block Mask Union and Top-k Trimming. When the QSA
kernel has a γ value that is smaller than the query block size
χ for block sparse attention, we merge neighboring block
sparse mask rows generated by the QSA kernel in order to
avoid ambiguity. However, simply taking the union of the
candidate blocks in each row may result in a larger-than-
expected attention mask. Therefore, we trim the attention
mask by discarding all but the top-ktrim blocks from the union of the candidate blocks in each row,
where ktrim is an adjustable hyperparameter. These blocks are ranked by their block scores (Eq. (4)),
which are already available from the aggregated statistics gathered from the QSA kernel (see Fig. 1).
The complexity of this merging process, which includes the union, mean calculation, and sorting, is
O(k log k), a full algorithm can be found in Algorithm 2. As shown in Table 1, pruning unimportant
blocks in this manner significantly improves latency of a single attention layer over a simple union.

4 EXPERIMENTS

Experiment Settings. For all experiments we use a single node equipped with 8x H100 GPUs. To
assess the effective context length of each attention method, we use the RULER benchmark (Hsieh
et al., 2024). As a synthetic “needle-in-a-haystack” benchmark, RULER is ideal for evaluating an
attention mechanism’s ability to accurately retrieve information. For real-world language tasks, we
use the English subset of InfiniteBench (Zhang et al., 2024), which features question-answering
and summarization tasks derived from long book passages. We evaluate summarization using the
ROUGE-L score. For question answering (QA), we report two metrics: F1 and recall. The F1
score measures the harmonic mean of precision and recall between the predicted and ground-truth
answers. Recall measures whether the ground-truth answer is contained within the model’s gener-
ated output. For tasks that do not require summarization or QA, we report the accuracy metric for
InfiniteBench. For our method, a subscript of 64/64 indicates k = 64 and all 64 are exact top-k and
a subscript of 128/8 means k = 128 and only 8 are exact top-k. The remaining 120 will utilize the
approximate top-k algorithm outlined in Section 3.

Baselines. We use Flash Attention 3 (Shah et al., 2024) as our efficient dense attention baseline.
We use the SGlang open-source LLM serving framework (Zheng et al., 2024) for our method and
all of the following baselines. For sparse attention, we compare against four baselines: (1) Min-
ference (Jiang et al., 2024), which uses either a vertical-slash patterns or a block sparse pattern
derived from mean-pooling queries and keys before estimating block attention scores; (2) Delta At-
tention (Willette et al., 2025), which uses InfiniteHiP for sparse attention and applies a correction
with γ = 16; (3) InfiniteHiP (Lee et al., 2025), which employs a multi-stage hierarchical pruning
algorithm; and (4) Mean-Pooling Sparse Attention (Jiang et al., 2024), a component of both Min-
ference and Seer Attention that uses block sparsity based on mean-pooled attention score pruning.
We include mean-pooling as a representative baseline because it is a common and efficient training-
free mechanism for attention sparsification used in prior work (Jiang et al., 2024; Gao et al., 2025;
Lai et al., 2025). For MInference baselines, we utilize the official published library for RULER
tasks, and use SGLang’s Dual Chunk Flash Attention, which has the MInference CUDA kernels
merged directly into SGLang for all other experiments and ablations. Our method, as well as Delta
and HiP attention variants rely on Triton (Tillet et al., 2019) kernels instead of CUDA kernels.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Method 131K 65K 32K 16K 8K 4K Avg.
FA3 78.02 86.50 89.54 93.63 94.43 96.26 89.73

MInference 73.16 84.25 90.22 94.28 93.86 95.49 88.55
InfHiP 74.99 84.38 88.17 93.66 94.43 96.24 88.65
InfHiP + ∆ 77.37 86.34 89.74 93.50 94.47 96.26 89.61
Mean Pool 15.57 32.48 37.64 54.17 81.56 96.24 52.95

MOMO64/64 75.79 86.09 89.54 93.80 94.41 96.31 89.33
MOMO128/8 77.20 85.33 89.75 93.84 94.46 96.31 89.49

Table 2: RULER on Llama 3.1 8B. Our MOMO shows a no-
table increase in performance over most sparse attention methods
at the longest context lengths, while the performance of all sparse
attention methods saturates for context lengths less than 65K.

131K

74

76

78

A
cc

ur
ac

y
(%

)

78

73

75
76

77

Flash Attention 3

MInference

Infinite HiP

MOMO64/64

MOMO128/8

Figure 5: RULER 131K (the
longest subset) shows the
largest improvement with our
method.

Method P.K Num. KV Sum Choice QA-F1 QA-R M.F Avg.

FA3 100 100 100 32.19 88.21 24.41 58.33 43.37 68.31

Minference 100 100 100 33.94 86.46 24.55 59.81 34.86 67.45
InfHiP 100 100 98.00 33.59 78.17 25.96 54.72 36.57 65.88
InfHiP + ∆ 100 100 98.00 33.20 81.66 23.52 57.24 36.29 66.24
Mean-Pool 100 100 0.20 18.01 69.87 11.53 23.20 36.57 44.92

MOMO64/64 100 100 100 32.85 83.41 22.64 57.67 36.00 66.57
MOMO128/8 100 100 100 33.42 83.84 22.35 56.14 36.00 66.47

Table 3: InfiniteBench on Qwen3 30B A3B Our method delivers competitive performance which
is within %1 of the best baseline score on average. When considering both performance and latency
(Fig. 10), our method is on the Pareto frontier in terms of the performance vs latency tradeoff.

4.1 BENCHMARKS

RULER. In Table 2, we evaluate our MOMO on the RULER benchmark with the Llama 3.1 8B
Instruct model (Llama Team, 2024) and compare with baseline methods. Compared to the baseline
sparse attention methods, MOMO achieves scores only down 0.24%p from the dense FlashAtten-
tion3 on average. Notably, our method shows a greater increase in accuracy at the longest context
lengths (65K and 131K), whereas the performance of all methods saturates at context lengths less
than 65K. As shown in Fig. 2, our method is able to capture more dynamic patterns in the attention
matrix which include dynamic spans of vertical and slash patterns where the lines do not continue
throughout the entire attention matrix. As context grows longer (Fig. 2e), this results in a captured
attention score which is much closer to an oracle than baseline methods.

InfiniteBench. In Table 3, we evaluate MOMO on the InfiniteBench benchmark (T=256K) with
Qwen3-30B-A3B-2507 model (Yang et al., 2025a). Our model delivers competitive performance,
which is above that of all baselines except MInference, which shows performance within %1 of ours.
However, we note that the pre-tuned MInference configurations lead to higher latency than FA3 for
256K context lengths which places our method on the Pareto frontier in terms of performance vs.
latency (see Fig. 10).

Method ksparse × 103 kdense × 103 E2E (s) ∞Bench

FA3 0.0 1048.57 76.92 68.31
MInf. 37.38 0.0 80.32 67.45
InfHiP 2.88 65.53 34.90 65.88
InfHiP+∆ 2.88 126.97 39.88 66.24
Ours 3.84 126.97 33.54 66.64

Table 4: Number of attended attention key tokens per query
at T=1M on Qwen3 30B A3B.

Attention Token-wise Efficiency In
Table 4, we present the correla-
tion between model performance and
computational efficiency, exploring
both theoretical metrics (the num-
ber of attended tokens) and practi-
cal benchmarks (end-to-end speed).
ksparse denotes how many tokens
are attended sparsely (through block
sparse attention), and kdense denotes

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

32K 65K 131K 262K 524K 1M
Context length (tokens)

0.5

1.0

1.5

2.0

2.5
Sp

ee
du

p

0.9x 0.9x 1.1x
1.4x

1.7x

2.3x
Latency @ TP=8

32K 65K 131K 262K 524K 1M
Context length (tokens)

0.5

1.0

1.5

2.0

2.5

0.8x 0.9x
1.2x

1.7x
2.0x

2.5xLatency @ TP=4

0.50 0.75 1.00 1.25 1.50
Avg. Speedup

88.0

88.5

89.0

89.5

90.0

Av
g.

 R
UL

ER
 sc

or
e

Pareto Chart

FlashAttn2 FlashAttn3 MInference InfHiP InfHiP+
MOMO64/64 (Ours) MOMO128/8 (Ours)

Figure 6: Real-world end-to-end prefill latency (TTFT) speedup relative to Flash Attention 3.
We measure the end-to-end prefill latency on 8x H100 (left) and 4x H100 (middle) using the Qwen3
30B model on the SGLang inference framework. On the right, we plot a Pareto chart showing the
trade-off between accuracy (RULER score) and average of speedup over the 32K – 1M range.

how many tokens are attended densely (through query sparse attention and flash attention). In-
terestingly, the total number of attended tokens ksparse + kdense does not directly indicate end-to-end
latency. Instead, ksparse dominates the latency due to there being fewer opportunities for efficient
cache usage or hardware acceleration compared to dense attention. Due to the dual usage of query-
sparse and key-sparse attention in our method, we are able to strike a balance between ksparse and
kdense in order to achieve better efficiency.

End-to-end latency. In Fig. 6, we compare the end-to-end prefill latency of our method against
baselines using the SGLang serving framework (Zheng et al., 2024), using the Qwen3 30B A3B
model (Yang et al., 2025a) which has a built-in pre-tuned MInference configuration. Relative to the
state-of-the-art dense attention method Flash Attention 3 (FA3), our MOMO achieves an up to 2.3x
speedup using 8x H100 GPUs, and up to 2.5x speedup using 4x H100 GPUs using tensor parallel.
In contrast, MInference narrowly beats FA3 by a small margin at 1M tokens, and is slower than FA3
in shorter context lengths. While InfiniteHiP manages to beat our MOMO at 1M tokens, it is slower
than ours in the <1M token setting. Our method is the only one that consistently outperforms FA3 in
the 131K – 1M range. Combined with the strong results in RULER and InfiniteBench benchmarks,
this demonstrates our method’s practical usefulness for speeding up inference in real-world LLM
serving, also illustrated by the Pareto chart in Fig. 6 (right).

4.2 ABLATION

2 4 8 16 32
kexact

2

4

8

16

32

k

75.1

74.1 74.3

74.8 75.1 75.2

76.0 76.2 75.4 75.3

76.3 75.8 76.2 76.3 76.2
74.5

75.0

75.5

76.0

(a) RULER (Llama 3.1 8B)

8 16 32 64
kexact

8

16

32

64

k

51.6

52.5 52.4

53.2 53.6 53.6

54.8 54.8 54.0 54.0 52

53

54

(b) Inf.Bench (Qwen3 30B A3B)

Figure 7: A heatmap showing the relationship between observed
K and exact K values. As total K increases, the overall perfor-
mance of MOMO increases in turn.

Estimated vs. Exact k. In
Section 3, we outlined two ex-
act top-k methods (online top-
k and winner tree) and one ap-
proximate top-k method. When
using the approximate top-k, in
practice, we set a small exact
online top-k buffer and utilize
the approximate top-k method
for the remaining kest = k −
kexact slots in the buffer. This
opens up the possibility for dif-
ferent settings for k and kexact
within a given budget for k. To
investigate the effect of these
settings, we perform an abla-
tion shown in Fig. 7 by picking a spectrum of values for kest given a total k budget. We perform this
experiment on both RULER (131K only) with Llama 3.1 8B and on InfiniteBench (mc.QA subset)
with Qwen3 30B A3B. For both settings, we see increasing performance with an increasing setting
for k. In contrast, we observe that increasing kexact while holding k fixed has little effect on the

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

performance, which suggests that the approximate top-k algorithm is sufficiently accurate that the
performance is saturated with small kexact.

0.0 0.2 0.4 0.6 0.8 1.0

Ctx. Length ×106

0.70

0.75

0.80

0.85

0.90

0.95

1.00

S
pa

rs
it

y

Sparsity by Ctx. Length

γ=16 K=64

γ=32 K=64

γ=16 K=128

γ=32 K=128

upper bound γ = 16

upper bound γ = 32

Figure 8: Sparsity calculated as
a function of context length.

Sparsity By Context Length. In Fig. 8, we look at the overall
sparsity as a function of the context length up to 1M tokens. With
K as the number of blocks computed with a block size of Bk, W
as window tokens, S as sink tokens, and C representing the context
length, the formula to calculate the overall sparsity ζ is given by,

ζ = 1−min

(
1,

BkK + S +W + C
γ

C

)
(9)

This takes all components into account and amortizes the cost of
the delta correction over the γ rows where the same delta will be re-
peated. As C grows larger, the effect of the constant terms diminish
which places the upper bound of the sparsity ζ at ζ = 1− C

γ due to
the query sparse kernel.

32 64 128
χ

16

32

64

γ

76.48 76.30 75.79

75.67 76.26 75.64

75.64 74.75

Ablation of γ, χ

74.8

75.0

75.2

75.4

75.6

75.8

76.0

76.2

76.4

V
al

ue

Figure 9: Ablation of the
query sparse parameter γ and
the block-sparse attention query
block size χ.

Ablation of γ, χ. In Fig. 9, we show the interactions for γ which
controls query sparsity in the QSA kernel and χ which controls the
query block size in the block sparse attention. Setting γ to a higher
value will cause more overall sparsity and also degrade the accu-
racy of the attention mask as we are applying the mask from row i
to a larger number of subsequent rows j ∈ [i, . . . , i + γ]. On the
other hand, setting χ to a value much larger than γ will cause more
rows to be condensed in the union and trimming (Algorithm 2) and
will likewise degrade the precision of each predicted mask. Fig-
ure 9 shows this interaction on the RULER 131K Avg. benchmark
for Llama 3.1 8B Instruct. We find that the average performance
decreases as the overall sparsity (γ) increases and also that as χ in-
creases over γ the performance tends to be decrease. We chose the
settings of γ = 16, χ = 128 in our experiments as sensible defaults
due to the common setting of 128 as the query block size of flash
attention kernels.

5 LIMITATIONS & FUTURE WORK

Our method uses a query sparse kernel which densely scans entire rows of keys in order to collect
the block statistics needed for generating a sparse attention mask. This opportunity to collect block
statistics comes as a side effect of the query sparse kernel that is needed for the delta correction
term outlined in Eq. (3). This means that while fast and efficient, the overall attention algorithm
remains quadratic since the query dimension is reduced by a factor of γ. This limitation could be
further mitigated if the key-dense delta correction could be approximated by a pooled set of key-
value vectors, then the second dimension could likewise be reduced by another factor in the key
dimension which would have a multiplicative effect on the total amount of computation reduction.
Furthermore, to gain an even better approximation, one might consider hierarchically pooling key-
value blocks in order to achieve an even better approximation to the key-dense delta correction.

6 CONCLUSION

In this work, we introduced Measure Once, Mask Once (MOMO), a novel method for efficient
long-context inference that fuses query-sparse attention with dynamic block mask generation before
performing key-sparse attention followed by a delta correction. By leveraging information already
computed during query-sparse attention, our approach eliminates redundant computation and pro-
duces a key-sparse mask that dynamically adapts to the input. This design allows us to capture
nearly the full attention mass of an oracle top-k mask, while achieving up to a 2.5x speedup over
FlashAttention3 at the million-token scale. Across RULER and InfiniteBench, our method consis-
tently approaches dense attention in accuracy while delivering lower latency, making it practical for
real-world long-context inference.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Reproducibility Statement To aid in experiment reproducibility, we have based all of our exper-
iments on publicly available datasets. We have included a detailed algorithm in Algorithm 1, and
have explained all relevant hyperparameters in Section 4. We have included the kernel level code
for our method in the supplementary file, which contains all of the newly proposed components of
this work. Additionally, we will make a full open-source release of our method upon acceptance.

REFERENCES

Shantanu Acharya, Fei Jia, and Boris Ginsburg. Star attention: Efficient llm inference over long
sequences. arXiv preprint arXiv:2411.17116, 2024.

Yizhao Gao, Zhichen Zeng, Dayou Du, Shijie Cao, Peiyuan Zhou, Jiaxing Qi, Junjie Lai, Hayden
Kwok-Hay So, Ting Cao, Fan Yang, and Mao Yang. Seerattention: Learning intrinsic sparse
attention in your llms, 2025. URL https://arxiv.org/abs/2410.13276.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computation, 9(8):
1735–1780, 1997. doi: 10.1162/neco.1997.9.8.1735.

Cheng-Ping Hsieh, Simeng Sun, Samuel Kriman, Shantanu Acharya, Dima Rekesh, Fei Jia, Yang
Zhang, and Boris Ginsburg. Ruler: What’s the real context size of your long-context language
models? arXiv preprint arXiv:2404.06654, 2024.

Huiqiang Jiang, Yucheng Li, Chengruidong Zhang, Qianhui Wu, Xufang Luo, Surin Ahn, Zhenhua
Han, Amir H Abdi, Dongsheng Li, Chin-Yew Lin, et al. Minference 1.0: Accelerating pre-filling
for long-context llms via dynamic sparse attention. Advances in Neural Information Processing
Systems, 37:52481–52515, 2024.

Donald E. Knuth. The art of computer programming, volume 3: (2nd ed.) sorting and searching.
Addison Wesley Longman Publishing Co., Inc., USA, 1998. ISBN 0201896850.

Xunhao Lai, Jianqiao Lu, Yao Luo, Yiyuan Ma, and Xun Zhou. Flexprefill: A context-aware sparse
attention mechanism for efficient long-sequence inference. In The Thirteenth International Con-
ference on Learning Representations, 2025. URL https://openreview.net/forum?
id=OfjIlbelrT.

Heejun Lee, Geon Park, Youngwan Lee, Jaduk Suh, Jina Kim, Wonyoung Jeong, Bumsik Kim,
Hyemin Lee, Myeongjae Jeon, and Sung Ju Hwang. A training-free sub-quadratic cost
transformer model serving framework with hierarchically pruned attention. arXiv preprint
arXiv:2406.09827, 2024.

Heejun Lee, Geon Park, Jaduk Suh, and Sung Ju Hwang. Infinitehip: Extending language model
context up to 3 million tokens on a single gpu. arXiv preprint arXiv:2502.08910, 2025.

Llama Team. The Llama 3 Herd of Models, November 2024. URL http://arxiv.org/abs/
2407.21783. arXiv:2407.21783 [cs].

Jay Shah, Ganesh Bikshandi, Ying Zhang, Vijay Thakkar, Pradeep Ramani, and Tri Dao.
Flashattention-3: Fast and accurate attention with asynchrony and low-precision. Advances in
Neural Information Processing Systems, 37:68658–68685, 2024.

Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha, Bo Wen, and Yunfeng Liu. RoFormer: En-
hanced Transformer with Rotary Position Embedding, November 2021. URL http://arxiv.
org/abs/2104.09864. arXiv:2104.09864 [cs].

Philippe Tillet, Hsiang-Tsung Kung, and David Cox. Triton: an intermediate language and compiler
for tiled neural network computations. In Proceedings of the 3rd ACM SIGPLAN International
Workshop on Machine Learning and Programming Languages, pp. 10–19, 2019.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

11

https://arxiv.org/abs/2410.13276
https://openreview.net/forum?id=OfjIlbelrT
https://openreview.net/forum?id=OfjIlbelrT
http://arxiv.org/abs/2407.21783
http://arxiv.org/abs/2407.21783
http://arxiv.org/abs/2104.09864
http://arxiv.org/abs/2104.09864

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

B. P. Welford. Note on a Method for Calculating Corrected Sums of Squares and Products. Techno-
metrics, 4(3):419–420, August 1962. ISSN 0040-1706. doi: 10.1080/00401706.1962.10490022.

Jeffrey Willette, Heejun Lee, and Sung Ju Hwang. Delta attention: Fast and accurate sparse attention
inference by delta correction. arXiv preprint arXiv:2505.11254, 2025.

Jingxian Wu, Neelesh B Mehta, and Jin Zhang. Flexible lognormal sum approximation method.
In GLOBECOM’05. IEEE Global Telecommunications Conference, 2005., volume 6, pp. 3413–
3417. IEEE, 2005.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
language models with attention sinks. arXiv preprint arXiv:2309.17453, 2023.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025a.

Xinyu Yang, Tianqi Chen, and Beidi Chen. Ape: Faster and longer context-augmented generation
via adaptive parallel encoding. arXiv preprint arXiv:2502.05431, 2025b.

Jiayi Yao, Hanchen Li, Yuhan Liu, Siddhant Ray, Yihua Cheng, Qizheng Zhang, Kuntai Du, Shan
Lu, and Junchen Jiang. Cacheblend: Fast large language model serving with cached knowledge
fusion. arXiv e-prints, pp. arXiv–2405, 2024.

Jintao Zhang, Chendong Xiang, Haofeng Huang, Haocheng Xi, Jun Zhu, Jianfei Chen, et al.
Spargeattention: Accurate and training-free sparse attention accelerating any model inference.
In Forty-second International Conference on Machine Learning.

Xinrong Zhang, Yingfa Chen, Shengding Hu, Zihang Xu, Junhao Chen, Moo Hao, Xu Han, Zhen
Thai, Shuo Wang, Zhiyuan Liu, et al. ∞Bench: Extending long context evaluation beyond 100k
tokens. In Proceedings of the 62nd Annual Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pp. 15262–15277, 2024.

Lianmin Zheng, Liangsheng Yin, Zhiqiang Xie, Chuyue Sun, Jeff Huang, Cody Hao Yu, Shiyi
Cao, Christos Kozyrakis, Ion Stoica, Joseph E. Gonzalez, Clark Barrett, and Ying Sheng.
SGLang: Efficient Execution of Structured Language Model Programs, June 2024. URL
http://arxiv.org/abs/2312.07104.

12

http://arxiv.org/abs/2312.07104

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Algorithm 2 Trimming Algorithm

input BSA scores s, BSA indices t, Num target blocks K, Query skip size γ, Key block size β,
Query block size χ.

1: ▷ Step 1. Calculate number of union rows U , reshape, and flatten s, t
2: U ← χ

γ .
3: s, t← reshape s, t from (B,H, S,K)→ (B ∗H, S

U , U ∗K)
4: ▷ Step 2. Sort scores and indices by indices sorting idx in last dimension
5: s, t← sort s, t according to argsort(t) indices
6: ▷ Step 3. Take mean of scores which have repeat indices in last dimension
7: s, t← reduce s, t by mean where t has repeated indices.
8: ▷ Step 4. Final sort and top-k.
9: s, t← sort s, t according to argsort(s) in descending order.

10: t← t[..., :K]
11: return t.

A THRESHOLD FORMULA DERIVATION

Restating the equation,

Pr(S(j) > sth(j)) =
remaining slots(j)

remaining key blocks(j)
. (6)

Substituting using p = 1− remaining slots(j)
remaining key blocks(j) ,

Pr(S(j) > sth(j)) = 1− p. (10)

Since we assumed S(j) ∼ N (m(j), σ2(j)), S(j)−m(j)
σ(j) = X where X ∼ N (0, 1). Thus

1− p = Pr(S(j) > sth(j)) (11)

= Pr

(
X >

sth(j)−m(j)

σ(j)

)
(12)

= 1− FX

(
sth(j)−m(j)

σ(j)

)
, (13)

where FX(x) = 1
2

[
1 + erf(x/

√
2)
]

is the cdf of X . Thus

1− p = 1− FX

(
sth(j)−m(j)

σ(j)

)
(14)

= 1− 1

2

[
1 + erf

(
sth(j)−m(j)

σ(j)
√
2

)]
, (15)

Solving for sth(j), we arrive at the result

⇒ 2p− 1 = erf

(
sth(j)−m(j)

σ(j)
√
2

)
(16)

⇒ sth(j) =
√
2 · σ(j) · erf−1(2p− 1) +m(j). (17)

B TRIMMING ALGORITHM

As noted in Section 3, the QSA kernel γ parameter and the block sparse attention kernel’s query
stride setting may not be the same which created the need for an algorithm to merge rows of our
target BSA indices in order to keep the number of computed blocks in line with the targeted number
of blocks we wish to compute.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

C EXTRA EFFICIENCY-ACCURACY TRADEOFF CHARTS

0.50 0.75 1.00 1.25 1.50 1.75 2.00
Speedup @ T=256K

65.0
65.5
66.0
66.5
67.0
67.5
68.0
68.5
69.0

Av
g.

 In
fB

en
ch

 sc
or

e
Pareto Chart

0.50 0.75 1.00 1.25 1.50 1.75 2.00
Avg. Speedup

65.0
65.5
66.0
66.5
67.0
67.5
68.0
68.5
69.0

Av
g.

 In
fB

en
ch

 sc
or

e

Pareto Chart

Figure 10: Efficiency-Accuracy (InfiniteBench) Tradeoff Charts. The speedup is relative to Flash
Attention 3, measured on 8x H100 with Qwen3 30B model.

D EXTRA ATTENTION MATRIX PLOTS

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

(a) Lyr 1 Hd. 8 (b) Lyr 12 Hd. 10 (c) Lyr 15 Hd. 2 (d) Lyr 16 Hd. 1

0K 6K 12K 19K 25K 32K

Key Token Index

0K

6K

12K

19K

25K

32K

Q
ue

ry
T

ok
en

In
de

x MInference

(e) Lyr 1 Hd. 8

0K 6K 12K 19K 25K 32K

Key Token Index

0K

6K

12K

19K

25K

32K

Q
ue

ry
T

ok
en

In
de

x MInference

(f) Lyr 12 Hd. 10

0K 6K 12K 19K 25K 32K

Key Token Index

0K

6K

12K

19K

25K

32K
Q

ue
ry

T
ok

en
In

de
x MInference

(g) Lyr 15 Hd. 2

0K 6K 12K 19K 25K 32K

Key Token Index

0K

6K

12K

19K

25K

32K

Q
ue

ry
T

ok
en

In
de

x MInference

(h) Lyr 16 Hd. 1

(i) Lyr 1 Hd. 8 (j) Lyr 12 Hd. 10 (k) Lyr 15 Hd. 2 (l) Lyr 16 Hd. 1

0K 6K 12K 19K 25K 32K

Key Token Index

0K

6K

12K

19K

25K

32K

Q
ue

ry
T

ok
en

In
de

x QSA Est.
Top-K

(m) Lyr 1 Hd. 8

0K 6K 12K 19K 25K 32K

Key Token Index

0K

6K

12K

19K

25K

32K

Q
ue

ry
T

ok
en

In
de

x QSA Est.
Top-K

(n) Lyr 12 Hd. 10

0K 6K 12K 19K 25K 32K

Key Token Index

0K

6K

12K

19K

25K

32K

Q
ue

ry
T

ok
en

In
de

x QSA Est.
Top-K

(o) Lyr 15 Hd. 2

0K 6K 12K 19K 25K 32K

Key Token Index

0K

6K

12K

19K

25K

32K

Q
ue

ry
T

ok
en

In
de

x QSA Est.
Top-K

(p) Lyr 16 Hd. 1

0K 6K 12K 19K 25K 32K

Key Token Index

0K

6K

12K

19K

25K

32K

Q
ue

ry
T

ok
en

In
de

x QSA
Top-K

(q) Lyr 1 Hd. 8

0K 6K 12K 19K 25K 32K

Key Token Index

0K

6K

12K

19K

25K

32K

Q
ue

ry
T

ok
en

In
de

x QSA
Top-K

(r) Lyr 12 Hd. 10

0K 6K 12K 19K 25K 32K

Key Token Index

0K

6K

12K

19K

25K

32K

Q
ue

ry
T

ok
en

In
de

x QSA
Top-K

(s) Lyr 15 Hd. 2

0K 6K 12K 19K 25K 32K

Key Token Index

0K

6K

12K

19K

25K

32K

Q
ue

ry
T

ok
en

In
de

x QSA
Top-K

(t) Lyr 16 Hd. 1

Figure 11: Extra examples of attention figures from different sparse attention methods.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

E LLM USAGE

In preparing this work, we utilized publicly available LLM’s for the following purposes:

• Finetuning some sections of writing after writing a complete draft.
• Generating boilerplate code for some verbose kernel operations, which was then modified

to fit our needs.

16

	Introduction
	Related Work
	Method
	Experiments
	Benchmarks
	Ablation

	Limitations & Future Work
	Conclusion
	Threshold Formula Derivation
	Trimming Algorithm
	Extra Efficiency-Accuracy Tradeoff Charts
	Extra Attention Matrix Plots
	LLM Usage

