
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

COLLU-BENCH: A BENCHMARK FOR PREDICTING
LANGUAGE MODEL HALLUCINATIONS IN CODE

Anonymous authors
Paper under double-blind review

ABSTRACT

Despite their success, large language models (LLMs) face the critical challenge of
hallucinations, generating plausible but incorrect content. While much research
has focused on hallucinations in multiple modalities including images and natu-
ral language text, less attention has been given to hallucinations in source code,
which leads to incorrect and vulnerable code that causes significant financial loss.
To pave the way for research in LLMs’ hallucinations in code, we introduce Collu-
Bench, a benchmark for predicting code hallucinations of LLMs across code gen-
eration (CG) and automated program repair (APR) tasks. Collu-Bench includes
13,234 code hallucination instances collected from five datasets and 11 diverse
LLMs, ranging from open-source models to commercial ones. To better under-
stand and predict code hallucinations, Collu-Bench provides detailed features such
as the per-step log probabilities of LLMs’ output, token types, and the execution
feedback of LLMs’ generated code for in-depth analysis. In addition, we con-
duct experiments to predict hallucination on Collu-Bench, using both traditional
machine learning techniques and neural networks, which achieves 22.03 – 33.15%
accuracy. Our experiments draw insightful findings of code hallucination patterns,
reveal the challenge of accurately localizing LLMs’ hallucinations, and highlight
the need for more sophisticated techniques.

1 INTRODUCTION

Despite the great potential and impressive success of LLMs (Touvron et al., 2023; Brown et al., 2020;
Li et al., 2022a; OpenAI, 2024), a known issue of LLMs is hallucination, a phenomenon where the
model generates fluent and plausible-sounding but unfaithful or fabricated content (Ji et al., 2023).
The hallucination issue poses a significant risk when deploying LLMs in real-world applications
that require precise information (Puchert et al., 2023). Due to this importance, researchers have
developed benchmarks such as TruthfulQA (Lin et al., 2022), FELM (chen et al., 2023), and HaluE-
val (Li et al., 2023b) to understand and predict hallucinations of LLMs. Additionally, researchers
are actively exploring methods to mitigate hallucinations (Liu et al., 2024b; Elaraby et al., 2023;
Dhuliawala et al., 2023; Yan et al., 2024).

Another domain where LLMs have been widely applied is source code. LLMs are used in many
code-related applications, such as code generation (Wang et al., 2023; Li et al., 2023a; Guo et al.,
2024; Lozhkov et al., 2024; Rozière et al., 2024), automated program repair (Hossain et al., 2024a;
Ruiz et al., 2024; Silva et al., 2023; Jimenez et al., 2024; Hossain et al., 2024b; Jiang et al., 2023; Xia
et al., 2023), and software engineering agents (OpenAI, 2024; Yang et al., 2024; Zhang et al., 2024).
Unfortunately, in the code domain, LLMs also face the risk of hallucination, such as generating
misused Application Programming Interfaces (APIs), insufficient error handlers, or even vulnerable
code. Such hallucinations can cause the breakage of code bases, the shutdown of services, exploita-
tion of vulnerabilities, and eventually lead to huge financial costs 1.

Although important, hallucination in code is much less explored compared to that in natural lan-
guage text and images. Some existing work explores the API misuse issue (Zhong & Wang, 2024),
and there are a few benchmarks for hallucination in code generation tasks, categorizing code halluci-
nation into different types (Liu et al., 2024a; Tian et al., 2024). Nevertheless, they only recognize the

1https://cybersecurityventures.com/cybercrime-bytes-10-hot-security-
certs-public-safety-hacked-intrusions-shield/

1

https://cybersecurityventures.com/cybercrime-bytes-10-hot-security-certs-public-safety-hacked-intrusions-shield/
https://cybersecurityventures.com/cybercrime-bytes-10-hot-security-certs-public-safety-hacked-intrusions-shield/

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

existence of hallucinations without detecting, predicting, or localizing the hallucinated part. These
benchmarks lack analysis of hallucination in code in a finer granularity. Instead of evaluating the
entire code, we want to identify the specific token where the hallucination occurs and analyze the
characteristics of code hallucinations. A dataset with such information can facilitate a deeper under-
standing of code hallucination and make it possible to develop targeted and efficient techniques to
mitigate the code hallucination issue.

To fill this gap, we introduce Collu-Bench, a benchmark to evaluate and analyze code hallucinations
in LLMs. Collu-Bench targets two important LLM applications in coding: code generation (CG)
and automated program repair (APR). We design an automated pipeline and build the benchmark on
five datasets using 11 LLMs with various structures and sizes. In total, Collu-Bench includes 13,234
code hallucination instances. To facilitate the understanding of where the LLM makes mistakes,
Collu-Bench includes detailed signals such as per-step log probabilities (prob.), token types, and
execution feedback. Such signals reveal the patterns of LLMs’ hallucinations in code and benefit
the development of techniques to predict and localize hallucinations efficiently in advance.

We conduct a preliminary investigation of localizing code hallucinations on Collu-Bench by training
different models, ranging from traditional machine learning (ML) approaches (random forest, etc.)
to neural network (NN) models (LSTM, etc.). The goal is to predict the hallucination in the code
generated by LLMs in an efficient and lightweight way, by observing the behavior pattern (such
as log probs. of tokens during generation) of the targeting LLMs. Such prediction aims to help
the targeting LLMs reflect in time and thus produce more accurate code, instead of replacing the
LLMs. We set up the code hallucination localization task in two ways: per-token prediction, and
per-sample prediction. We further set up the data split in three ways: All-in-one (building a universal
predictor for all LLMs and on all data domains), One-per-dataset (building a predictor on each data
domain), and One-per-LLM (building a predictor for each LLM). Our comprehensive experiments
draw insightful findings in code hallucination of LLMs.

The main contributions of this paper are as follows:
• We build Collu-Bench, a benchmark with 13,234 code hallucination instances produced by 11

LLMs on five datasets. Collu-Bench includes detailed information such as per-step log prob.,
token types, and execution feedback, which are useful signals for developing code hallucination
localizing and predicting techniques.
– We propose an automated pipeline, by sampling equivalent code and program normalization,

to collect more accurate hallucination token locations during the construction of Collu-Bench.
• We conduct preliminary yet comprehensive studies of code hallucination localization using

Collu-Bench, and the key findings are as follows:
– LLMs are less confident when hallucinating, as the hallucinated tokens have lower prob. and

hallucinated generation steps have higher entropy (Section 4.1).
– LLMs are more likely to hallucinate when generating certain types of tokens such as Keyword,
Identifier, and Type Identifier (Section 4.1).

– When conducting per-token prediction of hallucination token, random forest produces the
highest overall accuracy of 33.09%. When conducting per-sample prediction of hallucination
location, LSTM produces the highest overall accuracy of 33.15% (Sections 5.1 and 5.2).

– Under “One-per-dataset” and “One-per-LLM” settings, per-token and per-sample predictions
show different patterns and complement each other (Sections 5.1 and 5.2).

• Our results with overall accuracy ranging from 22.03% to 33.15%, show that code hallucination
prediction and localization is still a challenging task having large space to improve.

Availability: The benchmark is available at https://zenodo.org/records/13877115.

2 RELATED WORK

2.1 TEXT AND IMAGES HALLUCINATION BENCHMARKS

Hallucination in natural language generation (NLG) refers to the phenomenon where models gener-
ate text that is fluent but factually incorrect or inconsistent with the input data. Several benchmarks
and studies have been proposed to address this issue. HaluEval is a large-scale hallucination eval-
uation benchmark designed to assess the performance of large language models (LLMs) in gener-

2

https://zenodo.org/records/13877115

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

ating factually accurate text (Li et al., 2023b). It provides a comprehensive collection of generated
and human-annotated hallucinated samples. FELM introduces a benchmark designed to evaluate
the factuality of text generated by LLMs across diverse domains, including math, reasoning, and
world knowledge (chen et al., 2023). HaDes is a token-level reference-free hallucination detection
benchmark, providing a fine-grained analysis of model performance without relying on ground truth
references (Liu et al., 2022). Additionally, RARR uses language models themselves to research and
revise the factual consistency of their outputs (Gao et al., 2023).

In the multi-modal tasks. MHaluBench is a comprehensive benchmark for evaluating hallucina-
tions in multi-modal settings (Chen et al., 2024), which incorparates a wider range of hallucina-
tion categories and tasks, such as image-to-text and text-to-image generation. MHaluBench offers
fine-grained annotations that help identify hallucinations at a detailed level, and facilitates a deeper
understanding of hallucination in MLLMs and provides a robust foundation for improving model
reliability in practical applications.

2.2 CODE HALLUCINATION BENCHMARKS

HalluCode (Liu et al., 2024a) explores hallucinations in the context of code generation. It introduces
a comprehensive taxonomy of hallucinations specific to LLM-powered code generation, categoriz-
ing them into five primary types. The authors conducted a thematic analysis of LLM-generated
code to classify hallucinations based on deviations from user intent, internal inconsistencies, and
misalignment with factual knowledge. The benchmark evaluates LLMs’ ability to recognize and
mitigate hallucinations, revealing that current models face significant challenges.

CodeHalu (Tian et al., 2024) focuses on investigating code hallucinations through execution-based
verification. The authors categorize code hallucinations into four main types: mapping, naming,
resource, and logic hallucinations, each of which highlights unique challenges in code generation.
CodeHalu presents a dynamic detection algorithm to detect and quantify hallucinations and intro-
duces the CodeHaluEval benchmark, which includes a large set of samples to evaluate LLM perfor-
mance in code generation.

Collu-Bench differs from both HalluCode and CodeHalu in two key aspects. First, Collu-Bench
focuses on identifying where the hallucination occurs by pinpointing the exact token at which the
model first deviates from the expected output. Second, Collu-Bench provides additional signals,
such as the types of generated tokens, helping researchers better understand the underlying patterns
of code hallucinations.

3 BENCHMARK CONSTRUCTION

In this section, we describe the collection process of Collu-Bench. We first describe our automated
pipeline of handling program equivalency and identifier viability, which helps in collecting accurate
hallucination token locations in Collu-Bench (Section 3.1). Then we introduce the selected datasets
and LLMs in Section 3.2. Section 3.3 shows the process of using LLMs to generate outputs and
collect the hallucination token index automatically. Lastly, in Section 3.4, we explain the additional
signals Collu-Bench includes, that could help localize hallucination tokens in LLM-generated code.

3.1 HANDLING CODE EQUIVALENCE AND VARIATION

A standard approach for localizing the hallucinated token is to compare the generated solution with
the canonical solution. However, simply comparing the canonical solution and the generated code
can lead to many false positives, since the LLM may follow an alternative way to solve the task (Li
et al., 2022b; Austin et al., 2021; Chen et al., 2021a;b). For instance, the task of sorting a list of
integers can be implemented with many different sorting algorithms. Even semantically equivalent
solutions may have a range of syntactic variations, e.g., naming variables differently, using a for
loop instead of a while loop, etc.

Existing hallucination benchmarks in natural language or vision domains although face similar chal-
lenges of diversity in text, they can manually annotate the hallucinations in text or images. Compared
to text or images, hallucination in code is much more complex and harder to label, as it requires do-
main expertise. To build a large benchmark of hallucination in code, we propose a pipeline of

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

collecting diverse correct solutions and normalizing programs to automate the calculation of hallu-
cination location in LLM-generated code.

i). Diverse Canonical Solution Collection: For each problem in the dataset, besides the official
canonical solutions, we enhance the diversity of canonical solutions by using LLMs to sample more.

For the CG task, due to the simplicity of coding problems in HumanEval and MBPP, there could
be lots of different algorithms solving the problems correctly. To cover the equivalent canonical so-
lutions as much as possible, we let each LLM (DeepSeek-Coder-1.3b/6.7b, StarCoder2-3b/7b/15b,
CodeLlama-7b/13b, Llama3-8b, and GPT-4o-mini) sample 100 programs per problem, using a tem-
perature of 0.8. These sampled programs are run against EvalPlus for evaluation of correctness, and
those that pass all the test cases are considered equivalent canonical solutions.

For the APR task, we conduct the same sampling process (i.e., each LLM sample 100 outputs per
repair problem and run against test cases) for the HumanEval-Java dataset to collect canonical solu-
tions, given its simplicity. For Defects4J and SWE-Bench, since (1) the program repair problems in
these two datasets are much more complex and thus are less likely to have many diverse equivalents,
and (2) their execution of test cases are computationally expensive, we do not conduct sampling
and only consider the developer fix provided in the datasets, as well as LLM-generated fixes using
greedy decoding that pass all the test cases, as the canonical solutions.

ii). Program Normalization: Collecting diverse canonical solutions is effective in covering cor-
rect programs implemented with different algorithms or logic. However, it cannot account for the
limitless variants of identifier names that can be used within the same program. For example, “for
x, y in zip(tup1, tup2)” and “for a, b in zip(tup1, tup2)” are logically equivalent
but differ textually due to the use of different identifier names. Thus, we conduct program normal-
ization to replace all the user-defined identifiers with normalized names so that different choices of
identifier names will not be considered hallucinations.

We use tree-sitter (Brunsfeld et al., 2024), a static parser, to parse the generated code into AST,
and walk through the AST to collect all the user-defined identifiers. Details can be found in Ap-
pendix A.1. After collecting a set of unique user-defined identifiers from a program generated by
an LLM (e.g., collecting the identifiers {a, b} from the code snippet “for a, b in zip(tup1,
tup2)”, which is a “for statement” in Python), we rename these identifiers sequentially as v1,
v2, and so on, to normalize the program. For instance, a is replaced by v1 and b is replaced by
v2, thus code snippet “for a, b in zip(tup1, tup2)” is normalized into “for v1, v2 in
zip(tup1, tup2)”. During this step, the logically equivalent programs with different identifier
names will be normalized into the same program.

3.2 DATASETS AND LLMS

We target two code-related tasks in Collu-Bench: code generation (CG) and automated program
repair (APR). In total, we select five datasets to build the benchmark.

Code generation (CG): Code generation is the task of automatically producing code from natural
language descriptions. It plays a crucial role in software development by improving productivity
and enabling non-programmers to create code through high-level specifications. It is widely used to
evaluate the coding capability of LLMs. We use the following CG datasets to build Collu-Bench:

• MBPP (Austin et al., 2021): MBPP is a code generation benchmark comprised of hand-written
problems solvable by entry-level Python programmers. We use the sanitized version from
EvalPlus (Liu et al., 2023) which contains 343 problems.

• HumanEval (Chen et al., 2021a): The HumanEval benchmark contains 164 hand-written
Python programming problems with function signatures, docstrings, and unit tests.

Automated Program Repair (APR): Automated program repair is the process of automatically
fixing bugs in software programs, which can significantly reduce the time and effort required for
manual debugging and repair. We use the following APR datasets to build Collu-Bench:

• HumanEval-Java (Jiang et al., 2023): A benchmark for APR in Java that is transformed from
HumanEval to overcome the data leakage threat of Defects4J. It contains 164 injected bugs using
27 diverse mutation rules.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

all (return x < ...

-0.117
-2.931
-3.068
...

-0.556
-1.050
-3.109
...

-0.007
-5.108
-7.499
...

-0.254
-2.256
-4.039
...

-0.024
-4.136
-4.912
...

-0.000
-8.806
-11.36
...

...

Space Keyword Id. Delim. Id. Op. ...

assert candidate(2) == 4
AssertionError

Parse

Canonical SolutionsGenerated
Tokens

Log Prob.

Token
Types

Error
Messages

Prompt

Execution

Hallucination Index: 5

Collu-Bench Overview

LLMs

Generation

return all(x < y
 for x, y in
 zip(tup1, tup2))

Generated Solution

Static Analysis

return all(a > b
 for a, b in
 zip(tup1, tup2))

return all(v1 < v2
 for v1, v2 in
 zip(tup1, tup2))

return all(v1 > v2
 for v1, v2 in
 zip(tup1, tup2))

User-Defined Ids.:
{x: v1, y: v2}

User-Defined Ids.:
{a: v1, b: v2}

Program Normalization

Hallucination Token: <
Index: 5

Hallucination Token Localization

Comparison

Figure 1: Overview of the benchmark construction

• Defects4J (Just et al., 2014): A widely used benchmark for APR in Java. It contains bug fixes
from popular open-source Java projects. We use the 235 single-hunk bugs (where the buggy code
and corresponding fixed code are within a continuous code chunk) in the Defects4J as a simpler
starting point following existing APR techniques (Jiang et al., 2023; Hossain et al., 2024a).

• SWE-bench (Jimenez et al., 2024): A recent dataset for project-level program repair in Python,
collected from the merged pull requests of popular Python libraries on GitHub. Similarly, we
use a subset of 792 single-hunk bugs.

We include outputs of 11 LLMs of five series in Collu-Bench, including open-source ones and
commercial ones with different sizes in each category to cater to different researchers’ interests.
This selection covers open-source code-specialized (DeepSeekCoder, StarCoder2, and CodeLlama)
and general (Llama3) models with sizes smaller than 34B and one of the state-of-the-art commercial
models (GPT-4o-mini). Additional details of the selected LLMs such as their sizes and release dates
are provided in Appendix A.3.

3.3 GENERATION AND AUTOMATED HALLUCINATION LOCALIZATION

Figure 1 illustrates the generation step that collects the LLMs’ outputs for given coding or repairing
problems, and the hallucination token localization step which automatically calculates the index of
the first generated hallucination token.

Code Generation: For each sample in the datasets (HumanEval, MBPP, etc.), we let each LLM gen-
erate one solution code using few-shot prompting (Brown et al., 2020) and greedy decoding. Details
and examples of the prompt we used to collect LLMs generated code are provided in Appendix A.2.

Localization of Hallucinated Tokens: This step collects the hallucination token indices from the
incorrect generate code by normalizing it and comparing it with the large, diverse set of canonical
code (Section 3.1), as these will be the targets of Collu-Bench. Specifically, we compare the LLM-
generated program with canonical solutions to decide the hallucination location. We normalize the
generated code and compare it with each normalized solution one by one. Non-indentation white
space in Python programs and all white space in Java programs are ignored during the comparison as
they do not affect functionality. The first different character is mapped back to the original generated
code before normalization to locate the token where this mismatched character is from.

For instance, in the example shown in Figure 1, the normalized LLM-generated program “return
all(v1 < v2 for v1, v2 in zip(tup1, tup2))” mismatches with the normalized canon-
ical solution “return all(v1 > v2 for v1, v2 in zip(tup1, tup2))” at character “<”
(highlighted in red). This character maps to the same “<” in the original LLM-generated code
“return all(x < y for x, y in zip(tup1, tup2))”, which is the fifth-generated token
by LLM. As a result, the hallucination token index for this example is 5.

As there could be multiple unique normalized canonical solutions per problem, we calculate the hal-
lucination token indices between the LLM-generated program and every unique canonical solution
and eventually take the largest hallucination token index.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

3.4 COLLECTION OF ADDITIONAL SIGNALS FOR HALLUCINATION LOCALIZATION

In addition to the raw generated output, we collect additional signals that could be relevant to hal-
lucination, i.e., per-step log probabilities provided by the LLMs, types of generated tokens, and the
error messages of executing the incorrect program.

Per-step Log Probabilities: Log probabilities can be obtained during the generation process
through LLMs’ inference API. The log probs. show the LLMs’ confidence level at the corresponding
decoding step. We collect the log probs. of the top 100 tokens at each step.

Token Types: In programming languages, each token can belong to different categories based on
its role in the code, which is analogous to parts of speech in natural language. We categorize tokens
of different types to provide code-specific information.

To determine the token types, we parse the code into an abstract syntax tree (AST), where each node
has its node type that we use to decide the token type. We classify code tokens, based on AST node
types, into the following categories: Keyword, Delimiter, Operator, Constant, Identifier,
and Type Identifier. Besides, we also add two additional types: Space for the white space
tokens and <EOS> for the end-of-sequence token (a token that marks the end of generation). Figure 2
shows examples of these token types in Java and Python programs.

Keyword

Delimiter

IdentifierOperator

Constant Type
Identifier

 Integer[] result = {0, 1};<EOS>

 return all(x < y for x, y in zip(tup1, tup2))<EOS>

Space

<EOS>

Figure 2: Examples of token types in Java and Python code

Error Messages: Execution feedback is crucial for understanding and potentially fixing incorrect
code because it usually points to relevant lines where the bug resides. Therefore, we offer the
execution feedback of the generated code by running test cases on them. For the CG task, we use
EvalPlus (Liu et al., 2023) to run rigorous test cases on the generated code. For the APR task, we
use the official evaluation scripts and run the test cases provided by each dataset.

4 BENCHMARK ANALYSIS

We present the statistics and analysis of Collu-Bench and show some key findings in this section.
Collu-Bench contains 13,234 instances, each with an LLM-generated code, parsed token types, per-
step log probs., execution error messages, and the hallucination token index as target (code without
hallucination is not included).

4.1 ANALYSIS AND FINDINGS

LLMs are less confident when hallucinating. Figure 3 shows the probability distributions of cor-
rect tokens and hallucinated tokens. (a) shows that for all the LLMs, the hallucinated tokens tend to
have a lower probability than the correct tokens. GPT-4o-mini is much more confident than other
LLMs when they are hallucinating. (b) shows that the code tokens generated for different datasets
and tasks still hold the same pattern. Code tokens generated for the HumanEval-Java dataset overall
have a higher probability (for both correct and hallucinated ones) than those for other datasets. Hal-
lucinated tokens generated for CG datasets overall have a lower probability than hallucinated
tokens generated for APR datasets. (c) shows the probability distribution of correct and halluci-
nated tokens with different types. Keyword is the only type that probability distributions of correct
and hallucinated tokens overlap the most, suggesting LLMs are least confident when generating
keywords. And the hallucinated EOS tokens have the highest probability, suggesting LLMs tend to
stop generation confidently, even at incorrect places.

LLMs are more likely to hallucinate when generating certain types of tokens. Table 1 shows
the error rate of different types of tokens generated by each LLM and for each dataset. Among all
the token types, Keyword is the most error-prone type across all five datasets, and most LLMs
(except GPT-4o-mini). Besides, Type Identifier and Identifier are also more error-prone
for most LLMs compared to the other types.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

DS
C-

1.3
B

DS
C-

6.7
B

DS
C-

33
B

CL
-7

B
CL

-1
3B

CL
-3

4B
SC

2-
3B

SC
2-

7B
SC

2-
15

B
L3

-8
B

GP
T-4

o-
mini

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

(a) Group by LLMs

Correct
Hallucinated

MB
PP

Hu
man

Ev
al

Hu
man

Ev
al-

Jav
a

De
fec

ts4
J

SW
E-

be
nc

h

0.0

0.2

0.4

0.6

0.8

1.0
(b) Group by datasets

Ke
yw

or
d

De
lim

ite
r

Op
er

at
or

Co
ns

ta
nt

Ide
nt

ifie
r

Ty
pe

 Id
en

tif
ier

Sp
ac

e
EO

S

0.0

0.2

0.4

0.6

0.8

1.0
(c) Group by token types

Figure 3: Probability distribution of correct and hallucinated tokens. DSC, CL, SC2, and L3 refer to
DeepSeekCoder, CodeLlama, StarCoder2, and Llama3.

When comparing among datasets, Defects4J and SWE-bench data have a much higher hallucination
rate in all types of tokens except for EOS, which could be due to their complexity. Defects4J is
also unique in having a much higher hallucination rate in Operator, Constant, Identifier, and
Type Identifier tokens.

Table 1: Proportion (%) of hallucinated tokens in each token type generated by each LLM and for
each dataset. Token types with ≥ 15% , ≥ 10% and ≥ 5% hallucination rate are highlighted.

DeepSeekCoder CodeLlama StarCoder2 Llama3 GPT-4o MBPP HE HE-Java D4J SWE1.3B 6.7B 33B 7B 13B 34B 3B 7B 15B 8B mini

Key. 14.48 11.45 10.46 15.26 14.27 12.32 15.35 13.57 11.19 14.87 8.24 6.42 5.05 4.67 22.79 22.29
Delim. 4.36 2.77 2.23 4.30 3.80 3.17 3.99 3.29 2.84 5.72 2.38 2.68 1.82 1.93 5.91 4.72
Op. 3.62 2.75 1.91 4.52 2.68 2.87 3.70 3.77 2.71 4.11 2.08 1.69 1.39 2.35 11.11 3.60
Const. 5.84 4.13 3.15 5.38 4.51 3.74 4.97 3.66 3.61 5.44 2.37 3.25 2.51 4.39 11.90 4.32
Id. 5.66 4.38 3.72 6.13 4.58 4.35 6.04 6.38 5.00 7.70 3.78 2.52 2.35 2.46 11.92 6.97
Type. 8.33 9.09 8.88 10.91 6.58 8.49 9.42 13.59 8.96 9.33 8.81 0.00 0.00 4.27 16.06 0.00
Sp. 2.35 0.90 0.25 0.43 0.30 0.51 1.81 1.15 0.95 0.42 0.33 0.05 0.05 0.18 0.73 1.73
EOS 1.71 0.75 0.31 1.43 0.59 1.06 1.42 0.65 1.05 1.77 0.52 1.65 2.34 0.00 0.00 0.00

4.2 ERROR RATE

Collu-Bench employs the proposed pipeline (Section 3.1) to automatically identify the first halluci-
nation token as the target. This may not always align perfectly with human developer annotations.
To assess the accuracy, we randomly selected 100 samples from Collu-Bench and asked two de-
velopers to review the hallucination tokens in the LLM-generated code. The developers disagreed
with the identified hallucination tokens in 14 samples and concurred with that of the remaining 86
samples. We then further checked the 14 samples that the developers consider mislabeled and found
they were all due to missing a more extensive set of equivalent canonical solutions.

Given the difficulty of identifying code equivalency, it is impossible to exhaustively find and consider
all the canonical solutions. Without the proposed solution in Section 3.1, there would only be
57 samples matching the developers’ annotation using a simple string match or token match (i.e.,
43% error rate). We sample diverse canonical solutions and use program normalization to handle
identifier variability, which reduces the error rate of data labeling significantly.

5 PRELIMINARY RESULTS OF HALLUCINATION PREDICTION

Collu-Bench can be used to train and evaluate code hallucination localization methods. We formu-
late the task of code hallucination localization as follows: given a code generated by an LLM, which
has been verified to be incorrect by execution test cases, the task is to identify the first incorrect
token in the generated code. Specifically, given an LLM-generated code G, the task is to predict the
smallest index i such that Gi ̸= Si, where S is the correct solution we expect the LLM to generate.

In this section, we describe our preliminary experiment results on Collu-Bench. We consider the
following two task setups:

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

• Per-token prediction: The hallucination prediction model classifies each token as correct or
hallucinated, starting from the first token in the LLM-generated code. For an LLM-generated
code with hallucination token index i, the sample is considered predicted accurately if the pre-
diction model classifies the first i− 1 tokens as correct and the i-th token as hallucinated.

• Per-sample prediction: The hallucination prediction model takes all the tokens in the LLM-
generated code as input, and selects one from the all as the first hallucination token. A sample
with hallucination token index i is considered predicted accurately if the prediction model cor-
rectly selects the i-th token as the first hallucination token.

For each setup of the hallucination prediction task, we also consider different data split setups:
• All-in-one: We apply five-fold cross-validation to split the samples in Collu-Bench into 80%

training and 20% test data per fold, and train one prediction model using the training data.
• One-per-dataset: Since LLMs may have different patterns in hallucination when generating

code for different tasks or datasets, we apply the cross-validation and train one prediction model
on data that comes from each dataset independently.

• One-per-LLM: Since different LLMs may have diverse patterns in hallucination, we apply the
cross-validation and train one prediction model on data from each LLM independently.

5.1 PER-TOKEN PREDICTION

We conduct experiments using traditional machine learning (ML) techniques including Support Vec-
tor Classifier (SVC), Ada Boost Classifier (AB), Random Forest Classifier (RF), Gradient Boosting
Classifier (GB), and Multi-layer Perceptron (MLP). For each token, the considered features include
the top 100 probability distribution, the token type (in a one-hot vector), and the token index in
the LLM-generated code. Table 2 shows the accuracy of hallucination token index prediction using
different models, under the first two data-split settings. We find in general, RF produces higher
accuracy than SVC, AB, GB, and MLP. When training separate prediction models per dataset,
the model (train and test) on SWE-bench produces much higher accuracy than other datasets, and
the model on HumanEval produces the worst accuracy, which suggests that LLMs have different
patterns in hallucination when generating code for different task or dataset.

Table 2: Accuracy (%) of hallucination token index prediction using under “All-in-one” and “One-
per-dataset” settings.

Models All-in-one One-per-dataset
MBPP HumanEval HumanEval-Java Defects4J SWE-bench

Support Vector (SVC) 32.17 26.28 7.21 29.57 30.27 37.08
Ada Boost (AB) 32.02 28.55 15.77 26.21 30.98 36.40
Random Forest (RF) 33.09 30.61 16.73 29.69 32.27 37.62
Gradient Boosting (GB) 32.74 29.87 16.73 29.07 31.69 37.86
Multi-layer Perceptron (MLP) 31.72 27.02 18.65 29.19 31.29 36.13

Table 3: Accuracy (%) under “One-per-LLM” setting. Row names show the LLMs where the train-
ing data comes from, and column names show the LLMs where the test data comes from. Accuracy
that is ≥ 33% , ≥ 31% , ≤ 29% , and ≤ 27% are highlighted.

DSC-1.3B DSC-6.7B DSC-33B CL-7B CL-13B CL-34B SC2-3B SC2-7B SC2-15B L3-8B GPT-4o-mini

DSC-1.3B 30.18 31.09 29.32 28.77 31.40 30.40 30.47 27.91 29.84 24.19 8.71
DSC-6.7B 29.87 32.15 30.71 29.76 31.07 31.61 31.71 29.98 32.78 29.28 14.48
DSC-33B 27.96 32.10 34.63 31.68 34.39 31.95 34.96 31.72 31.05 33.78 16.37
CL-7B 29.21 30.33 28.58 31.03 30.23 30.14 32.25 31.25 29.23 22.07 6.09
CL-13B 27.38 28.56 33.02 29.38 32.42 30.14 30.85 28.95 29.23 32.36 5.56
CL-34B 29.65 30.41 28.49 28.54 29.40 30.30 30.00 27.28 28.71 21.05 19.20
SC2-3B 26.79 30.08 28.86 28.23 30.48 28.41 33.72 32.04 31.92 23.49 9.65
SC2-7B 27.67 28.81 28.49 29.23 30.65 30.22 34.26 30.40 33.65 24.90 11.23
SC2-15B 29.21 30.67 30.06 29.00 29.65 30.48 34.73 31.25 30.00 24.04 11.96
L3-8B 27.38 31.93 32.65 29.99 34.88 32.04 31.47 29.58 30.44 33.62 16.16
GPT-4o-mini 1.24 4.89 0.56 0.92 0.75 1.47 2.87 1.11 1.82 0.47 34.21

Table 3 shows the accuracy of RF predictors under the “One-per-LLM” settings. (1) GPT-4o-mini
has the most unique pattern in hallucination, that predictors trained with other LLMs’ data pre-
dict worse when predicting hallucination in GPT-4o-mini’s output, and vice versa. (2) Predic-

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

tors trained with other LLMs’ data in general work worse when predicting hallucination in
Llama3-8B’s output, however, predictors trained on Llama3-8B’s data generalize successfully to
most other LLMs’ output except DeepSeekCoder-1.3B and GPT-4o-mini. (3) Predictor trained
with DeepSeekCoder-33B’s data generalizes the best and produces higher accuracy on most
LLMs’ output, except DeepseekCoder-1.3B and GPT-4o-mini. (4) Surprisingly, the predictors
trained and tested on the data from the same LLMs are not always the most accurate, e.g.,
predictor trained with StarCoder2-7B’s data are more accurate on predicting StarCoder2-15B’s hal-
lucination than predictor trained with StarCoder2-15B’s data (33.65% versus 30.00%).

5.2 PER-SAMPLE PREDICTION

For per-sample prediction, we conduct experiments using the same three settings. The predictors
take a list of tokens in the LLM-generated code, the feature of each token includes the top 100 prob-
abilities and token type in a one-hot vector. The predictors encode the token list using CNN (Lecun
et al., 1998), RNN, LSTM (Hochreiter & Schmidhuber, 1997) or GRU (Cho et al., 2014)), or Trans-
former (Vaswani et al., 2017) layers to produce hidden states for each token. The hidden states of
the token list are fed to a pointer network (Vinyals et al., 2017; Hossain et al., 2024b) to select the
first hallucination token from the list.

Table 4 shows the accuracy of hallucination token index prediction using the above neural network
(NN) models. LSTM shows the highest accuracy under the “All-in-one” setting, and under
the “One-per-dataset” setting, CNN produces the highest accuracy on data collected from most
datasets (HumanEval-Java and SWE-bench). Besides, compared with per-token prediction, LSTM
under per-sample prediction achieves similar accuracy to RF under the “All-in-one” setting
(33.09% versus 33.15%). On data collected from each dataset, ML approaches with per-token
prediction are much more accurate than neural networks with the per-sample prediction on
MBPP, but are less accurate on HumanEval-Java.

Table 4: Accuracy (%) of hallucination token index prediction using Collu-Bench under “All-in-
one” and “One-per-dataset” settings.

Models All-in-one One-per-dataset
MBPP HumanEval HumanEval-Java Defects4J SWE-bench

CNN 32.30 23.42 17.90 42.86 29.04 38.38
GRU 32.85 24.05 17.48 40.91 28.07 36.97
LSTM 33.15 21.52 17.90 36.36 31.19 37.98
Transformer 23.03 20.89 20.09 35.71 26.12 27.14

Table 5: Accuracy (%) under “One-per-LLM” setting. Row names show the LLMs where the train-
ing data comes from, and column names show the LLMs where the test data comes from. Accuracy
that is ≥ 35% , ≥ 33% , ≥ 31% , ≤ 29% , and ≤ 27% are highlighted.

DSC-1.3B DSC-6.7B DSC-33B CL-7B CL-13B CL-34B SC2-3B SC2-7B SC2-15B L3-8B GPT-4o-mini

DSC-1.3B 36.46 32.80 33.78 35.36 31.34 33.89 28.68 23.81 26.20 29.46 0.00
DSC-6.7B 35.38 32.80 30.67 37.26 31.95 31.38 28.29 24.21 30.57 31.78 0.00
DSC-33B 34.30 34.40 31.56 36.89 32.78 33.89 31.01 25.79 28.82 32.17 0.10
CL-7B 35.38 31.60 32.00 35.74 31.12 30.96 28.29 21.83 25.76 30.62 0.00
CL-13B 38.63 30.40 30.67 38.02 34.02 34.31 30.23 28.97 29.26 31.78 0.00
CL-34B 35.74 31.60 31.56 37.64 30.71 31.38 29.46 26.59 30.13 31.40 0.00
SC2-3B 34.30 32.00 29.78 34.22 33.20 32.22 31.40 29.76 36.24 32.56 0.49
SC2-7B 35.74 32.00 32.89 34.22 32.78 31.80 29.46 31.35 34.50 28.68 0.49
SC2-15B 35.38 34.40 31.56 38.02 33.61 34.31 31.78 35.32 34.93 33.33 0.00
L3-8B 33.94 34.00 31.56 34.98 31.12 32.22 30.62 29.76 31.44 28.68 0.00
GPT-4o-mini 1.44 0.40 1.33 0.00 0.41 0.00 0.00 0.40 0.00 0.78 35.61

Table 5 shows the accuracy of the LSTM predictors under the “One-per-LLM” setting. Except
for the same conclusion that “GPT-4o-mini” has the most different pattern from other LLMs, NNs
under “per-sample prediction” draw dissimilar findings than ML approaches. (1) Overall, NNs
show higher upper bound than ML approaches under the “One-per-LLM” setting, with many
predictors producing accuracy higher than 35%. (2) Hallucination of DeepSeekCoder-1.3B, which
is hard to predict in the per-token manner, can be predict more accurate in the per-sample manner.
This suggests the per-token and per-sample prediction approaches could complement each other.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

6 LIMITATION

One limitation is the errors in the target hallucination token index provided in Collu-Bench, which is
determined by an automated pipeline and thus is non-perfect. Compared with simple string match-
ing or token matching, we sample diverse canonical solutions and apply program normalization to
handle the equivalency and identifier variability of code to increase the accuracy of the hallucination
token index in Collu-Bench significantly. It is non-trivial to find an automated solution to determine
the hallucination in code perfectly, which remains to be explored.

Another limitation is the range of select LLMs and datasets to build Collu-Bench. There exist lots of
different LLMs and code generation or program repair datasets, we select the set of state-of-the-art,
widely-used LLMs (including DeepSeekCoder series, CodeLlama series, StarCoder2 series, Llama3
series, and GPT-4o-mini), and dataset. Overall, Collu-Bench’s 13,234 data samples come from 11
LLMs’ output on five datasets. Studying the hallucination of more LLMs and datasets can be an
interesting future work.

7 CONCLUSION

This work presents Collu-Bench, a challenging benchmark for code hallucination localization.
Collu-Bench includes 13,234 hallucination instances generated by 11 diverse LLMs on two im-
portant code tasks, offering a comprehensive evaluation of hallucination localization across multiple
models. Collu-Bench also provides additional information such as per-step log probs. produced
by LLMs, types of generated tokens, and execution feedback as useful signals for predicting code
hallucinations. Through extensive experiments using traditional machine learning techniques and
neural network models as hallucination predictors, we provide an in-depth study of hallucination lo-
calization using Collu-Bench. The preliminary results reveal that traditional ML methods and neural
networks can only achieve an accuracy of up to 33.15%, highlighting the complexity of this task,
and underscoring the need for further research in improving the trustworthiness and reliability of
LLMs in code-related applications.

REFERENCES

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, and Charles Sutton. Program synthesis with large
language models, 2021.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,
Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford,
Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. In Proceedings of the
34th International Conference on Neural Information Processing Systems, NIPS ’20, Red Hook,
NY, USA, 2020. Curran Associates Inc. ISBN 9781713829546.

Max Brunsfeld, Andrew Hlynskyi, Amaan Qureshi, Patrick Thomson, Josh Vera, Phil Turnbull, dun-
dargoc, Timothy Clem, ObserverOfTime, Douglas Creager, Andrew Helwer, Rob Rix, Dauman-
tas Kavolis, Hendrik van Antwerpen, Michael Davis, Ika, Tuãn-Anh Nguy˜ên, Amin Yahyaabadi,
Stafford Brunk, Matt Massicotte, Niranjan Hasabnis, bfredl, Mingkai Dong, Samuel Moelius,
Steven Kalt, Will Lillis, Kolja, Vladimir Panteleev, and Jonathan Arnett. tree-sitter/tree-sitter:
v0.22.6, may 2024. URL https://doi.org/10.5281/zenodo.11117307.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fo-
tios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex
Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,

10

https://doi.org/10.5281/zenodo.11117307

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa, Alec
Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob Mc-
Grew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating large
language models trained on code, 2021a.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fo-
tios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex
Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa, Alec
Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob Mc-
Grew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating large
language models trained on code, 2021b. URL https://arxiv.org/abs/2107.03374.

shiqi chen, Yiran Zhao, Jinghan Zhang, I-Chun Chern, Siyang Gao, Pengfei Liu, and
Junxian He. Felm: Benchmarking factuality evaluation of large language models. In
A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Ad-
vances in Neural Information Processing Systems, volume 36, pp. 44502–44523. Cur-
ran Associates, Inc., 2023. URL https://proceedings.neurips.cc/paper_
files/paper/2023/file/8b8a7960d343e023a6a0afe37eee6022-Paper-
Datasets_and_Benchmarks.pdf.

Xiang Chen, Chenxi Wang, Yida Xue, Ningyu Zhang, Xiaoyan Yang, Qiang Li, Yue Shen, Lei
Liang, Jinjie Gu, and Huajun Chen. Unified hallucination detection for multimodal large language
models. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp.
3235–3252, Bangkok, Thailand, August 2024. Association for Computational Linguistics. URL
https://aclanthology.org/2024.acl-long.178.

Kyunghyun Cho, Bart van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Hol-
ger Schwenk, and Yoshua Bengio. Learning phrase representations using RNN encoder–decoder
for statistical machine translation. In Alessandro Moschitti, Bo Pang, and Walter Daelemans
(eds.), Proceedings of the 2014 Conference on Empirical Methods in Natural Language Pro-
cessing (EMNLP), pp. 1724–1734, Doha, Qatar, October 2014. Association for Computational
Linguistics. doi: 10.3115/v1/D14-1179. URL https://aclanthology.org/D14-1179.

Shehzaad Dhuliawala, Mojtaba Komeili, Jing Xu, Roberta Raileanu, Xian Li, Asli Celikyilmaz, and
Jason Weston. Chain-of-verification reduces hallucination in large language models, 2023. URL
https://arxiv.org/abs/2309.11495.

Mohamed Elaraby, Mengyin Lu, Jacob Dunn, Xueying Zhang, Yu Wang, Shizhu Liu, Pingchuan
Tian, Yuping Wang, and Yuxuan Wang. Halo: Estimation and reduction of hallucinations in open-
source weak large language models, 2023. URL https://arxiv.org/abs/2308.11764.

Luyu Gao, Zhuyun Dai, Panupong Pasupat, Anthony Chen, Arun Tejasvi Chaganty, Yicheng Fan,
Vincent Zhao, Ni Lao, Hongrae Lee, Da-Cheng Juan, and Kelvin Guu. RARR: Researching
and revising what language models say, using language models. In Anna Rogers, Jordan Boyd-
Graber, and Naoaki Okazaki (eds.), Proceedings of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp. 16477–16508, Toronto, Canada, July
2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.acl-long.910. URL
https://aclanthology.org/2023.acl-long.910.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen, Xiao
Bi, Y. Wu, Y. K. Li, Fuli Luo, Yingfei Xiong, and Wenfeng Liang. Deepseek-coder: When the
large language model meets programming – the rise of code intelligence, 2024. URL https:
//arxiv.org/abs/2401.14196.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Comput., 9(8):
1735–1780, November 1997. ISSN 0899-7667. doi: 10.1162/neco.1997.9.8.1735. URL
https://doi.org/10.1162/neco.1997.9.8.1735.

11

https://arxiv.org/abs/2107.03374
https://proceedings.neurips.cc/paper_files/paper/2023/file/8b8a7960d343e023a6a0afe37eee6022-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/8b8a7960d343e023a6a0afe37eee6022-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/8b8a7960d343e023a6a0afe37eee6022-Paper-Datasets_and_Benchmarks.pdf
https://aclanthology.org/2024.acl-long.178
https://aclanthology.org/D14-1179
https://arxiv.org/abs/2309.11495
https://arxiv.org/abs/2308.11764
https://aclanthology.org/2023.acl-long.910
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196
https://doi.org/10.1162/neco.1997.9.8.1735

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Soneya Binta Hossain, Nan Jiang, Qiang Zhou, Xiaopeng Li, Wen-Hao Chiang, Yingjun Lyu, Hoan
Nguyen, and Omer Tripp. A deep dive into large language models for automated bug localization
and repair. ArXiv, abs/2404.11595, 2024a. URL https://api.semanticscholar.org/
CorpusID:269187997.

Soneya Binta Hossain, Nan Jiang, Qiang Zhou, Xiaopeng Li, Wen-Hao Chiang, Yingjun Lyu, Hoan
Nguyen, and Omer Tripp. A deep dive into large language models for automated bug localization
and repair. Proc. ACM Softw. Eng., 1(FSE), July 2024b. doi: 10.1145/3660773. URL https:
//doi.org/10.1145/3660773.

Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan Su, Yan Xu, Etsuko Ishii, Ye Jin Bang,
Andrea Madotto, and Pascale Fung. Survey of hallucination in natural language generation. ACM
Comput. Surv., 55(12), mar 2023. ISSN 0360-0300. doi: 10.1145/3571730. URL https:
//doi.org/10.1145/3571730.

Nan Jiang, Kevin Liu, Thibaud Lutellier, and Lin Tan. Impact of code language models on automated
program repair. In Proceedings of the 45th International Conference on Software Engineering,
ICSE ’23, pp. 1430–1442. IEEE Press, 2023. ISBN 9781665457019. doi: 10.1109/ICSE48619.
2023.00125. URL https://doi.org/10.1109/ICSE48619.2023.00125.

Carlos E. Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. Swe-bench: Can language models resolve real-world github issues?, 2024.

René Just, Darioush Jalali, and Michael D. Ernst. Defects4j: a database of existing faults to enable
controlled testing studies for java programs. In Proceedings of the 2014 International Symposium
on Software Testing and Analysis, ISSTA 2014, pp. 437–440, New York, NY, USA, 2014. Asso-
ciation for Computing Machinery. ISBN 9781450326452. doi: 10.1145/2610384.2628055. URL
https://doi.org/10.1145/2610384.2628055.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recog-
nition. Proceedings of the IEEE, 86(11):2278–2324, 1998. doi: 10.1109/5.726791.

Jia Li, Yongmin Li, Ge Li, Zhi Jin, Yiyang Hao, and Xing Hu. Skcoder: A sketch-based approach
for automatic code generation, 2023a. URL https://arxiv.org/abs/2302.06144.

Junyi Li, Tianyi Tang, Wayne Xin Zhao, Jian-Yun Nie, and Ji-Rong Wen. Pretrained language mod-
els for text generation: A survey, 2022a. URL https://arxiv.org/abs/2201.05273.

Junyi Li, Xiaoxue Cheng, Xin Zhao, Jian-Yun Nie, and Ji-Rong Wen. HaluEval: A large-scale hal-
lucination evaluation benchmark for large language models. In Houda Bouamor, Juan Pino, and
Kalika Bali (eds.), Proceedings of the 2023 Conference on Empirical Methods in Natural Lan-
guage Processing, pp. 6449–6464, Singapore, December 2023b. Association for Computational
Linguistics. doi: 10.18653/v1/2023.emnlp-main.397. URL https://aclanthology.org/
2023.emnlp-main.397.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Chenghao
Mou, Marc Marone, Christopher Akiki, Jia Li, Jenny Chim, Qian Liu, Evgenii Zheltonozhskii,
Terry Yue Zhuo, Thomas Wang, Olivier Dehaene, Mishig Davaadorj, Joel Lamy-Poirier, João
Monteiro, Oleh Shliazhko, Nicolas Gontier, Nicholas Meade, Armel Zebaze, Ming-Ho Yee, Lo-
gesh Kumar Umapathi, Jian Zhu, Benjamin Lipkin, Muhtasham Oblokulov, Zhiruo Wang, Rudra
Murthy, Jason Stillerman, Siva Sankalp Patel, Dmitry Abulkhanov, Marco Zocca, Manan Dey,
Zhihan Zhang, Nour Fahmy, Urvashi Bhattacharyya, Wenhao Yu, Swayam Singh, Sasha Luc-
cioni, Paulo Villegas, Maxim Kunakov, Fedor Zhdanov, Manuel Romero, Tony Lee, Nadav Timor,
Jennifer Ding, Claire Schlesinger, Hailey Schoelkopf, Jan Ebert, Tri Dao, Mayank Mishra, Alex
Gu, Jennifer Robinson, Carolyn Jane Anderson, Brendan Dolan-Gavitt, Danish Contractor, Siva
Reddy, Daniel Fried, Dzmitry Bahdanau, Yacine Jernite, Carlos Muñoz Ferrandis, Sean Hughes,
Thomas Wolf, Arjun Guha, Leandro von Werra, and Harm de Vries. Starcoder: may the source
be with you!, 2023c. URL https://arxiv.org/abs/2305.06161.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom
Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, Thomas Hubert, Peter Choy, Cyprien
de Masson d’Autume, Igor Babuschkin, Xinyun Chen, Po-Sen Huang, Johannes Welbl, Sven

12

https://api.semanticscholar.org/CorpusID:269187997
https://api.semanticscholar.org/CorpusID:269187997
https://doi.org/10.1145/3660773
https://doi.org/10.1145/3660773
https://doi.org/10.1145/3571730
https://doi.org/10.1145/3571730
https://doi.org/10.1109/ICSE48619.2023.00125
https://doi.org/10.1145/2610384.2628055
https://arxiv.org/abs/2302.06144
https://arxiv.org/abs/2201.05273
https://aclanthology.org/2023.emnlp-main.397
https://aclanthology.org/2023.emnlp-main.397
https://arxiv.org/abs/2305.06161

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Gowal, Alexey Cherepanov, James Molloy, Daniel J. Mankowitz, Esme Sutherland Robson,
Pushmeet Kohli, Nando de Freitas, Koray Kavukcuoglu, and Oriol Vinyals. Competition-level
code generation with alphacode. Science, 378(6624):1092–1097, December 2022b. ISSN 1095-
9203. doi: 10.1126/science.abq1158. URL http://dx.doi.org/10.1126/science.
abq1158.

Stephanie Lin, Jacob Hilton, and Owain Evans. TruthfulQA: Measuring how models mimic human
falsehoods. In Smaranda Muresan, Preslav Nakov, and Aline Villavicencio (eds.), Proceedings of
the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Pa-
pers), pp. 3214–3252, Dublin, Ireland, May 2022. Association for Computational Linguistics.
doi: 10.18653/v1/2022.acl-long.229. URL https://aclanthology.org/2022.acl-
long.229.

Fang Liu, Yang Liu, Lin Shi, Houkun Huang, Ruifeng Wang, Zhen Yang, Li Zhang, Zhongqi Li,
and Yuchi Ma. Exploring and evaluating hallucinations in llm-powered code generation, 2024a.
URL https://arxiv.org/abs/2404.00971.

Fuxiao Liu, Kevin Lin, Linjie Li, Jianfeng Wang, Yaser Yacoob, and Lijuan Wang. Mitigating
hallucination in large multi-modal models via robust instruction tuning, 2024b. URL https:
//arxiv.org/abs/2306.14565.

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code generated by
chatGPT really correct? rigorous evaluation of large language models for code generation. In
Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL https://
openreview.net/forum?id=1qvx610Cu7.

Tianyu Liu, Yizhe Zhang, Chris Brockett, Yi Mao, Zhifang Sui, Weizhu Chen, and Bill Dolan.
A token-level reference-free hallucination detection benchmark for free-form text generation.
In Smaranda Muresan, Preslav Nakov, and Aline Villavicencio (eds.), Proceedings of the
60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Pa-
pers), pp. 6723–6737, Dublin, Ireland, May 2022. Association for Computational Linguistics.
doi: 10.18653/v1/2022.acl-long.464. URL https://aclanthology.org/2022.acl-
long.464.

Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-Poirier, Noua-
mane Tazi, Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, Tianyang Liu, Max Tian, De-
nis Kocetkov, Arthur Zucker, Younes Belkada, Zijian Wang, Qian Liu, Dmitry Abulkhanov,
Indraneil Paul, Zhuang Li, Wen-Ding Li, Megan Risdal, Jia Li, Jian Zhu, Terry Yue Zhuo,
Evgenii Zheltonozhskii, Nii Osae Osae Dade, Wenhao Yu, Lucas Krauß, Naman Jain, Yix-
uan Su, Xuanli He, Manan Dey, Edoardo Abati, Yekun Chai, Niklas Muennighoff, Xian-
gru Tang, Muhtasham Oblokulov, Christopher Akiki, Marc Marone, Chenghao Mou, Mayank
Mishra, Alex Gu, Binyuan Hui, Tri Dao, Armel Zebaze, Olivier Dehaene, Nicolas Patry, Can-
wen Xu, Julian McAuley, Han Hu, Torsten Scholak, Sebastien Paquet, Jennifer Robinson, Car-
olyn Jane Anderson, Nicolas Chapados, Mostofa Patwary, Nima Tajbakhsh, Yacine Jernite, Car-
los Muñoz Ferrandis, Lingming Zhang, Sean Hughes, Thomas Wolf, Arjun Guha, Leandro von
Werra, and Harm de Vries. Starcoder 2 and the stack v2: The next generation, 2024. URL
https://arxiv.org/abs/2402.19173.

OpenAI. Chatgpt, 2024. URL https://www.openai.com/chatgpt. Large language model.

Patrik Puchert, Poonam Poonam, Christian van Onzenoodt, and Timo Ropinski. Llmmaps – a visual
metaphor for stratified evaluation of large language models, 2023. URL https://arxiv.
org/abs/2304.00457.

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Romain Sauvestre, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, Ivan Ev-
timov, Joanna Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wenhan Xiong,
Alexandre Défossez, Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier,
Thomas Scialom, and Gabriel Synnaeve. Code llama: Open foundation models for code, 2024.
URL https://arxiv.org/abs/2308.12950.

13

http://dx.doi.org/10.1126/science.abq1158
http://dx.doi.org/10.1126/science.abq1158
https://aclanthology.org/2022.acl-long.229
https://aclanthology.org/2022.acl-long.229
https://arxiv.org/abs/2404.00971
https://arxiv.org/abs/2306.14565
https://arxiv.org/abs/2306.14565
https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=1qvx610Cu7
https://aclanthology.org/2022.acl-long.464
https://aclanthology.org/2022.acl-long.464
https://arxiv.org/abs/2402.19173
https://www.openai.com/chatgpt
https://arxiv.org/abs/2304.00457
https://arxiv.org/abs/2304.00457
https://arxiv.org/abs/2308.12950

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Fernando Vallecillos Ruiz, Anastasiia Grishina, Max Hort, and Leon Moonen. A novel ap-
proach for automatic program repair using round-trip translation with large language mod-
els. ArXiv, abs/2401.07994, 2024. URL https://api.semanticscholar.org/
CorpusID:266999299.

Andr’e Silva, Sen Fang, and Martin Monperrus. Repairllama: Efficient representations and fine-
tuned adapters for program repair. ArXiv, abs/2312.15698, 2023. URL https://api.
semanticscholar.org/CorpusID:266551826.

Yuchen Tian, Weixiang Yan, Qian Yang, Qian Chen, Wen Wang, Ziyang Luo, and Lei Ma.
Codehalu: Code hallucinations in llms driven by execution-based verification, 2024. URL
https://arxiv.org/abs/2405.00253.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Ar-
mand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation
language models, 2023. URL https://arxiv.org/abs/2302.13971.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Proceedings of the 31st Inter-
national Conference on Neural Information Processing Systems, NIPS’17, pp. 6000–6010, Red
Hook, NY, USA, 2017. Curran Associates Inc. ISBN 9781510860964.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks, 2017. URL https://
arxiv.org/abs/1506.03134.

Shangwen Wang, Mingyang Geng, Bo Lin, Zhensu Sun, Ming Wen, Yepang Liu, Li Li,
Tegawendé F. Bissyandé, and Xiaoguang Mao. Natural language to code: How far are we?
In Proceedings of the 31st ACM Joint European Software Engineering Conference and Sym-
posium on the Foundations of Software Engineering, ESEC/FSE 2023, pp. 375–387, New
York, NY, USA, 2023. Association for Computing Machinery. ISBN 9798400703270. doi:
10.1145/3611643.3616323. URL https://doi.org/10.1145/3611643.3616323.

Chunqiu Steven Xia, Yuxiang Wei, and Lingming Zhang. Automated program repair in the era
of large pre-trained language models. In Proceedings of the 45th International Conference on
Software Engineering, ICSE ’23, pp. 1482–1494. IEEE Press, 2023. ISBN 9781665457019.
doi: 10.1109/ICSE48619.2023.00129. URL https://doi.org/10.1109/ICSE48619.
2023.00129.

Weixiang Yan, Haitian Liu, Tengxiao Wu, Qian Chen, Wen Wang, Haoyuan Chai, Jiayi Wang,
Weishan Zhao, Yixin Zhang, Renjun Zhang, and Li Zhu. Clinicallab: Aligning agents for multi-
departmental clinical diagnostics in the real world, 2024. URL https://arxiv.org/abs/
2406.13890.

John Yang, Carlos E. Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik Narasimhan,
and Ofir Press. Swe-agent: Agent-computer interfaces enable automated software engineering,
2024. URL https://arxiv.org/abs/2405.15793.

Yuntong Zhang, Haifeng Ruan, Zhiyu Fan, and Abhik Roychoudhury. Autocoderover: Autonomous
program improvement, 2024. URL https://arxiv.org/abs/2404.05427.

Li Zhong and Zilong Wang. Can llm replace stack overflow? a study on robustness and reliability
of large language model code generation. Proceedings of the AAAI Conference on Artificial
Intelligence, 38(19):21841–21849, Mar. 2024. doi: 10.1609/aaai.v38i19.30185. URL https:
//ojs.aaai.org/index.php/AAAI/article/view/30185.

A APPENDIX

A.1 DETAILS OF PROGRAM NORMALIZATION

Table 6 lists the AST nodes in Python and Java languages that refer to code containing user-defined
identifiers. The underscored identifiers are those we collected in each example.

14

https://api.semanticscholar.org/CorpusID:266999299
https://api.semanticscholar.org/CorpusID:266999299
https://api.semanticscholar.org/CorpusID:266551826
https://api.semanticscholar.org/CorpusID:266551826
https://arxiv.org/abs/2405.00253
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/1506.03134
https://arxiv.org/abs/1506.03134
https://doi.org/10.1145/3611643.3616323
https://doi.org/10.1109/ICSE48619.2023.00129
https://doi.org/10.1109/ICSE48619.2023.00129
https://arxiv.org/abs/2406.13890
https://arxiv.org/abs/2406.13890
https://arxiv.org/abs/2405.15793
https://arxiv.org/abs/2404.05427
https://ojs.aaai.org/index.php/AAAI/article/view/30185
https://ojs.aaai.org/index.php/AAAI/article/view/30185

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

On average, after sampling diverse canonical solutions and normalizing program, we collected
82.01, 50.01, 5.54, 1.31, and 1.53 unique normalized canonical solutions per problem in Hu-
manEval, MBPP, HumanEval-Java, Defects4J, SWE-Bench.

Table 6: AST nodes that contain user-defined identifiers (underscored) in Python and Java programs.

Python AST Nodes Examples Java AST Nodes Examples

assignment x = 1 variable declarator int x = 0;
for statement for x in nums: enhanced for statement for (Integer i : nums)
for in clause [x**2 for x in nums] lambda expression nums.sort((a, b) -> b.compareTo(a));
with statement with open(...) as fp: method declaration int add(int x, int y)
except clause except Exception as e: constructor declaration Point(int x, int y)
lambda lambda x: x**2
function definition def add(x, y):

You are an exceptionally intelligent coding assistant that consistently delivers accurate and
reliable responses to user instructions.
Task Start
Complete the function `similar_elements` below.

```python
def similar_elements(test_tup1, test_tup2):
    """ Write a function to find the similar elements from the given two tuple lists.
    >>> similar_elements((3, 4, 5, 6), (5, 7, 4, 10))
    (4, 5)
    >>> similar_elements((1, 2, 3, 4),(5, 4, 3, 7))
    (3, 4)
    >>> similar_elements((11, 12, 14, 13),(17, 15, 14, 13))
    (13, 14)
    """
    res = tuple(set(test_tup1) & set(test_tup2))
    return res
```

Task Start

...

Task Start
Complete the function `square_nums` below.

```python
def square_nums(nums):
    """ Write a function to find squares of individual elements in a list using lambda function.
    >>> square_nums([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
    [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
    >>> square_nums([10, 20, 30])
    [100, 400, 900]
    """

    return list(map(lambda x: x**2, nums))

System
Prompt

Five-shot
Examples

Test
Sample

LLM's
Output

Figure 4: Few-shot prompt we used to collect LLMs’ outputs for code generation tasks

A.2 FEW-SHOT PROMPTING DESIGN

Figures 4 and 5 show the few-shot prompts we used during the collection of LLMs’ outputs. For the
code generation task, we follow the prompt format in HumanEval that provides the task description
and example inputs and outputs as a doc-string inside the function signature.

For the automated program repair task, we provide the task description which is important to under-
stand the intention of the function. The original buggy code is enclosed by <bug> and </bug> to
separate from the surrounding context. The LLMs are only required to generate the corresponding
fixed code to replace the buggy code.

In the prompt, all the source code is also enclosed by “‘‘‘” followed by the programming language,
which is commonly used in Markdown files. Such a design enables us to distinguish the end of
code generation in time using “‘‘‘” as the stop word and prevent LLMs from generating further
explanations or comments.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

You are an exceptionally intelligent coding assistant that consistently delivers accurate and
reliable responses to user instructions.

You will be provided with a text description outlining a problem, the function that is intended
to solve the problem yet contains a bug, with the erroneous code highlighted between <bug> and
</bug> tags. Your task is to analyze the entire function and the buggy code, then generate the
corrected version of the buggy code.

The generated fixed code will directly replace the buggy code within the function. Please ensure
that the syntax is correct and that no additional code is produced beyond the fixed code, as this
could lead to syntax errors when the fixed code is inserted back into the function.

### Task Start ###
* Problem Description
Check if in the given list of numbers, are any two numbers closer to each other than
given threshold.

Examples:
has_close_elements([1.0, 2.0, 3.0], 0.5) returns false
has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3) returns true

* Function
```java
public class ROLLING_MAX {
 public static List<Integer> rolling_max(List<Integer> numbers) {
 List<Integer> result = new ArrayList<Integer>();
 Integer running_max = null;

 for (Integer n : numbers) {
<bug>
 double distance = numbers.get(i) - numbers.get(j);
</bug>
 if (distance < threshold)
 return true;
 }
 }
 return false;
 }
}
```

* Buggy Code
```java
 double distance = numbers.get(i) - numbers.get(j);
```

* Fixed Code
```java
 double distance = Math.abs(numbers.get(i) - numbers.get(j));
```

### Task Start ###

...

### Task Start ###
* Problem Description
Return list of all prefixes from shortest to longest of the input string

Examples:
all_prefixes("abc") returns ["a", "ab", "abc"]

* Function
public class ALL_PREFIXES {
    public static List<String> all_prefixes(String string) {
        List<String> result = new ArrayList<String>();

        for (int i = 0; i < string.length(); i += 1) {
<bug>
            result.add(string.substring(i + 1));
</bug>
        }
        return result;
    }
}

* Buggy Code
```java
 result.add(string.substring(i + 1));
```

* Fixed Code
```java

 result.add(string.substring(0, i + 1));

System
Prompt

Five-shot
Examples

Test
Sample

LLM's
Output

Figure 5: Few-shot prompt we used to collect LLMs’ outputs for program repair tasks.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

A.3 DETAILS OF SELECTED LLMS

Table 7 shows the details of our selected LLMs, including their release date, pre-training data size,
and the number of parameters. CodeLlama is developed by Meta AI, training the Llama2 models
(which have already been trained on 2T natural language tokens) using an additional 700B code
tokens. DeepSeekCoder uses the same architecture as Llama, yet it trained from scratch using 2T
tokens, 13% of which is natural language text and 87% is code tokens. StarCoder2 is developed by
the BigCode project, as an evolution of the original StarCoder (Li et al., 2023c) model, optimized for
multi-language support and fine-tuned for a variety of programming tasks. CodeLlama, DeepSeek-
Coder, and StarCoder2 are specialized in source code, performing well on various code tasks such
as code generation, code infilling, and supporting multiple programming languages.

Llama3 is the latest generation of Meta’s Llama models pre-trained with significantly more data (15T
tokens), although it is a general LLM not specialized for source code, it shows strong capability in
both natural language and code.

GPT-4o-mini is an optimized version of GPT-4, developed by OpenAI, to support strong reasoning
on both natural language text and code, and also keep high efficiency with smaller. It is one of the
strongest commercial LLM. The training data and process of GPT-4o-mini are unknown.

Models Release Date Pre-training Size Parameters

CodeLlama Aug. 24, 2023 2T NL tokens and 700B code tokens
7B

13B
34B

DeepSeekCoder Jan. 26, 2024 2T tokens (13% NL and 87% code)
1.3B
6.7B
33B

StarCoder2 Feb. 28, 2024
3.3T NL and code tokens 3B
3.7T NL and code tokens 7B
4.3T NL and code tokens 15B

Llama 3 April 18, 2024 15T NL and code tokens 8B

GPT-4o-mini July 18, 2024 - -

Table 7: The release dates, pre-training data, and number of parameters of selected LLMs.

A.4 ADDITIONAL STATISTICS OF COLLU-BENCH

Table 8 lists the detailed number of instances collected from each LLM and each dataset in Collu-
Bench. The data collected from each LLM is relatively balanced, while the data collected from each
dataset is imbalance, with SWE-bench contributing the most data.

Table 9 presents the proportion of each token type in the code generated by each LLM, and the
proportion of each token type in the code generated for each dataset. All LLMs consistently generate
the most tokens for Identifier (32.98 – 36.95%). All DeepSeekCoder and CodeLlama models
generate similar proportions of tokens for Delimiter and Space (∼ 20%). The rest models share
a similar pattern in that they generate around 19.48 – 23.04% tokens for Delimiter and 12.16 –
14.44% tokens for Space and Constant.

Generated code for all the datasets contains most tokens for Identifier, with simpler datasets
(MBPP, HumanEval, HumanEval-Java) having 25.77 – 28.03% and more complex datasets (De-
fects4J and SWE-bench) having 32.43 – 37.38%. For CG datasets, Space is the second most types
and Delimiter is the third most. By contrast, for APR datasets, the second and third most common
types are Delimiter and Space.

A.5 PARAMETER TUNING OF HALLUCINATION PREDICTION MODELS

In Seciotns 5.1 and 5.2, we train traditional machine learning models and neural networks to predict
code hallucination using Collu-Bench as the dataset.

For per-token prediction, since the number of correct tokens is much more than the number of
hallucination tokens, we down-sample the correct tokens to prevent the predictor from overfitting to

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 8: Number of instances in Collu-Bench that collected from each LLM and dataset.

Models DeepSeekCoder CodeLlama StarCoder2 Llama3 GPT-4o Total1.3B 6.7B 33B 7B 13B 34B 3B 7B 15B 8B mini

MBPP 200 148 126 219 190 172 184 177 159 184 140 1899
HumanEval 114 83 70 116 102 101 110 106 92 115 32 1041
HumanEval-Java 97 78 51 89 70 70 85 85 55 87 37 806
Defects4J 220 202 200 204 203 197 206 206 202 213 191 2254
SWE-bench 735 676 679 679 637 618 687 687 645 675 553 7234

Total 1366 1187 1081 1307 1204 1158 1290 1261 1153 1274 953 13,234

Table 9: Proportion (%) of each token type generated by each LLM and for each dataset. The first ,
second , and third most types by each LLM or for each dataset are highlighted. Key., Delim.,

Op., Const., Id., Type., and Sp. refer to Keywords, Delimiter, Operator, Constant, Identifier, Type
Identifier, and Space. HE, D4J, and SWE refer to HumanEval, Defects4J, and SWE-bench.

DeepSeekCoder CodeLlama StarCoder2 Llama3 GPT-4o MBPP HE HE-Java D4J SWE1.3B 6.7B 33B 7B 13B 34B 3B 7B 15B 8B mini

Key. 5.86 5.55 5.37 5.29 5.34 5.52 6.54 6.38 6.62 6.53 7.70 8.17 9.54 4.23 5.53 5.42
Delim. 20.73 20.86 20.17 20.18 19.35 20.58 22.98 23.55 23.04 20.39 19.48 20.77 19.23 25.37 24.39 20.38
Op. 5.24 5.45 5.40 4.78 4.56 4.88 5.53 5.49 5.41 5.47 6.19 7.84 7.98 11.32 6.98 4.01
Const. 10.91 12.19 13.29 12.39 12.66 11.06 13.08 13.68 13.15 12.16 13.44 10.53 11.59 7.98 7.69 13.85
Id. 35.06 34.99 34.82 33.86 32.98 34.23 35.83 35.58 36.95 34.96 35.49 28.03 25.77 27.16 32.43 37.38
Type. 0.54 0.50 0.51 0.54 0.36 0.53 0.48 0.55 0.39 0.50 0.67 0.00 0.00 2.64 3.39 0.00
Sp. 20.25 18.99 19.12 21.75 23.66 21.78 13.82 13.20 12.81 13.82 14.44 22.20 24.24 18.58 17.53 17.24
EOS 1.41 1.48 1.31 1.20 1.09 1.42 1.72 1.55 1.63 1.68 2.58 2.46 1.64 2.72 2.06 1.17

correct tokens. We tune the ratio of correct and hallucination tokens in the range of 1: 1 to 10: 1, and
eventually use 3: 1 in the final experiments due to its best performance. For other hyper-parameters
of SVC, RF, AB, GB, and MLP, we use the default provided in scikit-learn 2.

For per-sample prediction, we tune the hyper-parameters of each architecture accordingly (e.g., the
number of layers, hidden dimensions, etc.). The final CNN models have four stacked convolution
layers and a hidden dimension of 512. Both the LSTM and GRU models have two bidirectional
layers and a hidden dimension of 512. The transformer models have four layers, with a hidden
dimension being 256 and a feed-forward dimension of 1024. The attention layers in the transformers
have eight attention heads. Each model is trained with a batch size of 32 for 10 epochs, using Adam
as the optimizer to update the weights.

2https://scikit-learn.org/stable/

18

https://scikit-learn.org/stable/

	Introduction
	Related Work
	Text and Images Hallucination Benchmarks
	Code Hallucination Benchmarks

	Benchmark Construction
	Handling Code Equivalence and Variation
	Datasets and LLMs
	Generation and Automated Hallucination Localization
	Collection of Additional Signals for Hallucination Localization

	Benchmark Analysis
	Analysis and Findings
	Error Rate

	Preliminary Results of Hallucination Prediction
	Per-token Prediction
	Per-Sample Prediction

	Limitation
	Conclusion
	Appendix
	Details of Program Normalization
	Few-Shot Prompting Design
	Details of Selected LLMs
	Additional Statistics of Collu-Bench
	Parameter Tuning of Hallucination Prediction Models

