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ABSTRACT

Despite their success, large language models (LLMs) face the critical challenge of
hallucinations, generating plausible but incorrect content. While much research
has focused on hallucinations in multiple modalities including images and natu-
ral language text, less attention has been given to hallucinations in source code,
which leads to incorrect and vulnerable code that causes significant financial loss.
To pave the way for research in LLMs’ hallucinations in code, we introduce Collu-
Bench, a benchmark for predicting code hallucinations of LLMs across code gen-
eration (CG) and automated program repair (APR) tasks. Collu-Bench includes
13,234 code hallucination instances collected from five datasets and 11 diverse
LLMs, ranging from open-source models to commercial ones. To better under-
stand and predict code hallucinations, Collu-Bench provides detailed features such
as the per-step log probabilities of LLMs’ output, token types, and the execution
feedback of LLMs’ generated code for in-depth analysis. In addition, we con-
duct experiments to predict hallucination on Collu-Bench, using both traditional
machine learning techniques and neural networks, which achieves 22.03 —33.15%
accuracy. Our experiments draw insightful findings of code hallucination patterns,
reveal the challenge of accurately localizing LLMs’ hallucinations, and highlight
the need for more sophisticated techniques.

1 INTRODUCTION

Despite the great potential and impressive success of LLMs (Touvron et al.,2023;(Brown et al.} 2020
Li et al.}2022a; OpenAl, [2024), a known issue of LLMs is hallucination, a phenomenon where the
model generates fluent and plausible-sounding but unfaithful or fabricated content (Ji et al., [2023).
The hallucination issue poses a significant risk when deploying LLMs in real-world applications
that require precise information (Puchert et al.| 2023). Due to this importance, researchers have
developed benchmarks such as Truthful QA (Lin et al.|[2022), FELM (chen et al.}|2023), and HaluE-
val (L1 et al., 2023b) to understand and predict hallucinations of LLMs. Additionally, researchers
are actively exploring methods to mitigate hallucinations (Liu et al., 2024b; [Elaraby et al.| |2023;
Dhuliawala et al., 2023} [Yan et al.| [2024).

Another domain where LLMs have been widely applied is source code. LLMs are used in many
code-related applications, such as code generation (Wang et al., 2023} [Li et al., [2023a; |Guo et al.,
2024; Lozhkov et al.,|2024; Roziere et al., [2024), automated program repair (Hossain et al.,|2024a;
Ruiz et al.,|2024; Silva et al., 2023; |Jimenez et al.| 2024} Hossain et al., 2024b; Jiang et al., 2023} [Xia
et al.,[2023)), and software engineering agents (OpenAl, |[2024; [Yang et al.l[2024;|Zhang et al.|[2024).
Unfortunately, in the code domain, LLMs also face the risk of hallucination, such as generating
misused Application Programming Interfaces (APIs), insufficient error handlers, or even vulnerable
code. Such hallucinations can cause the breakage of code bases, the shutdown of services, exploita-
tion of vulnerabilities, and eventually lead to huge financial costs [H

Although important, hallucination in code is much less explored compared to that in natural lan-
guage text and images. Some existing work explores the API misuse issue (Zhong & Wang, |[2024)),
and there are a few benchmarks for hallucination in code generation tasks, categorizing code halluci-
nation into different types (Liu et al.,2024a; |Tian et al.,2024). Nevertheless, they only recognize the
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existence of hallucinations without detecting, predicting, or localizing the hallucinated part. These
benchmarks lack analysis of hallucination in code in a finer granularity. Instead of evaluating the
entire code, we want to identify the specific token where the hallucination occurs and analyze the
characteristics of code hallucinations. A dataset with such information can facilitate a deeper under-
standing of code hallucination and make it possible to develop targeted and efficient techniques to
mitigate the code hallucination issue.

To fill this gap, we introduce Collu-Bench, a benchmark to evaluate and analyze code hallucinations
in LLMs. Collu-Bench targets two important LLM applications in coding: code generation (CG)
and automated program repair (APR). We design an automated pipeline and build the benchmark on
five datasets using 11 LLMs with various structures and sizes. In total, Collu-Bench includes 13,234
code hallucination instances. To facilitate the understanding of where the LLM makes mistakes,
Collu-Bench includes detailed signals such as per-step log probabilities (prob.), token types, and
execution feedback. Such signals reveal the patterns of LLMs’ hallucinations in code and benefit
the development of techniques to predict and localize hallucinations efficiently in advance.

We conduct a preliminary investigation of localizing code hallucinations on Collu-Bench by training
different models, ranging from traditional machine learning (ML) approaches (random forest, etc.)
to neural network (NN) models (LSTM, etc.). The goal is to predict the hallucination in the code
generated by LLMs in an efficient and lightweight way, by observing the behavior pattern (such
as log probs. of tokens during generation) of the targeting LLMs. Such prediction aims to help
the targeting LLMs reflect in time and thus produce more accurate code, instead of replacing the
LLMs. We set up the code hallucination localization task in two ways: per-token prediction, and
per-sample prediction. We further set up the data split in three ways: All-in-one (building a universal
predictor for all LLMs and on all data domains), One-per-dataset (building a predictor on each data
domain), and One-per-LLM (building a predictor for each LLM). Our comprehensive experiments
draw insightful findings in code hallucination of LLMs.

The main contributions of this paper are as follows:

* We build Collu-Bench, a benchmark with 13,234 code hallucination instances produced by 11
LLMs on five datasets. Collu-Bench includes detailed information such as per-step log prob.,
token types, and execution feedback, which are useful signals for developing code hallucination
localizing and predicting techniques.

— We propose an automated pipeline, by sampling equivalent code and program normalization,
to collect more accurate hallucination token locations during the construction of Collu-Bench.

* We conduct preliminary yet comprehensive studies of code hallucination localization using
Collu-Bench, and the key findings are as follows:

LLMs are less confident when hallucinating, as the hallucinated tokens have lower prob. and

hallucinated generation steps have higher entropy (Section [.1).

LLMs are more likely to hallucinate when generating certain types of tokens such as Keyword,

Identifier, and Type Identifier (Section.T).

When conducting per-token prediction of hallucination token, random forest produces the

highest overall accuracy of 33.09%. When conducting per-sample prediction of hallucination

location, LSTM produces the highest overall accuracy of 33.15% (Sections and [5.2).

Under “One-per-dataset” and “One-per-LLM” settings, per-token and per-sample predictions

show different patterns and complement each other (Sections[5.1]and [5.2).

* Our results with overall accuracy ranging from 22.03% to 33.15%, show that code hallucination
prediction and localization is still a challenging task having large space to improve.

Availability: The benchmark is available at https://zenodo.org/records/13877115!.

2 RELATED WORK

2.1 TEXT AND IMAGES HALLUCINATION BENCHMARKS

Hallucination in natural language generation (NLG) refers to the phenomenon where models gener-
ate text that is fluent but factually incorrect or inconsistent with the input data. Several benchmarks
and studies have been proposed to address this issue. HaluEval is a large-scale hallucination eval-
uation benchmark designed to assess the performance of large language models (LLMs) in gener-
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ating factually accurate text (Li et al.| [2023b). It provides a comprehensive collection of generated
and human-annotated hallucinated samples. FELM introduces a benchmark designed to evaluate
the factuality of text generated by LLMs across diverse domains, including math, reasoning, and
world knowledge (chen et al.l [2023)). HaDes is a token-level reference-free hallucination detection
benchmark, providing a fine-grained analysis of model performance without relying on ground truth
references (Liu et al.,2022). Additionally, RARR uses language models themselves to research and
revise the factual consistency of their outputs (Gao et al.| [2023).

In the multi-modal tasks. MHaluBench is a comprehensive benchmark for evaluating hallucina-
tions in multi-modal settings (Chen et al., [2024), which incorparates a wider range of hallucina-
tion categories and tasks, such as image-to-text and text-to-image generation. MHaluBench offers
fine-grained annotations that help identify hallucinations at a detailed level, and facilitates a deeper
understanding of hallucination in MLLMs and provides a robust foundation for improving model
reliability in practical applications.

2.2 CODE HALLUCINATION BENCHMARKS

HalluCode (Liu et al.||2024a)) explores hallucinations in the context of code generation. It introduces
a comprehensive taxonomy of hallucinations specific to LLM-powered code generation, categoriz-
ing them into five primary types. The authors conducted a thematic analysis of LLM-generated
code to classify hallucinations based on deviations from user intent, internal inconsistencies, and
misalignment with factual knowledge. The benchmark evaluates LLMs’ ability to recognize and
mitigate hallucinations, revealing that current models face significant challenges.

CodeHalu (Tian et al., 2024) focuses on investigating code hallucinations through execution-based
verification. The authors categorize code hallucinations into four main types: mapping, naming,
resource, and logic hallucinations, each of which highlights unique challenges in code generation.
CodeHalu presents a dynamic detection algorithm to detect and quantify hallucinations and intro-
duces the CodeHaluEval benchmark, which includes a large set of samples to evaluate LLM perfor-
mance in code generation.

Collu-Bench differs from both HalluCode and CodeHalu in two key aspects. First, Collu-Bench
focuses on identifying where the hallucination occurs by pinpointing the exact token at which the
model first deviates from the expected output. Second, Collu-Bench provides additional signals,
such as the types of generated tokens, helping researchers better understand the underlying patterns
of code hallucinations.

3 BENCHMARK CONSTRUCTION

In this section, we describe the collection process of Collu-Bench. We first describe our automated
pipeline of handling program equivalency and identifier viability, which helps in collecting accurate
hallucination token locations in Collu-Bench (Section [3.1). Then we introduce the selected datasets
and LLMs in Section Section shows the process of using LLMs to generate outputs and
collect the hallucination token index automatically. Lastly, in Section[3.4] we explain the additional
signals Collu-Bench includes, that could help localize hallucination tokens in LLM-generated code.

3.1 HANDLING CODE EQUIVALENCE AND VARIATION

A standard approach for localizing the hallucinated token is to compare the generated solution with
the canonical solution. However, simply comparing the canonical solution and the generated code
can lead to many false positives, since the LLM may follow an alternative way to solve the task (L1
et al., [2022b} |Austin et al.| [2021; |Chen et al., [2021alb). For instance, the task of sorting a list of
integers can be implemented with many different sorting algorithms. Even semantically equivalent
solutions may have a range of syntactic variations, e.g., naming variables differently, using a for
loop instead of a while loop, etc.

Existing hallucination benchmarks in natural language or vision domains although face similar chal-
lenges of diversity in text, they can manually annotate the hallucinations in text or images. Compared
to text or images, hallucination in code is much more complex and harder to label, as it requires do-
main expertise. To build a large benchmark of hallucination in code, we propose a pipeline of
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collecting diverse correct solutions and normalizing programs to automate the calculation of hallu-
cination location in LLM-generated code.

i). Diverse Canonical Solution Collection: For each problem in the dataset, besides the official
canonical solutions, we enhance the diversity of canonical solutions by using LLMs to sample more.

For the CG task, due to the simplicity of coding problems in HumanEval and MBPP, there could
be lots of different algorithms solving the problems correctly. To cover the equivalent canonical so-
lutions as much as possible, we let each LLM (DeepSeek-Coder-1.3b/6.7b, StarCoder2-3b/7b/15b,
CodeLlama-7b/13b, Llama3-8b, and GPT-40-mini) sample 100 programs per problem, using a tem-
perature of 0.8. These sampled programs are run against EvalPlus for evaluation of correctness, and
those that pass all the test cases are considered equivalent canonical solutions.

For the APR task, we conduct the same sampling process (i.e., each LLM sample 100 outputs per
repair problem and run against test cases) for the HumanEval-Java dataset to collect canonical solu-
tions, given its simplicity. For Defects4] and SWE-Bench, since (1) the program repair problems in
these two datasets are much more complex and thus are less likely to have many diverse equivalents,
and (2) their execution of test cases are computationally expensive, we do not conduct sampling
and only consider the developer fix provided in the datasets, as well as LLM-generated fixes using
greedy decoding that pass all the test cases, as the canonical solutions.

ii). Program Normalization: Collecting diverse canonical solutions is effective in covering cor-
rect programs implemented with different algorithms or logic. However, it cannot account for the
limitless variants of identifier names that can be used within the same program. For example, “for
x, y in zip(tupl, tup2)”and “for a, b in zip(tupl, tup2)” are logically equivalent
but differ textually due to the use of different identifier names. Thus, we conduct program normal-
ization to replace all the user-defined identifiers with normalized names so that different choices of
identifier names will not be considered hallucinations.

We use tree-sitter (Brunsfeld et al. [2024), a static parser, to parse the generated code into AST,
and walk through the AST to collect all the user-defined identifiers. Details can be found in Ap-
pendix [A.1] After collecting a set of unique user-defined identifiers from a program generated by
an LLM (e.g., collecting the identifiers {a, b} from the code snippet “for a, b in zip(tupl,
tup2)”, which is a “for statement” in Python), we rename these identifiers sequentially as v1,
v2, and so on, to normalize the program. For instance, a is replaced by v1 and b is replaced by
v2, thus code snippet “for a, b in zip (tupl, tup2)” is normalized into “for v1, v2 in
zip (tupl, tup2)”. During this step, the logically equivalent programs with different identifier
names will be normalized into the same program.

3.2 DATASETS AND LLMS

We target two code-related tasks in Collu-Bench: code generation (CG) and automated program
repair (APR). In total, we select five datasets to build the benchmark.

Code generation (CG): Code generation is the task of automatically producing code from natural
language descriptions. It plays a crucial role in software development by improving productivity
and enabling non-programmers to create code through high-level specifications. It is widely used to
evaluate the coding capability of LLMs. We use the following CG datasets to build Collu-Bench:

* MBPP (Austin et al.,|[2021): MBPP is a code generation benchmark comprised of hand-written
problems solvable by entry-level Python programmers. We use the sanitized version from
EvalPlus (Liu et al.}2023) which contains 343 problems.

e HumanEval (Chen et al., 2021a): The HumanEval benchmark contains 164 hand-written
Python programming problems with function signatures, docstrings, and unit tests.

Automated Program Repair (APR): Automated program repair is the process of automatically
fixing bugs in software programs, which can significantly reduce the time and effort required for
manual debugging and repair. We use the following APR datasets to build Collu-Bench:

* HumanEval-Java (Jiang et al.,|2023): A benchmark for APR in Java that is transformed from
HumanEval to overcome the data leakage threat of Defects4]. It contains 164 injected bugs using
27 diverse mutation rules.
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Figure 1: Overview of the benchmark construction

* Defects4] (Just et al.,[2014): A widely used benchmark for APR in Java. It contains bug fixes
from popular open-source Java projects. We use the 235 single-hunk bugs (where the buggy code
and corresponding fixed code are within a continuous code chunk) in the Defects4J as a simpler
starting point following existing APR techniques (Jiang et al., 2023} |Hossain et al.| [2024a)).

* SWE-bench (Jimenez et al.|[2024): A recent dataset for project-level program repair in Python,
collected from the merged pull requests of popular Python libraries on GitHub. Similarly, we
use a subset of 792 single-hunk bugs.

We include outputs of 11 LLMs of five series in Collu-Bench, including open-source ones and
commercial ones with different sizes in each category to cater to different researchers’ interests.
This selection covers open-source code-specialized (DeepSeekCoder, StarCoder2, and CodeLlama)
and general (Llama3) models with sizes smaller than 34B and one of the state-of-the-art commercial
models (GPT-40-mini). Additional details of the selected LLLMs such as their sizes and release dates
are provided in Appendix [A.3]

3.3 GENERATION AND AUTOMATED HALLUCINATION LOCALIZATION

Figure[I]illustrates the generation step that collects the LLMs’ outputs for given coding or repairing
problems, and the hallucination token localization step which automatically calculates the index of
the first generated hallucination token.

Code Generation: For each sample in the datasets (HumanEval, MBPP, etc.), we let each LLM gen-
erate one solution code using few-shot prompting (Brown et al.}|2020) and greedy decoding. Details
and examples of the prompt we used to collect LLMs generated code are provided in Appendix[A.2]

Localization of Hallucinated Tokens: This step collects the hallucination token indices from the
incorrect generate code by normalizing it and comparing it with the large, diverse set of canonical
code (Section[3.1)), as these will be the targets of Collu-Bench. Specifically, we compare the LLM-
generated program with canonical solutions to decide the hallucination location. We normalize the
generated code and compare it with each normalized solution one by one. Non-indentation white
space in Python programs and all white space in Java programs are ignored during the comparison as
they do not affect functionality. The first different character is mapped back to the original generated
code before normalization to locate the token where this mismatched character is from.

For instance, in the example shown in Figure[I] the normalized LLM-generated program “return
all(vl < v2 for vl, v2 in zip(tupl, tup2))” mismatches with the normalized canon-

[T3xL)

ical solution “return all(vl > v2 for vl, v2 in zip(tupl, tup2))” at character “<
(highlighted in red). This character maps to the same “<” in the original LLM-generated code
“return all(x <y for x, y in zip(tupl, tup2))”, which is the fifth-generated token

by LLM. As a result, the hallucination token index for this example is 5.

As there could be multiple unique normalized canonical solutions per problem, we calculate the hal-
lucination token indices between the LLM-generated program and every unique canonical solution
and eventually take the largest hallucination token index.
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3.4 COLLECTION OF ADDITIONAL SIGNALS FOR HALLUCINATION LOCALIZATION

In addition to the raw generated output, we collect additional signals that could be relevant to hal-
lucination, i.e., per-step log probabilities provided by the LLMs, types of generated tokens, and the
error messages of executing the incorrect program.

Per-step Log Probabilities: Log probabilities can be obtained during the generation process
through LLMs’ inference API. The log probs. show the LLMs’ confidence level at the corresponding
decoding step. We collect the log probs. of the top 100 tokens at each step.

Token Types: In programming languages, each token can belong to different categories based on
its role in the code, which is analogous to parts of speech in natural language. We categorize tokens
of different types to provide code-specific information.

To determine the token types, we parse the code into an abstract syntax tree (AST), where each node
has its node type that we use to decide the token type. We classify code tokens, based on AST node
types, into the following categories: Keyword, Delimiter, Operator, Constant, Identifier,
and Type Identifier. Besides, we also add two additional types: Space for the white space
tokens and <E0s> for the end-of-sequence token (a token that marks the end of generation). Figure 2]
shows examples of these token types in Java and Python programs.

Integer[] result = {@, 1};<EOS> v | Keyword Operator ||Identifier Space
---- return all(x < y for x, y in zip(tupl, tup2))<E0S>! |Delimiter || Constant || ;4om¥?;, || <E0s>

Figure 2: Examples of token types in Java and Python code

Error Messages: Execution feedback is crucial for understanding and potentially fixing incorrect
code because it usually points to relevant lines where the bug resides. Therefore, we offer the
execution feedback of the generated code by running test cases on them. For the CG task, we use
EvalPlus (Liu et al.| 2023)) to run rigorous test cases on the generated code. For the APR task, we
use the official evaluation scripts and run the test cases provided by each dataset.

4 BENCHMARK ANALYSIS

We present the statistics and analysis of Collu-Bench and show some key findings in this section.
Collu-Bench contains 13,234 instances, each with an LLM-generated code, parsed token types, per-
step log probs., execution error messages, and the hallucination token index as target (code without
hallucination is not included).

4.1 ANALYSIS AND FINDINGS

LLMs are less confident when hallucinating. Figure 3| shows the probability distributions of cor-
rect tokens and hallucinated tokens. (a) shows that for all the LLMs, the hallucinated tokens tend to
have a lower probability than the correct tokens. GPT-40-mini is much more confident than other
LLMs when they are hallucinating. (b) shows that the code tokens generated for different datasets
and tasks still hold the same pattern. Code tokens generated for the HumanEval-Java dataset overall
have a higher probability (for both correct and hallucinated ones) than those for other datasets. Hal-
lucinated tokens generated for CG datasets overall have a lower probability than hallucinated
tokens generated for APR datasets. (c) shows the probability distribution of correct and halluci-
nated tokens with different types. Keyword is the only type that probability distributions of correct
and hallucinated tokens overlap the most, suggesting LLLMs are least confident when generating
keywords. And the hallucinated £0S tokens have the highest probability, suggesting LLLMs tend to
stop generation confidently, even at incorrect places.

LLMs are more likely to hallucinate when generating certain types of tokens. Table |1| shows
the error rate of different types of tokens generated by each LLM and for each dataset. Among all
the token types, Keyword is the most error-prone type across all five datasets, and most LLMs
(except GPT-40-mini). Besides, Type Identifier and Identifier are also more error-prone
for most LLLMs compared to the other types.
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Figure 3: Probability distribution of correct and hallucinated tokens. DSC, CL, SC2, and L3 refer to
DeepSeekCoder, CodeLlama, StarCoder2, and Llama3.

When comparing among datasets, Defects4] and SWE-bench data have a much higher hallucination
rate in all types of tokens except for £E0S, which could be due to their complexity. Defects4] is
also unique in having a much higher hallucination rate in Operator, Constant, Identifier, and
Type Identifier tokens.

Table 1: Proportion (%) of hallucinated tokens in each token type generated by each LLM and for
each dataset. Token types with [>16% , > 10% and > 5% hallucination rate are highlighted.

DeepSeekCoder CodeLlama StarCoder2 Llama3 GPT-4o
13B 67B 33B| 7B I3B 34B| 3B 7B 15B|  8B| mini

Key. 1448 11.45 1046|1526 1427 1232|1535 13.57 11.19| 14.87 8.24
Delim.| 436 277 223| 430 3.80 3.17| 399 329 284 5.72 2.38

MBPP HE HE-Java D4] SWE

6.42 5.05 4.67 (2299 2229
2.68 1.82 193 591 472

Op. 362 275 191| 452 268 287 3.70 377 271 4.11 2.08 1.69 1.39 235 11.11  3.60
Const. | 5.84 413 3.15| 538 451 3.74| 497 3.66 3.61 5.44 2.37 325 251 439 1190 4.32
Id. 566 438 3.72| 6.13 458 435| 6.04 638 5.00 7.70 3.78 252 235 246 1192 6.97
Type. 833 9.09 8838|1091 658 849| 942 1359 8.96 9.33 8.81 0.00 0.00 4.27 11606 0.00
Sp. 235 09 025| 043 030 051 1.81 115 095 0.42 0.33 0.05 0.05 0.18 073 1.73

1.65 2.34 0.00 0.00 0.00

EOS 171 075 031| 143 059 106 142 0.65 105 1.77 0.52

4.2 ERROR RATE

Collu-Bench employs the proposed pipeline (Section [3.1)) to automatically identify the first halluci-
nation token as the target. This may not always align perfectly with human developer annotations.
To assess the accuracy, we randomly selected 100 samples from Collu-Bench and asked two de-
velopers to review the hallucination tokens in the LLM-generated code. The developers disagreed
with the identified hallucination tokens in 14 samples and concurred with that of the remaining 86
samples. We then further checked the 14 samples that the developers consider mislabeled and found
they were all due to missing a more extensive set of equivalent canonical solutions.

Given the difficulty of identifying code equivalency, it is impossible to exhaustively find and consider
all the canonical solutions. Without the proposed solution in Section [3.1] there would only be
57 samples matching the developers’ annotation using a simple string match or token match (i.e.,
43% error rate). We sample diverse canonical solutions and use program normalization to handle
identifier variability, which reduces the error rate of data labeling significantly.

5 PRELIMINARY RESULTS OF HALLUCINATION PREDICTION

Collu-Bench can be used to train and evaluate code hallucination localization methods. We formu-
late the task of code hallucination localization as follows: given a code generated by an LLM, which
has been verified to be incorrect by execution test cases, the task is to identify the first incorrect
token in the generated code. Specifically, given an LLM-generated code G, the task is to predict the
smallest index ¢ such that G; # S;, where S is the correct solution we expect the LLM to generate.

In this section, we describe our preliminary experiment results on Collu-Bench. We consider the
following two task setups:
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* Per-token prediction: The hallucination prediction model classifies each token as correct or
hallucinated, starting from the first token in the LLM-generated code. For an LLM-generated
code with hallucination token index ¢, the sample is considered predicted accurately if the pre-
diction model classifies the first i — 1 tokens as correct and the ¢-th token as hallucinated.

* Per-sample prediction: The hallucination prediction model takes all the tokens in the LLM-
generated code as input, and selects one from the all as the first hallucination token. A sample
with hallucination token index ¢ is considered predicted accurately if the prediction model cor-
rectly selects the i-th token as the first hallucination token.

For each setup of the hallucination prediction task, we also consider different data split setups:

* All-in-one: We apply five-fold cross-validation to split the samples in Collu-Bench into 80%
training and 20% test data per fold, and train one prediction model using the training data.

* One-per-dataset: Since LLMs may have different patterns in hallucination when generating
code for different tasks or datasets, we apply the cross-validation and train one prediction model
on data that comes from each dataset independently.

* One-per-LLM: Since different LLMs may have diverse patterns in hallucination, we apply the
cross-validation and train one prediction model on data from each LLM independently.

5.1 PER-TOKEN PREDICTION

We conduct experiments using traditional machine learning (ML) techniques including Support Vec-
tor Classifier (SVC), Ada Boost Classifier (AB), Random Forest Classifier (RF), Gradient Boosting
Classifier (GB), and Multi-layer Perceptron (MLP). For each token, the considered features include
the top 100 probability distribution, the token type (in a one-hot vector), and the token index in
the LLM-generated code. Table [2]shows the accuracy of hallucination token index prediction using
different models, under the first two data-split settings. We find in general, RF produces higher
accuracy than SVC, AB, GB, and MLP. When training separate prediction models per dataset,
the model (train and test) on SWE-bench produces much higher accuracy than other datasets, and
the model on HumanEval produces the worst accuracy, which suggests that LLMs have different
patterns in hallucination when generating code for different task or dataset.

Table 2: Accuracy (%) of hallucination token index prediction using under “All-in-one” and “One-
per-dataset” settings.

One-per-dataset

Models ‘ All-in-one | \1ppp  HumanEval — HumanEval-Java  Defectsd]  SWE-bench
Support Vector (SVC) 32.17 26.28 7.21 29.57 30.27 37.08
Ada Boost (AB) 32.02 28.55 15.77 26.21 30.98 36.40
Random Forest (RF) 33.09 30.61 16.73 29.69 32.27 37.62
Gradient Boosting (GB) 32.74 29.87 16.73 29.07 31.69 37.86
Multi-layer Perceptron (MLP) 31.72 27.02 18.65 29.19 31.29 36.13

Table 3: Accuracy (%) under “One-per-LLM” setting. Row names show the LLMs where the train-
ing data comes from, and column names show the LLMs where the test data comes from. Accuracy
thatis >33% , >31%, <29% ,and < 27% are highlighted.

| DSC-1.3B DSC-6.7B DSC-33B CL-7B CL-13B CL-34B SC2-3B SC2-7B SC2-15B L3-8B GPT-40-mini

DSC-1.3B 30.18 31.09 29.32 28.77  31.40 30.40 30.47 2791 2984  24.19 8.71
DSC-6.7B 29.87 32.15 30.71 29.76  31.07 31.61 31.71 29.98 3278  29.28 14.48
DSC-33B 27.96 32.10 34.63 31.68 3439 31.95 34.96 31.72 31.05  33.78 16.37
CL-7B 29.21 30.33 28.58 31.03 3023 30.14 32.25 31.25 29.23  22.07 6.09
CL-13B 27.38 28.56 33.02 29.38 3242 30.14 30.85 28.95 29.23  32.36 5.56
CL-34B 29.65 30.41 28.49 28.54  29.40 30.30 30.00  27.28 28.71 21.05 19.20
SC2-3B 26.79 30.08 28.86 2823  30.48 28.41 33.72 32.04 31.92 2349 9.65
SC2-7B 27.67 28.81 28.49 29.23  30.65 30.22 34.26 30.40 33.65  24.90 11.23
SC2-15B 29.21 30.67 30.06 29.00  29.65 30.48 34.73 31.25 30.00  24.04 11.96
L3-8B 27.38 31.93 32.65 29.99 = 34.88 32.04 31.47 29.58 3044 | 33.62 16.16
GPT-40-mini 1.24 4.89 0.56 0.92 0.75 1.47 2.87 1.11 1.82 0.47 34.21

Table 3] shows the accuracy of RF predictors under the “One-per-LLM” settings. (1) GPT-40-mini
has the most unique pattern in hallucination, that predictors trained with other LLMs’ data pre-
dict worse when predicting hallucination in GPT-40-mini’s output, and vice versa. (2) Predic-
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tors trained with other LLMs’ data in general work worse when predicting hallucination in
Llama3-8B’s output, however, predictors trained on Llama3-8B’s data generalize successfully to
most other LLMs’ output except DeepSeekCoder-1.3B and GPT-40-mini. (3) Predictor trained
with DeepSeekCoder-33B’s data generalizes the best and produces higher accuracy on most
LLMs’ output, except DeepseekCoder-1.3B and GPT-40-mini. (4) Surprisingly, the predictors
trained and tested on the data from the same LLMs are not always the most accurate, e.g.,
predictor trained with StarCoder2-7B’s data are more accurate on predicting StarCoder2-15B’s hal-
lucination than predictor trained with StarCoder2-15B’s data (33.65% versus 30.00%).

5.2 PER-SAMPLE PREDICTION

For per-sample prediction, we conduct experiments using the same three settings. The predictors
take a list of tokens in the LLM-generated code, the feature of each token includes the top 100 prob-
abilities and token type in a one-hot vector. The predictors encode the token list using CNN (Lecun
et al..[{1998), RNN, LSTM (Hochreiter & Schmidhuber,[1997) or GRU (Cho et al.,[2014)), or Trans-
former (Vaswani et al., 2017) layers to produce hidden states for each token. The hidden states of
the token list are fed to a pointer network (Vinyals et al.| 2017; |Hossain et al., 2024b) to select the
first hallucination token from the list.

Table |4| shows the accuracy of hallucination token index prediction using the above neural network
(NN) models. LSTM shows the highest accuracy under the “All-in-one” setting, and under
the “One-per-dataset’ setting, CNN produces the highest accuracy on data collected from most
datasets (HumanEval-Java and SWE-bench). Besides, compared with per-token prediction, LSTM
under per-sample prediction achieves similar accuracy to RF under the “All-in-one” setting
(33.09% versus 33.15%). On data collected from each dataset, ML approaches with per-token
prediction are much more accurate than neural networks with the per-sample prediction on
MBPP, but are less accurate on HumanEval-Java.

Table 4: Accuracy (%) of hallucination token index prediction using Collu-Bench under “All-in-
one” and “One-per-dataset” settings.

One-per-dataset

Models ‘ All-n-one | \ippp  HumanEval —HumanEval-Java  Defects4]  SWE-bench
CNN 32.30 23.42 17.90 42.86 29.04 38.38
GRU 32.85 24.05 17.48 4091 28.07 36.97
LSTM 33.15 21.52 17.90 36.36 31.19 37.98
Transformer 23.03 20.89 20.09 35.71 26.12 27.14

Table 5: Accuracy (%) under “One-per-LLM” setting. Row names show the LLMs where the train-
ing data comes from, and column names show the LLMs where the test data comes from. Accuracy
that is | > 385%|, >33% , >31%, <29% ,and < 27% are highlighted.

| DSC-1.3B DSC-6.7B DSC-33B CL-7B CL-13B CL-34B SC2-3B SC2-7B SC2-15B L3-8B GPT-40-mini

DSC-1.3B 36.46 32.80 33.78 3536  31.34 33.89 28.68 23.81 2620  29.46 0.00
DSC-6.7B 35.38 32.80 30.67 3726 3195 31.38 28.29 24.21 30.57 31.78 0.00
DSC-33B 34.30 34.40 31.56 36.89 3278 33.89 3101 25.79 28.82 3217 0.10
CL-7B 35.38 31.60 32.00 3574 31.12  30.96 28.29 21.83 2576  30.62 0.00
CL-13B 38.63 30.40 30.67 38.02  34.02 34.31 30.23 28.97 29.26 31.78 0.00
CL-34B 35.74 31.60 31.56 37.64  30.71 31.38 2946 26.59 30.13 31.40 0.00
SC2-3B 34.30 32.00 29.78 3422 3320 32.22 3140  29.76 36.24 3256 0.49
SC2-7B 35.74 32.00 32.89 3422 3278 31.80  29.46 31.35 3450  28.68 0.49
SC2-15B 35.38 34.40 31.56 38.02 33.61 34.31 31.78 35.32 34.93 33.33 0.00
L3-8B 33.94 34.00 31.56 3498 31.12 3222 30.62 29.76 31.44  28.68 0.00
GPT-40-mini 1.44 0.40 1.33 0.00 0.41 0.00 0.00 0.40 0.00 0.78 35.61

Table [5] shows the accuracy of the LSTM predictors under the “One-per-LLM” setting. Except
for the same conclusion that “GPT-40-mini” has the most different pattern from other LLMs, NNs
under “per-sample prediction” draw dissimilar findings than ML approaches. (1) Overall, NNs
show higher upper bound than ML approaches under the “One-per-LLM” setting, with many
predictors producing accuracy higher than 35%. (2) Hallucination of DeepSeekCoder-1.3B, which
is hard to predict in the per-token manner, can be predict more accurate in the per-sample manner.
This suggests the per-token and per-sample prediction approaches could complement each other.
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6 LIMITATION

One limitation is the errors in the target hallucination token index provided in Collu-Bench, which is
determined by an automated pipeline and thus is non-perfect. Compared with simple string match-
ing or token matching, we sample diverse canonical solutions and apply program normalization to
handle the equivalency and identifier variability of code to increase the accuracy of the hallucination
token index in Collu-Bench significantly. It is non-trivial to find an automated solution to determine
the hallucination in code perfectly, which remains to be explored.

Another limitation is the range of select LLMs and datasets to build Collu-Bench. There exist lots of
different LLMs and code generation or program repair datasets, we select the set of state-of-the-art,
widely-used LLMs (including DeepSeekCoder series, CodeLlama series, StarCoder2 series, Llama3
series, and GPT-40-mini), and dataset. Overall, Collu-Bench’s 13,234 data samples come from 11
LLMs’ output on five datasets. Studying the hallucination of more LLMs and datasets can be an
interesting future work.

7 CONCLUSION

This work presents Collu-Bench, a challenging benchmark for code hallucination localization.
Collu-Bench includes 13,234 hallucination instances generated by 11 diverse LLMs on two im-
portant code tasks, offering a comprehensive evaluation of hallucination localization across multiple
models. Collu-Bench also provides additional information such as per-step log probs. produced
by LLMs, types of generated tokens, and execution feedback as useful signals for predicting code
hallucinations. Through extensive experiments using traditional machine learning techniques and
neural network models as hallucination predictors, we provide an in-depth study of hallucination lo-
calization using Collu-Bench. The preliminary results reveal that traditional ML methods and neural
networks can only achieve an accuracy of up to 33.15%, highlighting the complexity of this task,
and underscoring the need for further research in improving the trustworthiness and reliability of
LLMs in code-related applications.
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A APPENDIX
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On average, after sampling diverse canonical solutions and normalizing program, we collected
82.01, 50.01, 5.54, 1.31, and 1.53 unique normalized canonical solutions per problem in Hu-
manEval, MBPP, HumanEval-Java, Defects4]J, SWE-Bench.

Table 6: AST nodes that contain user-defined identifiers (underscored) in Python and Java programs.

Python AST Nodes ~ Examples \ Java AST Nodes Examples

assignment x =1 variable declarator int x = 0;

for statement for x in nums: enhanced for statement for (Integer i : nums)

for in clause [x+*2 for x in nums] lambda expression nums.sort ((a, b) ->b.compareTo (a));
with statement with open(...) as fp: method declaration int add(int x, int y)

except clause except Exception as e: | constructor declaration Point (int x, int y)

lambda lambda x: x**2

function definition def add(x, y):

System You are an exceptionally intelligent coding assistant that consistently delivers accurate and
Prompt reliable responses to user instructions.

### Task Start ###

( Complete the function “similar_elements™ below.

* T python
def similar_elements(test_tupl, test_tup2):
""" Write a function to find the similar elements from the given two tuple lists.
>>> similar_elements((3, 4, 5, 6), (5, 7, 4, 10))
(4, 5)
>>> similar_elements((1, 2, 3, 4),(5, 4, 3, 7))
Five-shot 1 3, 4? i 1
Examples Zi; siz; ar_elements((11, 12, 14, 13),(17, 15, 14, 13))
>

res = tuple(set(test_tupl) & set(test_tup2))
return res

### Task Start ###

#i## Task Start #it#
Complete the function “square_nums® below.

© T python

Test def square_nums(nums):

""" Write a function to find squares of individual elements in a list using lambda function.
Sample >>> square_nums([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])

[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

>>> square_nums([10, 20, 30])

L [100, 400, 900]

1
gLiVISt { return list(map(lambda x: x**2, nums))
utpus

Figure 4: Few-shot prompt we used to collect LLMs’ outputs for code generation tasks

A.2 FEW-SHOT PROMPTING DESIGN

Figures[dand [5]show the few-shot prompts we used during the collection of LLMs’ outputs. For the
code generation task, we follow the prompt format in HumanEval that provides the task description
and example inputs and outputs as a doc-string inside the function signature.

For the automated program repair task, we provide the task description which is important to under-
stand the intention of the function. The original buggy code is enclosed by <bug> and </bug> to
separate from the surrounding context. The LLMs are only required to generate the corresponding
fixed code to replace the buggy code.

In the prompt, all the source code is also enclosed by “* * *” followed by the programming language,
which is commonly used in Markdown files. Such a design enables us to distinguish the end of
code generation in time using “**“” as the stop word and prevent LLMs from generating further
explanations or comments.
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System
Prompt

Five-shot
Examples

Test
Sample

LLM's
Output

{

You are an exceptionally intelligent coding assistant that consistently delivers accurate and
reliable responses to user instructions.

You will be provided with a text description outlining a problem, the function that is intended
to solve the problem yet contains a bug, with the erroneous code highlighted between <bug> and
</bug> tags. Your task is to analyze the entire function and the buggy code, then generate the
corrected version of the buggy code.

The generated fixed code will directly replace the buggy code within the function. Please ensure
that the syntax is correct and that no additional code is produced beyond the fixed code, as this
could lead to syntax errors when the fixed code is inserted back into the function.

#i## Task Start ###

* Problem Description

Check if in the given list of numbers, are any two numbers closer to each other than
given threshold.

Examples:
has_close_elements([1.0,

2.0, ], ©.5) returns false
has_close_elements([1.0, 2.8

3.0
, 3.0, 4.0, 5.0, 2.0], 0.3) returns true

* Function
" java
public class ROLLING_MAX {
public static List<Integer> rolling_max(List<Integer> numbers) {
List<Integer> result = new ArraylList<Integer>();
Integer running_max = null;

for (Integer n : numbers) {

<bug>

double distance = numbers.get(i) - numbers.get(j);
</bug>

if (distance < threshold)

return true;
}
return false;
}

}

* Buggy Code
T java
double distance = numbers.get(i) - numbers.get(j);

* Fixed Code
" java
double distance = Math.abs(numbers.get(i) - numbers.get(j));

### Task Start ###

### Task Start #it#
* Problem Description
Return list of all prefixes from shortest to longest of the input string

Examples:
all_prefixes("abc") returns ["a", "ab", "abc"]

* Function
public class ALL_PREFIXES {
public static List<String> all_prefixes(String string) {
List<String> result = new ArraylList<String>();

for (int i = @; i < string.length(); i += 1) {

<bug>
result.add(string.substring(i + 1));
</bug>
}
return result;
}

* Buggy Code
T java
result.add(string.substring(i + 1));

* Fixed Code
" java

result.add(string.substring(@, i + 1));

Figure 5: Few-shot prompt we used to collect LLMs’ outputs for program repair tasks.
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A.3 DETAILS OF SELECTED LLMS

Table 7| shows the details of our selected LLMs, including their release date, pre-training data size,
and the number of parameters. CodeLlama is developed by Meta Al, training the Llama2 models
(which have already been trained on 2T natural language tokens) using an additional 700B code
tokens. DeepSeekCoder uses the same architecture as Llama, yet it trained from scratch using 2T
tokens, 13% of which is natural language text and 87% is code tokens. StarCoder2 is developed by
the BigCode project, as an evolution of the original StarCoder (Li et al.,|2023c)) model, optimized for
multi-language support and fine-tuned for a variety of programming tasks. CodeLlama, DeepSeek-
Coder, and StarCoder2 are specialized in source code, performing well on various code tasks such
as code generation, code infilling, and supporting multiple programming languages.

Llama3 is the latest generation of Meta’s Llama models pre-trained with significantly more data (15T
tokens), although it is a general LLM not specialized for source code, it shows strong capability in
both natural language and code.

GPT-40-mini is an optimized version of GPT-4, developed by OpenAl, to support strong reasoning
on both natural language text and code, and also keep high efficiency with smaller. It is one of the
strongest commercial LLM. The training data and process of GPT-40-mini are unknown.

Models ‘ Release Date Pre-training Size ~ Parameters

7B

CodeLlama Aug. 24,2023 2T NL tokens and 700B code tokens 13B

34B

1.3B

DeepSeekCoder Jan. 26, 2024 2T tokens (13% NL and 87% code) 6.7B

33B

3.3T NL and code tokens 3B

StarCoder2 Feb. 28, 2024 3.7T NL and code tokens 7B

4.3T NL and code tokens 15B

Llama 3 \ April 18,2024 15T NL and code tokens 8B
GPT-40-mini \ July 18,2024

Table 7: The release dates, pre-training data, and number of parameters of selected LLMs.

A.4 ADDITIONAL STATISTICS OF COLLU-BENCH

Table [§] lists the detailed number of instances collected from each LLM and each dataset in Collu-
Bench. The data collected from each LLM is relatively balanced, while the data collected from each
dataset is imbalance, with SWE-bench contributing the most data.

Table [0] presents the proportion of each token type in the code generated by each LLM, and the
proportion of each token type in the code generated for each dataset. All LLMs consistently generate
the most tokens for Identifier (32.98 — 36.95%). All DeepSeekCoder and CodeLlama models
generate similar proportions of tokens for Delimiter and Space (~ 20%). The rest models share
a similar pattern in that they generate around 19.48 — 23.04% tokens for Delimiter and 12.16 —
14.44% tokens for Space and Constant.

Generated code for all the datasets contains most tokens for Identifier, with simpler datasets
(MBPP, HumanEval, HumanEval-Java) having 25.77 — 28.03% and more complex datasets (De-
fects4] and SWE-bench) having 32.43 — 37.38%. For CG datasets, Space is the second most types
and Delimiter is the third most. By contrast, for APR datasets, the second and third most common
types are Delimiter and Space.

A.5 PARAMETER TUNING OF HALLUCINATION PREDICTION MODELS

In Seciotns[5.1]and we train traditional machine learning models and neural networks to predict
code hallucination using Collu-Bench as the dataset.

For per-token prediction, since the number of correct tokens is much more than the number of
hallucination tokens, we down-sample the correct tokens to prevent the predictor from overfitting to
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Table 8: Number of instances in Collu-Bench that collected from each LLM and dataset.

DeepSeekCoder CodeLlama StarCoder2 Llama3  GPT-40

Models 13B 678 33B | 7B 133 34B| 3B 7B 1B | 8B | mmi | 0@
MBPP 200 148 126 | 219 190 172 | 184 177 159 184 140 | 1899
HumanEval 114 8 70| 116 102 101 | 110 106 92 115 32| 1041
HumanEval-Java 97 78 51 89 70 70 85 85 55 87 37 806
Defectsd] 220 202 200 | 204 203 197 | 206 206 202 213 191 | 2254
SWE-bench 735 676 679 | 679 637 618 | 687 687 645 675 553 | 7234
Total | 1366 1187 1081 | 1307 1204 1158 | 1290 1261 1153 | 1274 | 953 | 13234

Table 9: Proportion (%) of each token type generated by each LLM and for each dataset. The  first,

second , and third most types by each LLM or for each dataset are highlighted. Key., Delim.,
Op., Const., Id., Type., and Sp. refer to Keywords, Delimiter, Operator, Constant, Identifier, Type
Identifier, and Space. HE, D4J, and SWE refer to HumanEval, Defects4J, and SWE-bench.

DeepSeekCoder CodeLlama StarCoder2 Llama3 GPT-40
13B 67B 33B| 7B 13B 34B| 3B 7B 15B]| 8B|  mini

Key. 586 555 537| 529 534 552| 654 638 6.62 6.53 7.70 8.17 9.54 423 553 542

MBPP  HE HE-Java D4] SWE

Delim. | 20.73 20.86 20.17| 20.18 19.35 20.58| 22.98 23.55 23.04| 20.39| 19.48|| 20.77 19.23 2537 2439 20.38
Op. 524 545 540| 478 456 4.88| 553 549 541 5.47 6.19 7.84 798 1132 698 4.01
Const. | 1091 12.19 13.29| 1239 12.66 11.06| 13.08 13.68 13.15| 12.16| 13.44|| 10.53 11.59 798 7.69 13.85
Id. 35.06 3499 34.82| 33.86 3298 34.23| 3583 3558 36.95| 3496| 3549 28.03 2577  27.16 3243 37.38
Type. 054 050 051 054 036 053] 048 055 039 0.50 0.67 0.00 0.00 2.64 339 0.00
2220 24.24 18.58 17.53 17.24

246 1.64 272 206 1.17

Sp. 2025 18.99 19.12| 21.75 23.66 21.78| 13.82 13.20 12.81| 13.82| 14.44
EOS 141 148 131| 120 109 142| 172 155 1.63 1.68 2.58

correct tokens. We tune the ratio of correct and hallucination tokens in the range of 1: 1 to 10: 1, and
eventually use 3: 1 in the final experiments due to its best performance. For other hyper-parameters
of SVC, RF, AB, GB, and MLP, we use the default provided in scikit-learn ﬂ

For per-sample prediction, we tune the hyper-parameters of each architecture accordingly (e.g., the
number of layers, hidden dimensions, etc.). The final CNN models have four stacked convolution
layers and a hidden dimension of 512. Both the LSTM and GRU models have two bidirectional
layers and a hidden dimension of 512. The transformer models have four layers, with a hidden
dimension being 256 and a feed-forward dimension of 1024. The attention layers in the transformers
have eight attention heads. Each model is trained with a batch size of 32 for 10 epochs, using Adam
as the optimizer to update the weights.

https://scikit-learn.org/stable/
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