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SEMANTIX: AN ENERGY-GUIDED SAMPLER FOR SE-
MANTIC STYLE TRANSFER
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Figure 1: Examples of our Semantix. Given a visual context and a reference image (Top examples),
Semantix can perform Semantic Style Transfer based on the semantic correspondence. Besides,
our Semantix also can be directly adapted for the videos (Bottom examples) without the need of
additional modification. It is important to emphasize that, as a sampler, Semantix directly leverages
the knowledge from the pretrained model to guide the sampling process based on our proposed energy
function for Semantic Style Transfer, without the need for any additional training or optimization.

ABSTRACT

Recent advances in style and appearance transfer are impressive, but most methods
isolate global style and local appearance transfer, neglecting semantic correspon-
dence. Additionally, image and video tasks are typically handled in isolation, with
little focus on integrating them for video transfer. To address these limitations,
we introduce a novel task, Semantic Style Transfer, which involves transferring
style and appearance features from a reference image to a target visual content
based on semantic correspondence. We subsequently propose a training-free
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method, Semantix, an energy-guided sampler designed for Semantic Style Transfer
that simultaneously guides both style and appearance transfer based on semantic
understanding capacity of pre-trained diffusion models. Additionally, as a sam-
pler, Semantix can be seamlessly applied to both image and video models, enabling
semantic style transfer to be generic across various visual media. Specifically, once
inverting both reference and context images or videos to noise space by SDEs,
Semantix utilizes a meticulously crafted energy function to guide the sampling
process, including three key components: Style Feature Guidance, Spatial Feature
Guidance and Semantic Distance as a regularisation term. Experimental results
demonstrate that Semantix not only effectively accomplishes the task of semantic
style transfer across images and videos, but also surpasses existing state-of-the-art
solutions in both fields.

1 INTRODUCTION

The vision community has rapidly improved the quality of image and video generation over a
short period. In particular, some powerful baseline systems for Text-to-Image (Podell et al., 2023;
Saharia et al., 2022; Nichol et al., 2021; Rombach et al., 2022; Ramesh et al., 2022) and Text-to-
Video (Blattmann et al., 2023; Guo et al., 2023; Girdhar et al., 2023) have been proposed, which
contributes a series of applications such as controllable generation in ControlNet (Zhang et al., 2023a;
Hu et al., 2023), IPAdapter (Ye et al., 2023) and InstantID (Wang et al., 2024c). Among these
innovations, one significant field is visual transfer, which modifies a context image to fit the style or
appearance of the reference image, while preserving the original content or structure.

Prior works have extensively explored visual transfer. However, they typically focus on two distinct
scenarios: (1) Style transfer (Gatys et al., 2015; 2016; Huang and Belongie, 2017; Li et al., 2017;
Liu et al., 2021; Deng et al., 2022; Wang et al., 2023b; 2024a; Ye et al., 2023) that utilizes the global
stylistic features for the entire image style modification, but overly emphasize the overarching style
of the reference images; and (2) Appearance transfer (Isola et al., 2017; Zhu et al., 2017; Park et al.,
2020a;b; Zheng et al., 2021; Mou et al., 2023; Alaluf et al., 2023; Wang et al., 2024b) that conveys
the object appearance from the reference to the context image, but exhibits only limited sensitivity to
the overall perceptual style. Besides, both of them ignore semantic alignment and video continuity
during the transfer process. These factors destroy the video continuity and lead to global style transfer
risking content leakage, while local appearance transfer may disrupt structural integrity.

We observe that the tasks of style transfer and appearance transfer share similarities in their underlying
objectives: to transfer relevant information from the reference visual content to the context visual
content. We assume that a feature transfer task guided by semantic alignment can better integrate
these two tasks, mitigating the risks of content leakage and structural disruption. Thus we define a
task termed Semantic Style Transfer as: given a context visual content, e.g., image or video, and a
reference image with style and (or) appearance features, the objective of Semantic Style Transfer is
to analyse and transfer the features from the reference image to the context visual content through
precise semantic mapping. Specifically, semantic style transfer considers semantic correspondence
between context and reference images. When there is a clear semantic correspondence between the
context image and the reference image, the transfer is executed based on the semantic correspondence.
For instance, as shown in Fig. 1, the body of the giraffe and the zebra exhibit semantic correspondence,
then the visual features of the body of zebra will be applied to the body of giraffe. Conversely, when
semantic correspondence is weak, as between village in Van Gogh’s style and the giraffe, the style is
injected based on the other correlations, e.g., color information or positional information.

To achieve this goal, we propose Semantix, an energy-guided sampler, which leverages the strong
semantic alignment capabilities of pre-trained diffusion models (Epstein et al., 2023) to transfer
features from the reference image to the context visual based on the semantic correspondence without
any training or optimization. Initially, we employ SDE Inversion (Huberman-Spiegelglas et al., 2023;
Nie et al., 2023) to invert given content into the noise manifold, establishing a conducive foundation
for semantic style manipulation. We then introduce a specialized energy function for semantic style
transfer that guides the sampling process rather than modify the model structure (Alaluf et al., 2023),
thus maintaining the original capabilities of the visual models and supporting video continuity. Our
proposed energy function comprises three terms: i) Style Feature Guidance, to align the style features
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with the reference image; ii) Spatial Feature Guidance, to maintain spatial coherence with context;
and iii) Semantic Distance, to regularise the whole function. In particular, within the term of style
feature guidance, we initially leverage semantic correspondence in the diffusion model (Tang et al.,
2023) and position encoding (Vaswani et al., 2017; Dosovitskiy et al., 2020) to align the output and
style features. In the spatial feature guidance component, we directly consider the feature distances
at corresponding positions to ensure consistency between the generated content and the context.
Lastly, we utilize the distance between the cross-attention maps of the generated content and the
given context as a regularisation term to enhance stability.

Integrating these capabilities, Semantix effectively transfers the features with semantic from the
reference image to the context with precise spatial alignment, satisfying the requirements of Semantic
Style Transfer. Additionally, as Semantix functions as a sampler for diffusion models, it can be
seamlessly applied to various image or video base models. Since these pre-trained models already
encapsulate sufficient semantic information and maintain action coherence, Semantix enables training-
free semantic style transfer across image and video simply through guided sampling.

In summary, our contributions include the following key points:

• We propose a novel task Semantic Style Transfer that includes semantic alignment to address
the potential content leakage or structural disruption caused by separate style transfer and
appearance transfer methods.

• We introduce Semantix, an energy-guided sampler specifically designed for training-free
semantic style transfer. It features key components such as Style Feature Guidance, Spatial
Feature Guidance, and Semantic Distance. We further extend Semantix across images and
videos, demonstrating the versatility of energy-guided samplers.

• Experimental results demonstrate that Semantix yields superior results in training-free
semantic style transfer across images and videos, surpassing existing solutions in both style
and appearance transfer in terms of accuracy and adaptability.

2 RELATED WORKS

Style and Appearance Transfer Style transfer infuses the style information of a reference image
into a context image to synthesize a stylized context image. Previous convolution-based meth-
ods (Huang and Belongie, 2017; Gatys et al., 2016; Johnson et al., 2016; Li et al., 2017; 2018;
Park and Lee, 2019; Lai et al., 2017; Gu et al., 2018) and Transformer-based methods (Deng et al.,
2022; Wu et al., 2021; Wang et al., 2022; Liu et al., 2021) have successfully facilitated style transfer
through the fusion of style and context information. Recently, diffusion-based style transfer has seen
significant attention and progress. Some works (Ye et al., 2023; Wang et al., 2024a; 2023b; Sohn
et al., 2023) use additional trained networks to extract style features for guiding image synthesis.
These methods inject global style features into the context image, altering its overall color and brush
strokes but ignoring the necessary semantic correspondence for meaningful style transfer. Other
training-based methods (Ruiz et al., 2023a;b; Shi et al., 2023; Wei et al., 2023; Li et al., 2024) require
fine-tuning the diffusion model to learn specific styles or introducing new text embeddings for style
representation through textual inversion (Gal et al., 2022; Zhang et al., 2023b). These methods
are time-consuming and often struggle to balance style injection with context preservation. Some
studies (Qi et al., 2024; Wang et al., 2023a; Jeong et al., 2023; Frenkel et al., 2024; Gandikota
et al., 2023) attempt to achieve style transfer through decoupling, but they either face challenges in
acquiring paired style datasets or risk losing image context. Contrastive learning (Yang et al., 2023;
Chen et al., 2021; Zhang et al., 2022; Park et al., 2020a) has also been employed, requiring carefully
designed loss functions for optimization. Howerver, all these methods need additional training. Some
training-free methods (Chung et al., 2023; Deng et al., 2023; Hertz et al., 2023; Jeong et al., 2024)
induce style transfer by manipulating features within the attention blocks of the diffusion model.

Meanwhile, appearance transfer aims to map appearance from one image to another. Early methods
based on GANs (Isola et al., 2017; Zhu et al., 2017; Yi et al., 2017) have faced practical limitations.
Other approaches using VAEs (Park et al., 2020b; Liu et al., 2017; Jha et al., 2018; Pidhorskyi et al.,
2020) encode images into separate structure and appearance representations to combine features
from different images. Recent diffusion-based techniques have significantly advanced appearance
transfer (Mou et al., 2023; Epstein et al., 2023; Kwon and Ye, 2022; Alaluf et al., 2023; Wang et al.,
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2024b). However, these approaches utilize local appearance features for guidance, overlooking
precise semantic correspondence between images, leading to inaccurate appearance transfer.

Semantic Correspondence between Images Establishing semantic correspondence between im-
ages is crucial. Past methods (Zhang et al., 2021; Zhao et al., 2021) using supervised learning require
extensive annotations. To address data limitations, some works (Wang et al., 2020; Rocco et al.,
2018; Lee et al., 2019; Seo et al., 2018) use weakly supervised approaches. Recently, self-supervised
learning has gained attention, especially with diffusion models. Studies (Tang et al., 2023; Zhang
et al., 2024; Caron et al., 2021) leverage these models representation abilities to calculate feature
similarities and establish semantic correspondence during the denoising process.

Energy Function Previous research interprets diffusion models as energy-based models (Liu et al.,
2022), where the energy function guides the generation process for precise outputs. The energy
function has various applications, such as energy-guided image editing (Mou et al., 2023; 2024;
Epstein et al., 2023) and translation (Zhao et al., 2022). The energy function also shows potential
in controllable generation, guiding generation through conditions such as sketch (Voynov et al.,
2023a), mask (Singh et al., 2023), layout (Chen et al., 2024), concept (Liu et al., 2022) and universal
guidance (Bansal et al., 2023; Yu et al., 2023), enabling precise control over the output.

3 PRELIMINARIES

Energy Function Diffusion models can be viewed as score-based generative models (Song et al.,
2020b). In classifier guidance (Dhariwal and Nichol, 2021; Ho and Salimans, 2022), the gradient
of the classifier ∇xt log pϕ(y|xt) is used to influence generation. From the perspective of score
functions, the condition y can be integrated within a conditional probability q(xt|y) via an auxiliary
score function and expressed as such:

∇xt
log q(xt|y) = ∇xt

log

(
q(y|xt)q(xt)

q(y)

)
∝ ∇xt

log q(xt) +∇xt
log q(y|xt), (1)

where the first term is viewed as the unconditional denoiser ϵθ(xt; t, ∅), and the second term can
be interpreted as the gradient of the energy function: E(xt; t, y) = log q(y|xt). Alternatively,
classifier-free guidance (CFG) (Ho and Salimans, 2022) can also be used, expressed as:

ϵ̂t = (1 + ω)ϵθ(xt; t, y)− ωϵθ(xt; t, ∅) (2)

where ω is the classifier-free guidance strength. In fact, the diffusion model can also be interpreted as
an energy-based model (Liu et al., 2022), guided by any energy function. One can design an energy
function beyond class-based conditioning and use it for guidance (Zhao et al., 2022; Epstein et al.,
2023; Bansal et al., 2023; Chen et al., 2024; Yu et al., 2023; Voynov et al., 2023a; Kwon and Ye, 2022).
Such guidance provides directional information to guide the diffusion process, and if appropriately
designed, as we shall show in this paper, it can be used to preserve semantic structure while adjusting
the style or appearance of the context visual according to the reference image. Following from Eq. 2,
the guidance from an energy function can be expressed as follows:

ϵ̂t = (1 + ω)ϵθ(xt; t, y)− ωϵθ(xt; t, ∅) + γ∇xt
E(xt; t, y), (3)

where ω is the classifier-free guidance strength, and γ is the newly introduced guidance weight
for the energy function E(xt; t, y). In this section, xt, ϕ, θ, ∅ represent noise samples, probability
distribution, model parameters, null token respectively.

4 METHODS

To address the task of Semantic Style Transfer, it is essential to establish precise semantic mappings
between the content to be transferred and the target. And the style features and visual appearance
are required to be transferred with the guidance from semantic correspondence, while preserving the
main structure of the original content.

To achieve this, we propose Semantix, a novel energy-guided sampler built upon off-the-shelf
diffusion models, as illustrated in Fig. 2. Given a context image Ic or video V c and the reference
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Figure 2: Overview of Semantix. Given a reference image Iref and a context image Ic or video
V c, we first invert them to the latent xT through an edit-friendly DDPM inversion. In the denoising
process, we then modify the xout

t through the designed energy gradient in every sampling step.

image Iref , we begin with inverting these images or videos to latents xT through the edit-friendly
DDPM inversion (Fig. 2 (left)). In the denoising process, we then modify the target xout

t , which is
initialized using the inverse noise of the context visual xc

T at the final step T , through the designed
energy gradient in every sampling step(Fig. 2 (right)). During the sampling process, we integrate
the guidance from our sampler with classifier-free guidance to generate high-quality samples (Liu
et al., 2022; Epstein et al., 2023). Notably, our approach only provides additional guidance during
sampling, without altering the generative capabilities of the visual model. As a result, the pre-trained
video model inherently maintains motion consistency without additional modification. Besides, an
Adaptive Instance Normalisation (AdaIN) (Huang and Belongie, 2017) is employed to harmonize
color disparities among Iout and Iref , which is also widely used in recent works (Alaluf et al., 2023;
Chung et al., 2023). The algorithm details can be found in Alg. 1.

4.1 DDPM INVERSION

To enhance image or video style editing capabilities, we first employ DDPM inversion (Huberman-
Spiegelglas et al., 2023) to invert the input to the noise space as outlined in Appendix A. This method
significantly reduces the reconstruction errors associated with CFG. As shown in Fig. 2 (left), given a
reference image Iref and a context image Ic or video V c, we first derive the respective independent
inversion noise sequences {xref

T , zref
T , zref

T−1, . . . ,z
ref
1 } for Iref , and {xc

T , z
c
T , z

c
T−1, . . . ,z

c
1} for

Ic or V c in the forward process. As shown in Fig. 3, at t = 601, the features we extracted from the
diffusion model contain sufficient contextual information and exhibit precise semantic correspondence
between context and reference images. Thus, we revert the images to the T = 601 timestep. Once
obtained noise sequences, these noise maps are fixed for using in the guided sampling process later.
We then initialize xout

T , zout
t as xc

T , zc
t and only manipulate the predictions from this sequence.

4.2 DESIGN OF ENERGY FUNCTION

Inspired by guidance-based image generation and editing methods (Epstein et al., 2023; Mou et al.,
2023), we regulate the sampling process through the design of an energy function to achieve semantic
style transfer. By leveraging the gradient of the energy function, we can guide the context visual
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… … …

t=961 t=941 t=601 t=581 t=561 t=301 t=281 t=261 t=21

Figure 3: Visualizing feature maps. We extracted features from the second block of the diffusion
model decoder and visualized the top three PCA components and feature mapping at each timestep.

toward the desired style while preserving its structural integrity. Eq. 3 can be re-expressed as follows:
ϵ̂t = (1 + ω)ϵθ(xt; t, C)− ωϵθ(xt; t, ϕ) +∇xt

F(xt; t, C), (4)
where ω is the classifier-free guidance strength and F is the designed energy function which in-
cludes three parts: Fref for Style Feature Guidance, Fc for Spatial Feature Guidance, and Freg for
regularisation:

F(xt; t, C) = γrefFref + γcFc + γregFreg, (5)
where γ is the weight of corresponding components. We detail the three components below.

Style Feature Guidance To achieve semantic style transfer, we propose style feature guidance,
which accurately captures the semantic correspondence between reference and context features to
guide style feature injection. In DIFT (Tang et al., 2023), the authors observed that the internal features
of the pre-trained Stable Diffusion model can be used to establish accurate semantic correspondence.
Inspired by it, we initially feed the inversion latents xc

t ,x
ref
t and the infusion latent xout

t to the
diffusion model and acquire the corresponding feature maps F c

t , F
ref
t & F out

t ∈ R{B,c′,h′,w′} from
the intermediate layers of the network. For videos, feature maps F c

t & F out
t are extracted from each

individual frame Ic ∈ V c, Iref ∈ V ref . Next, we pre-align the features via DIFT. Specifically, given
the features F c

t , F
ref
t and pixels pi, pj in Ic, Iref respectively, we calculate the ℓ2 distance between

the pairwise vectors vc
pi

from F c
t and vref

pj
from F ref

t , and then define the pixels with the smallest
distance as the corresponding pixels:

Dij = ∥vc
pi
− vrefpj

∥22, ∀vcpi
∈ F c

t , ∀vref
pj
∈ F ref

t , (6)

p∗j = argmin
pj

Dij . (7)

Therefore, for any context feature vector of the context image vc
pi
∈ F c

t , the corresponding feature

pair can be defined as
(

vc
pi
, vrefp∗

j

)
. For all vc in F c

t , we can identify corresponding feature pairs.

Consequently, we obtain a new set F ref∗
t according to corresponding feature pairs.

However, such an affinity-based approach overlooks the spatial location of the vectors within the
context features and fails to account for their relationships with adjacent vectors. Inspired by
Position Encoding (PE) (Vaswani et al., 2017; Dosovitskiy et al., 2020), we integrate an additional
optimizing-free position encoding term to maintain relative position. For each dimension, we have:

pe{i},j =

{
sin
(
i/10000j/d

)
if j is even

cos
(
i/10000j/d

)
if j is odd

(8)

where d is associated with the dimensions of PE and the channels, e.g., d = D/4 in a 2D scenario
while D is the dimensions of channels. Thus the feature maps can be regarded as:

F̄ c
t{i}
← F c

t + λpe · pe{i}, (9)

F̄ ref
t{i}
← F ref

t + λpe · pe{i}. (10)

Subsequently, we locate the corresponding pairs of features F̄ ref∗
t using the ℓ2 distance, and utilize

the obtained new pairs of feature vectors
(

vcpi
, vrefp̄∗

j

)
to form the new rearranged F ref∗

t . Therefore,
the optimization objective for Style Feature Guidance is to minimize:

Fref ∝ d
(
F out
t , F ref∗

t

)
, (11)
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Figure 4: Qualitative comparison with style transfer and appearance transfer methods. The top
two rows are comparisons of style transfer, the bottom two of appearance transfer.

MCCNet UNIST Cross-Image CCPL Ours MCCNet UNIST Cross-Image CCPL Ours

Figure 5: Qualitative comparison of video style transfer. Click the images to play the animation
clips. (Recommended to use Adobe Reader to ensure the GIFs play properly.)

where d is a type of distance metric. We use the cosine similarity as implemented in (Mou et al.,
2023). Besides, we use self-attention (Tumanyan et al., 2023) to define region masks mc and mref ,
which are generated via k-means clustering and applied to the features, limiting calculations and
guidance to the masked regions. For more details on mask extraction, refer to the original paper.

Spatial Feature Guidance To preserve the spatial structure of the generated content during style
guidance, we introduce spatial feature guidance. It minimizes the distance between context and
output features, ensuring spatial integrity. Unlike previous methods that replace features, we calculate
feature distances at corresponding positions during sampling and design an energy function to align
and maintain spatial structure. Specifically, based on the features F c

t extracted from the context
image or video, we perform point-to-point feature mapping between F c

t and F out
t to obtain feature

vector pairs (vc
pi
, vout

pi
) where pi ∈ F c

t . Therefore, we can calculate the similarity between the output
features F out

t and the context features F c
t as Spatial Feature Guidance:

Fc ∝ d
(
F out
t , F c

t

)
. (12)

Semantic Distance To avoid overfitting to style or context and achieve a balance between style and
structure, we incorporate a commonly used regularisation term in training-based methods. Previous
methods have demonstrated that self-attention and cross-attention mechanisms encode context and
structural information of images (Hertz et al., 2022; Epstein et al., 2023; Tumanyan et al., 2023).
Additionally, recent methods have achieved style transfer by swapping the keys and values in self-
attention (Alaluf et al., 2023; Chung et al., 2023; Deng et al., 2023; Hertz et al., 2023; Wang et al.,
2024b; Jeong et al., 2024). Inspired by these works, we design a regularisation term to balance
style injection and context preservation. Specifically, the parameters of style and spatial guidance
correspond to their respective feature vectors, while the swapped attention features combine the
outputs of both. By constraining and penalizing these feature vectors in the regularization terms, it
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ensures that the style and spatial feature vectors remain within a more compact space, resulting in a
smoother solution, reduced overfitting, and enhanced stability during sampling. During the sampling
process, we feed xout

t into U-net again and replace the original Kout
l , V out

l in self-attention with
Kref

l , V ref
l , which come from the reference image Iref . Expressed as follows:

Self-Attn(Qout
l ,Kref

l , V ref
l ) = Softmax

(
Qout

l Kref
l

T

√
d

)
V ref
l . (13)

where l is the index of the transformer blocks that need to replace K and V , and d is the dimension.
Consequently, we calculate the L2 distance between the cross-attention map Cross-Attnoutswap after
replacing K and V and the cross-attention map Cross-Attnc of the context image:

Freg = ∥Cross-Attnout
swap − sg(Cross-Attnc)∥22, (14)

where sg(·) represents the operation of stop gradient.

5 EXPERIMENTS

In this section, we conduct an exhaustive experimental analysis to substantiate the efficacy and
superiority of our proposed method through qualitative comparison (Sec. 5.1), quantitative comparison
(Sec. 5.2) and ablation study (Sec. 5.3). For more experimental details, please refer to the Appendix B.

5.1 QUALITATIVE COMPARISON

Context Image Reference Image (Style) Reference Image (Appearance)

(a) Image Examples for Semantic Style
Transfer with Semantix

Context Video

Reference Image

Context Video

Reference Image

(b) Video Examples for Semantic Style
Transfer with Semantix

Figure 6: Image and Video Examples
for Semantic Style Transfer

We compare our proposed method with previous state-of-
the-art methods in style and appearance transfer, including
Transformer-based methods AdaAttn (Liu et al., 2021),
StyleFormer (Wu et al., 2021), StyTr2 (Deng et al., 2022),
CNN-based method CAST (Zhang et al., 2022), CCPL (Wu
et al., 2022) and Diffusion-based methods InST (Zhang
et al., 2023b), Dragon Diffusion (Mou et al., 2023), Cross-
Image (Alaluf et al., 2023), StyleID (Chung et al., 2023),
DreamStyler (Ahn et al., 2024), TI-Guided-Edit (Wang
et al., 2024b). As illustrated in Fig. 4, our approach ex-
cels at generating visually appealing images in both style
and appearance transfer tasks. Specifically, our method
not only preserves the structural integrity of the context
image, but also integrates style features more effectively
based on semantic correspondence. AdaAttn, Styleformer,
StyTr2, CAST and CCPL mainly change the color without
injecting the whole style information. InST and Dream-
Styler fail to effectively learn style and disrupt the context
image. Dragon Diffusion employs global feature guidance
for appearance transfer, yet fails to maintain structural in-
tegrity, causing severe distortion of image context. Mean-
while, Cross-Image leads to significant structural degrada-
tion and results in a blending of foreground and background.
StyleID is unable to infuse enough style information, po-
tentially leading to color deviation. Furthermore, TI-Guided Edit struggles with semantic-driven
style transfer, causing blurry images and structural damage. For video style transfer, we compare our
method with previous video style transfer methods such as MCCNet (Deng et al., 2021), UNIST (Gu
et al., 2023) and CCPL (Wu et al., 2022). We also adapt Cross-Image (Alaluf et al., 2023) to a
video version for comparison. As shown in Fig. 5, our method outperforms others in terms of visual
quality, consistency, and continuity. Additional qualitative comparisons of images are provided in the
Appendix G. Besides, we provide image and video semantic style transfer results as shown in the
Fig. 6, as well as additional visual results in the Appendix I.
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Table 1: Quantitative comparison with style transfer and appearance transfer methods.

Metrics AdaAttn StyleFormer StyTR2 CAST CCPL InST Cross-Image StyleID DreamStyler TI-Guided Ours
LPIPS ↓ 0.581 0.560 0.476 0.465 0.523 0.548 0.703 0.514 0.580 0.649 0.461
CFSD ↓ 0.189 0.156 0.155 0.133 0.133 0.408 0.232 0.160 0.789 0.183 0.117
SSIM ↑ 0.403 0.331 0.561 0.514 0.536 0.383 0.454 0.527 0.334 0.453 0.589
Gram Metrics×102 ↓ 7.929 2.822 5.403 6.594 4.861 4.917 5.850 2.878 6.990 4.811 2.524
PickScore ↑ 16.87 18.85 16.76 16.72 16.75 16.80 17.45 19.68 16.80 18.39 19.95
HPS ↑ 16.81 18.20 16.81 16.77 16.79 16.87 16.59 18.70 16.87 17.56 18.78

The best results are highlighted in bold font, and the second-best are underlined.
We compare our method with recent state-of-the-art methods in terms of structure preservation, style similarity and image aesthetics.
* To measure structure preservation capability, we calculate the LPIPS, CFSD and SSIM.
* For style similarity, we compute Gram Metrics as style loss.
* We utilize PickScore and HPS as aesthetic evaluation metrics.

5.2 QUANTITATIVE COMPARISON

Metrics. For quantitative performance of image semantic style transfer, we evaluate stylized images
from three aspects: structure preservation ability, style injection capability and image quality. We
quantify the structure preservation ability by LPIPS (Zhang et al., 2018), CFSD (Chung et al., 2023)
and SSIM (Wang et al., 2004). For style injection capability, we employ Gram matrices, which are
widely used in style and appearance transfer (Gatys et al., 2016; Alaluf et al., 2023; Wang et al.,
2024b). In addition, we utilize the aesthetic score metrics to measure the quality of the generated
images such as PickScore (Kirstain et al., 2024) and Human Preference Score (HPS) (Wu et al., 2023).
For video transfer, we evaluate video continuity with Semantic and Object Consistency metrics and a
Motion Alignment metric for assessing the difference of motions between source and editing videos
as described in (Sun et al., 2024). We further evaluate the visual appeal, motion quality and temporal
consistency by Visual Quality, Motion Quality and Temporal Consistency metrics respectively as
described in EvalCreafter (Liu et al., 2024).

Table 2: Quantitative Comparison of Video Style Transfer.

Metric MCCNet UNIST Cross-Image CCPL Ours
Semantic Consistency ↑ 0.714 0.861 0.936 0.942 0.944
Object Consistency ↑ 0.723 0.777 0.939 0.943 0.955
Motion Alignment ↑ -5.251 -4.178 -3.878 -1.792 -1.894

Visual Quality ↑ 52.11 43.97 47.33 48.92 55.86
Motion Quality ↑ 53.35 55.07 53.14 53.25 53.99
Temporal Consistency ↑ 59.14 45.43 55.85 59.64 60.05

The best results are highlighted in bold font, and the second-best results are underlined.

Comparison Analysis We quantitatively eval-
uate our method on 1000 sampled context-style
image pairs and compare it with previous state-
of-the-art methods mentioned above. As demon-
strated in Tab. 1, our method not only signif-
icantly surpasses previous techniques but also
excels over recent diffusion-based methods in
several context preservation metrics, including
LPIPS, CFSD and SSIM. It indicates that our
method possesses a significant edge in maintaining structural integrity. For the style similarity
metric, we measure the L2 loss between Gram Matrices (Gatys et al., 2015), which represents the
style similarity between the generated image and the reference style image. Our Semantix has the
lowest Gram Matrices style loss among all methods. This demonstrates that the images generated
by our method most closely resemble the reference style images. Besides, Semantix achieves the
highest PickScore and HPS, which indicates that the images generated by Semantix are more visually
attractive. Therefore, experiments illustrate that Semantix not only solves the problem of context
disruption, but also effectively injects style into context images in a harmonious way.

In terms of video semantic style transfer, we conducted evaluations across 100 stylized videos
in comparison with MCCNet (Deng et al., 2021), UNIST (Gu et al., 2023), Cross-Image (Alaluf
et al., 2023) and CCPL (Wu et al., 2022). In contrast to Cross-Image, our approach did not modify
the model’s structure, which allowed it to achieve commendable outcomes in generation quality,
consistency and continuity aspects. As shown in Tab. 2, our approach exhibited superior performance
across all metrics among all methods.

Table 3: User Study.

StyleFormer Cross-Image StyleID TI-Guided Ours
Context Preservation 8.2% 3.2% 33.6% 3.2% 51.8%
Style Similarity 3.9% 21.8% 15.0% 28.2% 31.1%
Visual Appeal 7.8 % 3.6% 32.1% 5.4% 51.1%

* We ask all volunteers to evaluate the stylized images based on three aspects: context preservation,
style similarity, and visual appeal.
* The results are averaged across all volunteers

Table 4: Ablation study on our proposed components.

Metric Ours(default) - Style Guidance - Spatial Guidance - Position Encoding - Semantic Distance
LPIPS ↓ 0.461 0.406 0.512 0.467 0.451
CFSD ↓ 0.117 0.116 0.154 0.136 0.121
SSIM ↑ 0.589 0.610 0.547 0.574 0.626

Gram Metrics×102 ↓ 2.5242 4.2289 2.6315 2.8982 2.8610
PickScore ↑ 19.945 16.756 16.756 16.758 16.758
HPS ↑ 18.7801 16.769 16.768 16.769 16.766

From the 3nd to the 6th columns, each column has a separate component removed compared to the second column (ours default).

User Study In order to obtain a more convincing comparison, we conducted a user study to compare
our method with StyleFormer (Wu et al., 2021), Cross-Image (Alaluf et al., 2023), StyleID (Chung
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Ours (default) - Style Feature Guidance - Spatial Feature Guidance - Semantic Distance- Position Encoding
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Figure 7: Ablation study on our proposed components. From the 3rd to the 6th columns, each column
has a separate component removed compared to our default.

et al., 2023) and TI-Guided (Wang et al., 2024b). We enrolled 30 volunteers, and for each volunteer
we randomly selected 40 generated images for user evaluation in three aspects: structural preservation,
style similarity and visual appeal. The results, as detailed in the Tab. 3, demonstrate that our method
excels at maintaining image structure, enhancing style injection, and achieves superior image quality.

5.3 ABLATION STUDY

To validate the effects of each component, we conducted a series of ablation studies. In particular,
we experiment with style feature guidance, spatial feature guidance, position encoding and semantic
distance in both qualitative and quantitative aspects. As illustrated in the Tab. 4 and Fig. 7, style
feature guidance injects style features into context visual based on semantic correspondence. Spatial
feature guidance effectively maintains the structure, thereby ensuring the coherence of image context.
Position Encoding enhances the harmony of stylized images. As a regularisation term, semantic
distance mitigates overfitting to structure or style and contributes to balancing style injection and
structure maintenance. Further analysis of sampling speed, correspondence accuracy and the selec-
tions of timesteps and Position Encoding in video style transfer is provided in Appendix E. Parameter
sensitivity analysis and ablation on semantic distance can be found in Fig. 13 and Fig. 14 respectively.

6 CONCLUSION

In this paper, we introduce a novel task termed Semantic Style Transfer to include semantic cor-
respondence into style and appearance transfer. We further propose Semantix, a carefully crafted
energy-guided sampler designed to facilitate semantic alignment feature transfer in both image
and video diffusion models. By utilizing the proposed components, e.g., style feature guidance,
spatial feature guidance and semantic distance, Semantix effectively transferred both the style and
appearance features with semantic guidance. Experimental results demonstrate that our approach
not only produces high-quality stylized images and videos but also efficiently prevents contextual
interference and effectively incorporates style features. In both qualitative and quantitative evalua-
tions, Semantix surpasses existing state-of-the-art methods in terms of structure preservation, style
injection, and overall visual quality. Moreover, video experiments confirm that our method excels in
maintaining consistency and continuity across frames.

LIMITATIONS

While our method achieves style and appearance transfer across various visual, there are still certain
limitations. Specifically, it tends to be less effective when the context visual has strong inherent style
features. In such scenarios, our method may lead to failures in semantic style transfer. Moreover,
Semantix relies on the semantic information from pre-trained diffusion models, with the UNet
architecture (Rombach et al., 2022). Future work will explore semantic alignment in advanced
models like UViT (Bao et al., 2023) and DiT (Peebles and Xie, 2023).
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BROADER IMPACTS

Powerful feature transfer capabilities can facilitate creative content generation. However, there is
also a risk that these technologies could be used to generate harmful content with negative societal
impacts. A particularly concerning misuse could involve placing an actual people in a compromising
scene involving illicit activities.
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Appendix for Semantix: An Energy Guided Sampler for Semantic
Style Transfer

A EDIT FRIENDLY INVERSION

This section reproduces, for the reader’s convenience, much of the derivation for edit friendly
inversion presented in Huberman-Spiegelglas et al. (2023). Diffusion models (Sohl-Dickstein et al.,
2015) consist of a forward process and a denoise process. In the forward process, an image x0 is
transformed into a Gaussian distribution xT by gradually adding Gaussian noise. This process can be
described by a stochastic differential equation (SDE) (Song et al., 2020b):

dx = f(x, t) dt+ g(t) dw, (15)

here, w represents the standard Wiener process, f(·, t) : Rd → Rd is a vector-valued function known
as the drift coefficient of x(t), and g(·) : R → R is a scalar function referred to as the diffusion
coefficient of x(t). In DDPM (Ho et al., 2020), the SDE can be discretized into the following form:

xt =
√
1− βtxt−1 +

√
βtϵt, t = 1, . . . , T (16)

where ϵt ∼ N (0, I) represents standard Gaussian noise, and βt is variance schedule. Formally, the
diffusion process can be equivalently expressed as:

xt =
√
ᾱtx0 +

√
1− ᾱtϵt (17)

where αt = 1− βt, ᾱt =
∏t

s=1 αs, and ϵt ∼ N (0, I). In the denoising process, a Gaussian noise
xT ∼ N (0, I) is progressively denoised to sample an image x̂0. A non-Markovian sampling method
was proposed in DDIM (Song et al., 2020a), which can be formulated as follows:

xt−1 = µ̂t(xt) + σtzt, t = T, . . . , 1 (18)

where zt ∼ N (0, I) represents standard Gaussian noise and is independent of xt. The term µ̂t(xt)
can be expressed by the following formula:

µ̂t(xt) =
√
ᾱt−1

xt −
√
1− ᾱtϵθ(xt)√

ᾱt
+
√

1− ᾱt−1 − σ2
t ϵθ(xt) (19)

the fixed schedulers σt are represented in the general form as: σt =
ηβt(1−ᾱt−1)

1−ᾱt
, where η belongs

to [0,1]. Within this framework, η = 0 corresponds to the deterministic DDIM scheme, and η = 1
corresponds to the original DDPM scheme. Owing to the deterministic nature of the Ordinary
Differential Equations (ODEs), the DDIM does not introduce randomness during the diffusion
process. However, classifier-free guidance amplifies the accumulation of errors in text-guided
sampling process (Mokady et al., 2023), hence the deterministic DDPMs (Huberman-Spiegelglas
et al., 2023; Wu and De la Torre, 2023) are proposed. In DDPM inversion, a sequence x1, . . . , xT is
constructed directly from x0 according to the following formula:

xt =
√
ᾱtx0 +

√
1− ᾱtϵ̃t, t = 1, . . . , T, (20)

where ϵ̃t ∼ N (0, I) are statistically independent, which are different from Eq. 16. Therefore, we can
compute µ̂t(xt) according to the Eq. 19, which allows us to isolate zt according to Eq. 18 as shown
in the following equation:

zt =
xt−1 − µ̂t(xt)

σt
, t = T, . . . , 1. (21)

Therefore, the diffusion process evolves into a deterministic DDPM. It has been demonstrated that the
introduction of randomness in image editing tasks can produce high quality results (Nie et al., 2023).

B IMPLEMENTATION DETAIL

We use NVIDIA A100 (80G) GPUs for all experiments. For image semantic style transfer, our
method is built upon the pre-trained Stable Diffusion v1.5 model. For video task, AnimateDiff (Guo
et al., 2023) serves as our base model and we extend the reference image into video sequence. We
invert the input images or videos into noises through DDPM inversion across 60 timesteps. For
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classifier-free guidance, we set the scale factor ω = 3.5, aligning it with the sampling procedures.
During the sampling process, the features for guidance are extracted from the second and third blocks
of the UNet’s decoder. In image style transfer tasks, we adjust the weights of style feature guidance,
spatial feature guidance and semantic distance regularisation to γref = 3.0, γc = 0.9, γreg = 1.0,
respectively. Additionally, we incorporate a 2D position encoding into the features and assign it a
weight of λpe = 3.0. For video task, the corresponding hyper-parameters are set to γref = 6.0, γc =
3.0, γreg = 5.0, λpe = 3.0. We further employ a hard clamp in the range of [−1, 1] for all guidance.

To compute the regularisation term, we extract cross-attention maps of context image or video and
output image or video in the U-net to calculate L2 distance. Besides, we replace the keys and values
in the self-attention layer of the decoder at the 32 × 32 and the 64 × 64 resolutions following 10
timesteps, as described in Cross-Image (Alaluf et al., 2023). After 20 denoising timesteps, we apply
AdaIN (Huang and Belongie, 2017) for the style latents xref

t and output latents xout
t .

C EVALUATION DATASET

We select the COCO (Lin et al., 2014) dataset as the source of context images and obtain style images
from WikiArt (Tan et al., 2018) and appearance images from Cross-Image (Alaluf et al., 2023). We
randomly sample 1000 context images in the COCO dataset and pair each with a style image from the
WikiArt dataset to form 1000 context-style image pairs. All images are cropped and resized to 512 ×
512 resolutions. For context video datas, we obtain high quality videos generated by Sora (OpenAI,
2024). Additionally, we also utilize some of our internal data as style images for qualitative result.

D ALGORITHM OF SEMANTIX

In order to make it easier to understand our proposed Semantix, we present the detailed algorithm in
Algorithm 1.

E FURTHER ANALYSIS.

Table 5: Comparison of computational speed and memory
usage.

Attribute Time (sec) Memory (G)
DragonDiff 15 8
Cross-Image 18 12
StyleID 6 22
TI-Guided 16 20
Ours 26 22

* The evaluations were carried out on a single NVIDIA
A100 GPU, with each method executing 50 timesteps
of sampling.

Sampling speed and memory analysis. Since our sampler is guided
by energy gradients, there is a slight increase in sampling time and
memory usage. Tab. 5 shows a comparison between our method and
other diffusion-based approaches, indicating that our approach has a
negligible impact on inference time and memory usage.

Impact of correspondence accuracy. To further validate the versatility
of our approach, we randomly disrupted the feature correspondences
between context and reference images. As illustrated in the Fig. 9, this
random disruption of feature correspondences led to only a slight decline in image quality, without
significantly degrading the stylized images. This is attributable to the robustness of our proposed
method. Our energy-based approach does not demand high accuracy in semantic correspondences,
and the replacement of the K, V in self-attention with semantic correspondences in our semantic
distance term also reduces the method’s reliance on precise semantic correspondence.

Choices of Position Encoding. In video style transfer, we conducted experiments on 2D and 3D
Position Encoding(PE) to explore the impact of different types of PE. The results for 3D PE, as shown
in the Fig. 10, illustrate a slight decrease in style similarity compared to 2D PE(Fig. 5). Notably, the
role of PE is mainly to establish semantic correspondence. Thus, this decline can be attributed to the
increased difficulty in establishing semantic correspondence across all frames, as opposed to within
individual frames. Therefore, in video tasks, we employ 2D PE, aligning with image style transfer.

The selection of timestep. In our proposed method, we reverse the input to T=601 timestep by
DDPM inversion (Huberman-Spiegelglas et al., 2023). During the experiment, we observed that
when T = 601, there was an optimal trade-off between generation quality and sampling speed. Both
previous studies (Voynov et al., 2023b; Agarwal et al., 2023a;b) and Fig. 3 indicate that the image
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Algorithm 1: Proposed Semantix

Input: context image Ic or video V c; reference image Iref or video V ref ; prompts P
Output: reconstructed and stylized images/videos Îc(V̂ c), Îref (V̂ ref ), Îout(V̂ out)
Require: UNet denoiser ϵθ; UNet feature extractor Fθ; hyper-parameters γref , γc , γreg , λpe,
ω; timestep T

Initialization:
(1) Encode image/video:

xc
0 = Encoder(Ic/V c);

xref
0 = Encoder(Iref/V ref );

(2) DDPM inversion to obtain latent xT and noise z:
xc
T , z

c
T , z

c
T−1, . . . ,z

c
1 ←− DDPM inversion(xc

0);
xref
T , zref

T , zref
T−1, . . . ,z

ref
1 ←− DDPM inversion(xref

0 );
xout
T , zout

T , zout
T−1, . . . ,z

out
1 ←− xc

T , z
c
T , z

c
T−1, . . . ,z

c
1;

for t = T, . . . , 1 do
xt ←− Concat(xc

t ,x
ref
t ,xout

t );
ϵct , ϵ

uc
t , CAc ←− ϵθ(xt; t, P );

CAout
swap←− ϵθ(xt; t, P ); where Kout

l = Kref
l , V out

l = V ref
l

mc,mref ←− Self-Attn;
ϵ̂t = ϵuct + ω · (ϵct − ϵuct );
F c
t , F

ref
t , F out

t = Fθ(xt; t, P );
F̄ ref∗
t = Align

(
(F c

t + λpe · PE)[mc], (F
ref
t + λpe · PE)[mref ]

)
;

F = γrefFref (F
out
t , F̄ ref∗

t ) + γcFc(F
out
t , F c

t ) + γregFreg(CAout
swap,CAc);

ϵ̂t = ϵ̂t + ∇xout
t
F ;

xt−1 =
√
ᾱt−1(

xt−
√
1−ᾱtϵ̂t√
ᾱt

+
√
1− ᾱt−1 − σ2

t ϵ̂t) + σtzt;

xout
t−1 = AdaIN(xout

t−1,x
ref
t−1);

end
Return Îc(V̂ c), Îref (V̂ ref ), Îout(V̂ out) = Decoder(xc

0,x
s
0, x

out
0 );

structure is formed early in the sampling process. Therefore, when T > 601, the spatial structure of
the image has not fully developed, and the semantic correspondence is ambiguous. At this stage,
feature guidance can disrupt the image structure, thereby reducing the quality of the generated image.
When T < 601, the correspondence tends to be more accurate. However, too few sampling steps
weaken the guidance of energy function, reducing style transfer effectiveness. Fewer timesteps with
more sampling steps may also lead to overfitting due to minimal feature variation. Furthermore, we
conducted an ablation study on the sampling timesteps, with the results shown in Fig. 8.

F QUANTITATIVE COMPARISON IN APPEARANCE TRANSFER.

Figure 8: Ablation of sampling timesteps.

To quantitatively confirm the effectiveness of
our method in the appearance transfer task, we
conduct additional evaluations, similar to our
quantitative comparisons of style transfer. We
compare our method with some other appear-
ance transfer methods (Cross-Image (Alaluf
et al., 2023), TI-Guided (Wang et al., 2024b))
on the data sourced from Cross-Image. Our
evaluation metrics include structure preservation
ability (LPIPS, CFSD, SSIM), style similarity
(Gram matrices) and aesthetic scores (PickScore,
HPS) on the images of 11 domains provided by
Cross-Image. We display the evaluation results
of structural preservation capability in Tab. 6,
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and the results of style similarity and aesthetic scores in Tab. 7. It can be seen that our method not
only excels in structural preservation but also leads in appearance transfer capability and overall
image aesthetics, significantly outperforming competing methods.

Table 6: Structure Preservation Capacity Quantitative Comparisons to Appearance Transfer Methods.

Structure Preservation LPIPS ↓ CFSD ↓ SSIM ↑
Domain Cross-Image TI-Guided Ours Cross-Image TI-Guided Ours Cross-Image TI-Guided Ours

Animals 0.6389 0.5586 0.4340 1.0949 0.4313 0.3659 0.3996 0.4670 0.5347
Birds 0.5298 0.4718 0.3920 0.4652 0.1119 0.0753 0.6343 0.6763 0.7283

Buildings 0.4860 0.4001 0.3004 1.1637 0.5102 0.4950 0.4646 0.4644 0.5788
Cake 0.5737 0.5274 0.3929 0.5588 0.4225 0.2431 0.5099 0.5235 0.6120
Cars 0.5451 0.4794 0.3694 0.3505 0.1673 0.1202 0.4930 0.5012 0.6319
Fish 0.4850 0.3995 0.3905 0.5391 0.2234 0.2076 0.4560 0.5131 0.5373
Food 0.4814 0.2924 0.2924 0.4314 0.1112 0.1112 0.5405 0.5228 0.6905
Fruits 0.5417 0.5062 0.3872 0.1657 0.1391 0.0468 0.5498 0.5322 0.6711
House 0.5268 0.4463 0.4135 0.7968 0.4772 0.1886 0.4023 0.3964 0.5433

Landscapes 0.6669 0.5893 0.4817 0.2274 0.1578 0.0618 0.4117 0.4186 0.5284
Vehicles 0.5746 0.5233 0.3990 0.7471 0.3260 0.3474 0.4118 0.3724 0.5564

Average 0.5500 0.4722 0.3866 0.5946 0.2798 0.2057 0.4794 0.4898 0.6012

Table 7: Appearance Similarity and Aesthetics Scores Quantitative Comparisons to Appearance
Transfer Methods.

Appearance & Aesthetics Gram Metrices×102 ↓ PickScore ↑ HPS ↑
Domain Cross-Image TI-Guided Ours Cross-Image TI-Guided Ours Cross-Image TI-Guided Ours

Animals 13.4105 10.9154 7.3016 19.13 20.29 20.56 18.99 20.18 20.27
Birds 9.1299 2.4086 1.3395 19.27 19.56 20.20 19.53 19.81 20.31

Buildings 15.8958 14.6079 9.9048 19.63 19.99 20.48 18.19 18.61 19.06
Cake 10.7525 11.8198 8.0294 19.43 19.91 20.05 19.19 19.71 19.95
Cars 5.9848 3.6776 2.6616 19.79 20.08 20.29 19.77 19.93 20.01
Fish 9.2379 11.8551 4.6625 20.30 20.87 20.86 19.88 20.16 20.12
Food 13.2022 5.4441 2.8371 20.71 21.67 22.26 19.62 20.27 20.68
Fruits 5.2102 3.6503 1.2086 19.63 20.15 20.52 19.42 19.58 19.91
House 16.2923 12.8945 3.8237 20.61 20.72 20.70 19.28 19.61 19.44

Landscapes 10.4906 7.1602 2.1185 19.43 19.89 20.35 18.34 18.75 18.86
Vehicles 11.1199 7.1911 6.9143 20.04 20.59 21.16 19.25 19.65 20.16

Average 10.9751 8.3295 4.6183 19.82 20.34 20.68 19.22 19.66 19.89

Figure 9: Impact of correspon-
dence accuracy.

Figure 10: Video results with 3D Position Encoding.

G ADDITIONAL QUALITY COMPARISON RESULTS.

We provide additional style and appearance transfer qualitative comparison results with diffusion-
based methods (Dragondiff (Mou et al., 2023), Cross-Image (Alaluf et al., 2023), StyleID (Chung
et al., 2023) and TI-Guided (Wang et al., 2024b)) in Fig. 11 and Fig. 12.
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H PARAMETER SENSITIVITY

We further demonstrate the parameter effects on different levels in Fig. 13. We found that excessively
high values of γref can disrupt the structure, while excessively high values of γc can diminish the
impact of style and appearance. The parameter γreg balances γref and γc, thereby enhancing image
quality. Meanwhile, λpe controls the intensity of the affinity between semantic information and the
position information. Besides, it also shows that the performance of our proposed sampler is not
highly sensitive to these hyper-parameters.

I ADDITIONAL VISUAL RESULTS.

We also provide additional image style transfer results in Fig. 15, Fig. 16, and additional image
appearance transfer results in Fig. 17 and Fig. 18. Additional video style and appearance transfer
results are shown in Fig. 19. For more video results, please refer to the supplementary materials in
the submitted file.
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Figure 11: Additional qualitative comparison with baselines (Dragondiff, Cross-Image, StyleID,
TI-Guided) on semantic style transfer (style) task.
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Figure 12: Additional qualitative comparison with baselines (Dragondiff, Cross-Image, StyleID,
TI-Guided) on semantic style transfer (appearance) task.

𝛾 re f= 2 . 0

𝛾 re f= 3 . 0

𝛾 re g= 1 . 5

𝛾 re g= 1 . 0

𝛾 re g= 2 . 0

𝛾 c= 0 . 6

𝛾  c  = 0 . 9

𝛾 c= 1 . 2𝛾 re f= 4 . 0

𝜆 p e= 1 . 0

𝜆 p e= 3 . 0

𝜆 p e= 5 . 0

Default

Default setting

Figure 13: Parameter sensitivity of γref , γc, γreg and λpe.
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Figure 14: Additional ablation study on Semantic Distance.
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Figure 15: Additional image semantic style transfer (style) results on given context and reference
image pairs.
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Figure 16: Additional image semantic style transfer (style) results on given context and reference
image pairs.
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Figure 17: Additional image semantic style transfer (appearance) results on given context and
reference image pairs.
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Figure 18: Additional image semantic style transfer (appearance) results on given context and
reference image pairs.
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Context Video

Reference Image

Context Video

Reference Image

Context Video
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Reference Image
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Figure 19: Additional video semantic style transfer results on given context videos and reference
images.
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