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Abstract

We introduce a novel setup for low-resource
task-oriented semantic parsing which incor-
porates several constraints that may arise
in real-world scenarios: (1) lack of similar
datasets/models from a related domain, (2) in-
ability to sample useful logical forms directly
from a grammar, and (3) privacy requirements
for unlabeled natural utterances. Our goal is
to improve a low-resource semantic parser us-
ing utterances collected through user interac-
tions. In this highly challenging but realistic
setting, we investigate data augmentation ap-
proaches involving generating a set of struc-
tured canonical utterances corresponding to
logical forms, before simulating correspond-
ing natural language and filtering the result-
ing pairs. We find that such approaches are
effective despite our restrictive setup: in a low-
resource setting on the complex SMCalFlow
calendaring dataset (Andreas et al., 2020), we
observe 33% relative improvement over a non-
data-augmented baseline in top-1 match.

1 Introduction

We aim to improve the performance of a seman-
tic parser based on previous user interactions, but
without making use of their direct utterances to
the system nor any associated personal identifiable
information (PII). Such privacy requirements are
common in practical deployment (Kannan et al.,
2016), and semantic parsers are commonly used in
real-world systems such as Siri and Alexa, convert-
ing natural language into structured queries to be
executed downstream (Kamath and Das, 2018).
Constructing semantic parsers can also be
resource-intensive: annotating training data con-
sisting of natural language-logical form pairs often
requires trained experts. Two complementary lines
of recent work address this issue. First, several
works (Zhong et al., 2020; Cao et al., 2020) tackle
low-resource semantic parsing via approaches such
as data augmentation. A second line of work (Wang

Natural When is Allison’s birthday?

Logical (Yield :output (:start (singleton (:results
(FindEventWrapperWithDefaults  :con-
straint (Constraint[Event] :subject (? =
#(String “Allison’s birthday™))))))))

Canonical start time of find event called something

like “Allison’s birthday”

Table 1: An example of natural language, logical form,
and canonical form in the SMCalFlow domain. The
event title, “Allison’s birthday,” is PIL.

et al., 2015; Xiao et al., 2016) explores canoni-
cal utterances: structured language which maps
one-to-one to logical forms, but which resembles
natural language (Table 1). Representing logical
forms as canonical utterances lowers the difficulty
of parsing natural utterances not only for humans,
but for models (Shin et al., 2021; Wu et al., 2021).

We consider low-resource semantic parsing with
further resource and privacy constraints which may
arise in practical deployment: beyond a small gold
dataset of labeled pairs, we assume only unlabeled
natural utterances which must be masked for PII.
Unlike many prior works, we assume that (1) we
do not have a large dataset of related logical forms
in a different domain, (2) we cannot sample arbi-
trarily many useful logical forms, and (3) we must
preserve privacy of user utterances.

We propose several approaches which are com-
patible with our imposed restrictions, broadly fol-
lowing three steps: (1) generate a set of privacy-
preserving canonical utterances; (2) simulate cor-
responding natural utterances; and (3) filter the
resulting canonical-natural utterance pairs to yield
additional “silver” data for training. We double
the performance of a non-data-augmented baseline
on the ATIS domain (Hemphill et al., 1990), and
achieve a relative improvement of 33% on the more
realistic SMCalFlow domain (Andreas et al., 2020).
We hope this work motivates further research inter-
est in methods for parser improvement in realistic
scenarios.



2 Semantic Parsing in Practice

Our setup assumes access exclusively to:

1. a small “seed” dataset D of natural utterance
with corresponding parses, and

2. alarger set of unlabeled natural utterances i/,
for which PII must be masked before use.

In a real-world setting, one might hand-annotate
the seed dataset D to train a system for initial de-
ployment, while then leveraging U/ to refine a future
version of the system.

While our setting is highly restrictive, we argue
that it reflects practical constraints. For example, in
practice, the grammar for logical forms—as well as
the synchronous context-free grammar (SCFG) that
maps them to canonical utterances—will often be
written from scratch, precluding transfer learning
methods which leverage a large quantity of similar
data in another domain. Moreover, in complex do-
mains, one cannot expect to sample useful logical
forms directly from a grammar if the grammar is
designed for coverage as in e.g., SMCalFlow (An-
dreas et al., 2020). Therefore, other than D, the
only additional data (excluding additional manual
annotation) are subsequent user inputs in the form
of U, with PII masked to preserve privacy.

3 Related Work

Compared to prior work in low-resource semantic
parsing, our task setup’s constraints require differ-
ent approaches.

First, we consider semantic parsing on an en-
tirely new grammar for logical forms, rather than
adapting to new domains starting from a preexist-
ing grammar (Zhao et al., 2019; Zhong et al., 2020;
Burnyshev et al., 2021; Kim et al., 2021; Tseng
etal., 2021). For example, Zhong et al. (2020) takes
a natural-language-to-SQL model for one database
to propose language-SQL training examples for
another database.

Second, we assume one cannot sample useful
canonical utterances directly from the grammar, un-
like Zhong et al. (2020) and Cao et al. (2020). For
example, Cao et al. (2020) use a backtranslation-
esque approach leveraging large numbers of unla-
beled natural and canonical utterances.

Moreover, we do not even assume direct access
to unlabeled natural utterances, due to real-world
privacy considerations (Kannan et al., 2016; Cam-
pagna et al., 2017). Many works on low-resource
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Figure 1: Illustration of one of our proposed methods
for data augmentation (USER-RANK) in low-resource
semantic parsing. We first obtain canonical forms from
unlabeled user data using a parser trained on seed data,
replacing PII. Next, we simulate corresponding natural
language for the generated canonical forms. Finally,
we filter the canonical-natural pairs to obtain our final
silver data pairs for augmentation.

semantic parsing, such as those mentioned previ-
ously, do not consider the privacy aspect.

Nevertheless, recent work (Shin et al., 2021; Wu
et al., 2021; Yin et al., 2021; Schucher et al., 2021)
has demonstrated decent performance given just
a small seed dataset D, by combining pretrained
language models with constrained decoding. For
example, Shin et al. (2021) use only 300 labeled
examples in the complex SMCalFlow dialogue do-
main (Andreas et al., 2020). However, using pre-
trained models to directly generate silver training
data, with a method such as DINO (Schick and
Schiitze, 2021), is unsuitable in semantic parsing:
the models are unaware of either the underlying
grammar or the space of parse-able queries. One
of our contributions is to explore more effective
uses of pretrained models for data augmentation in
a practical semantic parsing scenario.

4 Data Augmentation for Practical
Semantic Parsing

While finetuning a pretrained model on the seed
dataset D can yield a reasonable parser P (Shin
et al., 2021; Wu et al., 2021), we aim to increase
performance via data augmentation. However, our
realistic setup precludes many prior approaches.
We propose to generate silver data via three main



steps, shown in Figure 1: (1) generate a set C of
canonical utterances c, (2) simulate a set N/ of
corresponding natural utterances n, and (3) filter
the resulting (c, n) pairs. We suggest multiple ap-
proaches for these steps, and benchmark their effi-
cacy in Sec. 5. The entire procedure can be iterated
multiple times as the parser improves.

4.1 Generating Canonical Utterances

First, we generate canonical utterances c. In princi-
ple, one could sample directly from a task-specific
grammar, but the results may not be useful in prac-
tice (Sec. 5). The remaining options are to generate
c conditioned on either unlabeled natural utterances
U or the seed data D.

Generation conditioned on I/ (USER). We need
to mask all PII, but this is difficult to guarantee in
the original natural language domain. Therefore,
we first train a parser P on D, and parse each ut-
terance in I/ to obtain a set of canonical utterances
C’. In the more structured domain of C’ we can
guarantee masking and replacing all PII to yield
the final set C. Critically, it is not necessary that
the initial C’ are correct parses of U/; we only need
a realistic distribution over canonical utterances,
and the initial ¢/ is no longer parallel to the final C
anyway due to replacing PII. Hence it is acceptable
if the parser P’s errors are numerous but unbiased.
In any case, the final C will be somewhat tied to the
true distribution of user utterances in .

Generation conditioned on D (GPT). A sec-
ond method of generating C is SCFG-constrained
decoding on an autoregressive language model,!
prompting with the seed data D. Specifically, we
prompt with a random concatenation of plans from
D, separated by newlines. The SCFG that defines
canonical utterances constrains the decoding, forc-
ing the model to output a valid canonical utterance.

4.2 Simulated Natural Utterances

For each canonical ¢ in C, we now re-generate a
natural utterance n. While other methods (e.g., fine-
tuning) are possible, here we employ a prompting
approach using GPT3 (Brown et al., 2020). We use
a prompt containing D’s canonical-natural pairs,
ending with the canonical utterance ¢ for which we
want to sample a corresponding n.

1Ideally we would use GPT3 (Brown et al., 2020), and
we do so in the ATIS domain, but API limitations in GPT3
together with the requirements of our constrained decoding
force us to use GPT2-XL (Radford et al., 2019) in SMCalFlow.

4.3 Filtering Silver Data

Many (¢, n) pairs we generate may be low-quality,
depending on the task and seed data D available.
To obtain more high-quality pairs, we simulate 20
natural utterances n for each c. We must then filter
the resulting pairs, which we do based on either
reranking or cycle consistency.

Reranking (RANK). We accept the best of 20 sim-
ulated n for each ¢, and add this (¢, n) to our train-
ing data. The reranker combines two scores: (1) the
log-probability that the original D-trained parser PP
parses n back to the original canonical ¢, and (2)
the edit distance between n and c (capped based
on the length of ¢), which should intuitively be
maximized to encourage linguistic diversity.

Cycle consistency (CYC). We accept a (¢, n) pair
if the original parser P parses n back to c. This
assures the resulting pairs’ quality, but may skew
the distribution toward easier examples, which are
less helpful in downstream training.

S Experiments

Tasks. We evaluate on two domains:

1. ATIS (Hemphill et al., 1990), a flight booking
dataset. We use the Break (Wolfson et al.,
2020) subset.?

2. SMCalFlow (Andreas et al., 2020), a calen-
daring dataset, which we view as the most
complex and realistic.

In each domain, we assume a seed data D of just
30 pairs, conducting several trials with different
samples of seed data to mitigate noise from this
selection. We sample 300 unlabeled natural utter-
ances U from the dataset, which must be parsed to
canonical forms (using the grammar and SCFG of
Shin et al. (2021)) and then PII-masked before use.
See Appendix A for details on PII masking.

Methods. We evaluate several methods on each
task, listed below.

1. BASE, a supervised baseline which finetunes
BART (Lewis et al., 2019) on the seed D fol-
lowing Shin et al. (2021), discarding /.

2. USER-RANK, a data augmentation approach
following the USER and RANK methods de-

>We also ran preliminary experiments on the DROP (Dua
et al., 2019) and NLVR2 (Suhr et al., 2018) subsets of Break,
but found that the canonical utterances were too unnatural for
any method to perform reasonably (Appendix B).



Method ATIS SMCalFlow
BASE 6.8 £3.5 132 +34
USER-RANK 13.4 £ 4.1 155 +3.7
GPT-RANK 13.7+32 159 4+2.7
USER-CYC 6.0+23 15.04+4.0
GRAM-RANK 134428
USER-RANK-3X 17.6 + 4.6
GPT-RANK-3X 16.1 £ 3.0

Table 2: Main results on ATIS and SMCalFlow for dif-
ferent methods. Top-1 parsing match percentage eval-
uated over 5 (ATIS) or 10 (SMCalFlow) trials on dif-
ferent seed datasets D. For the two highest-performing
methods, USER-RANK and GPT-RANK, we iterate data
augmentation 3 times on SMCalFlow, yielding USER-
RANK-3X and GPT-RANK-3X. USER-RANK-3X per-
forms best overall.

scribed in Sec. 4.1 and 4.3 respectively, and
depicted in Figure 1.

3. GPT-RANK, a similar approach which gener-
ates c following GPT from Sec. 4.1 instead.

4. USER-CYC, a version which filters (¢, n)
pairs via cycle consistency (Sec. 4.3).

5. GRAM-RANK, a weak baseline that samples
initial ¢ directly from the grammar, which we
run only on SMCalFlow since our ATIS gram-
mar is too loosely specified for sampling.

Results. We observe that our best data augmenta-
tion methods (USER-RANK, GPT-RANK) double
the performance of the baseline finetuning method
BASE on ATIS, and outperform it on SMCalFlow
by up to 33% relative gain (Table 2),> although
absolute performance remains low due to the tiny
amount of seed data. Interestingly, GPT-RANK
outperforms BASE despite using only the seed D,
and not extra unlabeled ¢/. Moreover, iterating
the data augmentation procedure can further im-
prove performance, by improving the initial parser
P used for parsing unlabeled I/ or for filtering pairs
(¢,n). However, USER-CYC performs poorly on
ATIS, indicating that the CYC filtering is perhaps
too restrictive. GRAM-RANK is also poor: sam-
pling plans directly from a grammar is ineffective
in a complex, realistic domain like SMCalFlow.

5.1 Analysis
We conduct additional analyses on SMCalFlow.
Reranking. First, we run ablations on reranking

3 Although the standard deviations appear large, the varia-
tion between trials is largely due to randomness in selecting
the seed data D. For example, USER-RANK is better than
BASE on SMCalFlow with p = .0004 on a paired ¢-test.

Method SMCalFlow
BASE 132 +34
USER-RANK-3X 17.6 = 4.6
USER-NOEDITRANK-3X 173+ 4.7
USER-NORANK 12.8 3.5

Table 3: SMCalFlow reranking ablations. Since the
version without reranking (USER-NORANK) is no bet-
ter than the baseline, we do not iterate the data augmen-
tation procedure. The edit distance heuristic makes lit-
tle difference in this case (USER-NOEDITRANK-3X vs.
USER-RANK-3X), but reranking is crucial.

Method SMCalFlow (100 seed data)
BASE 31.6 £ 0.3
USER-RANK 31.7+ 1.0

Table 4: SMCalFlow results with more seed data. We
use a seed dataset D of size 100 rather than 30, with
3 trials per method. The gains from data augmentation
largely disappear at this scale, so we do not do addi-
tional augmentation iterations.

in USER-RANK (Table 3). While our edit distance
heuristic described in Sec. 4.3 makes little differ-
ence, reranking of some form is crucial. Mean-
while, there are many possibilities for other rerank-
ing procedures.

Additional Seed Data. We explore using a larger
seed dataset D of size 100. On SMCalFlow, we
observe that USER-RANK’s gains over the baseline
largely disappear (Table 4). Thus, improved data
augmentation methods which still yield gains with
larger seed datasets are an important direction for
future exploration.

6 Discussion

We have presented a difficult setting for semantic
parsing based on real-world resource and privacy
constraints. In addition to a seed dataset, the only
resources allowed are unlabeled natural utterances
which must be PII-masked. Nevertheless, we ob-
serve that data augmentation approaches leverag-
ing pretrained language models can still improve
over supervised baselines which use only the seed
dataset. At the same time, substantial room remains
for additional improvement: there are many alterna-
tives to our reranking procedure for silver data, and
our method loses some effectiveness when more
labeled data is provided. We hope that our obser-
vations in this challenging but realistic task setup
can lay a foundation for further exploration in data
augmentation approaches for semantic parsing.



Ethical Considerations

We believe our work makes a positive impact by
focusing heavily on the need for privacy consid-
erations when exploring low-resource settings for
semantic parsing. However, as our methods rely
heavily on large pretrained language models such
as GPT3, we may inherit similar biases which such
models are known for (Brown et al., 2020).
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A Masking and Replacing Personal
Identifiable Information

Al ATIS

The ATIS grammar is somewhat loosely defined
and does not clearly indicate the instances of PII.
This would be problematic in a real production
setting due to making it difficult to guarantee mask-
ing out all PII. However, for our experiments we
simply truecase the data and apply named entity
recognition using spaCy (Honnibal et al., 2020),
which we find is highly successful from a qualita-
tive inspection. We treat detected named entities as
PIL

To sample new values for replacing PII, we
prompt GPT3 using the masked utterance together
with the prefix up to where the PII string appears.
We additionally contextualize with examples of
unmasked-masked pairs from the seed data.

A.2 SMCalFlow

Since the SMCalFlow grammar is type-annotated,
we define three categories of PII: names, event
titles, and locations. Each category is easily identi-
fiable from the logical form, so it suffices to sample
a new value from the same category in the logical
form to guarantee that PII is replaced.

We sample names from a distribution balanced
for ethnicity and gender. For event titles and loca-
tions, we sample them from GPT3 by prompting
with seed data canonical forms containing event ti-
tles and/or locations, and then prefixing the genera-
tion with find event called something
like " (event titles) or a mix of weather at
"and find event at " (locations). We cut
off the generation once the next " appears.

B Preliminary Experiments on Other
Break Subsets

We additionally ran preliminary experiments on
the DROP (Dua et al., 2019) (reading comprehen-
sion) and NLVR2 (Suhr et al., 2018) (language-
vision reasoning) subsets of Break (Wolfson et al.,
2020). We used a similar setup to our ATIS and
SMCalFlow experiments, with 30 initial seed data
D and 300 unlabeled user utterances .

However, across multiple trials of multiple meth-
ods (BASE, USER-RANK, GPT-RANK, USER-
CYC), we never observed performance above 2%
on either domain. This may be partially due to the
diversity of the data; for example, DROP is an amal-
gamation of data from several sources. However,

we hypothesize that this across-the-board poor per-
formance is primarily the result of an SCFG for
canonical utterances which results in somewhat un-
natural language (Table 5), and that performance
could be greatly improved with a better SCFG.
Given the current form of our canonical utterances
in DROP and NLVR2, it is challenging to learn the
task given just 30 seed examples. In comparison,
the SMCalFlow canonical utterances (Table 1 in
the main text) are much more natural.

DROP Natural Which player had the short-
est touchdown reception of the

game?

DROP Canonical return touchdown receptions ;re-
turn shortest of #1 ;return player

of #2

If there are two carts, but only one
of them has a canopy.

NLVR2 Natural

NLVR2 Canonical return carts ;return number of #1
sreturn if #2 is equal to two ;return
canopy ;return #1 that has #4 ;re-
turn number of #5 ;return if #6 is
equal to one ;return if both #3 and

#7 are true

Table 5: Examples of natural utterances with corre-
sponding canonical utterances for DROP and NLVR2
domains. The language of the canonical utterances is
relatively unnatural.

We additionally inspect some inaccurate exam-
ple predictions by BASE on DROP and NLVR2,
which are often wildly incorrect (Table 6). We also
show some example (¢, n) pairs generated by our
data augmentation procedure, demonstrating the
failure to propose good natural language n given
the limited data and unnatural canonical ¢ (Table
7).

DROP Natural Which player threw more yards
in the game, Young or Man-

ning?

DROP Top-1 Parse return that was the highest ;re-
turn that was more of #1 ;return
number of #2 for each #1 ;return
#1 where #3 is lower than one

;return number of #4

NLVR2 Natural If there are bananas with stick-

ers on them

NLVR2 Top-1 Parse return, ;return number of #1 ;re-

turn if #2 is equal to one

Table 6: Predictions by BASE on DROP and NLVR2
which are wildly incorrect. Our data augmentation
methods fare no better.



DROP Canonical return the five

DROP Simulated Natural Fact-checkers failed to
catch five factual errors.

NLVR2 Canonical return left image ;return
#1 that are dirty ;return
if #2 is in one of the im-
ages

NLVR2 Simulated Natural If any of the trucks are
dirty.

Table 7: Example simulated natural utterances gener-
ated by prompting GPT3 on DROP and NLVR2, after
reranking and selecting the best of 20 generations. The
correspondence between canonical and simulated natu-
ral utterances remains imperfect.



