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Abstract

We introduce a novel setup for low-resource001
task-oriented semantic parsing which incor-002
porates several constraints that may arise003
in real-world scenarios: (1) lack of similar004
datasets/models from a related domain, (2) in-005
ability to sample useful logical forms directly006
from a grammar, and (3) privacy requirements007
for unlabeled natural utterances. Our goal is008
to improve a low-resource semantic parser us-009
ing utterances collected through user interac-010
tions. In this highly challenging but realistic011
setting, we investigate data augmentation ap-012
proaches involving generating a set of struc-013
tured canonical utterances corresponding to014
logical forms, before simulating correspond-015
ing natural language and filtering the result-016
ing pairs. We find that such approaches are017
effective despite our restrictive setup: in a low-018
resource setting on the complex SMCalFlow019
calendaring dataset (Andreas et al., 2020), we020
observe 33% relative improvement over a non-021
data-augmented baseline in top-1 match.022

1 Introduction023

We aim to improve the performance of a seman-024

tic parser based on previous user interactions, but025

without making use of their direct utterances to026

the system nor any associated personal identifiable027

information (PII). Such privacy requirements are028

common in practical deployment (Kannan et al.,029

2016), and semantic parsers are commonly used in030

real-world systems such as Siri and Alexa, convert-031

ing natural language into structured queries to be032

executed downstream (Kamath and Das, 2018).033

Constructing semantic parsers can also be034

resource-intensive: annotating training data con-035

sisting of natural language-logical form pairs often036

requires trained experts. Two complementary lines037

of recent work address this issue. First, several038

works (Zhong et al., 2020; Cao et al., 2020) tackle039

low-resource semantic parsing via approaches such040

as data augmentation. A second line of work (Wang041

Natural When is Allison’s birthday?

Logical (Yield :output (:start (singleton (:results
(FindEventWrapperWithDefaults :con-
straint (Constraint[Event] :subject (? =
#(String “Allison’s birthday”))))))))

Canonical start time of find event called something
like “Allison’s birthday”

Table 1: An example of natural language, logical form,
and canonical form in the SMCalFlow domain. The
event title, “Allison’s birthday,” is PII.

et al., 2015; Xiao et al., 2016) explores canoni- 042

cal utterances: structured language which maps 043

one-to-one to logical forms, but which resembles 044

natural language (Table 1). Representing logical 045

forms as canonical utterances lowers the difficulty 046

of parsing natural utterances not only for humans, 047

but for models (Shin et al., 2021; Wu et al., 2021). 048

We consider low-resource semantic parsing with 049

further resource and privacy constraints which may 050

arise in practical deployment: beyond a small gold 051

dataset of labeled pairs, we assume only unlabeled 052

natural utterances which must be masked for PII. 053

Unlike many prior works, we assume that (1) we 054

do not have a large dataset of related logical forms 055

in a different domain, (2) we cannot sample arbi- 056

trarily many useful logical forms, and (3) we must 057

preserve privacy of user utterances. 058

We propose several approaches which are com- 059

patible with our imposed restrictions, broadly fol- 060

lowing three steps: (1) generate a set of privacy- 061

preserving canonical utterances; (2) simulate cor- 062

responding natural utterances; and (3) filter the 063

resulting canonical-natural utterance pairs to yield 064

additional “silver” data for training. We double 065

the performance of a non-data-augmented baseline 066

on the ATIS domain (Hemphill et al., 1990), and 067

achieve a relative improvement of 33% on the more 068

realistic SMCalFlow domain (Andreas et al., 2020). 069

We hope this work motivates further research inter- 070

est in methods for parser improvement in realistic 071

scenarios. 072
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2 Semantic Parsing in Practice073

Our setup assumes access exclusively to:074

1. a small “seed” dataset D of natural utterance075

with corresponding parses, and076

2. a larger set of unlabeled natural utterances U ,077

for which PII must be masked before use.078

In a real-world setting, one might hand-annotate079

the seed dataset D to train a system for initial de-080

ployment, while then leveraging U to refine a future081

version of the system.082

While our setting is highly restrictive, we argue083

that it reflects practical constraints. For example, in084

practice, the grammar for logical forms—as well as085

the synchronous context-free grammar (SCFG) that086

maps them to canonical utterances—will often be087

written from scratch, precluding transfer learning088

methods which leverage a large quantity of similar089

data in another domain. Moreover, in complex do-090

mains, one cannot expect to sample useful logical091

forms directly from a grammar if the grammar is092

designed for coverage as in e.g., SMCalFlow (An-093

dreas et al., 2020). Therefore, other than D, the094

only additional data (excluding additional manual095

annotation) are subsequent user inputs in the form096

of U , with PII masked to preserve privacy.097

3 Related Work098

Compared to prior work in low-resource semantic099

parsing, our task setup’s constraints require differ-100

ent approaches.101

First, we consider semantic parsing on an en-102

tirely new grammar for logical forms, rather than103

adapting to new domains starting from a preexist-104

ing grammar (Zhao et al., 2019; Zhong et al., 2020;105

Burnyshev et al., 2021; Kim et al., 2021; Tseng106

et al., 2021). For example, Zhong et al. (2020) takes107

a natural-language-to-SQL model for one database108

to propose language-SQL training examples for109

another database.110

Second, we assume one cannot sample useful111

canonical utterances directly from the grammar, un-112

like Zhong et al. (2020) and Cao et al. (2020). For113

example, Cao et al. (2020) use a backtranslation-114

esque approach leveraging large numbers of unla-115

beled natural and canonical utterances.116

Moreover, we do not even assume direct access117

to unlabeled natural utterances, due to real-world118

privacy considerations (Kannan et al., 2016; Cam-119

pagna et al., 2017). Many works on low-resource120

Figure 1: Illustration of one of our proposed methods
for data augmentation (USER-RANK) in low-resource
semantic parsing. We first obtain canonical forms from
unlabeled user data using a parser trained on seed data,
replacing PII. Next, we simulate corresponding natural
language for the generated canonical forms. Finally,
we filter the canonical-natural pairs to obtain our final
silver data pairs for augmentation.

semantic parsing, such as those mentioned previ- 121

ously, do not consider the privacy aspect. 122

Nevertheless, recent work (Shin et al., 2021; Wu 123

et al., 2021; Yin et al., 2021; Schucher et al., 2021) 124

has demonstrated decent performance given just 125

a small seed dataset D, by combining pretrained 126

language models with constrained decoding. For 127

example, Shin et al. (2021) use only 300 labeled 128

examples in the complex SMCalFlow dialogue do- 129

main (Andreas et al., 2020). However, using pre- 130

trained models to directly generate silver training 131

data, with a method such as DINO (Schick and 132

Schütze, 2021), is unsuitable in semantic parsing: 133

the models are unaware of either the underlying 134

grammar or the space of parse-able queries. One 135

of our contributions is to explore more effective 136

uses of pretrained models for data augmentation in 137

a practical semantic parsing scenario. 138

4 Data Augmentation for Practical 139

Semantic Parsing 140

While finetuning a pretrained model on the seed 141

dataset D can yield a reasonable parser P (Shin 142

et al., 2021; Wu et al., 2021), we aim to increase 143

performance via data augmentation. However, our 144

realistic setup precludes many prior approaches. 145

We propose to generate silver data via three main 146
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steps, shown in Figure 1: (1) generate a set C of147

canonical utterances c, (2) simulate a set N of148

corresponding natural utterances n, and (3) filter149

the resulting (c, n) pairs. We suggest multiple ap-150

proaches for these steps, and benchmark their effi-151

cacy in Sec. 5. The entire procedure can be iterated152

multiple times as the parser improves.153

4.1 Generating Canonical Utterances154

First, we generate canonical utterances c. In princi-155

ple, one could sample directly from a task-specific156

grammar, but the results may not be useful in prac-157

tice (Sec. 5). The remaining options are to generate158

c conditioned on either unlabeled natural utterances159

U or the seed data D.160

Generation conditioned on U (USER). We need161

to mask all PII, but this is difficult to guarantee in162

the original natural language domain. Therefore,163

we first train a parser P on D, and parse each ut-164

terance in U to obtain a set of canonical utterances165

C′. In the more structured domain of C′ we can166

guarantee masking and replacing all PII to yield167

the final set C. Critically, it is not necessary that168

the initial C′ are correct parses of U ; we only need169

a realistic distribution over canonical utterances,170

and the initial U is no longer parallel to the final C171

anyway due to replacing PII. Hence it is acceptable172

if the parser P ’s errors are numerous but unbiased.173

In any case, the final C will be somewhat tied to the174

true distribution of user utterances in U .175

Generation conditioned on D (GPT). A sec-176

ond method of generating C is SCFG-constrained177

decoding on an autoregressive language model,1178

prompting with the seed data D. Specifically, we179

prompt with a random concatenation of plans from180

D, separated by newlines. The SCFG that defines181

canonical utterances constrains the decoding, forc-182

ing the model to output a valid canonical utterance.183

4.2 Simulated Natural Utterances184

For each canonical c in C, we now re-generate a185

natural utterance n. While other methods (e.g., fine-186

tuning) are possible, here we employ a prompting187

approach using GPT3 (Brown et al., 2020). We use188

a prompt containing D’s canonical-natural pairs,189

ending with the canonical utterance c for which we190

want to sample a corresponding n.191

1Ideally we would use GPT3 (Brown et al., 2020), and
we do so in the ATIS domain, but API limitations in GPT3
together with the requirements of our constrained decoding
force us to use GPT2-XL (Radford et al., 2019) in SMCalFlow.

4.3 Filtering Silver Data 192

Many (c, n) pairs we generate may be low-quality, 193

depending on the task and seed data D available. 194

To obtain more high-quality pairs, we simulate 20 195

natural utterances n for each c. We must then filter 196

the resulting pairs, which we do based on either 197

reranking or cycle consistency. 198

Reranking (RANK). We accept the best of 20 sim- 199

ulated n for each c, and add this (c, n) to our train- 200

ing data. The reranker combines two scores: (1) the 201

log-probability that the original D-trained parser P 202

parses n back to the original canonical c, and (2) 203

the edit distance between n and c (capped based 204

on the length of c), which should intuitively be 205

maximized to encourage linguistic diversity. 206

Cycle consistency (CYC). We accept a (c, n) pair 207

if the original parser P parses n back to c. This 208

assures the resulting pairs’ quality, but may skew 209

the distribution toward easier examples, which are 210

less helpful in downstream training. 211

5 Experiments 212

Tasks. We evaluate on two domains: 213

1. ATIS (Hemphill et al., 1990), a flight booking 214

dataset. We use the Break (Wolfson et al., 215

2020) subset.2 216

2. SMCalFlow (Andreas et al., 2020), a calen- 217

daring dataset, which we view as the most 218

complex and realistic. 219

In each domain, we assume a seed data D of just 220

30 pairs, conducting several trials with different 221

samples of seed data to mitigate noise from this 222

selection. We sample 300 unlabeled natural utter- 223

ances U from the dataset, which must be parsed to 224

canonical forms (using the grammar and SCFG of 225

Shin et al. (2021)) and then PII-masked before use. 226

See Appendix A for details on PII masking. 227

Methods. We evaluate several methods on each 228

task, listed below. 229

1. BASE, a supervised baseline which finetunes 230

BART (Lewis et al., 2019) on the seed D fol- 231

lowing Shin et al. (2021), discarding U . 232

2. USER-RANK, a data augmentation approach 233

following the USER and RANK methods de- 234

2We also ran preliminary experiments on the DROP (Dua
et al., 2019) and NLVR2 (Suhr et al., 2018) subsets of Break,
but found that the canonical utterances were too unnatural for
any method to perform reasonably (Appendix B).
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Method ATIS SMCalFlow

BASE 6.8 ± 3.5 13.2 ± 3.4
USER-RANK 13.4 ± 4.1 15.5 ± 3.7
GPT-RANK 13.7 ± 3.2 15.9 ± 2.7
USER-CYC 6.0 ± 2.3 15.0 ± 4.0
GRAM-RANK 13.4 ± 2.8

USER-RANK-3X 17.6 ± 4.6
GPT-RANK-3X 16.1 ± 3.0

Table 2: Main results on ATIS and SMCalFlow for dif-
ferent methods. Top-1 parsing match percentage eval-
uated over 5 (ATIS) or 10 (SMCalFlow) trials on dif-
ferent seed datasets D. For the two highest-performing
methods, USER-RANK and GPT-RANK, we iterate data
augmentation 3 times on SMCalFlow, yielding USER-
RANK-3X and GPT-RANK-3X. USER-RANK-3X per-
forms best overall.

scribed in Sec. 4.1 and 4.3 respectively, and235

depicted in Figure 1.236

3. GPT-RANK, a similar approach which gener-237

ates c following GPT from Sec. 4.1 instead.238

4. USER-CYC, a version which filters (c, n)239

pairs via cycle consistency (Sec. 4.3).240

5. GRAM-RANK, a weak baseline that samples241

initial c directly from the grammar, which we242

run only on SMCalFlow since our ATIS gram-243

mar is too loosely specified for sampling.244

Results. We observe that our best data augmenta-245

tion methods (USER-RANK, GPT-RANK) double246

the performance of the baseline finetuning method247

BASE on ATIS, and outperform it on SMCalFlow248

by up to 33% relative gain (Table 2),3 although249

absolute performance remains low due to the tiny250

amount of seed data. Interestingly, GPT-RANK251

outperforms BASE despite using only the seed D,252

and not extra unlabeled U . Moreover, iterating253

the data augmentation procedure can further im-254

prove performance, by improving the initial parser255

P used for parsing unlabeled U or for filtering pairs256

(c, n). However, USER-CYC performs poorly on257

ATIS, indicating that the CYC filtering is perhaps258

too restrictive. GRAM-RANK is also poor: sam-259

pling plans directly from a grammar is ineffective260

in a complex, realistic domain like SMCalFlow.261

5.1 Analysis262

We conduct additional analyses on SMCalFlow.263

Reranking. First, we run ablations on reranking264

3Although the standard deviations appear large, the varia-
tion between trials is largely due to randomness in selecting
the seed data D. For example, USER-RANK is better than
BASE on SMCalFlow with p = .0004 on a paired t-test.

Method SMCalFlow

BASE 13.2 ± 3.4
USER-RANK-3X 17.6 ± 4.6
USER-NOEDITRANK-3X 17.3 ± 4.7
USER-NORANK 12.8 ± 3.5

Table 3: SMCalFlow reranking ablations. Since the
version without reranking (USER-NORANK) is no bet-
ter than the baseline, we do not iterate the data augmen-
tation procedure. The edit distance heuristic makes lit-
tle difference in this case (USER-NOEDITRANK-3X vs.
USER-RANK-3X), but reranking is crucial.

Method SMCalFlow (100 seed data)

BASE 31.6 ± 0.3
USER-RANK 31.7 ± 1.0

Table 4: SMCalFlow results with more seed data. We
use a seed dataset D of size 100 rather than 30, with
3 trials per method. The gains from data augmentation
largely disappear at this scale, so we do not do addi-
tional augmentation iterations.

in USER-RANK (Table 3). While our edit distance 265

heuristic described in Sec. 4.3 makes little differ- 266

ence, reranking of some form is crucial. Mean- 267

while, there are many possibilities for other rerank- 268

ing procedures. 269

Additional Seed Data. We explore using a larger 270

seed dataset D of size 100. On SMCalFlow, we 271

observe that USER-RANK’s gains over the baseline 272

largely disappear (Table 4). Thus, improved data 273

augmentation methods which still yield gains with 274

larger seed datasets are an important direction for 275

future exploration. 276

6 Discussion 277

We have presented a difficult setting for semantic 278

parsing based on real-world resource and privacy 279

constraints. In addition to a seed dataset, the only 280

resources allowed are unlabeled natural utterances 281

which must be PII-masked. Nevertheless, we ob- 282

serve that data augmentation approaches leverag- 283

ing pretrained language models can still improve 284

over supervised baselines which use only the seed 285

dataset. At the same time, substantial room remains 286

for additional improvement: there are many alterna- 287

tives to our reranking procedure for silver data, and 288

our method loses some effectiveness when more 289

labeled data is provided. We hope that our obser- 290

vations in this challenging but realistic task setup 291

can lay a foundation for further exploration in data 292

augmentation approaches for semantic parsing. 293
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Ethical Considerations294

We believe our work makes a positive impact by295

focusing heavily on the need for privacy consid-296

erations when exploring low-resource settings for297

semantic parsing. However, as our methods rely298

heavily on large pretrained language models such299

as GPT3, we may inherit similar biases which such300

models are known for (Brown et al., 2020).301
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A Masking and Replacing Personal421

Identifiable Information422

A.1 ATIS423

The ATIS grammar is somewhat loosely defined424

and does not clearly indicate the instances of PII.425

This would be problematic in a real production426

setting due to making it difficult to guarantee mask-427

ing out all PII. However, for our experiments we428

simply truecase the data and apply named entity429

recognition using spaCy (Honnibal et al., 2020),430

which we find is highly successful from a qualita-431

tive inspection. We treat detected named entities as432

PII.433

To sample new values for replacing PII, we434

prompt GPT3 using the masked utterance together435

with the prefix up to where the PII string appears.436

We additionally contextualize with examples of437

unmasked-masked pairs from the seed data.438

A.2 SMCalFlow439

Since the SMCalFlow grammar is type-annotated,440

we define three categories of PII: names, event441

titles, and locations. Each category is easily identi-442

fiable from the logical form, so it suffices to sample443

a new value from the same category in the logical444

form to guarantee that PII is replaced.445

We sample names from a distribution balanced446

for ethnicity and gender. For event titles and loca-447

tions, we sample them from GPT3 by prompting448

with seed data canonical forms containing event ti-449

tles and/or locations, and then prefixing the genera-450

tion with find event called something451

like " (event titles) or a mix of weather at452

" and find event at " (locations). We cut453

off the generation once the next " appears.454

B Preliminary Experiments on Other455

Break Subsets456

We additionally ran preliminary experiments on457

the DROP (Dua et al., 2019) (reading comprehen-458

sion) and NLVR2 (Suhr et al., 2018) (language-459

vision reasoning) subsets of Break (Wolfson et al.,460

2020). We used a similar setup to our ATIS and461

SMCalFlow experiments, with 30 initial seed data462

D and 300 unlabeled user utterances U .463

However, across multiple trials of multiple meth-464

ods (BASE, USER-RANK, GPT-RANK, USER-465

CYC), we never observed performance above 2%466

on either domain. This may be partially due to the467

diversity of the data; for example, DROP is an amal-468

gamation of data from several sources. However,469

we hypothesize that this across-the-board poor per- 470

formance is primarily the result of an SCFG for 471

canonical utterances which results in somewhat un- 472

natural language (Table 5), and that performance 473

could be greatly improved with a better SCFG. 474

Given the current form of our canonical utterances 475

in DROP and NLVR2, it is challenging to learn the 476

task given just 30 seed examples. In comparison, 477

the SMCalFlow canonical utterances (Table 1 in 478

the main text) are much more natural. 479

DROP Natural Which player had the short-
est touchdown reception of the
game?

DROP Canonical return touchdown receptions ;re-
turn shortest of #1 ;return player
of #2

NLVR2 Natural If there are two carts, but only one
of them has a canopy.

NLVR2 Canonical return carts ;return number of #1
;return if #2 is equal to two ;return
canopy ;return #1 that has #4 ;re-
turn number of #5 ;return if #6 is
equal to one ;return if both #3 and
#7 are true

Table 5: Examples of natural utterances with corre-
sponding canonical utterances for DROP and NLVR2
domains. The language of the canonical utterances is
relatively unnatural.

We additionally inspect some inaccurate exam- 480

ple predictions by BASE on DROP and NLVR2, 481

which are often wildly incorrect (Table 6). We also 482

show some example (c, n) pairs generated by our 483

data augmentation procedure, demonstrating the 484

failure to propose good natural language n given 485

the limited data and unnatural canonical c (Table 486

7). 487

DROP Natural Which player threw more yards
in the game, Young or Man-
ning?

DROP Top-1 Parse return that was the highest ;re-
turn that was more of #1 ;return
number of #2 for each #1 ;return
#1 where #3 is lower than one
;return number of #4

NLVR2 Natural If there are bananas with stick-
ers on them

NLVR2 Top-1 Parse return, ;return number of #1 ;re-
turn if #2 is equal to one

Table 6: Predictions by BASE on DROP and NLVR2
which are wildly incorrect. Our data augmentation
methods fare no better.
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DROP Canonical return the five

DROP Simulated Natural Fact-checkers failed to
catch five factual errors.

NLVR2 Canonical return left image ;return
#1 that are dirty ;return
if #2 is in one of the im-
ages

NLVR2 Simulated Natural If any of the trucks are
dirty.

Table 7: Example simulated natural utterances gener-
ated by prompting GPT3 on DROP and NLVR2, after
reranking and selecting the best of 20 generations. The
correspondence between canonical and simulated natu-
ral utterances remains imperfect.
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