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Abstract

Large language models (LLMs) have demon-001
strated extraordinary reasoning prowess, but002
their deployment costs are prohibitively high.003
Therefore, previous research efforts have en-004
dowed Small language models (SLMs) with005
reasoning abilities by fine-tuning them on the006
Chain-of-Thought (CoT) data generated by007
LLMs. However, during the learning process,008
SLMs may capture spurious correlations be-009
tween questions and answers, making it diffi-010
cult to ensure the soundness of the generated011
rationales and their consistency with the pre-012
dicted answers. In this work, we propose the013
Chain-of-Thought Correctness Perception Dis-014
tillation (CoCPerD) method, which perceives015
the correctness of the rationale and applies dis-016
tinct strategies accordingly. Specifically, we017
collect both correct and erroneous rationales018
from the teacher and student models. During019
training, we label the rationales with a status020
string indicating whether they are correct or021
erroneous. If the rationale is correct, the stu-022
dent model predicts the answer; if the rationale023
is erroneous, the student model corrects the024
erroneous rationale. This encourages the stu-025
dent model to rely on valid reasoning paths026
for answer prediction and learn from mistakes,027
thereby enhancing the faithfulness and sound-028
ness of the generated rationales. Experiments029
have shown that CoCPerD is effective on both030
in-distribution (IND) and out-of-distribution031
(OOD) benchmark reasoning datasets.032

1 Introduction033

Through progressive scaling of model architectures034

and training datasets, LLMs have demonstrated ex-035

ceptional CoT reasoning capabilities in complex036

NLP tasks. As evidenced by recent studies (Brown037

et al., 2020; Hoffmann et al., 2022; Chowdhery038

et al., 2023; OpenAI, 2023; Chen et al., 2023), the039

CoT paradigm enables multi-step logical reasoning040

through explicit intermediate derivations. Although041

this paradigm enhances complex problem-solving042

Student

Question

Which statement best explains why
photosynthesis is the foundation of
most food webs?

Options:

(A) Sunlight is the source of energy
for nearly all ecosystems.  
(B) The producers in all ecosystems
are plants

Correct Rationale: ... 
Because sunlight is the primary
source of energy for plants, it is the
foundation of most food webs. 

 Erroneous Rationale:  ... 
Therefore, plants are the
primary source of energy in
ecosystems.

Correct Answer: 
Therefore, the answer is (A)

Erroneous Answer:
Therefore, the answer is (D)

Figure 1: Due to the potential for the student model to
capture spurious correlations between the question and
the answer during training, there is a possibility that the
rationale could be correct while the answer is erroneous,
or the answer could be correct while the rationale is
erroneous during inference.

through explicit logical derivations, its computa- 043

tional intensity results in deployment bottlenecks 044

(Shao and Li, 2025). For example, the 175B pa- 045

rameter GPT-3 architecture (Brown et al., 2020) 046

requires substantial computational resources dur- 047

ing reasoning, leading to prohibitive operational 048

costs. 049

Therefore, the current research on knowledge 050

distillation (Magister et al., 2023; Ho et al., 2023; 051

Fu et al., 2023; Zhou and Ai, 2024) aims to transfer 052

the powerful reasoning ability of LLMs to SLMs. 053

The standard process of this procedure consists of 054

two stages: First, the LLM serves as a teacher to 055

generate rationales for each sample. Subsequently, 056

these rationales are used to perform supervised 057

fine-tuning on the SLM. Although this paradigm 058

improves the accuracy of SLMs on specific tasks, 059

during the learning process, the SLMs may capture 060

spurious correlations between question and answer, 061

leading to two key limitations. First, these spuri- 062

ous correlations may cause SLMs to overlook the 063

inherent causal logic-based dependencies between 064

rationales and answers, making it impossible to 065

ensure that the generated rationales are consistent 066

with the model’s predictions or faithfully justify 067

the decision-making process (Wang et al., 2023a; 068

Feng et al., 2024), as illustrated in Figure 1. Sec- 069

ond, these spurious correlations negatively affect 070

the quality of rationale generation during the rea- 071
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soning process (Dai et al., 2024b), introducing the072

risk of error propagation. If an error occurs dur-073

ing the intermediate steps of reasoning, subsequent074

reasoning will be negatively impacted.075

To address the above issues, we propose076

the Chain-of-Thought Correctness Perception077

Distillation (CoCPerD), which employs different078

training strategies based on the correctness of the079

rationale, allowing the student model (SLM) to080

learn from mistakes and thereby enhancing the081

faithfulness and soundness of the generated ra-082

tionale. Specifically, (1) During the data collec-083

tion phase, we begin by having the teacher model084

(LLM) generate both correct and erroneous ratio-085

nales, allowing the student model to learn from086

both. Next, we collect the errors made by the stu-087

dent model, with the teacher model providing cor-088

responding corrections. Afterward, we combine089

the erroneous rationales generated by the student090

model with the corrections from the teacher model,091

thereby enriching the teacher model’s dataset with092

both correct and erroneous rationales. This inte-093

grated data is subsequently used to retrain the stu-094

dent model. (2) During the training phase, We ap-095

pend a rationale status string as a suffix to indicate096

the correctness of the rationale, distinguishing be-097

tween the answer prediction task and the rationale098

correction task. When the rationale is correct, the099

student model outputs the corresponding answer100

based on the question and the correct rationale;101

when the rationale is erroneous, the student model102

outputs the corrected rationale. In this way, the stu-103

dent model learns to rely on valid reasoning paths104

for answer prediction, rather than merely relying on105

superficial correlations between the question and106

the answer, thereby enhancing the faithfulness of107

the generated rationale. Furthermore, the rationale108

correction task encourages the student model to109

learn from mistakes, thereby reducing the probabil-110

ity of generating incorrect reasoning steps during111

inference, which enhances the soundness of the112

generated rationale.113

Experiments demonstrate that CoCPerD outper-114

forms the baselines on both IND and OOD bench-115

mark datasets. Our contributions can be summa-116

rized as follows:117

• We propose adopting different training strate-118

gies based on the correctness of the rationale,119

making the student model aware that answer120

predictions should be grounded in valid ratio-121

nales, thereby ensuring the consistency be-122

tween the generated rationale and the pre- 123

dicted answer, and enhancing the faithfulness 124

of the generated rationale. 125

• We also introduce a task to correct erroneous 126

rationales, allowing the student model to learn 127

from its mistakes, thereby reducing the proba- 128

bility of generating incorrect reasoning steps 129

during inference and improving the soundness 130

of the generated rationale. 131

• Extensive experiments validate the effective- 132

ness of CoCPerD across both IND and OOD 133

datasets. 134

2 Method 135

The core idea of our method is to train the student 136

model using different strategies based on the cor- 137

rectness of the rationale. This allows the student 138

model to: 1) become aware of the need to predict 139

answers based on correct rationales, ensuring the 140

faithfulness of the generated rationale; and 2) learn 141

from the task of correcting erroneous rationales, 142

enhancing the soundness of the generated rationale. 143

An overview of our method is shown in Figure 2. 144

In this section, we provide a detailed explanation 145

of the method and discuss the motivation behind it. 146

2.1 Extracting Rationales from Teacher 147

For each training data sample Dtrain = 148

{(qi, ai)}ni=1, we first employ a prompting method 149

to automatically extract correct and erroneous ra- 150

tionales from the teacher model. These rationales 151

are collected for two main purposes: (1) to enable 152

the student model to learn from correct rationales; 153

and (2) to enable the student model to learn how to 154

correct erroneous rationales. This method utilizes 155

a few annotated examples to guide the teacher in 156

generating rationales for new instances (Wei et al., 157

2022). To maintain the quality of generated CoT, 158

we following Dai et al. (2024a) and use its provide 159

prompt templates to guild the teacher generate cor- 160

rect and erroneous rationales with similar reasoning 161

paths but different conclusions. Eventually, we con- 162

struct the dataset DT
train = {(qi, r+i , r

−
i , ai)}ni=1 163

for the student model, where qi is a question, ai is 164

an answer, r+i is the correct rationale, and r−i is the 165

erroneous rationale. 166

2.2 Collection Rationales using Student 167

The Std-CoT method may cause the student model 168

to capture spurious correlations between the ques- 169
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(1) Extracting Rationales from Teacher (3) Chain-of-Thought Correctness Perception Distillation

Task 1 Input

: ...how many ...?

Task 2 Input

: ...how many ...?
: ...The penguins that are less

than 8 years old and weigh more
than 12 kg are Gwen and James....

:The rationale is wrong.

Task 1 Output

: ...Vincent is 9 years old and weighs 11 kg, and
Gwen is 8 years old and weighs 15 kg.... 

:The rationale is right.
:Therefore, the answer is (A).

Student

Teacher

(2): Collection Rationales using Student

Student

Erroneous Rationale Corrected Rationale 
Task 2 Output

:the revised rationale is ...Vincent is 9 years old and
weighs 11 kg, and Gwen is 8 years old and weighs 15
kg.... 

Question 

Correct Rationale 

Answer 

Question Answer 
Correct Rationale 

Erroneous Rationale 

Figure 2: Overview of Chain-of-Thought Correctness Perception Distillation(CoCPerD). We use teacher and
student models to generate correct and erroneous rationales for the entire training set. Then, we adopt a multi-task
learning framework to leverage these rationales, where one task is trained to predict the answer based on correct
rationales, and the other task is trained to correct erroneous rationales as additional supervision signals.

tion and the answer during the training phase„170

which could negatively impact the quality of the171

rationale generated during inference. (Dai et al.,172

2024b). To mitigate this, we have the teacher model173

correct the student model’s mistakes, allowing the174

student model to learn from them, which helps: (1)175

improve rationale quality and (2) encourage deeper176

reflection on errors.177

Fine-tuning SLM with Correct Rationales We178

fine-tune the student model π using correct ratio-179

nales r+i and answers ai to obtain the fine-tuned180

model πsft. The training objective is to minimize181

the negative log-likelihood of the sequence of ra-182

tionale r+i and answer ai:183

LStd−CoT = E(q,r+)∼DT
train

[ℓ(q, r+ ⊕ a)], (1)184

where ℓ signifies the negative log-likelihood loss185

function, expressed as:186

ℓ(x, y) = −
∑
yt∈y

logP (yt | x, y<t) (2)187

Collect the Erroneous Rationale of Student To188

evaluate the limitations of the student model πsft,189

we test it on the training set Dtrain. The student190

model generates rationales r̂ and answers â. If the191

predicted answer âi differs from the true answer ai,192

the rationale is considered erroneous. We collect193

erroneous samples as follows:194

DS
neg = {(qi, r̂i, ai) | âi ̸= ai, (qi, ai) ∈ Dtrain} (3)195

Correct the Erroneous Rationale of Student196

To correct the erroneous rationales of the student197

model πsft, we first construct a prompt1 pc, based198

on the student’s erroneous rationale r̂−i and the199

1The prompt for correcting the erroneous rationale is pro-
vided in Appendix B.1.

correct answer ai, to guide the LLM-based cor- 200

rection process. The erroneous rationales are then 201

corrected as follows: 202

r̂+i = fcorrect
(
pc, qi, r̂

−
i , ai

)
, (4) 203

where fcorrect is the correction function that takes 204

the erroneous rationale and corrects it. 205

We then pair the student model’s erroneous 206

rationales with the teacher model’s correc- 207

tions to form the training dataset DS
train = 208

{(qi, r̂+i , r̂
−
i , ai)}mi=1. Finally, we combine DT

train 209

and DS
train to create the final training dataset 210

DM
train = {(qi, r̂+i , r̂

−
i , ai)}

n+m
i=1 , ready for the rea- 211

soning self-validation distillation. 212

2.3 Chain-of-Thought Correctness Perception 213

Distillation 214

To enable the student model to learn how to ad- 215

just its prediction strategy based on the correctness 216

of the rationale, we propose a multi-task learning 217

framework consisting of two training tasks: an- 218

swer prediction and rationale correction. When 219

the rationale is correct, the student model utilizes 220

it to predict the answer; when the rationale is er- 221

roneous, the student model generates a corrected 222

rationale. During training, we append rationale sta- 223

tus strings rst and rsf as suffixes to the rationale to 224

distinguish between the task types. As illustrated in 225

Figure 3, reasoning with correctness perception re- 226

quires the student to predict answers based not only 227

on the question but also on the correct rationale, 228

thereby teaching the student to reason faithfully, 229

that is, to provide reasonable answers grounded in 230

the rationale. 231

In the answer prediction task, the input to the 232

student model is the question q, and its corre- 233

sponding label consists of three components: the 234

correct rationale r+, the rationale status string 235
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rst = "the rationale is right" and the answer a.236

The loss function for the answer prediction task is237

formulated as follows:238

LA = E(q,r+,a)∼DM
train

[
ℓ(q, r+ ⊕ rst ⊕ a)

]
(5)239

In the rationale correction task, we con-240

catenate the question q, the erroneous ratio-241

nale r− and the rationale status string rsf =242

"the rationale is wrong" as the student model in-243

put, where the output label is the correct ratio-244

nale r+. This task design aims to enable the stu-245

dent model to learn to correct erroneous rationales,246

thereby implicitly enhancing the student model’s247

robustness and the quality of rationales generated248

during reasoning. The loss function for the ratio-249

nale correction task is formulated as follows:250

LR = E(q,r+,r−)∼DM
train

[
ℓ(q ⊕ r− ⊕ rsf , r

+)
]

(6)251

The final optimization process integrates the loss252

LA from the answer prediction task and the loss LR253

from the rationale correction task. Consequently,254

the combined learning loss from Equation 5 and255

Equation 6 is formulated as follows:256

LCoCPerD = (1− α)LA + αLR , (7)257

where α is the hyperparameter used to weight the258

losses between the two learning tasks.259

It is important to note that under the current train-260

ing setup, the student model cannot predict whether261

the generated rationale is correct during inference.262

This is because, during training, we treat the ratio-263

nale status string rsf as part of the student model’s264

input in the rationale correction task, rather than as265

the target output. When the rationale status string266

rsf is used as the target output in the rationale cor-267

rection task, although the student model can verify268

whether the generated rationale is correct during269

inference, it still struggles with effectively validat-270

ing the correctness of the rationale (Kumar et al.,271

2024). Therefore, our goal is to improve the quality272

of the rationales generated by the student model273

during inference by enabling the student model274

to learn from errors through a rationale correction275

task, rather than validating the correctness of the276

generated rationale during inference. In §3.6, we277

further discuss the specific impact on student model278

performance when the rationale status string rsf279

is used as the student model’s input and output in280

the rationale correction task, respectively. Addi-281

tionally, we provide a detailed explanation of the282

reasoning process of the student model under these283

two settings in the Appendix C.284

AR

Q

AR

Q

F

T/F T

Cut off

Spurious correlation

Std-CoT CoCPerD

Figure 3: CoCPerD adopts different strategies based on
the correctness of the rationale, cutting off the spurious
correlation between the question and the answer.

3 Experiments 285

In this section, we conduct extensive experiments 286

and analyses to evaluate the effectiveness of our 287

method on both in-domain (IND) and out-of- 288

domain (OOD) datasets. 289

3.1 Datasets 290

In-domain Dataset: BIG-Bench Hard (BBH) 291

(Suzgun et al., 2023) consists of 27 challenging 292

tasks drawn from BIG-Bench (BB) (Guo et al.), 293

covering domains such as arithmetic, symbolic rea- 294

soning, and others. Most tasks are multiple-choice 295

questions, with a few open-ended ones. Follow- 296

ing Dai et al. (2024b), we randomly split the BBH 297

dataset into a training set (BBH-train) for distilla- 298

tion and a test set (BBH-test) for IND evaluation, 299

using a 4:1 split. 300

Out-of-domain Dataset: (1) BIG-Bench Sub 301

(BB-sub) is derived from BIG-Bench (BB) (Guo 302

et al.), encompassing 203 tasks across domains 303

such as linguistics, mathematics, and common- 304

sense reasoning. To simplify our evaluation, we 305

use the BB-Sub filtered by Dai et al. (2024b). (2) 306

AGIEval (Zhong et al., 2024) is a benchmark that 307

assesses language models (LMs) on reasoning abil- 308

ities using human exams from fields including En- 309

glish, Mathematics, Law, and Logic. We select 310

the English multiple-choice question subtask fil- 311

tered by Dai et al. (2024b). (3) AI2 Reasoning 312

Challenge (ARC) (Clark et al., 2018) consists of 313

two datasets: ARC-Easy and ARC-Challenge, de- 314

rived from middle and high school science exams. 315

ARC-E features easier questions, while ARC-C 316

presents more challenging ones. Following Dai 317

et al. (2024b), we use the test sets from both 318

datasets for evaluation. 319

3.2 Implementation Details 320

Models In our main experiment, we use the 321

widely adopted open-source language model 322
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Method Distill? Gen CoT? BBH-test BB-sub AGIEval ARC-E ARC-C AVG
In-domain? ✓ ✕ ✕ ✕ ✕

Teacher: ChatGPT (gpt-3.5-turbo)

Zero-shot-CoT ✕ ✓ 42.6 44.5 50.3 92.1 82.2 62.3

Student: LLaMA2-7B

Zero-shot♠ ✕ ✕ 14.8 15.5 6.9 18.2 13.9 13.9
Zero-shot-CoT♠ ✕ ✓ 10.6 7.7 7.1 18.4 14.8 11.7

Answer-SFT ✕ ✕ 51.2 33.6 30.8 72.1 53.5 48.2

Std-CoT (Magister et al., 2023) ✓ ✓ 58.5 29.5 24.2 61.8 47.3 44.3
SCOTT (Wang et al., 2023a) ✓ ✓ 43.1 19.7 12.8 46.3 35.9 31.6
MT-CoT (Li et al., 2022) ✓ ✓ 59.3 31.4 23.2 51.7 40.6. 41.2
EDIT (Dai et al., 2024a) ✓ ✓ 61.5 32.3 26.7 63.9 51.0 47.1
CasCoD (Dai et al., 2024b) ✓ ✓ 60.2 37.2 28.6 71.1 52.4 49.9

CoCPerD w/ DT
train ✓ ✓ 63.1 38.3 30.2 72.6 55.1 51.8

CoCPerD w/ DM
train ✓ ✓ 64.3 39.6 31.4 71.9 54.2 52.3

Table 1: Accuracy (%) on in-domain and out-of-domain datasets with different methods. ♠: the results borrowed
from Dai et al. (2024b). The best performance among distilled student models is marked in bold.

LLaMA2-7B (Touvron et al., 2023) as the student323

model. Given its cost-effectiveness and capabilities,324

we leverage OpenAI’s powerful black-box LLM,325

gpt-3.5-turbo-0613, as the teacher model to extract326

chain-of-thoughts (CoTs) using the same manual327

prompt as in prior works (Dai et al., 2024a).328

Setup We use LoRA (Hu et al.) for parameter-329

efficient fine-tuning of the student model. To bal-330

ance the answer prediction and rationale correction331

tasks, we set α to 0.5. All experiments are per-332

formed using a mixed-precision training strategy333

on 8 × A800 GPUs. During inference, we utilize334

vLLM3 (Kwon et al., 2023) to accelerate the pro-335

cess, employing a greedy decoding strategy for text336

generation on a single A800 GPU. Further details337

on training and hyperparameters are provided in338

Appendix A.1.339

Baselines We compare our method with the fol-340

lowing baselines: (1) Teacher & Vanilla Stu-341

dent in Zero-shot(Radford et al., 2019), Zero-shot-342

CoT(Kojima et al., 2022), for showing the impact343

of distilling reasoning ability from LLMs. (2) Std-344

CoT (Magister et al., 2023), which is the standard345

CoTs distillation method that directly fine-tune stu-346

dent models on the CoTs data. (3) MT-CoT (Li347

et al., 2022) is also a multi-task CoTs distillation348

method, but unlike Step-by-step, it simultaneously349

optimizes the objectives of answer prediction and350

entire CoTs learning. (4) SCOTT (Wang et al.,351

2023a) that enhances the reasoning consistency of352

the student model by introducing additional coun-353

terfactual data. (5) EDIT (Dai et al., 2024a) uses 354

prompts to generate dual CoTs data with similar 355

reasoning paths but different conclusions, then ap- 356

plies the minimum edit distance algorithm to locate 357

and optimize key reasoning steps. (6) CasCoD 358

(Dai et al., 2024b) splitting single-step learning 359

into two cascaded steps, restructuring training ob- 360

jectives to enhancing reasoning generalizability. 361

3.3 Main Results 362

As shown in Table 1, CoCPerD achieves state-of- 363

the-art performance on both IND and OOD bench- 364

marks. Specifically, LLaMA2-7B with CoCPerD 365

attains an average accuracy of 52.3% across all 366

tasks, outperforming the strongest baseline (Cas- 367

CoD) by 2.4%. Notably, CoCPerD exhibits re- 368

markable generalizability in OOD scenarios: On 369

BB-sub, AGIEval, ARC-E, ARC-C, it surpasses 370

CasCoD by 2.4%, 2.8%, 1.5%, and 2.7%, respec- 371

tively. This indicates that CoCPerD enables the 372

student model to realize the need to predict an- 373

swers based on correct rationales, allowing the stu- 374

dent model to benefit from the generated rationales 375

during answer prediction, thereby enhancing the 376

faithfulness of reasoning. 377

In addition, CoCPerD w/ DM
train outperforms 378

CoCPerD w/ DT
train by 1.2% on the IND and also 379

achieves competitive results on the OOD. This indi- 380

cates that allowing the student model to learn from 381

its own mistakes effectively improves the quality 382

of the generated rationales, ultimately enhancing 383

overall performance. 384
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3.4 Faithfulness and Soundness of Students385

Inspired by previous work (Wang et al., 2023a;386

Dai et al., 2024b), we employ LLMs as evaluators387

to evaluate whether the rationale provided by the388

student model supports its prediction (i.e., faithful-389

ness) and whether the rationale supports the ground-390

truth answer (i.e., soundness). Given a rationale391

r̂i generated by the student model and an answer392

(either the predicted answer âi or the ground-truth393

answer ai), we construct evaluation prompt2 pe to394

guide LLM-based scoring. We define faithfulness395

and soundness as follows:396

Faithfulness = E
[
feval(pe, qi, r̂i, âi)

]
, (8)397

Soundness = E
[
feval(pe, qi, r̂i, ai)

]
, (9)398

where feval(r̂i, âi) and feval(r̂i, ai) ∈ {0, 1} are a399

binary evaluation function, returning 1 if the ra-400

tionale r̂i sufficiently supports the given answer401

(either the predicted answer âi or the ground-truth402

answer ai), and 0 otherwise.403

Method Faithfulness Soundness
ChatGPT GPT4 AVG ChatGPT GPT4 AVG

Teacher 86.6 86.9 86.8 74.8 71.5 73.2
Std-CoT 80.5 67.9 74.2 64.0 54.5 59.3
CasCoD 82.2 72.6 77.4 70.2 59.6 64.9

CoCPerD(ours) 82.4 76.3 79.4 71.3 63.3 67.3

Table 2: Faithfulness (%) and Soundness (%) of the
compared methods on the IND dataset. We employ both
ChatGPT and GPT-4 as evaluators to mitigate the risk
of single-model bias.

The results are shown in Table 2. Compared to404

the baseline, the rationale generated by CoCPerD405

is more consistent with the answer (including both406

the predicted and the ground-truth answers). This407

indicates that CoCPerD ensures the faithfulness408

and soundness of the rationale generated during the409

reasoning process by adopting different strategies410

based on the correctness of the rationale.411

3.5 Ablation Study412

Model Size We conducted model distillation on413

TinyLLaMA-1.1B3 (Zhang et al., 2024), LLaMA2-414

7B, and LLaMA2-13B, and compared it with stan-415

dard CoTs distillation (Std-CoT), multi-task dis-416

tillation (MT-CoT), and cascade distillation (Cas-417

Cod). As shown in Figure 4, we observed that418

2The prompt for evaluating whether the rationale provided
by the student model supports the answer can be found in the
Appendix B.2

3https://huggingface.co/TinyLlama/TinyLlama-1.
1B-intermediate-step-1431k-3T

CoCPerD achieves competitive results across stu- 419

dent models of various sizes compared to baseline 420

methods, and performs exceptionally well on both 421

IND and OOD datasets. Particularly on the IND 422

dataset, the 1.1B model with CoCPerD reaches 423

96.5% of the teacher model’s performance, demon- 424

strating the significant advantages of CoCPerD in 425

low-resource scenarios. Furthermore, across dif- 426

ferent model sizes, CoCPerD achieves competitive 427

performance on the OOD dataset compared to the 428

baseline models. 429

Data Size CoCPerD demonstrates significant im- 430

provements over baseline methods on both IND 431

and OOD datasets, while utilizing considerably 432

less training data. As shown in Figure 5, CoCPerD 433

achieves a 13.6% improvement over CasCoD on 434

the IND (BBH-test) dataset, using only 12.5% 435

of the full BBH-train data. The performance on 436

OOD datasets is even more notable. For instance, 437

on the BB-sub dataset, CoCPerD surpasses Cas- 438

CoD—trained with the full dataset—by using just 439

12.5% of the full BBH-train data. On other OOD 440

datasets, CoCPerD also achieves excellent perfor- 441

mance. These results clearly demonstrate the ef- 442

fectiveness of CoCPerD in low-resource settings, 443

highlighting its ability to enhance the performance 444

of CoTs both IND and OOD with significantly less 445

training data. 446

3.6 Analysis 447

What is the impact of training the student model 448

with different target outputs when the rationale 449

is erroneous? We investigate the impact of train- 450

ing the student model to adopt different target out- 451

puts when the rationale is erroneous. As shown 452

in Figure 6, the performance of the student model 453

trained with an empty string as the target output 454

when a reasoning error occurs is significantly lower 455

than that of the student model trained with the cor- 456

rect rationale as the target. This suggests that the 457

rationale correction task implicitly improves the 458

quality of the rationales generated by the student 459

model. Furthermore, the performance of the stu- 460

dent model trained with an empty string as the 461

target output is notably superior to that of Std-CoT, 462

which further demonstrates that CoCPerD enables 463

the student model to benefit from the generated 464

rationale when predicting answers, thereby effec- 465

tively mitigating the spurious correlation between 466

the question and the answer. 467
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Figure 4: Ablation study on model size for IND and four OOD datasets. The dotted line indicates the performance
of the teacher LLM under the Zero-shot-CoT setting.
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Figure 5: Ablation study on training data size for IND and four OOD datasets. The dotted line indicates the
performance of fine-tuning the student models by Std-CoTs distillation using the full set (100% of) BBH-train
dataset.
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Figure 6: Compare training CoCPerD with different
target outputs when the rationale is erroneous.

Whether the student model can effectively ver-468

ify the correctness of the rationale? We explore469

the impact of using the rationale status string rsf470

as input and output on the model’s performance in471

the rationale correction task on the IND and OOD472

datasets. As shown in Figure 7, the experiment in-473

cludes the following three settings: (1) input: When474

the rationale status string rsf is used as input, the475

student model predicts the answer based on the gen-476

erated rationale without verifying the correctness of477

the rationale; (2) output-correction: When the ratio-478

nale status string rsf is used as output, the student479

model, after identifying rationale errors, corrects480

the rationale and concatenates it with the question481

to re-predict the answer; (3) output-no correction:482

Even when the student model identifies rationale483

errors, the original rationale is used for prediction484

without any correction. The experimental results485

indicate that there is no significant performance 486

difference between these three settings, suggesting 487

that the student model is almost incapable of ef- 488

fectively verifying the correctness of the generated 489

rationale. We believe the student model’s limited 490

capacity, due to its smaller number of parameters, 491

prevents it from independently verifying the cor- 492

rectness of the rationale, especially in complex rea- 493

soning tasks. Additionally, the model may struggle 494

to generalize to different types of reasoning errors. 495
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Figure 7: Comparison between using the rationale status
string rsf as input and output in the correction task.

Does the student model have the ability to cor- 496

rect erroneous rationale? We assume that the 497

student model can correct verify erroneous ratio- 498

nales to evaluate its ability to correct them. Dur- 499

ing evaluation, the student model attempts to cor- 500

rect the rationales corresponding to previously erro- 501

neous answer predictions and then concatenates the 502

7



corrected rationale with the question to re-predict503

the answer. As shown in Figure 8, The student504

model’s accuracy improves on both the IND and505

OOD datasets, mainly because 20% to 25% of the506

previous incorrect predictions are now correct. This507

suggests that the model can partially correct erro-508

neous rationales, enhancing the final answer ac-509

curacy. Although the student model shows some510

limitations in correcting errors, this finding still511

reveals the substantial potential of distilling the512

ability to correct erroneous reasoning into student513

model.514
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Figure 8: Comparison between CoCPerD without cor-
recting rationale errors and correcting rationale errors
under the assumption of correct rationale verification.

3.7 Case Study515

Due to page limitations, we provide a systematic516

case study in Appendix D to illustrate the improve-517

ment in CoT faithfulness and soundness.518

4 Related Works519

Chain-of-Thought Distillation Recent studies520

have demonstrated that CoT prompts significantly521

enhance the reasoning ability of LLMs for com-522

plex tasks (Wei et al., 2022; Kojima et al., 2022;523

Wang et al.; Huang et al., 2023). However, this524

advantage is most pronounced in LLMs, prompting525

several researchers (Magister et al., 2023; Ho et al.,526

2023; Li et al., 2023; Chae et al., 2023; Yang et al.,527

2024) to explore methods for transferring reason-528

ing knowledge from LLMs to SLMs. Typically,529

these approaches leverage CoT prompts to gener-530

ate rationales from LLMs, which are then used to531

fine-tune SLMs.532

In addition, Hsieh et al. (2023) argue that reason-533

ing bases and answers should be treated as distinct534

optimization objectives. Similarly, Li et al. (2022)535

suggest that learning both the complete CoT and536

individual answers can enhance the reasoning capa-537

bilities of the student model. Liu et al. (2024) intro-538

duce an additional distillation objective focused on539

self-assessment, enabling the SLM to evaluate the 540

accuracy of its generated CoTs. Wang et al. (2023a) 541

propose reducing reasoning errors and hallucina- 542

tions inherited by the SLM from the LLM through 543

contrastive decoding, which ensures that the reason- 544

ing basis is closely related to the answer. Moreover, 545

Wang et al. (2023b) present an interactive, multi- 546

turn paradigm that allows the SLM to engage in 547

self-reflection and receive feedback from the LLM 548

during the learning process. Dai et al. (2024b) sug- 549

gest decomposing the traditional single-step learn- 550

ing process into two cascading steps to alleviate the 551

effects of spurious correlations between questions 552

and answers. Liao et al. (2024) propose leveraging 553

symbolic knowledge bases (KB) to enhance the 554

SLM’s performance on complex reasoning tasks. 555

Learning from Mistakes Recent studies have 556

investigated the use of mistake data to improve 557

the performance of language models. Shinn et al. 558

(2024) introduce Reflexion, a method that allows 559

LLM agents to self-reflect on their mistakes. Wang 560

and Li (2023) propose a study assistant that col- 561

lects and retrieves training mistakes from LLMs 562

to guide future inferences. Li et al. present the 563

CoK method, which corrects reasoning errors by 564

retrieving relevant knowledge to prevent the prop- 565

agation of errors. However, these approaches are 566

not directly applicable to standard SLMs. Wang 567

et al. (2023a) propose fine-tuning on counterfac- 568

tual data to ensure the faithful reasoning of the 569

student model. An et al. (2023) introduce LEMA, 570

a method that fine-tunes language models on cor- 571

rected mistake data, with mistakes collected from 572

various LLMs. 573

5 Conclusion 574

In this study, we propose a Chain-of-Thought Cor- 575

rectness Perception Distillation method (CoCPerD). 576

This method utilizes both teacher and student mod- 577

els to collect correct and erroneous rationales, and 578

re-trains the student model to adopt different strate- 579

gies based on the correctness of the rationale. This 580

effectively mitigates the spurious correlation be- 581

tween questions and answers. By enabling the 582

student model to predict answers based on correct 583

rationales, it enhances the faithfulness of reasoning, 584

while the rationale correction task implicity im- 585

proves reasoning quality. Experiments demonstrate 586

that CoCPerD significantly outperforms baseline 587

methods on both IND and OOD datasets. 588
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6 Limitations589

In our study, we explore enabling the student model590

to verify the correctness of the generated rationale591

during inference and attempt to correct it when592

the rationale is identified as erroneous. However,593

the student model is unable to effectively verify594

whether the rationale derived from reasoning is595

correct. Even assuming the model can accurately596

verify the correctness of the rationale generated597

during inference, its ability to recover from errors598

remains limited. This is because verifying the cor-599

rectness of the rationale and correcting errors is600

a more complex reasoning task, particularly chal-601

lenging for SLMs.602

Moreover, when collecting correct and erroneous603

rationales, we determine the correctness of the ra-604

tionale solely based on whether the model’s pre-605

dicted answer is correct. However, both LLMs and606

SLMs may exhibit spurious correlations between607

the question and the answer. As a result, it is pos-608

sible that a rationale could be correct while the609

answer is erroneous, or the answer could be correct610

while the rationale is erroneous, leading to noise611

in the collected datasets of correct and erroneous612

samples. Currently, our work does not define a613

method for effectively filtering out such noisy data.614

We hope that our research can inspire further ex-615

ploration in this area and leave this challenge for616

future investigations.617
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A Experimantal Settings856

A.1 Hyperparameters Settings857

To guarantee the fairness of our comparative analy-858

sis, in our study, we keep the hyperparameter set-859

tings consistent across all baselines, our proposed860

CoCPerD approach included. Below, we provide861

a detailed account of the hyperparameter config- 862

urations used in our experiments. The detailed 863

hyperparameters in training and inference can be 864

found in Table 3 and Table 4, respectively. 865

In our research, We maintain a consistent batch 866

size across all baselines to eliminate performance 867

differences caused by varying batch sizes. Through 868

a series of experiments with learning rates set to 869

5e-5, 1e-4, 2e-4, 3e-4 and 4e-4, we find that the 870

learning rate is a critical factor affecting model 871

performance and that the optimal value varies with 872

model size. Therefore, we adjust the learning rate 873

accordingly based on model size. 874

Hyperparameter TinyLLaMA-1.1B LLaMA2-7B LLaMA2-13B

gradient accumulation steps 2 2 2
per device batch size 2 2 2
learning rate 4e-4 3e-4 1e-4
epoches 20 15 15
max length 1024 1024 1024
β of AdamW (0.9,0.999) (0.9,0.999) (0.9,0.999)
ϵ of AdamW 1e-8 1e-8 1e-8
γ of Scheduler 0.95 0.95 0.95
weight decay 0 0 0
warmup ratio 0 0 0
rank of LoRA 64 64 64
α of LoRA 32 32 32
target modules q_proj, v_proj q_proj, v_proj q_proj, v_proj
drop out of LoRA 0.05 0.05 0.05

Table 3: Training hyperparameters.

Arguments Student Teacher

do sample False True
temperature - 0.2
top-p 1.0 1.0
top-k - -
max new tokens 1024 2048
# return sequences 1 1

Table 4: Generation configs of students and teachers.

A.2 Dataset Statistics 875

Table 5, Table 6, Table 7 and Table 8 show the 876

data statistics of AGIEval, ARC, BIG-Bench Hard 877

(BBH) and BIG-Bench Sub (BB-sub), respectively. 878

No. Task Size # Choices

1 AQuA-RAT 254 5
2 LogiQA-EN 651 4
3 LSAT-AR 230 5
4 LSAT-LR 510 5
5 LSAT-RC 269 5
6 SAT-Math 220 4
7 SAT-EN 206 4
8 SAT-EN (w/o Psg.) 206 4

Sum 2546 -

Table 5: Statistics of AGIEval dataset.

879
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Task Size # Choices

ARC-E 2376 4-5
ARC-C 1172 4-5

Table 6: Statistics of ARC test dataset.

No. Task Size # Choices

1 Reasoning about Colored Objects 250 18
2 Geometric Shapes 250 11
3 Ruin Names 250 11
4 Penguins in a Table 146 5
5 Movie Recommendation 250 5
6 Tracking Shuffled Objects (3 objects) 250 3
7 Tracking Shuffled Objects (5 objects) 250 5
8 Tracking Shuffled Objects (7 objects) 250 7
9 Logical Deduction (3 objects) 250 3
10 Logical Deduction (5 objects) 250 5
11 Logical Deduction (7 objects) 250 7
12 Date Understanding 250 6
13 Salient Translation Error Detection 250 6
14 Causal Judgement 187 2
15 Disambiguation QA 250 4
16 Temporal Sequences 250 4
17 Boolean Expressions 250 2
18 Hyperbaton (Adjective Ordering) 250 2
19 Navigate 250 2
20 Snarks 178 2
21 Sports Understanding 250 2
22 Formal Fallacies Syllogisms Negation 250 2
23 Web of Lies 250 2
24 Dyck Languages 250 -
25 Multi-Step Arithmetic 250 -
26 Object Counting 250 -
27 Word Sorting 250 -

Sum 6511 -

Table 7: Statistics of BIG-Bench Hard dataset.

B Prompts880

B.1 Prompts of Correct the Erroneous881

Rationale for ChatGPT882

We use the prompt template shown in Table 9 to call883

the ChatGPT API to correct the erroneous rationale884

of student model for the BBH-train datasets.885

B.2 Prompts of Evaluator886

We use the prompt templates shown in Table 10887

to call the ChatGPT and GPT-4 APIs, predicting888

whether the rationale supports the answer.889

C Inference Process890

Figure 9 demonstrates that different training meth-891

ods lead to variations in the student model’s ability892

to verify the correctness of the rationale during in-893

ference. When the rationale status string rsf is used894

as the model’s input in the rationale correction task,895

the student model cannot predict the correctness896

of the rationale during inference. However, when897

rsf is used as the model’s target output in the task,898

the student model can predict the correctness of899

the generated rationale during inference and adopt900

No. Task Size # Choices

1 abstract_narrative_understanding 100 5
2 anachronisms 100 2
3 analogical_similarity 100 7
4 analytic_entailment 70 2
5 cause_and_effect 100 2
6 checkmate_in_one 100 26
7 cifar10_classification 100 10
8 code_line_description 60 4
9 conceptual_combinations 100 4
10 crass_ai 44 4
11 elementary_math_qa 100 5
12 emoji_movie 100 5
13 empirical_judgments 99 3
14 english_russian_proverbs 80 4
15 entailed_polarity 100 2
16 entailed_polarity_hindi 100 2
17 epistemic_reasoning 100 2
18 evaluating_information_essentiality 68 5
19 fantasy_reasoning 100 2
20 figure_of_speech_detection 59 10
21 goal_step_wikihow 100 4
22 gre_reading_comprehension 31 5
23 human_organs_senses 42 4
24 identify_math_theorems 53 4
25 identify_odd_metaphor 47 5
26 implicatures 100 2
27 implicit_relations 82 25
28 indic_cause_and_effect 100 2
29 intersect_geometry 100 26
30 kanji_ascii 100 5
31 kannada 100 4
32 key_value_maps 100 2
33 logic_grid_puzzle 100 3
34 logical_args 32 5
35 logical_fallacy_detection 100 2
36 metaphor_boolean 100 2
37 metaphor_understanding 100 4
38 minute_mysteries_qa 100 4
39 mnist_ascii 100 10
40 moral_permissibility 100 2
41 movie_dialog_same_or_different 100 2
42 nonsense_words_grammar 50 4
43 odd_one_out 86 5
44 parsinlu_qa 100 4
45 physical_intuition 81 4
46 play_dialog_same_or_different 100 2
47 presuppositions_as_nli 100 3
48 riddle_sense 49 5
49 similarities_abstraction 76 4
50 simple_ethical_questions 100 4
51 social_iqa 100 3
52 strange_stories 100 2
53 strategyqa 100 2
54 swahili_english_proverbs 100 4
55 swedish_to_german_proverbs 72 4
56 symbol_interpretation 100 5
57 timedial 100 3
58 undo_permutation 100 5
59 unit_interpretation 100 5
60 vitaminc_fact_verification 100 3
61 winowhy 100 2

Sum 5384 -

Table 8: Statistics of BIG-Bench sub dataset. We filter
the original dataset by retrieving tasks with keywords
"multiple choice" and randomly sample up to 100 exam-
ples per task. Note, the task in BBH will not be involved
in BB-sub.

different strategies based on its correctness. If the 901

student model predicts the generated rationale is 902

correct, it directly predicts the answer based on 903

that rationale. If the rationale is predicted to be 904

erroneous, the model first corrects the rationale, 905

and then uses the corrected rationale along with the 906
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system content You are a helpful and precise assistant for following the given instruction.

user content

[Instruction]{Please correct the wrong rationale by using better reasoning steps.}

Task Description:{Task Description}

Question: {Question}

Answer: {Answer}

Wrong rationale: {Wrong rationale}

Better Reasoning:

Table 9: Prompt template for gpt-3.5-turbo for ask the teacher LLM to generate correct rationales.

system content You are a helpful and precise assistant for following the given instruction.

user content

[Instruction]{Please read the question, rationale, and answer, and simply determine
whether the answer can be derived from the rationale. Respond with ‘yes’ or ‘no’,
without any explanations}

Task Description: {Task Description}

Question: {Question}

Rationale: {Rationale}

Answer: {Answer}

Table 10: Prompt template of evaluator for predicting whether the rationale supports the answer, given the question,
rationale, and answer.

question and the verification string rst as input to907

predict the answer.908

D Case Study909

Table 11 shows that Std-CoT generates incorrect910

intermediate reasoning steps, leading to an incor-911

rect final answer, indicating that Std-CoT struggles912

with effective reasoning in complex tasks. In con-913

trast, CoCPerD generates a CoT that outperforms914

the teacher’s reasoning. Tables 12 and 13 demon-915

strate that the intermediate reasoning steps gen-916

erated by Std-CoT in domain-specific tasks lack917

causal relationships with the final answers, sug-918

gesting that Std-CoT causes the student model to919

capture spurious correlations between the question920

and the answer. In contrast, the CoT generated921

by CoCPerD effectively supports answer predic-922

tion, indicating an enhancement in the student’s923

reasoning ability. Tables 14 and 15 further show924

that in domain-adapted tasks, Std-CoT almost fails925

to reason correctly, whereas CoCPerD can clearly926

understand the question and provide logical and927

coherent reasoning.928
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Student

: ...how many ...?

: ...Vincent is 9 years old and weighs 11 kg, and Gwen is 8 years old and weighs 15 kg.... 
: The rationale is right. 

: Therefore, the answer is...

Student

: ...how many ...?

: ...Vincent is 9 years old and weighs 11 kg, and Gwen is 8 years old and weighs 15 kg.... 
: The rationale is right. 

: Therefore, the answer is...

: ...The penguins that are less than 8 years old and weigh more than 12 kg are Gwen and James....
: The rationale is wrong.

: ... the revised rationale is ...Vincent is 9 years old and weighs 11 kg, and Gwen is 8 years old and
weighs 15 kg.... 

Student

: ...how many ...? :  ...Vincent is 9 years old and weighs 11 kg,
and Gwen is 8 years old and weighs 15 kg.... 

: The rationale is right. : Therefore, the answer is...

(a)  as input

(b)  as output

Figure 9: Comparison of student model inference processes under different training strategies.

Question: Michael lies. Leda says Michael lies. Delbert says Leda tells the truth. Tamika says Delbert tells the truth. Fidel says Tamika lies.
Does Fidel tell the truth?

Teacher

(1) Michael lies. So, we know that Michael lies.

(2) Leda says Michael lies. Since we know from (1) that Michael lies, if Leda says Michael lies, then Leda tells the
truth.

(3) Delbert says Leda tells the truth. Since we know from (2) that Leda tells the truth, if Delbert says Leda tells the truth,
then Delbert tells the truth.

(4) Tamika says Delbert tells the truth. Since we know from (3) that Delbert tells the truth, if Tamika says Delbert tells
the truth, then Tamika tells the truth.

(5) Fidel says Tamika lies. Since we know from (4) that Tamika tells the truth, if Fidel says Tamika lies, then Fidel
lies.

Now, the question asks: Does Fidel tell the truth? We know from (5) that Fidel lies.

Therefore, the answer is No. ✓

Std-CoT

According to this question, the answers to the questions are as follows: Michael lies: true. Leda lies: true. Delbert lies: true. Tamika
lies: true. Fidel tells the truth: true.

We know that Michael lies. Leda lies. Delbert lies. Tamika lies. Fidel tells the truth.

To answer this question, we need to evaluate the statement Fidel tells the truth?

Yes, Fidel tells the truth.

Therefore the answer is Yes. ✗

CoCPerD

We first identify the parties in this dialogue as follows: M̈ichael=̈ M, L̈eda=̈ L, D̈elbert=̈ D, T̈amika=̈ T, and F̈idel=̈ F.

The statement M̈ichael liesïs expressed as M = lies. The statement L̈eda says Michael liesïs expressed as L = lies.

The statement D̈elbert says Leda tells the truthïs expressed as D = tells-the-truth.

The statement T̈amika says Delbert tells the truthïs expressed as T = tells-the-truth.

The statement F̈idel says Tamika liesïs expressed as F = lies.

Now, the question asks: Does Fidel tell the truth? We know from earlier that F = lies.

Therefore, the answer is No. ✓

Table 11: A web of lies case from BIG-Bench Hard.
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Question:

Here is a table where the first line is a header and each subsequent line is a penguin: name, age, height (cm), weight (kg) Louis, 7, 50,
11 Bernard, 5, 80, 13 Vincent, 9, 60, 11 Gwen, 8, 70, 15 For example: the age of Louis is 7, the weight of Gwen is 15 kg, the height of
Bernard is 80 cm. We now add a penguin to the table: James, 12, 90, 12 And here is a similar table, but listing giraffes: name, age,
height (cm), weight (kg) Jody, 5, 430, 620 Gladys, 10, 420, 590 Marian, 2, 310, 410 Donna, 9, 440, 650 How many penguins are more
than 5 years old?
Options:(A) 1 (B) 2 (C) 3 (D) 4 (E) 5

Teacher

This question focuses on age. We know the following: Louis is 7 years old, Bernard is 5 years old, Vincent is 9 years old, Gwen is 8
years old, and James is 12 years old.

The penguins that are more than 5 years old are Louis, Vincent, Gwen, and James.

There are 4 penguins more than 5 years old.

Therefore, the answer is (D). ✓

Std-CoT

This question focuses on age. We know the following:

Louis is 7 years old, Bernard is 5 years old, Vincent is 9 years old, and James is 12 years old. Gwen’s age is not men-
tioned in the table.

The penguins that are more than 5 years old are Louis, Bernard, Vincent, and James.

There are 4 penguins that are more than 5 years old.

Therefore, the answer is (D). ✗

CoCPerD

This question focuses on age. We know the following:

Louis is 7 years old, Bernard is 5 years old, Vincent is 9 years old, Gwen is 8 years old, and James is 12 years old.

According to the table, we can observe that there are 4 penguins that are more than 5 years old: Louis, Vincent, Gwen,
and James.

Therefore, the answer is (D). ✓

Table 12: A penguins in a table case from BIG-Bench Hard.

Question: On the desk, you see a fuchsia dog leash and a teal necklace. Is the dog leash turquoise?
Options: (A) yes (B) no

Teacher
According to this question, the color of the dog leash is fuchsia, not turquoise.

Therefore, the answer is (B) no. ✓

Std-CoT
According to this question, the color of the dog leash is fuchsia.

Therefore, the answer is (A) yes. ✗

CoCPerD
According to this question, the color of the dog leash is fuchsia.

Therefore, the answer is (B) no. ✓

Table 13: A reasoning about colored objects case from BIG-Bench Hard.

Question:

Please answer the following questions about which words certain pronouns refer to.
The sun was covered by a thick cloud all morning, but luckily, by the time the picnic started, it was gone. The ’it’ refers to the cloud
because The cloud covered the sun.
The above reasoning is
Options: (A) correct (B) incorrect

Teacher

First, we are given the information that the sun was covered by a thick cloud all morning.

Then, we are told that by the time the picnic started, it was gone. The pronoun "it" is used to refer to something that was
previously mentioned.

In this case, the only thing mentioned that could be referred to by "it" is the cloud.

Therefore, the answer is (A) correct. ✓

Std-CoT

The answer is not (A) because (A) states that the "it" refers to the picnic, which is not correct based on the context of the story.

The "it" refers to the cloud because the cloud covered the sun.

Therefore, the answer is (B) ✗

CoCPerD

In this question, we are told that "The cloud covered the sun." A pronoun is used in the sentence to refer to the cloud.

The sun is not directly mentioned in the sentence, but it is implied that the cloud covered the sun.

Therefore, the cloud covered the sun.

Therefore, the answer is (A) correct. ✓

Table 14: A winowhy case from BIG-Bench sub.
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Question:

Context and question: "But consider your daughters. Only think what an establishment it would be for one of them. Sir Adams and
Lady Nelson are determined to go, merely on that account, for in general, you know, they visit no newcomers. Indeed you must go, for
it will be impossible for us to visit him if you do not." "You are over-scrupulous, surely. I dare say Mr. Torres will be very glad to see
you; and I will send a few lines by you to assure him of my hearty consent to his marrying whichever he chooses of the girls; though I
must throw in a good word for my little Helga" "I desire you will do no such thing. Helga is not a bit better than the others; and I am
sure she is not half so handsome as Olga, nor half so good-humoured as Freya. But you are always giving her the preference." What is
Freya to Olga?
Options: (A) Brother (B) Sister (C) Colleague (D) Master (E) Servant (F) Enemy (G) Lover (H) Husband (I) Father-in-law (J)
Daughter-in-law (K) Mother-in-law (L) Son (M) Father (N) Wife (O) Grandfather (P) Grandson (Q) Grandmother (R) Son-in-law (S)
Sister-in-law (T) Mother (U) Daughter (V) Cousin (W) Granduncle (X) Grandnephew (Y) Brother-in-law

Teacher

First, we are given that Sir Adams and Lady Nelson are determined to go to visit someone. This suggests that the person they are
visiting is important or has a high social status.

Next, it is mentioned that Mr. Torres is the person they are visiting, and the speaker wants to send a message to him
through the person they are addressing. The speaker also mentions that they give a good word for their "little Helga" but the person
they are addressing disagrees and says that Helga is not better than the others.

Based on this context, we can conclude that Freya, who is mentioned as being better-humored than Helga, is one of the
daughters of the person being addressed.

Therefore, the answer is (U) Daughter. ✗

Std-CoT

the answer is not (B) or (C), as these are not the correct relationships.

the answer is (D), because Freya is the daughter of Sir Adams and Lady Nelson, making her their daughter-in-law.

Therefore, the answer is D. ✗

CoCPerD

We have (1) "But consider your daughters. Only think what an establishment it would be for one of them."

(2) "Sir Adams and Lady Nelson are determined to go, merely on that account, for in general, you know, they visit no
newcomers."

(3) "You are over-scrupulous, surely. I dare say Mr. Torres will be very glad to see you; and I will send a few lines by
you to assure him of my hearty consent to his marrying whichever he chooses of the girls."

(4) "You are always giving her the preference."

From these clues, we can deduce that Freya is Olga’s sister.

Therefore, the answer is (B). ✓

Table 15: A implicit-relations case from BIG-Bench sub.
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