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Abstract

Large language models (LLMs) have demon-
strated extraordinary reasoning prowess, but
their deployment costs are prohibitively high.
Therefore, previous research efforts have en-
dowed Small language models (SLMs) with
reasoning abilities by fine-tuning them on the
Chain-of-Thought (CoT) data generated by
LLMs. However, during the learning process,
SLMs may capture spurious correlations be-
tween questions and answers, making it diffi-
cult to ensure the soundness of the generated
rationales and their consistency with the pre-
dicted answers. In this work, we propose the
Chain-of-Thought Correctness Perception Dis-
tillation (CoCPerD) method, which perceives
the correctness of the rationale and applies dis-
tinct strategies accordingly. Specifically, we
collect both correct and erroneous rationales
from the teacher and student models. During
training, we label the rationales with a status
string indicating whether they are correct or
erroneous. If the rationale is correct, the stu-
dent model predicts the answer; if the rationale
is erroneous, the student model corrects the
erroneous rationale. This encourages the stu-
dent model to rely on valid reasoning paths
for answer prediction and learn from mistakes,
thereby enhancing the faithfulness and sound-
ness of the generated rationales. Experiments
have shown that CoCPerD is effective on both
in-distribution (IND) and out-of-distribution
(OOD) benchmark reasoning datasets.

1 Introduction

Through progressive scaling of model architectures
and training datasets, LLMs have demonstrated ex-
ceptional CoT reasoning capabilities in complex
NLP tasks. As evidenced by recent studies (Brown
et al., 2020; Hoffmann et al., 2022; Chowdhery
et al., 2023; OpenAl, 2023; Chen et al., 2023), the
CoT paradigm enables multi-step logical reasoning
through explicit intermediate derivations. Although
this paradigm enhances complex problem-solving
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Figure 1: Due to the potential for the student model to
capture spurious correlations between the question and
the answer during training, there is a possibility that the
rationale could be correct while the answer is erroneous,
or the answer could be correct while the rationale is
erroneous during inference.

through explicit logical derivations, its computa-
tional intensity results in deployment bottlenecks
(Shao and Li, 2025). For example, the 175B pa-
rameter GPT-3 architecture (Brown et al., 2020)
requires substantial computational resources dur-
ing reasoning, leading to prohibitive operational
COsts.

Therefore, the current research on knowledge
distillation (Magister et al., 2023; Ho et al., 2023;
Fu et al., 2023; Zhou and Ai, 2024) aims to transfer
the powerful reasoning ability of LLMs to SLMs.
The standard process of this procedure consists of
two stages: First, the LLM serves as a teacher to
generate rationales for each sample. Subsequently,
these rationales are used to perform supervised
fine-tuning on the SLM. Although this paradigm
improves the accuracy of SLMs on specific tasks,
during the learning process, the SLMs may capture
spurious correlations between question and answer,
leading to two key limitations. First, these spuri-
ous correlations may cause SLMs to overlook the
inherent causal logic-based dependencies between
rationales and answers, making it impossible to
ensure that the generated rationales are consistent
with the model’s predictions or faithfully justify
the decision-making process (Wang et al., 2023a;
Feng et al., 2024), as illustrated in Figure 1. Sec-
ond, these spurious correlations negatively affect
the quality of rationale generation during the rea-



soning process (Dai et al., 2024b), introducing the
risk of error propagation. If an error occurs dur-
ing the intermediate steps of reasoning, subsequent
reasoning will be negatively impacted.

To address the above issues, we propose
the Chain-of-Thought Correctness Perception
Distillation (CoCPerD), which employs different
training strategies based on the correctness of the
rationale, allowing the student model (SLM) to
learn from mistakes and thereby enhancing the
faithfulness and soundness of the generated ra-
tionale. Specifically, (1) During the data collec-
tion phase, we begin by having the teacher model
(LLM) generate both correct and erroneous ratio-
nales, allowing the student model to learn from
both. Next, we collect the errors made by the stu-
dent model, with the teacher model providing cor-
responding corrections. Afterward, we combine
the erroneous rationales generated by the student
model with the corrections from the teacher model,
thereby enriching the teacher model’s dataset with
both correct and erroneous rationales. This inte-
grated data is subsequently used to retrain the stu-
dent model. (2) During the training phase, We ap-
pend a rationale status string as a suffix to indicate
the correctness of the rationale, distinguishing be-
tween the answer prediction task and the rationale
correction task. When the rationale is correct, the
student model outputs the corresponding answer
based on the question and the correct rationale;
when the rationale is erroneous, the student model
outputs the corrected rationale. In this way, the stu-
dent model learns to rely on valid reasoning paths
for answer prediction, rather than merely relying on
superficial correlations between the question and
the answer, thereby enhancing the faithfulness of
the generated rationale. Furthermore, the rationale
correction task encourages the student model to
learn from mistakes, thereby reducing the probabil-
ity of generating incorrect reasoning steps during
inference, which enhances the soundness of the
generated rationale.

Experiments demonstrate that CoCPerD outper-
forms the baselines on both IND and OOD bench-
mark datasets. Our contributions can be summa-
rized as follows:

* We propose adopting different training strate-
gies based on the correctness of the rationale,
making the student model aware that answer
predictions should be grounded in valid ratio-
nales, thereby ensuring the consistency be-

tween the generated rationale and the pre-
dicted answer, and enhancing the faithfulness
of the generated rationale.

* We also introduce a task to correct erroneous
rationales, allowing the student model to learn
from its mistakes, thereby reducing the proba-
bility of generating incorrect reasoning steps
during inference and improving the soundness
of the generated rationale.

» Extensive experiments validate the effective-
ness of CoCPerD across both IND and OOD
datasets.

2 Method

The core idea of our method is to train the student
model using different strategies based on the cor-
rectness of the rationale. This allows the student
model to: 1) become aware of the need to predict
answers based on correct rationales, ensuring the
faithfulness of the generated rationale; and 2) learn
from the task of correcting erroneous rationales,
enhancing the soundness of the generated rationale.
An overview of our method is shown in Figure 2.
In this section, we provide a detailed explanation
of the method and discuss the motivation behind it.

2.1 Extracting Rationales from Teacher

For each training data sample Disin =
{(gi,a;)}}_,, we first employ a prompting method
to automatically extract correct and erroneous ra-
tionales from the teacher model. These rationales
are collected for two main purposes: (1) to enable
the student model to learn from correct rationales;
and (2) to enable the student model to learn how to
correct erroneous rationales. This method utilizes
a few annotated examples to guide the teacher in
generating rationales for new instances (Wei et al.,
2022). To maintain the quality of generated CoT,
we following Dai et al. (2024a) and use its provide
prompt templates to guild the teacher generate cor-
rect and erroneous rationales with similar reasoning
paths but different conclusions. Eventually, we con-
struct the dataset DL . = {(gi, v, vy, a:)
for the student model, where g; is a question, a; is
an answer, 7" is the correct rationale, and 7 is the
erroneous rationale.

2.2 Collection Rationales using Student

The Std-CoT method may cause the student model
to capture spurious correlations between the ques-
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Figure 2: Overview of Chain-of-Thought Correctness Perception Distillation(CoCPerD). We use teacher and
student models to generate correct and erroneous rationales for the entire training set. Then, we adopt a multi-task
learning framework to leverage these rationales, where one task is trained to predict the answer based on correct
rationales, and the other task is trained to correct erroneous rationales as additional supervision signals.

tion and the answer during the training phase,,
which could negatively impact the quality of the
rationale generated during inference. (Dai et al.,
2024b). To mitigate this, we have the teacher model
correct the student model’s mistakes, allowing the
student model to learn from them, which helps: (1)
improve rationale quality and (2) encourage deeper
reflection on errors.

Fine-tuning SLM with Correct Rationales We
fine-tune the student model 7 using correct ratio-
nales r;r and answers a; to obtain the fine-tuned
model 74 r;. The training objective is to minimize
the negative log-likelihood of the sequence of ra-
tionale r;" and answer a;:

Lstd—CoT = E(q,T+>NDT [€(q7 ’I“Jr &) a)}, (D)

train

where / signifies the negative log-likelihood loss
function, expressed as:

Ux,y) =— Y log P (y; | ¢, y<) @)

Yt€y

Collect the Erroneous Rationale of Student To
evaluate the limitations of the student model ¢4,
we test it on the training set Di;ain. The student
model generates rationales 7 and answers a. If the
predicted answer a; differs from the true answer a;,
the rationale is considered erroneous. We collect
erroneous samples as follows:

Diee = {(qi 74, ai) | @i # ai, (i, ai) € Dirain}  (3)

Correct the Erroneous Rationale of Student
To correct the erroneous rationales of the student
model 7,7, we first construct a promptl Pe, based
on the student’s erroneous rationale 7;” and the

"The prompt for correcting the erroneous rationale is pro-
vided in Appendix B.1.

correct answer a;, to guide the LLM-based cor-
rection process. The erroneous rationales are then
corrected as follows:

723_ - fcorrect (pm QiaTAi_7 ai) 5 (4)

where fcorrect 1S the correction function that takes
the erroneous rationale and corrects it.

We then pair the student model’s erroneous
rationales with the teacher model’s correc-
tions to form the training dataset DJ.. =
{(¢i, 7,7, ,a;)}™ . Finally, we combine D
and DS, to create the final training dataset
DM .= {(q;, 7,77, a;) }12", ready for the rea-
soning self-validation distillation.

2.3 Chain-of-Thought Correctness Perception
Distillation

To enable the student model to learn how to ad-
just its prediction strategy based on the correctness
of the rationale, we propose a multi-task learning
framework consisting of two training tasks: an-
swer prediction and rationale correction. When
the rationale is correct, the student model utilizes
it to predict the answer; when the rationale is er-
roneous, the student model generates a corrected
rationale. During training, we append rationale sta-
tus strings sy, and rs¢ as suffixes to the rationale to
distinguish between the task types. As illustrated in
Figure 3, reasoning with correctness perception re-
quires the student to predict answers based not only
on the question but also on the correct rationale,
thereby teaching the student to reason faithfully,
that is, to provide reasonable answers grounded in
the rationale.

In the answer prediction task, the input to the
student model is the question ¢, and its corre-
sponding label consists of three components: the
correct rationale r*, the rationale status string



rsy = ''the rationale is right'' and the answer a.
The loss function for the answer prediction task is
formulated as follows:

Lp= ]E(qu+,a)~DM V(‘L rt D rsy D a)] 5)

train

In the rationale correction task, we con-
catenate the question ¢, the erroneous ratio-
nale 7~ and the rationale status string rs; =
""the rationale is wrong'' as the student model in-
put, where the output label is the correct ratio-
nale ™. This task design aims to enable the stu-
dent model to learn to correct erroneous rationales,
thereby implicitly enhancing the student model’s
robustness and the quality of rationales generated
during reasoning. The loss function for the ratio-
nale correction task is formulated as follows:

LR =E( i yupm [llg®r™ ®rse,r™)] (6)

train

The final optimization process integrates the loss
L 5 from the answer prediction task and the loss Lgr
from the rationale correction task. Consequently,
the combined learning loss from Equation 5 and
Equation 6 is formulated as follows:

LcoCPerD = (1- a)['A +alg, @)

where « is the hyperparameter used to weight the
losses between the two learning tasks.

It is important to note that under the current train-
ing setup, the student model cannot predict whether
the generated rationale is correct during inference.
This is because, during training, we treat the ratio-
nale status string s as part of the student model’s
input in the rationale correction task, rather than as
the target output. When the rationale status string
rst is used as the target output in the rationale cor-
rection task, although the student model can verify
whether the generated rationale is correct during
inference, it still struggles with effectively validat-
ing the correctness of the rationale (Kumar et al.,
2024). Therefore, our goal is to improve the quality
of the rationales generated by the student model
during inference by enabling the student model
to learn from errors through a rationale correction
task, rather than validating the correctness of the
generated rationale during inference. In §3.6, we
further discuss the specific impact on student model
performance when the rationale status string 7s¢
is used as the student model’s input and output in
the rationale correction task, respectively. Addi-
tionally, we provide a detailed explanation of the
reasoning process of the student model under these
two settings in the Appendix C.
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Figure 3: CoCPerD adopts different strategies based on
the correctness of the rationale, cutting off the spurious
correlation between the question and the answer.

3 Experiments

In this section, we conduct extensive experiments
and analyses to evaluate the effectiveness of our
method on both in-domain (IND) and out-of-
domain (OOD) datasets.

3.1 Datasets

In-domain Dataset: BIG-Bench Hard (BBH)
(Suzgun et al., 2023) consists of 27 challenging
tasks drawn from BIG-Bench (BB) (Guo et al.),
covering domains such as arithmetic, symbolic rea-
soning, and others. Most tasks are multiple-choice
questions, with a few open-ended ones. Follow-
ing Dai et al. (2024b), we randomly split the BBH
dataset into a training set (BBH-train) for distilla-
tion and a test set (BBH-test) for IND evaluation,
using a 4:1 split.

Out-of-domain Dataset: (1) BIG-Bench Sub
(BB-sub) is derived from BIG-Bench (BB) (Guo
et al.), encompassing 203 tasks across domains
such as linguistics, mathematics, and common-
sense reasoning. To simplify our evaluation, we
use the BB-Sub filtered by Dai et al. (2024b). (2)
AGIEval (Zhong et al., 2024) is a benchmark that
assesses language models (LMs) on reasoning abil-
ities using human exams from fields including En-
glish, Mathematics, Law, and Logic. We select
the English multiple-choice question subtask fil-
tered by Dai et al. (2024b). (3) AI2 Reasoning
Challenge (ARC) (Clark et al., 2018) consists of
two datasets: ARC-Easy and ARC-Challenge, de-
rived from middle and high school science exams.
ARC-E features easier questions, while ARC-C
presents more challenging ones. Following Dai
et al. (2024b), we use the test sets from both
datasets for evaluation.

3.2 Implementation Details

Models In our main experiment, we use the
widely adopted open-source language model



Method Distill? Gen CoT? BBH-test BB-sub AGIEval ARC-E ARC-C ‘ AVG
In-domain? \ v X X X X
Teacher: ChatGPT (gpt-3.5-turbo)
Zero-shot-CoT | X v | 426 44.5 503 92.1 82.2 62.3
Student: LLaMA2-7B

Zero-shot® X X 14.8 15.5 6.9 18.2 13.9 13.9
Zero-shot-CoT* X v 10.6 7.7 7.1 18.4 14.8 11.7
Answer-SFT | X X ] 512 336 30.8 72.1 535 48.2
Std-CoT (Magister et al., 2023) | v/ v 58.5 29.5 24.2 61.8 47.3 44.3
SCOTT (Wang et al., 2023a) v v 43.1 19.7 12.8 46.3 35.9 31.6
MT-CoT (Li et al., 2022) v v 59.3 314 232 51.7 40.6. 412
EDIT (Dai et al., 2024a) v v 61.5 323 26.7 63.9 51.0 47.1
CasCoD (Dai et al., 2024b) v v 60.2 37.2 28.6 71.1 52.4 49.9
CoCPerD w/ DL v v 63.1 38.3 30.2 72.6 55.1 51.8
CoCPerD w/ DM v v 643 39.6 314 71.9 542 52.3

Table 1: Accuracy (%) on in-domain and out-of-domain datasets with different methods. ®: the results borrowed
from Dai et al. (2024b). The best performance among distilled student models is marked in bold.

LLaMA2-7B (Touvron et al., 2023) as the student
model. Given its cost-effectiveness and capabilities,
we leverage OpenAl’s powerful black-box LLM,
gpt-3.5-turbo-0613, as the teacher model to extract
chain-of-thoughts (CoTs) using the same manual
prompt as in prior works (Dai et al., 2024a).

Setup We use LoRA (Hu et al.) for parameter-
efficient fine-tuning of the student model. To bal-
ance the answer prediction and rationale correction
tasks, we set o to 0.5. All experiments are per-
formed using a mixed-precision training strategy
on 8 x A800 GPUs. During inference, we utilize
vLLM3 (Kwon et al., 2023) to accelerate the pro-
cess, employing a greedy decoding strategy for text
generation on a single A800 GPU. Further details
on training and hyperparameters are provided in
Appendix A.1.

Baselines We compare our method with the fol-
lowing baselines: (1) Teacher & Vanilla Stu-
dent in Zero-shot(Radford et al., 2019), Zero-shot-
CoT(Kojima et al., 2022), for showing the impact
of distilling reasoning ability from LLMs. (2) Std-
CoT (Magister et al., 2023), which is the standard
CoTs distillation method that directly fine-tune stu-
dent models on the CoTs data. (3) MT-CoT (Li
et al., 2022) is also a multi-task CoTs distillation
method, but unlike Step-by-step, it simultaneously
optimizes the objectives of answer prediction and
entire CoTs learning. (4) SCOTT (Wang et al.,
2023a) that enhances the reasoning consistency of
the student model by introducing additional coun-

terfactual data. (5) EDIT (Dai et al., 2024a) uses
prompts to generate dual CoTs data with similar
reasoning paths but different conclusions, then ap-
plies the minimum edit distance algorithm to locate
and optimize key reasoning steps. (6) CasCoD
(Dai et al., 2024b) splitting single-step learning
into two cascaded steps, restructuring training ob-
jectives to enhancing reasoning generalizability.

3.3 Main Results

As shown in Table 1, CoCPerD achieves state-of-
the-art performance on both IND and OOD bench-
marks. Specifically, LLaMA2-7B with CoCPerD
attains an average accuracy of 52.3% across all
tasks, outperforming the strongest baseline (Cas-
CoD) by 2.4%. Notably, CoCPerD exhibits re-
markable generalizability in OOD scenarios: On
BB-sub, AGIEval, ARC-E, ARC-C, it surpasses
CasCoD by 2.4%, 2.8%, 1.5%, and 2.7%, respec-
tively. This indicates that CoCPerD enables the
student model to realize the need to predict an-
swers based on correct rationales, allowing the stu-
dent model to benefit from the generated rationales
during answer prediction, thereby enhancing the
faithfulness of reasoning.

In addition, CoCPerD w/ DM ~outperforms
CoCPerD w/ Dgain by 1.2% on the IND and also
achieves competitive results on the OOD. This indi-
cates that allowing the student model to learn from
its own mistakes effectively improves the quality
of the generated rationales, ultimately enhancing
overall performance.



3.4 Faithfulness and Soundness of Students

Inspired by previous work (Wang et al., 2023a;
Dai et al., 2024b), we employ LLMs as evaluators
to evaluate whether the rationale provided by the
student model supports its prediction (i.e., faithful-
ness) and whether the rationale supports the ground-
truth answer (i.e., soundness). Given a rationale
7; generated by the student model and an answer
(either the predicted answer a; or the ground-truth
answer a;), we construct evaluation prompt2 Pe tO
guide LL.M-based scoring. We define faithfulness
and soundness as follows:

Faithfulness = [E [feval (pe, qi, fi, &i)] 5 (8)
Soundness — £ [feval (pe, qis i, ai)] s )]

where feval(fiy &z) and feval("zh ai) € {07 1} are a
binary evaluation function, returning 1 if the ra-
tionale 7; sufficiently supports the given answer
(either the predicted answer a; or the ground-truth
answer a;), and 0 otherwise.

Faithfulness Soundness

Method

ChatGPT GPT4 | AVG | ChatGPT GPT4 | AVG

Teacher 86.6 86.9 | 86.8 74.8 715 | 732
Std-CoT 80.5 679 | 742 64.0 545 | 593
CasCoD 82.2 726 | 774 70.2 59.6 | 649
CoCPerD(ours) 82.4 763 | 79.4 71.3 633 | 67.3

Table 2: Faithfulness (%) and Soundness (%) of the
compared methods on the IND dataset. We employ both
ChatGPT and GPT-4 as evaluators to mitigate the risk
of single-model bias.

The results are shown in Table 2. Compared to
the baseline, the rationale generated by CoCPerD
is more consistent with the answer (including both
the predicted and the ground-truth answers). This
indicates that CoCPerD ensures the faithfulness
and soundness of the rationale generated during the
reasoning process by adopting different strategies
based on the correctness of the rationale.

3.5 Ablation Study

Model Size We conducted model distillation on
TinyLLaMA-1.1B? (Zhang et al., 2024), LLaMA2-
7B, and LLaMA2-13B, and compared it with stan-
dard CoTs distillation (Std-CoT), multi-task dis-
tillation (MT-CoT), and cascade distillation (Cas-
Cod). As shown in Figure 4, we observed that

The prompt for evaluating whether the rationale provided
by the student model supports the answer can be found in the
Appendix B.2

3h'ctps ://huggingface.co/TinyLlama/TinylLlama-1.
1B-intermediate-step-1431k-3T

CoCPerD achieves competitive results across stu-
dent models of various sizes compared to baseline
methods, and performs exceptionally well on both
IND and OOD datasets. Particularly on the IND
dataset, the 1.1B model with CoCPerD reaches
96.5% of the teacher model’s performance, demon-
strating the significant advantages of CoCPerD in
low-resource scenarios. Furthermore, across dif-
ferent model sizes, CoCPerD achieves competitive
performance on the OOD dataset compared to the
baseline models.

Data Size CoCPerD demonstrates significant im-
provements over baseline methods on both IND
and OOD datasets, while utilizing considerably
less training data. As shown in Figure 5, CoCPerD
achieves a 13.6% improvement over CasCoD on
the IND (BBH-test) dataset, using only 12.5%
of the full BBH-train data. The performance on
OOD datasets is even more notable. For instance,
on the BB-sub dataset, CoCPerD surpasses Cas-
CoD—trained with the full dataset—by using just
12.5% of the full BBH-train data. On other OOD
datasets, CoCPerD also achieves excellent perfor-
mance. These results clearly demonstrate the ef-
fectiveness of CoCPerD in low-resource settings,
highlighting its ability to enhance the performance
of CoTs both IND and OOD with significantly less
training data.

3.6 Analysis

What is the impact of training the student model
with different target outputs when the rationale
is erroneous? We investigate the impact of train-
ing the student model to adopt different target out-
puts when the rationale is erroneous. As shown
in Figure 6, the performance of the student model
trained with an empty string as the target output
when a reasoning error occurs is significantly lower
than that of the student model trained with the cor-
rect rationale as the target. This suggests that the
rationale correction task implicitly improves the
quality of the rationales generated by the student
model. Furthermore, the performance of the stu-
dent model trained with an empty string as the
target output is notably superior to that of Std-CoT,
which further demonstrates that CoCPerD enables
the student model to benefit from the generated
rationale when predicting answers, thereby effec-
tively mitigating the spurious correlation between
the question and the answer.
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Whether the student model can effectively ver-
ify the correctness of the rationale? We explore
the impact of using the rationale status string rs¢
as input and output on the model’s performance in
the rationale correction task on the IND and OOD
datasets. As shown in Figure 7, the experiment in-
cludes the following three settings: (1) input: When
the rationale status string 7s; is used as input, the
student model predicts the answer based on the gen-
erated rationale without verifying the correctness of
the rationale; (2) output-correction: When the ratio-
nale status string rs; is used as output, the student
model, after identifying rationale errors, corrects
the rationale and concatenates it with the question
to re-predict the answer; (3) output-no correction:
Even when the student model identifies rationale
errors, the original rationale is used for prediction
without any correction. The experimental results

indicate that there is no significant performance
difference between these three settings, suggesting
that the student model is almost incapable of ef-
fectively verifying the correctness of the generated
rationale. We believe the student model’s limited
capacity, due to its smaller number of parameters,
prevents it from independently verifying the cor-
rectness of the rationale, especially in complex rea-
soning tasks. Additionally, the model may struggle
to generalize to different types of reasoning errors.

Input

Output-Correction Output-No Correction

Accuracy (%)
3
L

N
S
L

20

T T T T T
BBH-test BB-sub AGIEval ARC-E ARC-C

Figure 7: Comparison between using the rationale status
string rs; as input and output in the correction task.

Does the student model have the ability to cor-
rect erroneous rationale? We assume that the
student model can correct verify erroneous ratio-
nales to evaluate its ability to correct them. Dur-
ing evaluation, the student model attempts to cor-
rect the rationales corresponding to previously erro-
neous answer predictions and then concatenates the



corrected rationale with the question to re-predict
the answer. As shown in Figure 8, The student
model’s accuracy improves on both the IND and
OOD datasets, mainly because 20% to 25% of the
previous incorrect predictions are now correct. This
suggests that the model can partially correct erro-
neous rationales, enhancing the final answer ac-
curacy. Although the student model shows some
limitations in correcting errors, this finding still
reveals the substantial potential of distilling the
ability to correct erroneous reasoning into student
model.

CoCPerD CoCPerD-Correct Verification

85

Accuracy (%)
&

IS
e
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Figure 8: Comparison between CoCPerD without cor-
recting rationale errors and correcting rationale errors
under the assumption of correct rationale verification.

3.7 Case Study

Due to page limitations, we provide a systematic
case study in Appendix D to illustrate the improve-
ment in CoT faithfulness and soundness.

4 Related Works

Chain-of-Thought Distillation Recent studies
have demonstrated that CoT prompts significantly
enhance the reasoning ability of LLMs for com-
plex tasks (Wei et al., 2022; Kojima et al., 2022;
Wang et al.; Huang et al., 2023). However, this
advantage is most pronounced in LLMs, prompting
several researchers (Magister et al., 2023; Ho et al.,
2023; Li et al., 2023; Chae et al., 2023; Yang et al.,
2024) to explore methods for transferring reason-
ing knowledge from LLMs to SLMs. Typically,
these approaches leverage CoT prompts to gener-
ate rationales from LLMs, which are then used to
fine-tune SLMs.

In addition, Hsieh et al. (2023) argue that reason-
ing bases and answers should be treated as distinct
optimization objectives. Similarly, Li et al. (2022)
suggest that learning both the complete CoT and
individual answers can enhance the reasoning capa-
bilities of the student model. Liu et al. (2024) intro-
duce an additional distillation objective focused on

self-assessment, enabling the SLM to evaluate the
accuracy of its generated CoTs. Wang et al. (2023a)
propose reducing reasoning errors and hallucina-
tions inherited by the SLM from the LLM through
contrastive decoding, which ensures that the reason-
ing basis is closely related to the answer. Moreover,
Wang et al. (2023b) present an interactive, multi-
turn paradigm that allows the SLM to engage in
self-reflection and receive feedback from the LLM
during the learning process. Dai et al. (2024b) sug-
gest decomposing the traditional single-step learn-
ing process into two cascading steps to alleviate the
effects of spurious correlations between questions
and answers. Liao et al. (2024) propose leveraging
symbolic knowledge bases (KB) to enhance the
SLM'’s performance on complex reasoning tasks.

Learning from Mistakes Recent studies have
investigated the use of mistake data to improve
the performance of language models. Shinn et al.
(2024) introduce Reflexion, a method that allows
LLM agents to self-reflect on their mistakes. Wang
and Li (2023) propose a study assistant that col-
lects and retrieves training mistakes from LLMs
to guide future inferences. Li et al. present the
CoK method, which corrects reasoning errors by
retrieving relevant knowledge to prevent the prop-
agation of errors. However, these approaches are
not directly applicable to standard SLMs. Wang
et al. (2023a) propose fine-tuning on counterfac-
tual data to ensure the faithful reasoning of the
student model. An et al. (2023) introduce LEMA,
a method that fine-tunes language models on cor-
rected mistake data, with mistakes collected from
various LLMs.

5 Conclusion

In this study, we propose a Chain-of-Thought Cor-
rectness Perception Distillation method (CoCPerD).
This method utilizes both teacher and student mod-
els to collect correct and erroneous rationales, and
re-trains the student model to adopt different strate-
gies based on the correctness of the rationale. This
effectively mitigates the spurious correlation be-
tween questions and answers. By enabling the
student model to predict answers based on correct
rationales, it enhances the faithfulness of reasoning,
while the rationale correction task implicity im-
proves reasoning quality. Experiments demonstrate
that CoCPerD significantly outperforms baseline
methods on both IND and OOD datasets.



6 Limitations

In our study, we explore enabling the student model
to verify the correctness of the generated rationale
during inference and attempt to correct it when
the rationale is identified as erroneous. However,
the student model is unable to effectively verify
whether the rationale derived from reasoning is
correct. Even assuming the model can accurately
verify the correctness of the rationale generated
during inference, its ability to recover from errors
remains limited. This is because verifying the cor-
rectness of the rationale and correcting errors is
a more complex reasoning task, particularly chal-
lenging for SLMs.

Moreover, when collecting correct and erroneous
rationales, we determine the correctness of the ra-
tionale solely based on whether the model’s pre-
dicted answer is correct. However, both LLMs and
SLMs may exhibit spurious correlations between
the question and the answer. As a result, it is pos-
sible that a rationale could be correct while the
answer is erroneous, or the answer could be correct
while the rationale is erroneous, leading to noise
in the collected datasets of correct and erroneous
samples. Currently, our work does not define a
method for effectively filtering out such noisy data.
We hope that our research can inspire further ex-
ploration in this area and leave this challenge for
future investigations.
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A Experimantal Settings

A.1 Hyperparameters Settings

To guarantee the fairness of our comparative analy-
sis, in our study, we keep the hyperparameter set-
tings consistent across all baselines, our proposed
CoCPerD approach included. Below, we provide
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a detailed account of the hyperparameter config-
urations used in our experiments. The detailed
hyperparameters in training and inference can be
found in Table 3 and Table 4, respectively.

In our research, We maintain a consistent batch
size across all baselines to eliminate performance
differences caused by varying batch sizes. Through
a series of experiments with learning rates set to
Se-5, le-4, 2e-4, 3e-4 and 4e-4, we find that the
learning rate is a critical factor affecting model
performance and that the optimal value varies with
model size. Therefore, we adjust the learning rate
accordingly based on model size.

Hyperparameter

‘ TinyLLaMA-1.1B

LLaMA2-7B

gradient accumulation steps 2 2 2

per device batch size 2 2 2
learning rate 4e-4 3e-4 le-4
epoches 20 15 15
max length 1024 1024 1024

B3 of AdamW (0.9,0.999) (0.9,0.999) (0.9,0.999)
€ of AddamW le-8 le-8 le-8

7 of Scheduler 0.95 0.95 0.95
weight decay 0 0 0
warmup ratio 0 0 0
rank of LoORA 64 64 64

a of LoRA 32 32 32
target modules q_proj, v_proj q_proj, v_proj q_proj, v_proj
drop out of LoORA 0.05 0.05 0.05

Table 3: Training hyperparameters.

Arguments | Student Teacher
do sample False True
temperature - 0.2
top-p 1.0 1.0
top-k - -
max new tokens 1024 2048

# return sequences

1 1

Table 4: Generation configs of students and teachers.

A.2 Dataset Statistics

Table 5, Table 6, Table 7 and Table 8 show the
data statistics of AGIEval, ARC, BIG-Bench Hard
(BBH) and BIG-Bench Sub (BB-sub), respectively.

No. | Task | Size | # Choices
1 AQuA-RAT 254 5
2 | LogiQA-EN 651 4
3 LSAT-AR 230 5
4 LSAT-LR 510 5
5 LSAT-RC 269 5
6 SAT-Math 220 4
7 SAT-EN 206 4
8 SAT-EN (w/o Psg.) | 206 4
| Sum | 2546 | -

Table 5: Statistics of AGIEval dataset.

LLaMA2-13B



Task | Size | # Choices
ARC-E | 2376 4-5
ARC-C | 1172 4-5

Table 6: Statistics of ARC test dataset.

No. | Task | Size | #Choices
1 Reasoning about Colored Objects 250 18
2 Geometric Shapes 250 11
3 Ruin Names 250 11
4 Penguins in a Table 146 5
5 Movie Recommendation 250 5
6 Tracking Shuffled Objects (3 objects) 250 3
7 Tracking Shuffled Objects (5 objects) 250 5
8 Tracking Shuffled Objects (7 objects) 250 7
9 Logical Deduction (3 objects) 250 3
10 Logical Deduction (5 objects) 250 5
11 Logical Deduction (7 objects) 250 7
12 Date Understanding 250 6
13 Salient Translation Error Detection 250 6
14 Causal Judgement 187 2
15 Disambiguation QA 250 4
16 Temporal Sequences 250 4
17 Boolean Expressions 250 2
18 Hyperbaton (Adjective Ordering) 250 2
19 Navigate 250 2
20 Snarks 178 2
21 Sports Understanding 250 2
22 Formal Fallacies Syllogisms Negation 250 2
23 Web of Lies 250 2
24 Dyck Languages 250 -
25 Multi-Step Arithmetic 250 -
26 Object Counting 250 -
27 Word Sorting 250 -
| Sum | 6511 | -

Table 7: Statistics of BIG-Bench Hard dataset.

B Prompts

B.1 Prompts of Correct the Erroneous
Rationale for ChatGPT

We use the prompt template shown in Table 9 to call
the ChatGPT API to correct the erroneous rationale
of student model for the BBH-train datasets.

B.2 Prompts of Evaluator

We use the prompt templates shown in Table 10
to call the ChatGPT and GPT-4 APIs, predicting
whether the rationale supports the answer.

C Inference Process

Figure 9 demonstrates that different training meth-
ods lead to variations in the student model’s ability
to verify the correctness of the rationale during in-
ference. When the rationale status string rs; is used
as the model’s input in the rationale correction task,
the student model cannot predict the correctness
of the rationale during inference. However, when
rsg is used as the model’s target output in the task,
the student model can predict the correctness of
the generated rationale during inference and adopt
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No. | Task | Size | # Choices
1 abstract_narrative_understanding 100 5
2 anachronisms 100 2
3 analogical_similarity 100 7
4 analytic_entailment 70 2
5 cause_and_effect 100 2
6 checkmate_in_one 100 26
7 cifar10_classification 100 10
8 code_line_description 60 4
9 conceptual_combinations 100 4
10 crass_ai 44 4
11 elementary_math_ga 100 5
12 emoji_movie 100 5
13 empirical_judgments 929 3
14 english_russian_proverbs 80 4
15 entailed_polarity 100 2
16 entailed_polarity_hindi 100 2
17 epistemic_reasoning 100 2
18 evaluating_information_essentiality 68 5
19 fantasy_reasoning 100 2
20 figure_of_speech_detection 59 10
21 goal_step_wikihow 100 4
22 gre_reading_comprehension 31 5
23 human_organs_senses 42 4
24 identify_math_theorems 53 4
25 identify_odd_metaphor 47 5
26 implicatures 100 2
27 implicit_relations 82 25
28 indic_cause_and_effect 100 2
29 intersect_geometry 100 26
30 kanji_ascii 100 5
31 kannada 100 4
32 key_value_maps 100 2
33 logic_grid_puzzle 100 3
34 logical_args 32 5
35 logical_fallacy_detection 100 2
36 metaphor_boolean 100 2
37 metaphor_understanding 100 4
38 minute_mysteries_qa 100 4
39 mnist_ascii 100 10
40 moral_permissibility 100 2
41 movie_dialog_same_or_different 100 2
42 nonsense_words_grammar 50 4
43 odd_one_out 86 5
44 parsinlu_qa 100 4
45 physical_intuition 81 4
46 play_dialog_same_or_different 100 2
47 presuppositions_as_nli 100 3
48 riddle_sense 49 5
49 similarities_abstraction 76 4
50 simple_ethical_questions 100 4
51 social_iga 100 3
52 strange_stories 100 2
53 strategyqa 100 2
54 swahili_english_proverbs 100 4
55 swedish_to_german_proverbs 72 4
56 symbol_interpretation 100 5
57 timedial 100 3
58 undo_permutation 100 5
59 unit_interpretation 100 5
60 vitaminc_fact_verification 100 3
61 winowhy 100 2
| Sum | 5384 | -

Table 8: Statistics of BIG-Bench sub dataset. We filter
the original dataset by retrieving tasks with keywords
"multiple choice" and randomly sample up to 100 exam-
ples per task. Note, the task in BBH will not be involved
in BB-sub.

different strategies based on its correctness. If the
student model predicts the generated rationale is
correct, it directly predicts the answer based on
that rationale. If the rationale is predicted to be
erroneous, the model first corrects the rationale,
and then uses the corrected rationale along with the



system content \ You are a helpful and precise assistant for following the given instruction.

[Instruction]{Please correct the wrong rationale by using better reasoning steps.}
Task Description:{Task Description}

Question: {Question}

user content Answer: {Answer}

Wrong rationale: {Wrong rationale}

Better Reasoning:

Table 9: Prompt template for gpt-3.5-turbo for ask the teacher LLM to generate correct rationales.

system content \ You are a helpful and precise assistant for following the given instruction.

[Instruction]{Please read the question, rationale, and answer, and simply determine
whether the answer can be derived from the rationale. Respond with ‘yes’ or ‘no’,
without any explanations}

Task Description: {Task Description}
user content
Question: {Question}

Rationale: {Rationale}

Answer: {Answer}

Table 10: Prompt template of evaluator for predicting whether the rationale supports the answer, given the question,
rationale, and answer.

question and the verification string rs; as input to
predict the answer.

D Case Study

Table 11 shows that Std-CoT generates incorrect
intermediate reasoning steps, leading to an incor-
rect final answer, indicating that Std-CoT struggles
with effective reasoning in complex tasks. In con-
trast, CoCPerD generates a CoT that outperforms
the teacher’s reasoning. Tables 12 and 13 demon-
strate that the intermediate reasoning steps gen-
erated by Std-CoT in domain-specific tasks lack
causal relationships with the final answers, sug-
gesting that Std-CoT causes the student model to
capture spurious correlations between the question
and the answer. In contrast, the CoT generated
by CoCPerD effectively supports answer predic-
tion, indicating an enhancement in the student’s
reasoning ability. Tables 14 and 15 further show
that in domain-adapted tasks, Std-CoT almost fails
to reason correctly, whereas CoCPerD can clearly
understand the question and provide logical and
coherent reasoning.

13



(a) s as input

8 7t ...Vincent is 9 years old and weighs 11 kg, and Gwen is 8 years old and weighs 15 kg....
/i r8¢: The rationale is right.
%t - ) W ”la;: Therefore, the answer is...
Student
(b) 7s ¢ as output
it ...Vincent is 9 years old and weighs 11 kg, and Gwen is 8 years old and weighs 15 kg....
: The rationale is right.
a;: Therefore, the answer is...
p——————— - <
;0 ...how many .2 | @ _—
T;,: ...The penguins that are less than 8 years old and weigh more than 12 kg are Gwen and James....
Student rs ¢ The rationale is wrong.

L
Iff: ... the revised rationale is ...Vincent is 9 years old and weighs 11 kg, and Gwen is 8 years old and

@eighs 15 kg....

land Gwen is 8 years old and weighs 15 kg....

<
E];...how many ...? I @ [ﬁf ...Vincent is 9 years old and weighs 11 k% @ rs;: The rationale is right. > W »|ai: Therefore, the answer is...

Student
Figure 9: Comparison of student model inference processes under different training strategies.

Michael lies. Leda says Michael lies. Delbert says Leda tells the truth. Tamika says Delbert tells the truth. Fidel says Tamika lies.

Question: ) s Fidel tell the truih?
(1) Michael lies. So, we know that Michael lies.
(2) Leda says Michael lies. Since we know from (1) that Michael lies, if Leda says Michael lies, then Leda tells the
truth.
(3) Delbert says Leda tells the truth. Since we know from (2) that Leda tells the truth, if Delbert says Leda tells the truth,
then Delbert tells the truth.

Teacher (4) Tamika says Delbert tells the truth. Since we know from (3) that Delbert tells the truth, if Tamika says Delbert tells
the truth, then Tamika tells the truth.
(5) Fidel says Tamika lies. Since we know from (4) that Tamika tells the truth, if Fidel says Tamika lies, then Fidel
lies.
Now, the question asks: Does Fidel tell the truth? We know from (5) that Fidel lies.
Therefore, the answer is No. /
According to this question, the answers to the questions are as follows: Michael lies: true. Leda lies: true. Delbert lies: true. Tamika
lies: true. Fidel tells the truth: true.
We know that Michael lies. Leda lies. Delbert lies. Tamika lies. Fidel tells the truth.

Std-CoT

To answer this question, we need to evaluate the statement Fidel tells the truth?

Yes, Fidel tells the truth.

Therefore the answer is Yes. X

We first identify the parties in this dialogue as follows: Michael= M, Iledaz L, Delbertz D, Tamika= T, and Fidel= F.
The statement Michael liesis expressed as M = lies. The statement [eda says Michael liesis expressed as L = lies.
The statement Delbert says Leda tells the truthis expressed as D = tells-the-truth.

CoCPerD The statement Tamika says Delbert tells the truthis expressed as T = tells-the-truth.

The statement Fidel says Tamika liesis expressed as F = lies.

Now, the question asks: Does Fidel tell the truth? We know from earlier that F = lies.

Therefore, the answer is No. /

Table 11: A web of lies case from BIG-Bench Hard.
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Here is a table where the first line is a header and each subsequent line is a penguin: name, age, height (cm), weight (kg) Louis, 7, 50,
11 Bernard, 5, 80, 13 Vincent, 9, 60, 11 Gwen, 8, 70, 15 For example: the age of Louis is 7, the weight of Gwen is 15 kg, the height of
Bernard is 80 cm. We now add a penguin to the table: James, 12, 90, 12 And here is a similar table, but listing giraffes: name, age,

Question: } ioht (em), weight (ke) Jody, 5, 430, 620 Gladys, 10, 420, 590 Marian, 2, 310, 410 Donna, 9, 440, 650 How many penguins are more
than 5 years old?
Options:(A) 1 (B)2(C)3 (D)4 (E)5
This question focuses on age. We know the following: Louis is 7 years old, Bernard is 5 years old, Vincent is 9 years old, Gwen is 8
years old, and James is 12 years old.
The penguins that are more than 5 years old are Louis, Vincent, Gwen, and James.
Teacher
There are 4 penguins more than 5 years old.
Therefore, the answer is (D). |/
This question focuses on age. We know the following:
Louis is 7 years old, Bernard is 5 years old, Vincent is 9 years old, and James is 12 years old. Gwen’s age is not men-
tioned in the table.
Std-CoT The penguins that are more than 5 years old are Louis, Bernard, Vincent, and James.
There are 4 penguins that are more than 5 years old.
Therefore, the answer is (D). X
This question focuses on age. We know the following:
Louis is 7 years old, Bernard is 5 years old, Vincent is 9 years old, Gwen is 8 years old, and James is 12 years old.
CoCPerD According to the table, we can observe that there are 4 penguins that are more than 5 years old: Louis, Vincent, Gwen,
and James.
Therefore, the answer is (D). /
Table 12: A penguins in a table case from BIG-Bench Hard.
. On the desk, you see a fuchsia dog leash and a teal necklace. Is the dog leash turquoise?
Question: Options:
ptions: (A) yes (B) no
According to this question, the color of the dog leash is fuchsia, not turquoise.
Teacher
Therefore, the answer is (B) no. /
According to this question, the color of the dog leash is fuchsia.
Std-CoT
Therefore, the answer is (A) yes. x
According to this question, the color of the dog leash is fuchsia.
CoCPerD
Therefore, the answer is (B) no. /
Table 13: A reasoning about colored objects case from BIG-Bench Hard.
Please answer the following questions about which words certain pronouns refer to.
The sun was covered by a thick cloud all morning, but luckily, by the time the picnic started, it was gone. The ’it’ refers to the cloud
Question: because The cloud covered the sun.
The above reasoning is
Options: (A) correct (B) incorrect
First, we are given the information that the sun was covered by a thick cloud all morning.
Then, we are told that by the time the picnic started, it was gone. The pronoun "it" is used to refer to something that was
previously mentioned.
Teacher
In this case, the only thing mentioned that could be referred to by "it" is the cloud.
Therefore, the answer is (A) correct. /
The answer is not (A) because (A) states that the "it" refers to the picnic, which is not correct based on the context of the story.
Std-CoT The "it" refers to the cloud because the cloud covered the sun.
Therefore, the answer is (B) X
In this question, we are told that "The cloud covered the sun." A pronoun is used in the sentence to refer to the cloud.
The sun is not directly mentioned in the sentence, but it is implied that the cloud covered the sun.
CoCPerD

Therefore, the cloud covered the sun.

Therefore, the answer is (A) correct. /

Table 14: A winowhy case from BIG-Bench sub.

15



Context and question: "But consider your daughters. Only think what an establishment it would be for one of them. Sir Adams and
Lady Nelson are determined to go, merely on that account, for in general, you know, they visit no newcomers. Indeed you must go, for
it will be impossible for us to visit him if you do not." "You are over-scrupulous, surely. I dare say Mr. Torres will be very glad to see
you; and I will send a few lines by you to assure him of my hearty consent to his marrying whichever he chooses of the girls; though I
must throw in a good word for my little Helga" "I desire you will do no such thing. Helga is not a bit better than the others; and I am

Question: sure she is not half so handsome as Olga, nor half so good-humoured as Freya. But you are always giving her the preference." What is
Freya to Olga?
Options: (A) Brother (B) Sister (C) Colleague (D) Master (E) Servant (F) Enemy (G) Lover (H) Husband (I) Father-in-law (J)
Daughter-in-law (K) Mother-in-law (L) Son (M) Father (N) Wife (O) Grandfather (P) Grandson (Q) Grandmother (R) Son-in-law (S)
Sister-in-law (T) Mother (U) Daughter (V) Cousin (W) Granduncle (X) Grandnephew (Y) Brother-in-law
First, we are given that Sir Adams and Lady Nelson are determined to go to visit someone. This suggests that the person they are
visiting is important or has a high social status.
Next, it is mentioned that Mr. Torres is the person they are visiting, and the speaker wants to send a message to him
through the person they are addressing. The speaker also mentions that they give a good word for their "little Helga" but the person
Teacher they are addressing disagrees and says that Helga is not better than the others.
Based on this context, we can conclude that Freya, who is mentioned as being better-humored than Helga, is one of the
daughters of the person being addressed.
Therefore, the answer is (U) Daughter. X
the answer is not (B) or (C), as these are not the correct relationships.
Std-CoT the answer is (D), because Freya is the daughter of Sir Adams and Lady Nelson, making her their daughter-in-law.
Therefore, the answer is D. X
‘We have (1) "But consider your daughters. Only think what an establishment it would be for one of them."
(2) "Sir Adams and Lady Nelson are determined to go, merely on that account, for in general, you know, they visit no
newcomers."
(3) "You are over-scrupulous, surely. I dare say Mr. Torres will be very glad to see you; and I will send a few lines by
CoCPerD you to assure him of my hearty consent to his marrying whichever he chooses of the girls."

(4) "You are always giving her the preference."

From these clues, we can deduce that Freya is Olga’s sister.

Therefore, the answer is (B). /

Table 15: A implicit-relations case from BIG-Bench sub.
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