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ABSTRACT

Generative and representation models, whether trained independently or evolved
separately, require high-quality, diverse training data, imposing limitations on their
advancement. Specifically, self-supervised learning, as a popular paradigm for
representation learning, decreases the reliance on labeled data in representation
models. However, it still necessitates large datasets, specialized data augmenta-
tion techniques, and tailored training strategies. While generative models have
shown promise in generating diverse data, ensuring semantic consistency is still a
challenge. This paper introduces a novel co-evolution framework (referred to as
CORE) designed to address these challenges through the mutual enhancement of
generative and representation models. Without incurring additional, unacceptable
training overhead compared to independent training, the generative model utilizes
semantic information from the representation model to enhance the quality and
semantic consistency of generated data. Simultaneously, the representation model
gains from the diverse data produced by the generative model, leading to richer
and more generalized representations. By iteratively applying this co-evolution
framework, both models can be continuously enhanced. Experiments demonstrate
the effectiveness of the co-evolution framework across datasets of varying scales
and resolutions. For example, implementing our framework in LDM can reduce the
FID from 43.40 to 20.13 in unconditional generation tasks over the ImageNet-1K
dataset. In more challenging scenarios, such as tasks with limited data, this frame-
work significantly outperforms independent training of generative or representation
model. Furthermore, employing the framework in a self-consuming loop effectively
mitigates model collapse. Our code will be publicly released.

Quotation 1 . “What I cannot create, I do not understand.” – Richard Feynman.

1 INTRODUCTION

Representation

(High Dim. & 
Low Rank)

(Low Dim. & 
High Rank)

Generation

Evolution

…

…

Figure 1: (a) The left panel illustrates the process and key components of our proposed framework. Generated
samples and features (DX and DZ ) assist in training representation and generative models (gθ and fϕ). These
trained models subsequently generate higher-quality features and samples to assist each other, facilitating
iterative co-evolution within the framework. (b) The right panel presents the experimental results for the baseline
models and those enhanced with our CORE, following one evolution round. The generative model employed is
ADM, and the representation model is SimCLR, utilizing ResNet-50 as the backbone. These results demonstrate
the efficacy of our CORE in boosting performance and improving training efficiency for baseline models.

Deep representation models (Bai et al., 2023; Achiam et al., 2023; Kirillov et al., 2023), designed to
extract semantic information from real-world data, have made substantial advances across a range of
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downstream applications (Han et al., 2024; Zhou et al., 2023; Wang et al., 2024a; Liu et al., 2024a;
Ma et al., 2024; Zou et al., 2024; Lai et al., 2024; Liu et al., 2024b; Yin et al., 2023; Deitke et al., 2024;
Yang et al., 2024; Mazurowski et al., 2023; Brohan et al., 2023; Hong et al., 2023; Ke et al., 2024;
Wei et al., 2023; Chen et al., 2024a; Huang et al., 2024). Simultaneously, generative models (Yang
et al., 2023; Ho et al., 2020; Song et al., 2020; Nichol & Dhariwal, 2021; Choi et al., 2021; Li et al.,
2024; Chen et al., 2024b; Li et al., 2023), which prioritize the generation of high-quality, realistic
data, have also achieved notable success within the deep learning community.

However, both generative models and representation models yet face several real-world challenges. In
the challenge (i) of generative models: the SoTA generative models such as diffusion models (Song
et al., 2020; Ho et al., 2020) requires training on highly diverse and high-quality data (Rombach et al.,
2022), where a lack of diversity or quality in the data can prevent the models from accurately capturing
the underlying distribution, resulting in issues such as mode collapse (Shumailov et al., 2024). Such
extensive training datasets together with the large neural model architectures involved (Yang et al.,
2023) therefore require significant computational resources, yet the trained model often generates sam-
ples with incorrect semantic information, contradicting real-world physical observations. Similarly, in
the challenge (ii) of representation models, a diverse and high-quality labeled data is the key. Though
self-supervised learning (Chen et al., 2020; Oquab et al., 2023; Chen et al., 2021) reduces the need for
labeled datasets, it requires significantly larger and diverse datasets along with carefully designed data
augmentation and training strategies (Chen et al., 2020), encountering significant computational costs.

Building on previous studies (Huh et al., 2024; Sun et al., 2024) that as model sizes expand and
training tasks diversify, distinct models tend to converge on similar representations, we observe a
consistent trend toward a shared statistical model capable of capturing the fundamental structure
of real-world phenomena. We further extend this insight and argue that deep representation and
generative models essentially perform the same task: capturing the underlying distribution and
structural attributes of real-world data, whether for generation or representation.

To this end, we draw inspiration from the double helical structure of DNA and propose a helical
co-evolution strategy for generation and representation. This approach simultaneously addresses
challenge (i) and challenge (ii): it leverages representation models to enhance generative ability
models to capture the distribution of real-world data, and employs generative models to produce
high-quality yet diverse data to improve the training of representation models. Specifically, we
propose three technical frameworks: (1) R2G Framework leverages a representation model to
generate semantic features z for each input sample x. These features are used as additional guidance
to train a generative model by maximizing p(x|θ, z). (2) G2R Framework employs a generative
model to generate diverse samples x′ from the original input x. The generated samples are utilized
to improve the representation model by optimizing p(z′|ϕ,x′). (3) CORE Framework built on
frameworks (1) and (2), the co-evolution framework iteratively strengthens both the generative
and representation models through a feedback loop, progressively enhancing their performance.
We present the following five key contributions below, laying the groundwork for a co-evolution
paradigm in representation and generative learning.

(a) Intriguingly, we find that even a lightly trained representation model effectively triggers our R2G
framework. To illustrate, employing a representation model trained on CIFAR-100 (Krizhevsky
et al., 2009) requiring less than 16 GPU-minutes, we can significantly improve the training of
ADM (Nichol & Dhariwal, 2021), leading to a 30% reduction in the FID score. For further
details, refer to Section 4.1 .

(b) By employing a pre-trained generative model from R2G, we can generate diverse and realistic
samples that improve the training and recognition performance of existing representation models.

(c) By identifying the efficacy of mutual assistance between representation and generative models,
we introduce the task of co-evolution between generative and representation models and propose a
straightforward framework (see CORE in Section 3 ) to facilitate this. Notably, there is minimal
additional training overhead in each iteration of the co-evolution training loop.

(d) Our extensive experiments indicate that applying (a) R2G, (b) G2R, or (c) CORE within the
training of generative or representation models effectively enhances their performance. These
experiments are conducted across various datasets and tasks (see Section 4.2 and Section 4.3 ).

(e) Additionally, we apply this co-evolution task in both data-scarce and self-consuming loop
scenarios, demonstrating the significant potential of this method to address real-world challenges
and provide novel insights to the community (see Section 4.5 and Section 4.6 ).
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2 RELATED WORK

Existing research has extensively investigated the unidirectional support between representation
models and generative models. Our co-evolutionary framework, however, introduces two fundamental
distinctions: (a) It functions as a multi-round, iterative process rather than a single-round one. (b) It
alleviates the pressure on individual model design, enabling the inclusion of suboptimal models and
incorporating the training process into the co-evolutionary framework.
In contrast, prior uni-directional approaches often necessitate a robust, well-trained model as a basis
(Li et al., 2023; Wang et al., 2024b), typically requiring significant data and computational resources
that might be difficult to access.
Our framework is constructed on advanced generative and representation models. Specifically, we
emphasize diffusion models for generative tasks (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song &
Ermon, 2019), which are now the dominant paradigm in image generation. Below, we examine how
representation models support generative models and vice versa.

Generative models. Generative models have become pivotal in artificial intelligence, enabling
the creation of synthetic data with impressive realism and diversity. Deep learning has notably
advanced this field through the introduction of Generative Adversarial Networks (GANs) (Goodfellow
et al., 2014) and Variational Autoencoders (VAEs) (Kingma, 2013), significantly enhancing image
generation capabilities. However, GANs encounter several architectural challenges (Dhariwal &
Nichol, 2021), primarily arising from the unstable nature of training the generator and discriminator
simultaneously. This instability often leads to mode collapse, where the generator produces uniform
samples. Diffusion models, inspired by non-equilibrium thermodynamics, present an alternative by
increasing system entropy over time to enhance randomness. Recent advancements by OpenAI have
substantially improved the practicality of diffusion models in real-world applications (Song et al.,
2023; Yang et al., 2023).

Generative model training/sampling with representation models. Using an external representa-
tion model to assist a generative model enables more controllable generative processes (Ramesh et al.,
2022; Nichol et al., 2022; Rombach et al., 2022). By leveraging a pre-trained representation model,
control information can be extracted and used as a condition during the training of the generative
model. Additionally, gradient information from the discriminative model can guide category-related
sampling, further enhancing control over the generation process (Dhariwal & Nichol, 2021).
To obtain a representation to assist in training a conditioned generative model, a self-supervised model
like SimCLR (Chen et al., 2020) and DINO (Caron et al., 2021), or supervised model like CLIP (Rad-
ford et al., 2021) can be directly used, where the model outputs an embedding vector that serves as the
conditioning information. These representation vectors can be further clustered to obtain cluster-level
information (Adaloglou et al., 2024; Hu et al., 2023), or multiple neighboring representations can
be leveraged for enhanced control (Blattmann et al., 2022). Regarding the granularity of the condi-
tional information obtained, finer-grained conditional signals are also possible beyond image-level
representations, such as bounding boxes and segmentation maps (Hu et al., 2023; Luo et al., 2024).
Recently, the Representation Diffusion Model (RDM) proposed by RCG (Li et al., 2023) has been
introduced to model the representation space effectively. In the training of generative models,
particularly pixel generators, the output from a well-trained self-supervised encoder is utilized as the
conditioning input. This approach by RCG shows superior performance in non-label-conditioned
generation, improving training on unlabeled datasets. However, the complexity of the framework
requires additional training for the RDM. In contrast, our proposed R2G method eliminates the need
for a well-trained representation model and avoids the additional training required for the RDM.

Training representation models with generated data. Generative models can produce virtually
limitless samples for downstream model training. Leveraging advanced Diffusion Models to assist
in the training of representation models has led to significant performance gains across various
tasks (Wang et al., 2024b; Tian et al., 2024a;b; Jahanian et al., 2021; Afkanpour et al., 2024).
Existing studies have demonstrated the potential of synthesizing data through generative models
in supervised learning (Azizi et al., 2023; He et al., 2022; Sarıyıldız et al., 2023), self-supervised
learning (Chen et al., 2024b), and adversarial training (Wang et al., 2023). By using label information
from reference datasets to generate image data, or by combining large language models (LLMs)
with image generation models to produce vast amounts of image-text paired data (Hammoud et al.,
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2024), it is possible to achieve results that match or even surpass those of models trained on real data.
AdaInf (Wang et al., 2024b) exemplifies how generative models can enhance model characterization.
It utilizes 1 million images generated by a generative model to augment the original training data.
Through data inflation, reweighting, and weak augmentation techniques, AdaInf achieves improved
self-supervised learning performance by effectively blending synthetic and original data.
To generate diverse and realistic samples for training, AdaInf requires a well-trained and powerful
generative model. However, accessing such a model is typically challenging, especially for complex
datasets like ImageNet-1K (Deng et al., 2009).

3 METHODOLOGY

Our research introduces a novel approach to facilitate the Co-evolution of Representation models
and Generative models (CORE), as illustrated in Figure 1 . It aims to establish a viable evolutionary
paradigm for different types of models, using data as the bridging element. Specifically, CORE
is systematically divided into two stages: R2G and G2R. These stages enhance the training of
generative and representation models by leveraging their interactions. Notably, these stages can form
a feedback loop, allowing continuous evolution over time.
Additionally, by setting the maximization of the log-likelihood of the data log p(x) as our objective,
we conduct a theoretical analysis (see Appendix A ). This analysis reveals that the Evidence Lower
Bound (ELBO (Kingma, 2013)) of this objective can be decomposed into two distinct components:
one targeting the learning of representation models and the other focusing on generative models.
This decomposition further substantiates our position that both generative and representation models
collaboratively learn the distribution of real-world data and can naturally assist each other.

3.1 R2G: FACILITATING DATA GENERATION THROUGH REPRESENTATION MODELS

Modern generative models are capable of producing diverse samples; however, they continue to
face challenges with unrealistic and semantically inconsistent data generation (Abdollahzadeh et al.,
2023; Yang et al., 2023). Prior research (Sun et al., 2024; Zimmermann et al., 2021) indicates that
features generated by representation models retain substantial information from the original samples,
suggesting a high mutual information (Shannon, 1948) between features DZ and samples DX . This
leads us to conjecture that representation models are naturally deconstructing complex samples into
fundamental, informative, and compact “seeds” (features) that encapsulate the essential information
of the original samples. We posit that these “seeds” can be reconstructed with high fidelity into
their original samples, preserving high semantic information through a generative process. The
comprehensive technical approach is detailed as follows.

Training the R2G framework. Our R2G first requires preparing a sample-feature-paired dataset
DXZ = (DX , DZ) using the reference samples DX :

(DX , DZ) = {(x, z) | z = fϕ(x),x ∈ DX} , (1)

where fϕ denotes a pre-trained representation model, and z represents the corresponding low-
dimensional feature extracted from x using this model. Based on the constructed dataset DXZ , the
loss function for R2G can be formally described as follows:

LR2G(θ) = −E(x,z)∼(DX ,DZ) [log p(x|θ, z)] , (2)

where LR2G denotes the negative log-likelihood function of the generative models. As discussed
in Section 2 , our investigation demonstrates that diffusion models (Ho et al., 2020) have achieved
SoTA performance and garnered significant attention from the community. Therefore, we incorporate
diffusion models within the R2G framework, employing their unified loss function as follows:

LR2G(θ) =
1
2E(x,z)∼DXZ ,ϵ∼N (0,I),λ∼p(λ)

[
w(λ)
p(λ) ∥ϵ̂θ(αλx+ σλϵ, z;λ)− ϵ∥22

]
, (3)

where the diffusion models are trained using a weighted integral of ELBOs over different noise levels
(Kingma & Gao, 2024) conditioned on z. λ denotes the log signal-to-noise ratio associated with the
timestep t, w(λ) denotes the weighting function, p(λ) denotes the distribution of λ. The predefined
parameters αλ and σλ describe the signal and noise ratio schedules, respectively.
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Usage of representation models in the R2G framework. While our R2G does not impose
constraints on the representation models used, different representation models vary in their ability to
capture image information, leading to variations in the performance of conditional generative models
trained with these representations. In this study, we employ our R2G approach using self-supervised
learnt representation models as the core components for dataset DXZ , following the intuitions below:

(a) Building on prior studies (Bordes et al., 2022; Zimmermann et al., 2021; Sun et al., 2024), self-
supervised learnt models capture semantic information more comprehensively than supervised
learning models. This aligns with our requirements as outlined in Section 3.1 .

(b) These models are particularly advantageous for application to unlabeled datasets, enabling
training of fϕ solely on samples DX when pre-trained models are not accessible from external
sources, such as public internet repositories.

Nonetheless, we rigorously evaluate the effectiveness of different representation models within our
R2G framework to enhance the training of diffusion models (see Section 4 ).

3.2 G2R: TRAINING STRONGER REPRESENTATION MODELS USING GENERATED DATA

It is well established that developing a robust representation model requires diverse and realistic
training data (Radford et al., 2021). Fortunately, we can achieve high-quality data generation using
the generative model framework described in Section 3.1 . This naturally raises the question: can
this powerful generative model, in turn, enhance the development of a superior representation model?

High-quality and diverse data generation via R2G. Utilizing the generative model developed
through R2G, we can generate a synthetic dataset, SXZ = (SX , SZ), as follows:

SXZ = (SX , SZ) = {(x, z) | x = gθ(ϵ, z), z ∈ DZ , ϵ ∼ N (0, I)} , (4)

where gθ(ϵ, z) denotes the generation process in a diffusion model, producing samples by succes-
sively obtaining xT ,xT−1, . . . ,xt,x0 through:

xt−1 = 1
αλt

(xt − σλt
ϵ̂θ(xt, z;λt)) + σλt−1

ϵt , (5)

where the process is initialized with xT = ϵ and converges to x0 = x.

Training G2R framework through generated data. The synthetic dataset SXZ serves as a
knowledge carrier for the generative model, providing high-quality and diverse samples. However,
these generated samples are not as realistic as the real data DXZ , which can impair the recognition
capability of a representation model trained solely on them. Consequently, SXZ is combined with
the reference dataset DXZ for enhanced utility. Formally, the loss function for the G2R learning is
defined as:

LG2R(ϕ) = E(x,z)∼I(DXZ ,SXZ),T∼T
[
ℓALG(T (x), z;fϕ)

]
. (6)

Here, ℓALG denotes a generic loss function employed in representation learning algorithms1, such as
SimCLR (Chen et al., 2020). The term I(DXZ , SXZ) signifies the data inflation operation applied
to the two datasets, wherein these two datasets are combined into a new one. The set T consists of
data augmentation strategies. The technical details will be elaborated subsequently.

Practical implementations for G2R framework. Despite the ability of generative models to
produce unlimited samples and enhance representation model training data (Azizi et al., 2023),
diffusion models often incur significant computational costs (Song et al., 2020). Therefore, this raises
two natural questions: (a) How can we enhance the diversity of the inflated dataset I(DXZ , SXZ)
without compromising its realism, given the limited synthetic data SXZ? (b) How can we effectively
utilize this inflated dataset? To address these, we employ two practical techniques during training:

(a) The first technique related to T involves applying a milder data augmentation strategy to the
inflated dataset compared to the more aggressive augmentation typically used in self-supervised
learning (Chen et al., 2020). For example, a larger lower bound for RandomResizeCrop and a
lower probability for color jittering can be used (see more details in Appendix C ).

1Typically, only DX and SX are utilized, as most representation learning loss functions do not incorporate
the use of features z in DZ and SZ .
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(b) The second technique related to I is reweighting, which adjusts the ratio between real and
synthetic data to avoid a direct 50/50 mixture. By increasing the proportion of real samples relative
to synthetic data, the training of the representation model can be enhanced. This can be denoted
as an adjustment to the ratio β = (N · |D|) / (N · |D|+ |S|), where |D| and |S| represent the
number of real and synthetic data samples, respectively, and N is the upweighting ratio for the
real data. Please refer to the Appendix B.4 for the ablation study of these parameters.

We have conducted detailed empirical analysis for the above two techniques in Section 4 .

Efficient G2R via pseudo-supervised learning. Most existing representation learning methods
fail to fully exploit the information within inflated data I(DXZ , SXZ) (refer to Footnote 1 ). To
address this, we propose an efficient and simple approach that effectively utilizes the compre-
hensive information contained in data I(DXZ , SXZ), leading to highly efficient model training
(see Section 4 ). Specifically, we utilize the features z and corresponding samples x from the in-
flated dataset I(DXZ , SXZ) to form natural pairs of samples and pseudo-targets. This approach
enables pseudo-supervised learning on originally unlabeled data, thereby enhancing the efficiency of
representation learning. Formally, the loss function is defined as:

LG2R(ϕ) =
1
2 · E(x,z)∼I(DXZ ,SXZ)

[
ℓ(fϕ(xi), z) + ℓ(fϕ(xj), z)

]
, (7)

where xi and xj are two augmented versions of x, and ℓ(x, z) = 1− x·z
∥x∥∥z∥ . For implementation

efficiency, it is sufficient to compute only the term ℓ(xi, z), despite a slight decrease in performance.

3.3 CORE: CO-EVOLUTION LOOP FRAMEWORK OF R2G AND G2R

Consequently, we propose the CORE framework (refer to panel (a) in Figure 1 ), which iteratively
enhances the R2G and G2R processes through a feedback loop, progressively improving their
performance. By initializing the co-evolution process with a lightly trained representation model and
a randomly initialized generative model, we capitalize on the low cost of starting the loop from R2G.

4 EXPERIMENTS

To assess the effectiveness of our approach, we begin by examining R2G (see Section 4.1 ) and
G2R (see Section 4.2 ) individually. This initial analysis reveals how improvements in either the
generative model or the representation model can positively impact the training of the other. Building
on these findings, we then apply the CORE framework (see Section 4.3 ), evaluating its performance
across datasets with varying scales and resolutions. Furthermore, to showcase the versatility of this
framework, we expand our evaluation by examining its effectiveness with various self-supervised
representation learning methods and different generative models (see Section 4.4 ).
Beyond standard experimental settings, we assess the effectiveness of CORE under unconventional
and extreme conditions. One scenario involves training with limited data (see Section 4.6 ), which
poses a substantial challenge for any model (Abdollahzadeh et al., 2023). Another critical scenario is
the self-consuming loop (Shumailov et al., 2024) (see Section 4.5 ), where the training data for the
next generation is derived from samples produced by the generative model of the previous generation.
Such a loop often leads to model collapse issues in modern generative models.

4.1 EFFECTIVENESS VERIFICATION OF R2G

Improved representation model for training better generative model. This experiment on the
effectiveness verification of R2G is structured to investigate two problems: (a) whether a lightly
trained representation model can assist the generative model, and (b) how employing representation
models of varying capabilities can influence the performance of generative models. Thus, the repre-
sentation model in three different capability levels are utilized: weak, moderate, and strong. These
representation models are trained on the reference training dataset using a consistent training recipe,
with the only variation being the number of training steps. For more details on the implementation
and additional visualization analysis, please refer to Appendix C and Appendix B.1 .
The experimental setup includes benchmark datasets such as CIFAR-10 (CF-10) (Krizhevsky et al.,
2009), CIFAR-100 (CF-100) (Krizhevsky et al., 2009), Tiny-ImageNet (T-IN) (Le & Yang, 2015),
and ImageNet-1K (IN-1K) (Deng et al., 2009). The primary metrics for evaluation are the Fréchet

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: R2G—improved representation model for better generative model. Representation models of
different capability levels, with ResNet-50 as the backbone and trained via SimCLR (Chen et al., 2020), are used
to assist the generative model: ADM (Nichol & Dhariwal, 2021) for CF-10 and CF-100, and LDM (Rombach
et al., 2022) for T-IN and IN-1K.

Representation Model
(used in R2G)

Generative Model

FID ↓ IS ↑
CF-10 CF-100 T-IN IN-1K CF-10 CF-100 T-IN IN-1K

Baseline (Unconditional) 5.34 8.30 17.99 43.40 8.99 10.35 12.73 22.19

Weak Level 4.84 (-0.50) 7.86 (-0.44) 16.63 (-1.36) 38.04 (-5.36) 9.14 (+0.15) 10.19 (-0.16) 12.90 (+0.17) 25.71 (+3.52)

Moderate Level 3.82 (-1.52) 5.58 (-2.72) 13.35 (-4.64) 26.28 (-17.12) 9.45 (+0.46) 10.91 (+0.56) 14.14 (+1.41) 39.42 (+17.23)

Strong Level 3.41 (-1.93) 4.93 (-3.37) 10.32 (-7.67) 20.13 (-23.27) 9.58 (+0.59) 11.33 (+0.98) 16.22 (+3.49) 50.47 (+28.28)

Baseline

Weak

Strong

Figure 2: Visualization of generated images of R2G vs. baseline model over ImageNet-1K. For our R2G,
we utilize both weak and strong representation models during the training phase.

Inception Distance (FID) (Heusel et al., 2017) and Inception Score (IS) (Salimans et al., 2016),
which are widely recognized measures for evaluating the quality and diversity of generated images.
As shown in Table 1 , it is evident that even a minimally trained representation model can enhance
the generative model, resulting in improved FID performance compared to the naive baseline2. As
the representation model becomes more sophisticated, we observe corresponding improvements in the
generative model across datasets. These findings indicate: (a) implementing R2G is nearly cost-free,
and (b) enhanced representation models can yield superior generative models through R2G.
Furthermore, Figure 2 visually demonstrates that applying R2G can bring more realistic semantic
information to generated images compared to the baseline model.

4.2 EFFECTIVENESS VERIFICATION OF G2R

0 20000 40000 60000 80000 100000
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G2R
PSL-10K+G2R
PSL-25K+G2R

Figure 3: Efficient G2R training via
pseudo-supervised learning (PSL). PSL-
10K+G2R indicates that PSL is applied
during the first 10K steps of training, with
the overall training cost remaining un-
changed.

Enhanced generative models for training superior rep-
resentation Models This experiment investigates how ad-
vancements in generative models can improve the perfor-
mance of self-supervised representation models via gener-
ated samples and our G2R approach. Specifically, it ad-
dresses the question:
Can a newly improved generative model, developed using
R2G, aid in the training of the representation model?
To explore the impact of generative models on representa-
tion learning, we introduce datasets generated by models
with varying levels of generative capability. As a result, all
representation models previously used as “assistant models”
for R2G now function as the “to-be-assisted models” for
G2R. Specifically, in this section, we derive three generative
models using representation models categorized as weak, moderate, and strong through R2G. These
generative models are continuously referenced at these levels (see the first column of Table 2 ).
Additionally, our experiment assesses the offline linear probe accuracy (Chen et al., 2020) of the
representation model, evaluating its performance in downstream classification tasks.
Table 2 demonstrates that as the generative model’s capabilities and the quality of its generated
images improve, there is a corresponding increase in the linear probing accuracy of the representation

2The naive baseline refers to the method that does not employ G2R for developing generative models and
relies on unconditional training and sampling.
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Table 2: G2R—improved generative model for training better representation model. The generative model
derived from R2G, as shown in Table 1, aids in training the representation model by sampling synthetic data.
Linear probing accuracy is presented for both the baseline and its enhanced version utilizing G2R.

Generative Model
(with different R2G stage) CF-10 CF-100 T-IN IN-1K

Baseline 89.5 ± 0.1 66.3 ± 0.1 43.8 ± 0.2 58.0 ± 0.0

Weak 89.4 ± 0.1 (-0.1) 65.0 ± 0.1 (-1.3) 44.2 ± 0.2 (+0.3) 58.0 ± 0.0 (+0.0)

Moderate 90.5 ± 0.1 (+1.0) 66.6 ± 0.2 (+0.3) 44.8 ± 0.5 (+1.0) 58.1 ± 0.1 (+0.1)

Strong 90.9 ± 0.0 (+1.4) 67.9 ± 0.0 (+2.9) 45.9 ± 0.2 (+2.1) 58.4 ± 0.1 (+0.4)

Baseline

Round 1

Round 2

Round 3

Round 4

Figure 4: Visualization of generated images of CORE vs. baseline model over CIFAR-10. For our CORE, we
conduct training using multiple co-evolution rounds. During these rounds, images are generated by progressively
evolved generative models.

model. When conducting G2R at moderate and strong levels, the representation model consistently
outperforms the baseline across all datasets, confirming the effectiveness of G2R in enhancing
representation models. Additionally, we can enhance our G2R by applying pseudo-supervised
learning (PSL) to achieve more efficient training. At the same training cost, beginning with PSL for
an initial phase before transitioning to the original G2R leads to a more efficient learning process
compared to the default G2R, as shown in Figure 3 . For more results of PSL refer to Appendix B.5 .
These results suggest the potential for mutual enhancement between generative and representation
models, therefore establishing a closed loop of R2G and G2R to promote ongoing advancements in
both model types. Based on this loop, we delve into the multi-round evolutionary process, CORE, in
the subsequent subsections.

4.3 CO-EVOLUTION FRAMEWORK ON DATASETS OF DIFFERENT RESOLUTIONS AND SCALES

Implementations on CIFAR-10/CIFAR-100. In our experiments on the CIFAR-10 and CIFAR-
100 datasets, we employ the CORE framework, utilizing ADM (Nichol & Dhariwal, 2021) as the
generative model and a ResNet-50 trained with the SimCLR (Chen et al., 2020) method as the
representation model within the co-evolution loop.
For the implementation of ADM, we utilize residual blocks for both up-sampling and down-sampling,
a straightforward technique shown to enhance performance as indicated in the guided diffusion
literature (Dhariwal & Nichol, 2021; Song et al., 2021). All other settings are maintained in alignment
with the original ADM model, including 1,000 diffusion steps, a base network width of 128, and
attention mechanisms at resolutions of 16 and 8.
In the initial phase, we train ResNet-50 exclusively with the original training dataset, omitting any
synthetic data. During subsequent iterations of the co-evolution process with G2R, we incorporate
synthetic data produced by the generative model and retrain the representation model from scratch.
The projector’s hidden dimension is set to 2,048, with an output dimension of 128. This output is
then utilized by the generative model for R2G. During each G2R phase of the co-evolution loop, the
generative model produces 100,000 samples.

Implementations on Tiny-ImageNet. For our experiments using CORE on the Tiny-ImageNet
dataset, we employed the Latent Diffusion Model (LDM) as our generative model (Rombach et al.,
2022). The encoder and decoder in the LDM were adapted from the open-source VQGAN framework
(Esser et al., 2021), utilizing a latent space of 4-channel encodings at a resolution of 32. This
configuration enhances training efficiency on large-scale, high-resolution image datasets compared to
pixel-based diffusion models. The representation model used is a ResNet-50 trained with SimCLR,
where the projector’s hidden dimension is expanded to 4,096 and the output dimension increased to
512. For each G2R, we generated 100K synthetic images.

Analysis of experimental results. The experimental results presented in Figure 5 indicate that
the proposed algorithm can consistently improve the performance of generative and representation
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Figure 5: Evaluation of our CORE over three datasets. We assess the performance of both generative and
representation models as the evolution rounds of CORE progress.

Table 3: Evaluation of Representation Learning Methods with and without CORE. This study compares
four self-supervised learning techniques—SimCLR, MoCo, BYOL, and Barlow Twins—against supervised
learning models for representation learning. Furthermore, the performance of a self-supervised model trained on
CIFAR-10 and transferred to Tiny-ImageNet is assessed, as shown in the SimCLR* row.

Generative Model Representation Model

Representation Learning Method
FID ↓ IS ↑ Acc(%) ↑

Baseline w/ R2G Baseline w/ R2G Baseline w/ G2R

SimCLR

5.34

3.41 (-1.93)

8.99

9.48 (+0.49) 89.5±0.1 90.9±0.0 (+1.4)

MoCo 3.34 (-2.00) 9.55 (+0.56) 91.1±0.0 92.1±0.0 (+1.0)

BYOL 3.20 (-2.14) 9.62 (+0.63) 91.3±0.1 90.8±0.1 (-0.5)

Barlow Twins 4.73 (-0.61) 9.25 (+0.26) 88.5±0.3 89.7±0.2 (+1.2)

Supervised Learning 4.95 (-0.39) 9.17 (+0.18) 92.0±0.0 93.6±0.0 (+1.6)

SimCLR* (CF10→T-IN) 17.99 17.52 (-0.47) 12.73 13.34 (+0.61) 43.8±0.2 44.5±0.3 (+0.7)

models as the number of evolutionary rounds increases. Furthermore, Figure 4 shows that our
algorithm’s generated images exhibit more explicit semantic information compared to the baseline.

4.4 EXPERIMENTS WITH INTENSIVE GENERATIVE AND REPRESENTATION MODELS

This subsection examines various representation learning techniques and generative models to assess
performance across different settings. G2R: For representation learning, we apply four prevalent
self-supervised learning (SSL) methods: SimCLR (Chen et al., 2020), MoCo (He et al., 2020),
BYOL (Grill et al., 2020), and Barlow Twins (Zbontar et al., 2021). Each of these approaches
enables representation learning without reliance on labeled data. ResNet-50 serves as the backbone
architecture, and ADM is employed as the generative model for all four SSL methods. Additionally,
we incorporate a supervised learning approach utilizing the cross-entropy loss function.

R2G: To further explore generative modeling, we investigate three distinct methods: ADM (Nichol
& Dhariwal, 2021), LDM (Rombach et al., 2022), and DiT (Peebles & Xie, 2023). For consistency,
we employ a ResNet-50 model trained with SimCLR as the representation model across all three
types of generative models mentioned above.

Table 3 and Table 4 showcase the effectiveness of our CORE across different representation and
generative learning methods on various datasets, outperforming multiple baseline algorithms.

4.5 USE CORE TO HELP SELF-CONSUMING LOOP

Self-Consuming Loop (Alemohammad et al., 2024) training refers to the cyclic process in generative
model training where synthetic data generated by earlier generations is used as training data for
subsequent generations. Studying this phenomenon is crucial, as the growing prevalence of synthetic
data on the internet and within standard datasets suggests that future models will likely rely, at
least in part, on a mix of real and synthetic data, thereby forming a self-consuming loop. In the
absence of sufficient fresh real data, such a loop can lead to a degradation in the quality (precision)
or diversity (recall) of generative models across generations, which is known as Model Autophagy
Disorder (MAD) (Alemohammad et al., 2024; Bertrand et al., 2024). Self-consuming loop training
can be categorized into several types (Alemohammad et al., 2024): Fully Synthetic Loop, Synthetic
Augmentation Loop, and Fresh Data Loop.
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Table 4: Comparison of generative models with and without CORE. The study includes the following
prominent generative models: ADM, LDM, and DiT.

Generative Model Representation Model

Generative Model
FID ↓ IS ↑ Acc(%) ↑

Baseline w/ R2G Baseline w/ R2G Baseline w/ G2R

ADM 24.77 17.39 (-7.38) 11.85 14.41 (+2.56)
43.8± 0.2

44.2±0.1 (+0.4)
LDM 17.99 10.32 (-7.67) 12.73 16.22 (+3.49) 45.9±0.2 (+2.1)
DiT 26.44 13.27 (-13.17) 10.65 15.25 (+4.60) 45.0±0.1 (+1.3)

To validate the potential of our proposed CORE framework in addressing the challenges posed by
self-consuming loop training, we conducted experiments in the particularly demanding conditions:
the Synthetic Augmentation Loop. In this scenario, the training data is not only drawn from the
original reference training dataset but also sampled from the previously trained generative model.
Specifically, for CIFAR-10 as the reference training dataset, we use the previous-generation generative
model to create a class-balanced set of 50,000 images, which serves as the half of the new dataset for
training the next-generation generative model. Here, we utilize CORE to prevent self-consuming
loop training from entering “MAD”. In addition to the previously discussed adjustments to the
generative model’s training dataset, we maintain the use of a mixture of the reference real dataset and
the synthetic dataset for G2R.

4.6 CORE MITIGATES DATA-SCARCE SCENARIOS

0 1 2 3
Round

0

5

10

15

20

FI
D

 

FID
IS

FID (CORE)
IS (CORE)

6

7

8

9

10

IS
 

(a) Self-consuming loop

FID IS Acc(%)
Metrics

0

20

40

60

80

100

Pe
rf

or
m

an
ce

19.73

8.17

78.40

6.49 9.69

80.4079.80
Baseline
CORE
Naive G2R

(b) Data-scarce learning
Figure 6: CORE works effectively in different scenarios. We are
conducting two experiments: self-consuming loop training and data-
scarce learning, both of which make certain negative assumptions about
the training dataset, making it more challenging for the model to learn.

Data-scarce scenarios refers to
situations where only a limited
amount of labeled or unlabeled
data is available for training ma-
chine learning models (Bansal
et al., 2022). This situation is
common in domains where data
collection is expensive, time-
consuming, or impractical due
to privacy concerns, regulatory
restrictions, or the rarity of spe-
cific phenomena. For both rep-
resentation models and genera-
tive models, having fewer data
points makes it challenging to
learn rich, informative features. This limitation impairs the model’s ability to capture the underlying
structure of the data, leading to suboptimal performance in tasks (Abdollahzadeh et al., 2023).
To simulate the data-scarce learning setting, we use only one-tenth of the CIFAR-10 training set
as our initial training dataset. Using the default setup, which includes a ResNet-50 trained via
SimCLR as the representation model and ADM as the generative model. Figure 6b demonstrates
that our CORE can effectively assist both generative and representation models to achieve superior
performance in this scenario.

5 LIMITATION AND CONCLUSION

We present CORE, a preliminary attempt to explore the co-evolution learning of generative and
representation models. It consists of two interdependent frameworks, R2G and G2R, which together
create a closed-loop system. The semantic information extracted by the representation model
facilitates the training of the generative model, while the generative model, in turn, enhances the
representation model by synthesizing new data. We empirically validate the effectiveness of both G2R
and R2G, and evaluate the performance of CORE across various datasets. We further demonstrate
its potential through two scenarios: the self-consuming loop and data-scarce learning. However, the
conditions necessary for effectively launching CORE and how to efficiently approach its performance
limits with minimal training costs require more in-depth theoretical research and potentially larger-
scale experimental exploration. Nonetheless, we hope that our current progress can inspire researchers
to investigate the potential of co-evolution between two or even more models, and perhaps provide
valuable insights.
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A THEORETICAL ANALYSIS OF CORE

Problem Setup.

(a) Dataset: X = {x(1),x(2), . . . ,x(N)}, where each x(i) is generated from a joint latent variable
model.

(b) Latent variables: z: A representation distribution to be learned from the data. ϵ: A latent
variable with a known conditional distribution p(ϵ|z) given z.

(c) Objective: Develop an ELBO that enables learning both a good representation p(z) and a robust
generative model p(x|z, ϵ) by maximizing this ELBO.

Evidence lower bound (ELBO). For a single data point x, the marginal likelihood is:

p(x) =

∫ ∫
p(x, z, ϵ) dz dϵ =

∫ ∫
p(x|z, ϵ)p(ϵ|z)p(z) dz dϵ (8)

To derive the ELBO, we introduce q(z, ϵ|x), an approximation to the true posterior p(z, ϵ|x). Starting
with the log marginal likelihood:

log p(x) = log

∫ ∫
p(x, z, ϵ) dz dϵ (9)

Insert the variational posterior q(z, ϵ|x) by multiplying and dividing inside the integral:

log p(x) = log

∫ ∫
q(z, ϵ|x)p(x, z, ϵ)

q(z, ϵ|x)
dz dϵ (10)

Apply Jensen’s inequality (due to the concavity of the logarithm):

log p(x) ≥
∫ ∫

q(z, ϵ|x) log p(x, z, ϵ)

q(z, ϵ|x)
dz dϵ = L(x) (11)

where L(x) is the ELBO. The ELBO can be expressed as:

L(x) = Eq(z,ϵ|x)[log p(x, z, ϵ)]− Eq(z,ϵ|x)[log q(z, ϵ|x)] (12)

Expanding p(x, z, ϵ):

L(x) = Eq(z,ϵ|x)[log p(x|z, ϵ) + log p(ϵ|z) + log p(z)]− Eq(z,ϵ|x)[log q(z, ϵ|x)] (13)

Rearranging terms:

L(x) = Eq(z,ϵ|x)[log p(x|z, ϵ)] + Eq(z,ϵ|x)[log p(ϵ|z) + log p(z)− log q(z, ϵ|x)] (14)

Recognize that the second term is the negative Kullback-Leibler (KL) divergence between q(z, ϵ|x)
and p(z, ϵ):

L(x) = Eq(z,ϵ|x)[log p(x|z, ϵ)]− KL(q(z, ϵ|x)∥p(z, ϵ)) (15)

Given that p(z, ϵ) = p(ϵ|z)p(z), we have:

L(x) = Eq(z,ϵ|x)[log p(x|z, ϵ)]− KL(q(z, ϵ|x)∥p(ϵ|z)p(z)) (16)

Simplifying the ELBO. To make the ELBO tractable and implementable, we make specific
assumptions about the structure of the variational posterior q(z, ϵ|x). A common and practical choice
is to assume that ϵ is conditionally independent of z given x, or to model certain dependencies to
reflect the generative process. However, to align closely with the generative model structure p(ϵ|z), a
sensible assumption is:

q(z, ϵ|x) = q(ϵ|z,x)q(z|x) (17)
However, to further simplify, we might assume that ϵ depends only on z, reflecting the generative
model’s dependency, leading to:

q(z, ϵ|x) = q(ϵ|z)q(z|x) (18)

This approximation assumes that given z, the posterior over ϵ does not directly depend on x, which
aligns with p(ϵ|z) being known and independent of x.
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Note: The choice of variational posterior structure depends on the specific model and desired
tractability. Here, we choose q(z, ϵ|x) = q(ϵ|z)q(z|x) to align with the generative model and
maintain tractability. Given the factorization q(z, ϵ|x) = q(ϵ|z)q(z|x), the KL divergence becomes:

KL(q(z, ϵ|x)∥p(ϵ|z)p(z)) = KL(q(z|x)q(ϵ|z)∥p(ϵ|z)p(z)) (19)
Using the property that KL divergence is additive over independent distributions:

KL(q(z|x)q(ϵ|z)∥p(ϵ|z)p(z)) = KL(q(z|x)∥p(z)) + Eq(z|x)[KL(q(ϵ|z)∥p(ϵ|z))] (20)
Substituting the decomposition back into the ELBO:

L(x) = Eq(z|x)q(ϵ|z)[log p(x|z, ϵ)]− KL(q(z|x)∥p(z))− Eq(z|x)[KL(q(ϵ|z)∥p(ϵ|z))] (21)

Alternatively, recognizing that Eq(z|x)[KL(q(ϵ|z)∥p(ϵ|z))] is an expectation over z, it can be written
as:

L(x) = Eq(z|x)q(ϵ|z)[log p(x|z, ϵ)]− KL(q(z|x)∥p(z))− Eq(z|x)[KL(q(ϵ|z)∥p(ϵ|z))] (22)

Final ELBO expression. Consolidating the above derivations, the final ELBO suitable for our
model is:

L(x) = Eq(z|x)q(ϵ|z)[log p(x|z, ϵ)]− KL(q(z|x)∥p(z))− Eq(z|x)[KL(q(ϵ|z)∥p(ϵ|z))] (23)

Alternatively, if we assume that q(ϵ|z) = p(ϵ|z) (i.e., the posterior q(ϵ|z) matches the prior p(ϵ|z)),
then the last KL term disappears, simplifying the ELBO to:

L(x) = Eq(z|x)p(ϵ|z)[log p(x|z, ϵ)]︸ ︷︷ ︸
Generative

−KL(q(z|x)|p(z))︸ ︷︷ ︸
Representation

(24)

However, this simplification assumes that q(ϵ|z) perfectly matches p(ϵ|z), which may not always
hold. Therefore, unless such an assumption is justified, the more general form with the expectation
over the KL divergence should be used.

Optimization and learning. By maximizing the ELBO across all data points, we achieve:

(a) Representation Learning (p(z)): The term KL(q(z|x)∥p(z)) guides the learning of p(z) to be
a meaningful prior that captures the underlying structure of the data.

(b) Generative Modeling (p(x|z, ϵ)): The expected log-likelihood E[log p(x|z, ϵ)] ensures that the
generative model can accurately produce/reconstruct data points from the latent variables.

(c) Prior Alignment (p(ϵ|z)): The expectation E[KL(q(ϵ|z)∥p(ϵ|z))] ensures that the inferred ϵ
given z follows the known conditional distribution, integrating prior knowledge into the model.

Summary. In this paper, our proposed CORE naturally conducts temporally asynchronous learning
for the two terms in (24).

B ADDITIONAL RESULTS

B.1 ADDITIONAL RESULTS FOR R2G

Owing to the representation model’s ability to extract semantic information, the generative model
after R2G demonstrates strong semantic consistency in its generated outputs, as shown in Figure 7
and Figure 8 . The top row in the figures consists of the original real images, which are used as inputs
to the representation model to obtain the representation vectors. The other images in each column are
generated based on the same reference image with different randomly initialized noise. It can be seen
from each column of images (especially the generated results for ImageNet-1K at 256× 256) that
the generative model captures the most important semantic information from the original images,
while also exhibiting diversity in aspects such as color and composition. These results demonstrate
that the generated images effectively retain semantic information.
As mentioned in Section 3 , G2R is rooted in the intuition that we can utilize the features obtained
from the representation model that encapsulate the essential information of the original samples.
Therefore, our generative model training essentially focuses on finding the connection between this
representation space (which, in our case, consists of 128 or 512 dimensions) and the image space.
This connection can be more easily optimized compared to solely starting from Gaussian noise.
Moreover, if these synthetic images are used for training the representation model in G2R, it would
be akin to a “realistic” data augmentation operation, which is crucial for self-supervised learning.
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Figure 7: The images generated by the generative model after R2G training exhibit good semantic
consistency. (CIFAR-10 32×32) Each column in the figure represents different generation results for the same
representation vector, with the top row being the original images.

Figure 8: The images generated by the generative model after R2G training exhibit good semantic
consistency. (ImageNet-1K 256×256) Each column in the figure represents different generation results for the
same representation vector, with the top row being the original images.

B.2 ADDITIONAL RESULTS FOR G2R

In Section 4.2 , we utilize generative models corresponding to the weak, moderate, and strong levels
for G2R. Here, we present the performance differences of the representation model before and after
G2R given the same training budget, as shown in Table 5 . It is observed that after using G2R,
the representation model demonstrates improvements across all datasets, irrespective of whether
it operates at the weak, moderate, or strong level. This result provides additional evidence for the
effectiveness of G2R.
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Table 5: G2R—improved generative model for better representation model. The generative model obtained
from R2G in Table 1 can assist in training the representation model by sampling synthetic data. The linear
probing accuracy is reported both before G2R and after G2R, while maintaining the same training cost.

Generative Model
(with different R2G stage)

Representation Model ↑
Acc(%) Before G2R Acc(%) After G2R

CF-10 CF-100 T-IN IN-1K CF-10 CF-100 T-IN IN-1K

Weak 77.5 48.1 24.9 37.2 80.6 (+3.1) 52.1 (+4.0) 27.9 (+3.0) 38.7 (+1.5)

Moderate 87.6 63.2 35.3 55.0 88.1 (+0.5) 63.6 (+0.4) 39.6 (+4.3) 55.1 (+0.1)

Strong 89.5 66.3 43.8 58.0 90.9 (+1.4) 67.9 (+1.6) 45.9 (+2.1) 58.4 (+0.4)

B.3 ADDITIONAL RESULTS FOR CORE OF DIFFERENT RESOLUTIONS AND SCALES

We use CORE to perform experiments on multiple datasets of varying resolutions and scales,
validating its effectiveness, as shown in Figure 5 . Here, we provide specific values to compare the
performance improvements of the generative model or representation model when using CORE
versus not using CORE, as shown in Table 6 . The results from the table indicate that CORE
achieves notable performance improvements across different datasets compared to the baseline.

Table 6: Performance comparison of generative and representation models with CORE. The “w/ CORE”
column summarizes model performance in the final evaluation, while the baseline results, representing models
trained exclusively on real data, are displayed in the “w/o CORE” column.

Dataset
Generative Model Representation Model

FID ↓ IS ↑ Acc(%) ↑
w/o CORE w/ CORE w/o CORE w/ CORE w/o CORE w/ CORE

CF-10 5.34 3.51 (-1.83) 8.99 9.51 (+0.52) 71.9 ± 0.4 89.2 ± 0.0 (+17.3)

CF-100 8.30 5.24 (-3.06) 10.35 11.17 (+0.82) 62.8 ± 0.0 64.1 ± 0.3 (+1.3)

T-IN 17.99 12.29 (-5.70) 12.73 14.81 (+2.08) 35.5 ± 0.3 40.1 ± 0.3 (+4.6)

B.4 ABLATION EXPERIMENTS ON THE REWEIGHTING RATIO AND THE NUMBER OF
SYNTHETIC IMAGES

The synthetic dataset contains 100K images and the reweighting ratio is set to 2 as the default
setting in our experiments (for both CIFAR-10/100 and Tiny-ImageNet). Different scales of synthetic
datasets and mixing ratios result in varying performance levels (Wang et al., 2024b). Therefore,
we examine the effects of synthetic dataset size and reweighting ratio on T-IN. As illustrated in
Table 7 , the best performance is achieved at different reweighting ratios depending on the scale of
the synthetic data. The results show that when adding more synthetic data, higher reweighting ratio
should be applied to achieve the best performance.

Table 7: Ablation study on synthetic data scale and reweighting ratio on T-IN. We use the generative model
obtained from R2G, as mentioned in Table 1. The linear probing accuracy is reported while ensuring that the
training costs are consistent across all synthetic data scales and reweighting ratios.

Synthetic Data Scale Reweighting Ratio
1 2 5 10

0 (Baseline) 43.8±0.2

100K 45.1±0.2 45.9±0.2 45.8±0.1 45.6±0.2

500K 45.0±0.2 45.1±0.2 45.3±0.2 45.5±0.2
1M 44.6±0.2 45.3±0.2 45.4±0.1 45.8±0.1

B.5 ADDITIONAL RESULTS FOR PSEUDO-SUPERVISED LEARNING IN G2R.

Due to the natural construction of data-label pairs (x, z) during the G2R in CORE, it facilitates
the possibility of pseudo-supervised learning (PSL). As shown in Figure 3 , employing PSL aids in
training the representation model more effectively. Here, we present more detailed results, as shown
in Table 8 , which provides the linear probing accuracy obtained after training the representation
model using different methods. For the methods in this table, the details are as follows:

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

(a) “Baseline” refers to training conducted using only real data, without any synthetic data.
(b) “Naive G2R” indicates that neither the reweighting nor the weak augmentation strategy is used;

instead, synthetic data is directly mixed with real data to train the representation model.
(c) “G2R” is our default setting, incorporating the aforementioned two techniques.
(d) “PSL-10K + G2R” indicates that PSL is first used for 10K steps, and for the remaining training

budget, the self-supervised learning method is employed. Similarly, “PSL-25K+G2R” conveys
the similar meaning.

(e) All training costs are relative to the baseline.
From the results in Table 8 , it is evident that our default setting of G2R achieves better performance
compared to the baseline and direct data mixing (Naive G2R). When PSL is first employed for training
to a certain stage followed by self-supervised learning (see the last two rows of the table), a further
performance improvement can be obtained. Additionally, we can achieve the same performance as
the baseline with only 60% of the training cost (PSL-10K + G2R).

Table 8: Detailed results for efficient G2R training using pseudo-supervised learning.

Method Training Cost Acc(%)
Baseline 100% 89.5 ± 0.1

Naive G2R 100% 89.3 ± 0.0
G2R 100% 90.9 ± 0.0

PSL-10K + G2R 60% 89.5 ± 0.0
PSL-10K + G2R 100% 91.8 ± 0.0
PSL-25K + G2R 100% 91.3 ± 0.0

C EXPERIMENTAL DETAILS

C.1 EXPERIMENTS ON R2G

Acquisition of representation models with different capabilities. We train a representation model
using the SimCLR method and selected models from 5%, 50%, and 100% of the training stage as the
weak, moderate, and strong versions of the representation model, respectively. Starting with these
models, we conduct the R2G experiments.
For the SimCLR method used here, detailed configurations can be found in Table 9 . We use ResNet-
50 as our backbone. For the lower-resolution images of CIFAR-10 and CIFAR-100, we replace the
first convolutional kernel with a 3× 3 convolutional kernel and removed the max pooling layer. All
batch sizes represented the global batch size across all GPUs, and the learning rate is the effective
value considering factors such as batch size and gradient accumulation steps. The reason for using
different batch sizes for various datasets is that we allocated different amounts of computational
resources, rather than for any more intricate reasons.
In the following experiments, unless stated otherwise, we use the backbone configuration of the
representation models described here, along with the data augmentation settings detailed in the next
subsection (see Table 12 ).

Generative models. We employ ADM as the generative model for CIFAR-10 and CIFAR-100. The
detailed configurations of ADM can be found in Table 10 .
For Tiny-ImageNet and ImageNet-1K, we opt for LDM due to the larger scale and higher resolution
of these datasets. LDM, which carries out the diffusion process in a lower-dimensional latent space, is
more computationally efficient than pixel-level diffusion models such as ADM. For the encoder and
decoder of LDM, we use the pre-trained VQGAN 3, which is trained on the large-scale OpenImages
dataset. The detailed configurations of LDM can be found in Table 11 .
For the results reported in Table 1 , we use the sampling method of DDIM (Song et al., 2020)
to synthesize images, specifically 50 sampling steps, which significantly accelerates the image
generation process.
In other experiments, unless stated otherwise, we employ the generative models and its configurations
as described here.

3https://github.com/CompVis/taming-transformers#overview-of-pretrained-models
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Table 9: Configurations of SimCLR for obtaining representation models with different capabilities.

config value

CF-10/100 T-IN IN-1K

backbone ResNet-50
projection hidden dimension 2048 4096 4096
projection output dimension 128 512 512
temperature 0.2
optimizer LARS
weight decay 1e-4 1e-4 1e-6
batch size 512 1024 4096
learning rate 0.4 1.2 4.8
randresizedcrop scale [0.08,1.0]
color jitter - probability 0.8
color jitter - brightness 0.8
color jitter - saturation 0.8
color jitter - hue 0.2
gray scale 0.2
gaussian blur probability 0.5
horizontal flip probability 0.5

Table 10: The configurations of the ADM.

config value

diffusion steps 1000
channels 128
residual blocks 3
channel multiplications 1,2,2,2
attention resolutions 16,8
head channels 64
learnable sigma ✓
noise scheduler linear
BigGAN up/downsample ✓
EMA rate 0.999
dropout 0.1
loss function lsimple

Table 11: The configurations of the LDM.

config value

latent vector shape [4,32,32]
diffusion steps 1000
channels 256
residual block 2
attention resolutions 32,16,8
channel multiplications 1,2,4
head channels 32
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Evaluation For the representation models, we evaluate them using the linear probing accuracy.
We assess the generative models using FID and IS. We sample 50K images from the generative
models, using the entire training set as the reference batch for CIFAR-10, CIFAR-100, and Tiny-
ImageNet, with respective sizes of 50K, 50K, and 100K. For ImageNet-1K, we use the reference
batch pre-computed and provided by ADM 4. DDIM with 50 sampling steps is used for metrics
evaluation.

C.2 EXPERIMENTS ON G2R

Synthetic data generation. We employ the DDIM sampling method, configuring the sampling
steps to 50 to facilitate the rapid development of a slightly large synthetic dataset. During image
generation, we uniformly apply the representation vectors from the reference training dataset. The
synthetic dataset is configured to consist of 100K images. For instance, we iterate through the
CIFAR-10 training dataset twice to facilitate the construction of the synthetic dataset.

Reweighting and weak data augmentation. The ratio of real data to synthetic data, as well as
the data augmentation strategies, can impact the performance of self-supervised learning methods.
An appropriate ratio β and weaker augmentation methods are beneficial for model learning (Wang
et al., 2024b). However, a more refined theory is yet to be developed to analyze the relationship
between these parameters and learning performance, and to guide their selection. Here, empirically,
we selected the parameters shown in Table 12 for our experiments.

Table 12: Configurations of the reweighting ratio and data augmentation.

config value

reweighting ratio (CF-10/CF-100/T-IN) 2
reweighting ratio (IN-1K) 1
randresizedcrop scale [0.2,1.0]
color jitter - probability 0.4
color jitter - brightness 0.4
color jitter - saturation 0.4
color jitter - hue 0.1
gray scale 0.2
gaussian blur probability 0.5
horizontal flip probability 0.5

C.3 EXPERIMENTS ON CORE

We adopt the default settings from the previous G2R and R2G configurations to conduct experiments
on CORE across different datasets. As shown in Figure 5 and Table 6 , under this configuration,
we observe that both the generative model and the representation model experience co-evolution,
with performance gradually improving as the rounds increase. Intuitively, since we do not aim for
state-of-the-art performance but instead seek to explore the existence and effectiveness of co-evolution
learning in this research, our hyperparameter configuration can be further improved through additional
parameter searches.

C.4 ABLATION STUDY

Ablation experiments on different representational models. We conduct ablation experiments
on four self-supervised learning methods and also experiment with supervised learning method using
the cross-entropy loss function. For the baseline implementations of various self-supervised learning
methods, we refer to the configurations from the open-source project solo-learn (Da Costa et al.,
2022). Notably, BYOL uses asymmetric data augmentation in the baseline version, so in G2R, we
use the corresponding asymmetric weak data augmentation. All self-supervised learning methods use
ResNet-50 as the backbone, but the projector on top of it varies depending on the method.

4https://github.com/openai/guided-diffusion/tree/main/evaluations
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Ablation experiments on different generative models. Three mainstream generative models
(ADM, LDM, and DiT) are employed in the ablation experiments for generative models. These
models represent pixel-level, latent-space-level, and transformer-based diffusion models, respectively.
For ADM and LDM, we adopt the configurations described in Table 10 and Table 11 . For DiT, the
model we use is DiT-L/2 with the pre-trained VAE tokenizer5.

C.5 EXPERIMENTS ON DATA-SCARCE SCENARIOS AND SELF-CONSUMING LOOP

Configurations for the self-consuming loop. The synthetic augmentation loop is the basic setup of
our self-consuming loop, which requires that the data for the next round of generative model training
comes from both the reference training dataset and the samples generated by the trained generative
model in the previous round. Hence, for the baseline, we sample 50K images from the generative
model of the previous round and combine them with 50K images from the reference training dataset,
forming a new training set of 100K images. For CORE on the self-consuming loop, the construction
of the training dataset for the generative model is consistent with the baseline. Additionally, we use
the 100K sampled images to train the representation model via G2R.

Configurations for the data-scarce scenarios. We first randomly sample 1K images from each
class in a class-balanced manner from the original CIFAR-10 training set of 50K images, forming a
data-scarce dataset with a total of 10K training images, while keeping the test dataset the same as
CIFAR-10. Consequently, only 10K images are used for the training of the generative model in R2G.
We continue to sample 100K images from the generative model for training the representation model.
Simultaneously, we adjust the reweighting ratio, increasing it to 10 to better accommodate the current
data mixture, where real data is significantly less than synthetic data.

5https://huggingface.co/stabilityai/sd-vae-ft-ema
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D SAMPLES FOR CORE

(a) Baseline (i.e., w/o CORE) (FID = 5.34)

(b) The generative model after R2G (i.e., w/ CORE), corresponds to the "strong level"
in Table 1 . (FID = 3.41)

Figure 9: Uncurated samples from CIFAR-10 32×32.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

(a) Baseline (i.e., w/o CORE) (FID = 17.99)

(b) The generative model after R2G (i.e., w/ CORE), corresponds to the "moderate level"
in Table 1 . (FID = 12.29)

Figure 10: Uncurated samples from Tiny-ImageNet 64×64.
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