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Integrating Content-Semantics-World Knowledge to Detect
Stress from Videos
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ABSTRACT
Stress has rapidly emerged as a significant public health concern in
the contemporary society, necessitating prompt identification and ef-
fective intervention strategies. Video-based stress detection offers a
non-invasive, low-cost, and mass-reaching approach for identifying
stress. In this paper, we propose a three-level content-semantic-
world knowledge framework, addressing three particular issues for
video-based stress detection. (1) How to abstract and encode video
semantics with frame contents into visual representation? (2) How
to leverage general-purpose LMMs to augment task-specific visual
representation? (3) To what extent could general-purpose LMMs con-
tribute to video-based stress detection? We design a Slow-Emotion-
Fast-Action scheme to encode fast temporal changes of body actions
revealed from video frames, as well as subtle details of emotions per
video segment, into visual representation. We augment task-specific
visual representation with linguistic facial expression descriptions
by prompting general-purpose Large Multimodal Models (LMMs).
A knowledge retriever is designed to evaluate and select the most
proper deliverable of LMMs. Experimental results on two video-
based stress detection datasets show that 1) our proposed three-
level framework can achieve 90.89% F1-score in UVSD dataset
and 80.79% F1-score, outperforming state-of-the-art; 2) leveraging
LMMs helps to improve the F1-score by 2.25% in UVSD and 3.55%
in RSL, compared to using the traditional Facial Action Coding
System; 3) purely relying on general-purpose LMMs is insufficient
with 88.73% F1-score in UVSD dataset and 77.48% F1-score in
RSL dataset, demonstrating the necessity to combine task-specific
dedicated solutions with world knowledge given by LMMs.

CCS CONCEPTS
• Information systems → Multimedia information systems; • Ap-
plied computing → Psychology.

KEYWORDS
Stress detection, Video, Large multimodal models

1 INTRODUCTION
In today’s rapidly advancing society, people are experiencing un-
precedented levels of stress, stemming from both traditional factors
(such as further education, examination, marriage, etc.), as well as
newly emerging stressors (such as the outbreak of the coronavirus
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epidemic and the displacement of jobs by artificial intelligence). Too
much stress, if left unchecked, can have profound physical and psy-
chological ramifications, exacerbating existing issues and ensnaring
life in a harmful cycle [3, 15]. Recognizing the critical importance
of early intervention, detection of stress emerges as a paramount
concern [41].

Traditional ways rely on well-defined psychological question-
naires (e.g., Cohen’s Perceived Stress Scale (PSS-14) [4] and Social
Readjustment Rating Scale (SRRS) [17]), various physiological
signals (e.g., blood pressure, heart rate, electromyography, electroen-
cephalogram, etc. [11, 32]), and/or social media behaviors [8, 25, 40–
42] for stress detection. Recently, with the wide deployment of
surveillance videos, as well as the rapid development of machine
learning techniques, detecting stress from videos based on hand-
crafted and/or deeply learned features has attracted research at-
tention due to its non-invasiveness, low-cost, and mass-reaching
advantages [13, 16, 19, 20, 22, 47, 48].

In this study, we are interested in examining the role of world
knowledge delivered by Large Multimodal Models (LMMs) which
made significant progress very recently in video-based stress detec-
tion. To this end, we build a three-level (content-semantic-world
knowledge) framework, enclosing three particular questions to be
addressed towards stress detection.

𝑄1: How to abstract and encode video semantics with frame
contents into visual representation?

𝑄2: How to leverage general-purpose LMMs to aid task-specific
visual representation, and strengthen video-based stress detection?

𝑄3: To what extent could general-purpose LMMs contribute to
video-based stress detection?

According to the psychological studies, stress is a feeling of emo-
tional strain and pressure [30]. Fostering comprehensive understand-
ing of stress manifestations (emotion and emotion dynamics) could
inevitably enhance the stress detection capability due to the high
correlation of stressful states and emotions. Hereby, to address 𝑄1,
we attempt to sense emotion (of seven possible categories - joy, love,
surprised, angry, sorrow, anxiety, and hate) from each video frame to
grasp the most prominent emotion per video segment. Specifically,
as human emotions exhibit a slower pace of shift than their body
actions [24, 31], we draw inspirations from the powerful SlowFast
mechanism [12], and design a Slow-Emotion-Fast-Action scheme to
encode segment-wise emotion with fast temporal changes of body
actions as reflected from each frame in the video segment into visual
representation.

Furthermore, as emotions evoke specific patterns of facial muscle
actions, but what is expressed by the muscle movements cannot be
fully encapsulated by the emotions [2], we augment the obtained
visual representation with linguistic facial expression descriptions
delivered by general-purpose pre-trained Large Multimodal Model
(LMMs). Considering that LMMs tend to hallucinate, and may gen-
erate contents unfaithful to the specific requirement [49], we develop

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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a knowledge retriever to evaluate multiple generations of facial ex-
pression descriptions from LMMs based on original face images,
and then select the best generation as the final facial expression
description to address 𝑄2.

In response to 𝑄3, we evaluate the performance of the proposed
three-level stress detection framework on two stress detection datasets.
The experimental results show that 1) our method can achieve strong
performance with 90.89% F1-score in UVSD dataset and 80.79%
F1-score in RSL dataset; 2) leveraging LMMs enables to improve
the detection by 2.25% F1-score in UVSD and 3.55% F1-score in
RSL, compared to using the traditional Facial Action Coding Sys-
tem (FACS) [10] which decomposes facial expressions into actions
appearing on different facial parts, named Action Units (AUs) [23].
3) purely relying on general-purpose LMMs is insufficient with in
88.73% F1-score in 77.48% UVSD and F1-score in RSL, demon-
strating the necessity to combine task-specific dedicate solutions
with world knowledge given by LMMs.

The contributions of the paper can be summarized as follows.

• We present a three-level framework, unifying frame-wise
video content, video segment-wise emotions, and world knowl-
edge about facial expressions for video-based stress detection.

• We design a Slow-Emotion-Fast-Action scheme to encode
fast temporal changes of body actions revealed from video
frames, as well as subtle details of emotions per video seg-
ment, into visual representation.

• We explore the use of world knowledge by prompting general-
purpose Large Multimodal Models (LMMs) to augment task-
specific visual representation with linguistic facial expression
descriptions. A knowledge retriever is particularly designed
to evaluate and select the most proper deliverable of LMMs.

2 RELATED WORK
2.1 Video-based Stress Detection by Applying

Deep Learning Methods
Deep learning methods have achieved impressive results in various
video-related tasks. There have been early efforts in video-based
stress detection tasks. Jeon et al. [20] proposed a method for stress de-
tection combining spatial and temporal attention. Its core idea is that
the two attention mechanisms enable the model to focus on frames
highly correlated with stress and the regions on a single frame that
are highly correlated with stress. Gao et al. [13], Zhang et al. [48]
correlated emotion with stress detection, and concluded that stress
is sensitive to anger, fear and sadness. In this light, they proposed
to classify a video as stressful when the percentage of expressions
related to negative emotions in the video surpass a threshold. Further-
more, Zhang et al. [47] combined the dynamics of action with emo-
tion for stress detection, introducing a two-leveled stress detection
network named TSDNET. They utilized facial emotion recognition
to obtain the most expressive and most expressionless facial im-
ages in the video to generate emotions representations, and obtained
action representations by computing optical flow between the first
and the last video frame. Despite the success in integrating action
representations with emotion representations for stress detection, hu-
man action and stress-related emotion tend to exhibit different pace
of shifts [24, 31]. In this light, we model action and emotion with

lens of different scales. Specifically, we propose Slow-Emotion-Fast-
Action with a temporally varying dual-stream structure, in which
dynamics of actions and emotions are encoded with a different pace.
Meanwhile, in prior psychological studies, facial expressions can be
decomposed into a group of units, in which certain co-occurrence
of units can reveal states of inner feeling [5]. We thus delve into the
facial expressions alongside action and emotion representations.

2.2 Large Multimodal Models
Large Multimodal Models (LMMs) represent the cutting-edge ad-
vances in artificial intelligence, designed to comprehend a diverse
range of modalities, including text, images, audio, and video. LMMs
are extensively pre-trained on large, diverse datasets that contain
a variety of genres. Such pre-training process helps the model en-
code a wealth of concepts and cross-modal relationships, which
lays the foundation for the downstream tasks. LMMs represented
by GPT-4V have demonstrated stunning performance in image cap-
tioning and visual question answering [38]. Very recently, Wu et al.
[43], Yang et al. [46] have successfully employed GPT-4V to tackle
visual understanding, language comprehension, and visual puzzle
solving tasks. In this work, we delve into the capability of LMMs
to recognize facial expressions incorporating psychological FACS
knowledge, which enhances the representation of stress.

3 METHODS
3.1 Overall Framework
Given a video𝑉 of a subject, we aim to detect whether the subject is
stressed or not. To capture the body actions of the subject, we fol-
low Feichtenhofer et al. [12] to set a sampling rate 1/𝜏 that uniformly
samples one frame out of 𝜏 frames from video 𝑉 , obtaining a frame
sequence named “Action Stream” denoted as 𝑆𝑎 = {𝐴1, 𝐴2, · · · , 𝐴𝑛},
in which 𝑛 is the number of frames sampled. As the shift of human
emotions exhibits a slower pace than actions, we set a slower sam-
pling rate 1/𝑚𝜏 to capture the details of emotions, in which 𝑚 is
the sampling rate ratio. Specifically, for 𝑆𝑎 of 𝑛 frames, we analyze
the subject’s emotion based on a segment of 𝑚 (𝑚 << 𝑛) consec-
utive frames at each time, thus obtaining a set of ⌊𝑛/𝑚⌋ emotion
features of this subject. For each segment of 𝑚 frames, we design
an emotion extraction module to obtain the representative emotion
of the subject and the most emotional face image. After gathering
emotion features from ⌊𝑛/𝑚⌋ segments, we acquire a stream of sub-
jects’ emotions (referred to as “Emotion Stream”) and a stream of
the most emotional facial images (referred to as “Face Stream”), de-
noted as 𝑆𝑒 = {𝐸1, 𝐸2, · · · , 𝐸⌊𝑛/𝑚⌋ } and 𝑆𝑓 = {𝐹1, 𝐹2, · · · , 𝐹⌊𝑛/𝑚⌋ }
respectively.

To construct visual representations for each video, we introduce
the Slowfast mechanism to model the “Face Stream” and “Action
Stream” jointly. Meanwhile, to enrich facial features while dealing
with subtle differences in facial expressions, we introduce textual-
ized facial description features by employing a large multimodal
model (i.e., GPT-4V [1]) and pre-trained facial analysis model (i.e.,
SCN [39]) based on the “Face Stream”. A sequence-level encoder
then generates linguistic representation of the video after acquir-
ing segment-level linguistic facial description features. Finally, we
concatenate the visual and linguistic representation and employ a
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Figure 1: Overall Framework of our three-level content-semantic-world knowledge framework. In the lower right part, 𝑛 and 𝑛
𝑚

represent the length of sampled frames in fast pathway and slow pathway. 𝐻 and𝑊 represent the height and width of each frame, and
𝐶 represents the number of channels.

fully-connected stress predictor to detect the stress of the subject.
The overall framework is illustrated in Figure 1.

3.2 Emotion Extraction for Video Segment
For each segment of𝑚 consecutive frames from video𝑉 , denoted as
𝑆
𝑖,𝑖+𝑚
𝑎 = {𝐴𝑖 , 𝐴𝑖+1, · · · , 𝐴𝑖+𝑚}, we employ a selection process that

extracts the most representative emotion 𝐸, and the most emotional
face image 𝐹 , details shown below.
Image-level Emotion Detection. We adopt a facial recognition
algorithm MTCNN [44] to localize the facial regions of each frame
to obtain the collection of face images, denoted as

𝐹𝑎𝑐𝑒𝑖,𝑖+𝑚 = {𝑓 𝑎𝑐𝑒𝑖 , 𝑓 𝑎𝑐𝑒𝑖+1, · · · , 𝑓 𝑎𝑐𝑒𝑖+𝑚}.

Then we employ a Self-Cure Network (SCN) [39] to recognize
the emotion of each face image with the form of seven categorical
emotions (i.e., “angry”, “disgust”, “fear”, “happy”, “sad”,“surprise”,
“neutral”), and obtain the sequence of emotions, denoted as

𝐸𝑚𝑜𝑡𝑖𝑜𝑛𝑖,𝑖+𝑚 = {𝑒𝑚𝑜𝑖 (𝑝𝑖 ), 𝑒𝑚𝑜𝑖+1 (𝑝𝑖+1), · · · , 𝑒𝑚𝑜𝑖+𝑚 (𝑝𝑖+𝑚)},

where 𝑝𝑘 (𝑘 = 𝑖, · · · , 𝑖 +𝑚) ∈ [0, 1] is the confidence of the recog-
nized emotion 𝑒𝑚𝑜𝑖 .
Most Representative Emotion Selection. In order to minimize the
noise introduced by the emotion recognition model’s misjudgment of
individual frames, we select the emotion that appears most frequently
in the 𝐸𝑚𝑜𝑡𝑖𝑜𝑛𝑖,𝑖+𝑚 as the most representative emotion in this phase.
It can be denoted as

𝐸 = 𝑀𝑂𝐷𝐸 (𝐸𝑚𝑜𝑡𝑖𝑜𝑛𝑖,𝑖+𝑚),

where 𝑀𝑂𝐷𝐸 is the mode of the set.
Most Emotional Face Image. After obtaining the most represen-
tative expression 𝐸, we query in the 𝐸𝑚𝑜𝑡𝑖𝑜𝑛 for the elements with
𝑒𝑚𝑜 value 𝐸, next we select the element with the highest 𝑝 value,
and define the face image corresponding to this element in 𝐹𝑎𝑐𝑒 as
the most emotional face image.

Here is an example with a segment of 6 face images, the sequence
of emotion and the sequence of confidence obtained by SCN are
𝐸𝑚𝑜𝑡𝑖𝑜𝑛 = { “happy”(0.8982),“happy” (0.8803), “neutral”(0.7655),
“surprise”(0.8763), “happy”(0.9866), “happy”(0.9951)}. First, we
obtain the most representative emotion 𝐸 =“happy” by calculating
the mode of the 𝐸𝑚𝑜𝑡𝑖𝑜𝑛, and then we select the element from all
"happy" elements with the highest confidence, so the last face image
recognized as “happy” with confidence 0.9951 is selected as the
most emotional face image.

3.3 Visual Encoding with
Slow-Emotion-Fast-Action

As the shift of actions and emotions exhibits different paces, we pro-
pose Slow-Emotion-Fast-Action framework inspired by [12], which
learns the visual representation of a video through a temporally vary-
ing dual-stream structure. Specifically, the slow pathway has larger
channel sizes and lower frame rate to capture subtle details of emo-
tions, while the fast pathway has high temporal resolution to capture
fast body motions. Therefore, we adopt 𝑆𝑓 as the input of the slow
pathway, and the larger size of channels can obtain more semantic
information for each face image. On the other hand, we take 𝑆𝑎 as



349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

ACM MM, 2024, Melbourne, Australia Anonymous Authors

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Prompt:

Facial Description

Describe the facial movements including Eyes, Nose, Lid, Lips, Lip Corner, 

Neck, Jaw, Cheek, Chin, Mouth, Dimple, Tongue and Eyebrow of the 

character in the photo.

Figure 2: Our prompt that guides the LMM to generate facial ex-
pression descriptions underlining significant face regions based
on FACS knowledge.

the input of fast pathway to capture the change of movement with
higher temporal resolution. The visual representations of video 𝑉

are computed as follows:

𝑅𝑉 = 𝑆𝑙𝑜𝑤 𝑓 𝑎𝑠𝑡 (𝑆𝑓 , 𝑆𝑎).

The details of the slow pathway and the fast pathway are shown in
Table 2.

3.4 Linguistic Encoding via Knowledge from
LMMs

We further exploit knowledge from large multimodal models (LMMs)
to enrich semantics conveyed in “Emotion Stream” 𝑆𝑒 = {𝐸1, 𝐸2,
· · · , 𝐸𝑛/𝑚} and “Face Stream” 𝑆𝑓 = {𝐹1, 𝐹2, · · · , 𝐹𝑛/𝑚}. For the 𝑖-
th segment, the most representative 𝐸𝑖 is combined with the most
emotional face image 𝐹𝑖 and fed into the segment-level encoder to
acquire linguistic representation. Given ⌊𝑛/𝑚⌋ segment-level lin-
guistic representations, sequence-level linguistic representation of
the whole video can be generated via the sequence-level encoder.
Facial Description Generation and Selection. Large multimodal
models (LMMs) have demonstrated the capacity to recognize fine-
grained visual features [26, 50]. For face image 𝐹𝑖 , we employ a
LMM (i.e., GPT-4V) to recognize facial expressions with an in-
struction based on Facial Action Coding System (FACS). FACS is a
widely applied manual extraction method for facial feature extrac-
tion, which divides facial expressions into 46 primary units, focusing
on 9 regions (i.e., eyes, nose, lid, lips, lip corner, neck, jaw, cheek
and eyebrow). We thus instruct the LMM to focus on these 9 regions
and describe corresponding movements, the instruction and result
shown in Figure 2.

Unfortunately, the outputs of LMM can be diverse, including
unfaithful content that does not meet the demand due to hallu-
cination [28, 49]. Therefore, for each face image 𝐹𝑖 we sample
𝑘 times to obtain 𝑘 different descriptions from the LMMs, de-
noted as {𝑑1, · · · , 𝑑𝑘 }. We design a FACS knowledge retriever 𝑅
that selects the best output among these descriptions, which is a
vision-language model consisting a linguisticencoder T and im-
age encoder I. For each LMM description 𝑑 𝑗 it generates a score:
𝑅(𝑑 𝑗 , 𝐹𝑖 ) = sim(T (𝑑 𝑗 ),I(𝐹𝑖 )), where sim(·, ·) denotes cosine simi-
larity, T (𝑑 𝑗 ) and I(𝐹𝑖 ) denotes linguistic representation of 𝑑 𝑗 and
visual representation of 𝐹𝑖 encoded by T and I. As a result, the final
facial description for the 𝑖-th segment is selected as:

𝐷𝑖 = argmax𝑑 𝑗 ∈{𝑑1,· · · ,𝑑𝑘 }𝑅(𝑑 𝑗 , 𝐹𝑖 ) .

To help the retriever 𝑅 effectively distinguish helpful LMM an-
swer from unfaithful ones, we train 𝑅 before stress detection learning.
We build a face image set from the training samples of stress detec-
tion, for each face image 𝐹𝑖 , we employ expert to annotate facial
action units based on FACS knowledge, and transform them into
natural language descriptions as ground truth 𝑑 . We compute linguis-
ticsimilarity between 𝑑 and 𝑑1, · · · , 𝑑𝑘 , which are 𝑘 answers from
LMMs to describe facial expressions of 𝐹𝑖 . We label the answer
with highest similarity with 𝑑 as positive and 𝑘′ answers with lowest
similarity as negative, denoted as 𝑑+ and 𝑑−1 , · · · , 𝑑

−
𝑘 ′ respectively.

We can now define the typical contrastive learning objective and
minimize for each face image the negative log likelihood of the
positive example:

L(𝐹𝑖 , 𝑑+, 𝑑−1 , . . . , 𝑑
−
𝑘 ′ )

= − log
𝑒sim(I (𝐹𝑖 ),T(𝑑+ ) )

𝑒sim(I (𝐹𝑖 ),T(𝑑+ ) ) +∑𝑘 ′
𝑗=1 𝑒

sim(I (𝐹𝑖 ),T(𝑑−
𝑗
) ) .

(1)

Segment-level Encoding. After retrieving the best facial expression
description with 𝑅, we construct a manual template to integrate
the emotion 𝐸𝑖 with facial expressions generated by LMMs in a
natural language form, which can be fed into the BERT encoder. The
template is shown in Table 1.

Table 1: Manual Template to integrate emotion 𝐸𝑖 with facial
expressions 𝐷𝑖 . [CLS] and [SEP] are special tokens of BERT
for representing sentence beginnings and segmenting sentences,
respectively.

Manual Template
[CLS] ⟨𝐷𝑖 ⟩ [SEP] This subject is in a ⟨𝐸𝑖 ⟩ emotion.

We denote the above text integrating 𝐷𝑖 and 𝐸𝑖 as 𝑇𝑖 . We then
feed 𝑇𝑖 into a trainable BERT [7] encoder to obtain segment-level
representations 𝑥𝑖 .
Video-level linguistic representation. Given the linguistic represen-
tation of segment-level facial description 𝑥𝑖 , we feed the representa-
tion of all phases 𝑋 = {𝑥1, 𝑥2, · · · , 𝑥 ⌊𝑛/𝑚⌋ } into a Long Short-Term
Memory network (LSTM) to acquire the hidden states in the se-
quence:

ℎ𝑡 = 𝐿𝑆𝑇𝑀 (𝑥𝑡 , ℎ𝑡−1),

where ℎ𝑡 and ℎ𝑡−1 denote the hidden state vector of LSTM at
time 𝑡 and 𝑡 − 1. In addition, we aggregate the hidden states from
all phases via a phase attention layer to obtain the attention vector 𝛼
that assign different weights to each phase.

𝛼 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (ℎ̃ ×𝑤𝑎 + 𝑏𝑎),

where ℎ̃={ℎ1, ℎ2, · · · , ℎ𝑛/𝑚} is the aggregation of the hidden states
from all phases, 𝑤𝑎 and 𝑏𝑎 are trainable parameters of the phase
attention layer. Finally, we obtain the video-level linguistic represen-
tation 𝑅𝑇 of the video:

𝑅𝑇 = (𝛼𝑇 × ℎ̃) ×𝑤𝑡 + 𝑏𝑡 ,

where 𝑤𝑡 and 𝑏𝑡 are trainable parameters.
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Table 2: Architecture of the Slowfast with ResNet-18 backbone.
Strides are denoted as {𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 𝑠𝑡𝑟𝑖𝑑𝑒, 𝑠𝑝𝑎𝑡𝑖𝑎𝑙 𝑠𝑡𝑟𝑖𝑑𝑒2}, the di-
mensions of kernels are denoted by {𝑇 × 𝑆2,𝐶} for temporal,
spatial and channel sizes. The input of slow pathway is Face
Stream 𝑆𝑓 , the input of fast pathway is Action Stream 𝑆𝑎 .

Stage Slow pathway Fast pathway Output sizes𝑇×𝑆2

raw input Face Stream 𝑆𝑓 Action Stream 𝑆𝑎
Slow : 8×2242

Fast : 64×2242

conv1
1×72, 64 5×72, 8 Slow : 8×1122

Fast : 64×1122stride 1, 22 stride 1, 22

pool1
1×32 max 1×32 max Slow : 8×562

Fast : 64×562stride 1, 22 stride 1, 22

res2

[
1×32, 64
1×32, 64

]
×2

[
3×32, 64
1×32, 64

]
×2

Slow : 8×562

Fast : 64×562

res3

[
1×32, 128
1×32, 128

]
×2

[
3×32, 64
1×32, 64

]
×2

Slow : 8×282

Fast : 64×282

res4

[
3×32, 256
1×32, 256

]
×2

[
3×32, 256
1×32, 256

]
×2

Slow : 8×142

Fast : 64×142

res5

[
3×32, 512
1×32, 512

]
×2

[
3×32, 512
1×32, 512

]
×2

Slow : 8×72

Fast : 64×72

3.5 Stress Detection
After we acquire the visual and linguistic representations of the
video, we fuse the two representations and classify the stress of the
subjects in the video. We merge visual representation 𝑅𝑉 and global
linguistic representation 𝑅𝑇 , and then apply a fully connected stress
predictor 𝑝 to compute whether the subject is under stress:

𝑦 = Sigmoid(𝑝 (𝑅𝑉 ⊕ 𝑅𝑇 )) .

Given stress label 𝑦, we optimize the detection framework with the
following cross entropy loss:

L(𝑦,𝑦) = −[𝑦 log𝑦 + (1 − 𝑦) log(1 − 𝑦)] . (2)

4 EXPERIMENT
4.1 Datasets.
4.1.1 UVSD Dataset. The UVSD dataset [47] comprises 490
videos, each approximately two minutes in duration, featuring 112
college student subjects (58 males and 64 famales aged 18-26).
Subjects were asked to watch videos while being recorded by a
video camera. Videos were labeled as “unstressed” when subjects
were asked to watch videos of scenery, food production, and variety
show episodes, and “stressed” when subjects were asked to watch
knowledge-intensive videos and take a question and answer test
after they finished watching. The dataset contains a total number of
2,092 video samples, including 920 “stressed” samples, and 1,172
“unstressed” samples.

4.1.2 Reality Show about Lies (RSL) Dataset. Lying is a com-
plex psychological behavior intricately tied to cognitive processes
and mental activities [6]. For most people without special training,
lying induces psychological stress which can be reflected in facial
expressions, sounds and body movements [34]. Drawing inspiration
from this, we curated a video stress dataset based on a reality TV
program named “Odd Man Out”. In an episode titled "6 Introverts
vs 1 Secret Extrovert," for instance, an extrovert impersonates an

Table 3: Dataset Statistics of UVSD and RSL.

UVSD RSL
#Clips Avg. Duration #Clips Avg. Duration

Stressed 920 15.00s 132 5.89s
Unstressed 1172 15.00s 313 6.53s

Total 2092 15.00s 445 6.34s

introvert by disguising his or her identity as an extrovert as much
as possible in conversations and Q&A sessions with six introverts.
Throughout each episode, one or more individuals assume deceptive
roles, trying to seamlessly blend into specified categories relevant
to the episode’s theme. The show incorporates multiple voting ses-
sions, with the participant garnering the most votes being eliminated.
Surviving until the end, the liar(s) stand to claim the prize money,
motivating heightened engagement throughout the program. Encoun-
tering constant scrutiny, the liar(s) undergo persistent stress from
beginning to the end. All video frames featuring the liar(s) were
labeled as “stressed” except for the end-of-show statement. Con-
versely, the end-of-show statement by the liar(s) and all footage of
other participants were labeled as “unstressed”.

To construct the dataset, we selected 30 truth-tellers and 30 liars
from a total of 195 participants over 28 sessions, maintaining a one-
to-one male-to-female ratio. All video frames were refined to depict
only one participant per frame, with clear visibility of their face and
upper body. This meticulous process yielded a dataset comprising
706 video clips, further detailed in Table 3 as the Reality Show about
Lies (RSL) Dataset.

4.2 Experiment Settings
For all experiments, we perform 10-fold cross validation. The origi-
nal format of image frames from UVSD and RSL dataset is 640×480
(ℎ𝑒𝑖𝑔ℎ𝑡 ×𝑤𝑖𝑑𝑡ℎ). We resize each original frame into 224 × 224, and
feed them into the model. The format of each face image obtained
by the MTCNN is also 224 × 224. We leverage Resnet-18 as the
backbone network structure in visual representations with Slow-
Emotion-Fast Action. we set the sampling rate 1/𝜏 to 1/8 follow-
ing Feichtenhofer et al. [12], and the sampling ratio 𝑚 to 8. More
details of the slow pathway and fast pathway are shown in Table 2.
We adopt gpt-4-vision-preview from the GPT-4 family for facial
description, and we also limit the token number of model output
within 150. We employ CLIP-B/16 (CLIP-B) [33] as the knowledge
retriever 𝑅. Specifically, it consists of a ViT-B/16 Transformer as the
image encoder and a masked self-attention Transformer [36] as the
text encoder. To collect training samples for retriever 𝑅, we annotate
AU labels with 300 face images, which are randomly selected from
150 stressed video samples and 150 unstressed video samples of
UVSD dataset. The maximum sentence length of the information
integration is set to 200, including the [CLS] token at the beginning
of the sentence and the [SEP] token prior to the facial description.
To optimize the knowledge retriever with loss term Eq. 1, we set the
learning rate to 3e-5 and the batch size to 32. We set the number
of negative samples 𝑘′ to 3. To optimize the detection model with
loss term Eq. 2, we set the batch size to 16 and learning rate to 3e-3.
Adam [21] is adopted as the optimizer.
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Table 4: Stress detection performance of our method and all competitive baselines over UVSD and RSL dataset.

Categories Method
UVSD RSL

Acc. Prec. Rec. F1. Acc. Prec. Rec. F1.

Action Units based
Stress Detection

Dependent Model [37] 70.46% 70.28% 71.39% 71.08% 64.04% 58.90% 59.76% 59.33%
FDASSNN [14] 74.11% 73.71% 74.00% 74.06% 67.42% 62.26% 63.26% 62.75%

Frame-wise Emotion
Detection and Aggregation

Gao et al. [13] 78.38% 65.00% 63.83% 64.40% 63.30% 52.81% 62.42% 52.61%
Zhang et al. [48] 81.58% 67.38% 77.30% 72.00% 65.49% 56.77% 56.21% 56.49%

Video-wise
Stress Detection

Jeon et al. [20] 82.71% 69.61% 77.30% 73.26% 79.53% 74.54% 64.72% 66.78%
TSDNet [47] 85.42% 85.28% 85.32% 85.53% 81.76% 80.37% 72.77% 74.99%
GPT-4V [1] 75.62% 75.21% 75.72% 75.31% 69.21% 64.37% 65.63% 64.99%

Ours 91.25% 92.18% 90.24% 90.89% 86.50% 84.81% 78.40% 80.79%

4.3 Baseline Methods
We categorize the currently competitive video-based stress detection
methods into three groups, and then compare our method with repre-
sentative methods from each category.

(1) Action units-based stress detection
Dependent Model. Viegas et al. [37] propose to extract 17 dif-

ferent action units from the subject’s face image, and then employ
different simple classifiers (i.e. Random Forest, LDA, Gaussian
Naive Bayes and Decision Tree) to recognize stress based on the
action units. We implement this baseline using the best performing
Gaussian Naive Bayes classifier.

FDASSNN. Gavrilescu and Vizireanu [14] employ an Active
Appearance Model (AAM) [9] to detect intensities of different action
units, and a multi-layer perceptron to transform action unit intensities
into stress detection result.
(2) Frame-wise Emotion Detection and Aggregation

Gao et al. Gao et al. [13] extract 49 feature points of each face
image from a video and apply SVM to classify each frame as positive
or negative emotions. When the percentage of frames with negative
emotions in a video exceeded a threshold, the video can be classified
as stressed.

Zhang et al. Zhang et al. [48] leverage a Convolutional Neural
Network (CNN) to detect emotion in each video frame. If two-thirds
of the frames show emotions of anger, sadness, or fear, the video
can be detected as having stress.
(3) Video-wise Stress Detection.

Jeon et al. Jeon et al. [20] incorporate the features of each video
frame encoded by ResNet-18 and the features of facial landmarks
encoded by a Facial Landmark Feature Network to form frame-level
representations. A temporal attention module further incorporates
frame-level representations of each video into stress detection.

TSDNet. Zhang et al. [47] first obtain face- and action-level
representations separately, and then fuse the results through a stream-
weighted integrator with local and global attention for video stress
detection.

GPT-4V. GPT-4-vision [1] (GPT-4V) is a state-of-the-art large
multimodal model. GPT-4V demonstrates impressive vision under-
standing ability, yet it does not possess the ability to accept video

Table 5: Performance of our method using different modalities.

Dataset Modality Acc. Prec. Rec. F1.

UVSD
only vision 87.81% 87.79% 87.23% 87.47%
only linguistic 75.63% 75.43% 75.42% 75.44%
Ours 91.25% 92.18% 90.24% 90.89%

RSL
only vision 85.52% 82.21% 73.81% 76.68%
only linguistic 68.75% 68.89% 69.07% 68.71%
Ours 86.50% 84.81% 78.40% 80.79%

data directly. To implement video-based stress detection with GPT-
4V, we take 10 frames evenly from each sample and allow the GPT-
4V to determine the stress labels of the videos.

4.4 Performance
As shown in Table 4, our framework outperforms others on the
UVSD dataset, achieving the highest accuracy (91.25%) and F1-
score (90.89%). This represents a substantial improvement of over
4.83% and 5.36% compared to TSDNet [47], the best video-wise
stress detection baseline. Additionally, compared to the leading
frame-wise emotion detection and aggregation method by Zhang et
al. [48], our method demonstrates improvements of over 9.77% and
18.8%. When contrasted with machine learning-based methods like
Dependent Model [37] and FDASSNN [14] that rely on action units,
the enhancements our method brings are even more pronounced. In
the RSL dataset, our framework also achieves the best performance,
with 86.50% accuracy and 80.79% precision, outperforming the best
baselines such as TSDNet [47] by 4.74% and 5.80%, respectively.
These all results confirm the effectiveness of our framework in
incorporating the Slow-Emotion-Fast-Action scheme, FACS, and
LMM for stress detection.

4.5 Study of Our Method
4.5.1 Effectiveness of Visual Encoding and Linguistic Encod-
ing. To evaluate the impact of different modalities, we conducted a
modality ablation study with ablation variant “only vision” that only
uses visual representations for stress detection, and “only linguistic”
that only uses linguistic representations for stress detection. The



697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Integrating Content-Semantics-World Knowledge to Detect Stress from Videos ACM MM, 2024, Melbourne, Australia

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

GPT-4V

DeepFace

SCN
Angry Angry Angry Angry Sad Sad Neutral Neutral

Angry Angry Angry Angry Neutral

Neutral Neutral

Angry AngryNeutral

NeutralNeutralNeutralNeutral Neutral Neutral

Figure 3: Case study on noise introduced by emotion classifiers.

Table 6: Comparison of the effectiveness of facial description
representation using the large model and FACS.

Dataset Method Acc. Prec. Rec. F1.

UVSD
AUs 88.75% 88.71% 88.63% 88.64%
LMMs (Ours) 91.25% 92.18% 90.24% 90.89%

RSL
AUs 86.25% 82.49% 75.36% 77.24%
LMMs (Ours) 86.50% 84.81% 78.40% 80.79%

results are presented in Table 5. We observed a performance decline
of 3.42% and 4.11%, when excluding the text modality. Similarly,
excluding the vision modality led to a decline of 15.4% and 12.0%.
These results highlight the greater contribution of the visual modality
to our model compared to the linguistic modality.

4.5.2 The effectiveness of leveraging LMMs to generate fa-
cial description. We validate the effectiveness of our facial descrip-
tion generation by prompting LMMs, compared with directly using
Action Units (AUs) as facial description. We design ablation variant
“AUs” which replaces our linguistic representation with AU-based
representation by detecting AUs on each frame and transforming
the AU signals into a video-level representation with a LSTM en-
coder [29]. As shown in Table 6, using the rich linguistic information
obtained from the LMMs for facial description provided stronger
representation information than action units with only discrete AU
signals in the stress detection task, this mechanism enhances perfor-
mance by 2.25% and 3.55% on the respective datasets.

4.5.3 Effectiveness of Slow-Emotion-Fast-Action. To eval-
uate the rationality of the Slow-Emotion-Fast-Action scheme, we
conducted experiments focusing on the simultaneous consideration
of emotion and action at the same sampling frequency. We design
ablation variants with pure slow or fast sampling rates. Specifically,
1. “SE-SA” represents temporal invariant dual-stream structure with
slowpath, and 2. “FE-FA” represents temporal invariant dual-stream
structure with fastpath. The results are presented in Table 7. When
both emotion and action use a slow sampling frequency, the per-
formance levels are 80.53% and 68.32%, respectively. Conversely,
using a fast sampling frequency for both yields performance levels
of 86.56% and 76.68%. However, employing the Slow-Emotion-
Fast-Action scheme leads to the highest performance of 90.89%
and 80.79%, underscoring the rationale and effectiveness of this
approach.

Table 7: Performance of our method and ablation variants with
different visual encoding.

Dataset Method Acc. Prec. Rec. F1.

UVSD
SE-SA 80.63% 80.67% 81.32% 80.53%
FE-FA 87.19% 88.29% 85.86% 86.56%

SE-FA (Ours) 91.25% 92.18% 90.24% 90.89%

RSL
SE-SA 81.50% 81.26% 65.66% 68.32%
FE-FA 85.50% 82.20% 73.81% 76.68%

SE-FA (Ours) 86.50% 84.81% 78.40% 80.79%

Table 8: Performance of our method and ablation variants with
different linguistic encoding.

Dataset Method Acc. Prec. Rec. F1.

UVSD
w/o FACS 89.06% 89.19% 88.42% 88.73%
gen. only 89.68% 89.76% 89.08% 89.36%
Ours 91.25% 92.18% 90.24% 90.89%

RSL
w/o FACS 84.68% 83.26% 74.45% 77.48%
gen. only 85.44% 83.79% 76.48% 79.05%
Ours 86.50% 84.81% 78.40% 80.79%

4.5.4 Effectiveness of FACS knowledge. To evaluate the im-
pact of FACS knowledge in our method, which guides the LMM to
generate facial descriptions of crucial facial regions, and develops
a knowledge retriever selecting most proper deliverable of LMMs,
we design the following ablation variants: 1. “w/o FACS” guides
the LMM to generate facial descriptions with a simple prompt: “De-
scribe the facial movements of the character in the photo”, and
removes the knowledge retriever, using a random generation as final
description. 2. “gen. only” only removes the knowledge retriever.
As depicted in Table 8, when FACS knowledge is not used (“w/o
FACS”), the F1-score 88.73% and 77.48%. Conversely, when only
using FACS knowledge for prompting without the knowledge re-
triever (“gen. only”), performance increased to 89.36% and 79.05%.
Furthermore, incorporating the knowledge retriever results in a per-
formance boost to 90.89% and 80.79%. These results demonstrate
the significance of our scheme that incorporates FACS knowledge to
better generate linguistic facial expression descriptions with LMMs.
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Figure 4: Comparison of performance with different ratio of
action and emotion sampling (𝑚).

4.6 Further Analysis of Dynamic Emotion
Modeling

Our proposed method is based on the phenomenon that shifts of
human emotions have a slower pace than actions, thus we set dif-
ferent sampling frequencies for emotions and actions. A sampling
rate for emotions that is too low can result in ignoring the emotions
that actually occur, and a sampling frequency that is too high can
suffer from noise interference due to problems with the accuracy
of emotion classifiers. As is illustrated in Figure 3, we enumerate
the outcome of SCN, one of the most effective emotion recognition
models, Deepface [35], the most commonly used facial emotion
recognition tool, and GPT-4V for emotion recognition on consec-
utive video frames. In addition to the significant lack of ability of
GPT-4V in emotion recognition [27], the other two dedicated models
are unable to maintain consistent results in frame-by-frame emotion
detection with variations and their subtleties.

We empirically verify the impact of different sampling ratios
on the experimental results. As shown in Figure 4, the best result
of 90.89% is obtained when the ratio reach to 23 on the UNVD
dataset and 81.83% at 24 on the RSL dataset. Before obtaining
the best result, the model’s performance on both datasets increase
considerably with the rise of the sampling ratio, with a comparison
of the performances at a sampling ratio of 21 increasing by 9.72%
and 10.55%, respectively. Thereafter the model’s performance on
both datasets start to decrease with the growth of the sampling ratio,
decreasing by 4.33% and 5.15% when the sampling ratio reaches 26,
respectively.

4.7 Case study on Facial Description Generation
Methods

We provide a case study to analyze our prompting LMMs to gen-
erate facial descriptions and selecting the best generation based on
FACS knowledge. As shown in Table 9, the LMMs output with the
FACS-based prompt and retriever (see “with FACS Knowl.”) fully
encompasses the knowledge that the Action Units can provide, and
also provides more detailed description of the face region by region.

Table 9: Case study on facial description generation methods,
the text marked in teal is the part that agrees with the content of
the action unit representation.

Face Image Action Units

✓AU6 Cheek Raiser
✓AU7 Lid Tightener
✓AU20 Lip Stretcher
✓AU27 Mouth Stretcher
✓AU42 Slit

Facial description using Large Multimodal Models (LMMs)
w/o FACS Knowl. with FACS Knowl.

The character in the
photo is showing
a broad smile with
their eyes closed.
The smile leads
to the cheeks be-
ing 𝑟𝑎𝑖𝑠𝑒𝑑6 and a
bunching of the
skin around the eyes,
which is often associ-
ated with a genuine,
joyful smile. This fa-
cial expression typi-
cally indicates happi-
ness or amusement.

Eyes: The eyes are 𝑛𝑎𝑟𝑟𝑜𝑤𝑒𝑑 𝑎𝑛𝑑

𝑠𝑙𝑖𝑔ℎ𝑡𝑙𝑦 𝑐𝑟𝑒𝑎𝑠𝑒𝑑42 at the corners, which
is typical when a person is smiling or
laughing. Check: The cheeks are 𝑟𝑎𝑖𝑠𝑒𝑑6,
pushing up towards the eyes, which con-
tributes to the squinting appearance of
the eyes. Lid: The eyelids are partially
𝑐𝑙𝑜𝑠𝑒𝑑7, as they often are when a per-
son smiles broadly. Lips: The lips are
𝑝𝑎𝑟𝑡𝑒𝑑 𝑎𝑛𝑑 𝑠𝑡𝑟𝑒𝑡𝑐ℎ𝑒𝑑20 horizontally, re-
vealing the upper teeth in a smiling ges-
ture. Mouth: 𝑂𝑝𝑒𝑛27 in a wide smile,
showing teeth, which suggests happiness
or laughter...

5 CONCLUSION
This paper shows an effective way to integrate task-specific video-
based stress detection model with general purpose Large Multimodal
Models to achieve strong performance. Specifically, we introduce a
three-level content-semantic-world knowledge framework for video-
based stress detection. A Slow-Emotion-Fast-Action scheme is de-
signed to encode temporal changes of body actions as well as subtle
details of emotions. It explores the use of world knowledge by
prompting general-purpose large multimodal models (LMMs) to
generate linguistic facial expression descriptions. Furthermore, we
capitalize on Facial Action Coding System (FACS) knowledge to
design a prompt to instruct the LMMs and develop a knowledge
retriever to select the most proper deliverable of LMMs. The experi-
ments on two datasets show that our framework achieves state-of-art
performance.

6 LIMITATIONS
We identify one major limitation of this work is its input modality.
Specifically, our method is limited to detecting stress with video
inputs and ignores inputs in other modalities such as audio and
electroencephalogram (EEG). Such modalities provide valuable in-
formation that can be used to enhance stress detection. Fortunately,
through multi-modal pre-training models [18, 45], we can obtain
robust representations with more diverse modalities.
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