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Abstract

Exploring the in-context learning capabilities of large transformer models, this
research focuses on decision-making within reinforcement learning (RL) envi-
ronments, specifically multi-armed bandit problems. We introduce the Reward
Weighted Decision-Pretrained Transformer (DPT-RW), a model that uses straight-
forward supervised pretraining with a reward-weighted imitation learning loss. The
DPT-RW predicts optimal actions by evaluating a query state and an in-context
dataset across varied tasks. Surprisingly, this simple approach produces a model
capable of solving a wide range of RL problems in-context, demonstrating online
exploration and offline conservatism without specific training in these areas. A
standout observation is the optimal performance of the model in the online setting,
despite being trained on data generated from suboptimal policies and not having
access to optimal data.

1 Introduction

The multi-armed bandit problem, a canonical challenge in reinforcement learning, is often used to
study the trade-offs between exploration and exploitation. The metric of regret serves as a crucial
benchmark to gauge the performance of algorithms in this context. Our algorithm, reward-weighted
decision-pretrained transformer (DPT-RW) contribute notably to this body of work, and the primary
highlights are as follows:

• Near-optimal, logarithmic regret: Our algorithm achieves near-optimal regret and matches
the performance of the algorithm that has access to the optimal policy during pretraining.

• Online exploration from offline data training: What makes our approach particularly note-
worthy is its training exclusively on offline data using a reward-reweighted imitation learning
loss. Our results come in spite of the fact that many of the offline observations are generated
through highly suboptimal policies and the lack of explicit exploration instruction.

In summary, our research offers a novel perspective on the multi-armed bandit problem by achieving
near-optimal performance solely through offline data and without explicit exploration programming
or optimal policy sampling.
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Comparison with Lee et al. Lee et al.’s "Supervised Pretraining Can Learn In-Context Rein-
forcement Learning" [7] offers a compelling exploration into supervised pretraining’s potential in
in-context reinforcement learning. Their methodology, highlighting the benefits of supervised pre-
training for reinforcement learning models to effectively adapt using offline samples, has been an
influential precursor to our own research direction.

A salient assumption in their approach is the capability to draw samples from the optimal policy,
which they use to compute a negative log-likelihood loss. While this serves as a foundational pillar
for their theoretical results, its real-world applicability is often constrained due to the complexities
associated with securing or approximating optimal policies across varied environments.

Diverging from this paradigm, our methodology forgoes the need to sample from the optimal policy.
We introduce an imitation learning loss, a critical component considering the inherent challenge in
reinforcement learning: an agent is unaware of the resulting state and reward for actions it hasn’t
performed. Paired with this, our reward reweighting is essential. It ensures that agents are properly
incentivized towards behaviors that accrue high rewards, making it a central mechanism to channel
the agent’s learning trajectory in the desired direction.

Together, these elements render our approach a more practical algorithm for real-world offline datasets
with minimal loss in performance.

2 Related Works

In-context learning The paradigm of in-context learning has emerged as a transformative approach,
emphasizing the ability of models to generalize from limited examples by extracting knowledge
from a provided context [9]. This principle is shared with few-shot and zero-shot learning but is
distinctively highlighted in large-scale transformer models, which can adapt and generalize over
various tasks when given suitable contextual prompts. Brown et al. [2] demonstrated this ability,
but it’s worth noting that Garg et al. delved deeper into what transformers can learn in-context by
examining simple function classes [4]. They provided insights into the limitations and strengths
of transformers in capturing different functional patterns. Bai et al. showcased that transformers
can be seen as statisticians, presenting a framework for provable in-context learning combined with
in-context algorithm selection [1]. Their work suggests that not only can transformers learn in-context,
but they can also be harnessed to make algorithmic decisions based on the context.

Foundation models for decision making Foundation models, which are pre-trained on vast
data and fine-tuned for specialized tasks, have exhibited an increasingly significant role in the AI
landscape. These models capitalize on a broad foundational knowledge, enabling the building of
specific capabilities, thereby leading to training economies of scale [13]. For decision-making, such
models have been instrumental, with models like the decision transformer based off of the GPT-series
demonstrating aptitude in decision-making scenarios [3].

Offline reinforcement learning Traditional RL methods engage in active interactions with en-
vironments to formulate policies. However, real-world applications often present scenarios where
such active engagements are either too risky or unfeasible. Offline RL addresses this by gleaning
insights from a static dataset devoid of further environment interactions [8]. The power of offline RL
is in harnessing ample pre-collected data to derive impactful policies. In this regard, methods such
as Conservative Q-Learning (CQL) [6] and Bootstrapping Error Accumulation Reduction (BEAR)
[5] have pushed the frontier, showing robust performance, especially when online data collection is
limited or prohibitively costly.

Reward weighting The weighting of rewards in Reinforcement Learning is a nuanced approach that
alters the dynamics of learning, promoting the behavior of the agent with high reward. One notable
contribution in this domain is the work by Peters et al. [10] Their work provided a regression-based
approach for operational space control, emphasizing the potency of reward-weighted regression
techniques in facilitating smooth policy search. Building off of this, Peng et al. introduced Advantage-
Weighted Regression, offering a novel perspective by leveraging advantage estimations to weight
regression updates [11]. These methods bridge the domains of reward-weighting and off-policy
learning, presenting scalable solutions to RL challenges, especially in environments with complex
reward dynamics.
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3 Algorithm

The basic structure of our algorithm closely follows the work of Lee et al. [7]. Logically, we keep
their pretraining and testing specifications for consistency.

Algorithm 1 Decision-Pretrained Transformer Reward Weighted (DPT-RW): Training and Deploy-
ment

1: // Collecting pretraining dataset
2: Initialize empty pretraining dataset B
3: for i in [N ] do
4: Sample task τ ∼ Tpre, in-context dataset D ∼ Dpre(·; τ), query state squery ∼ Dquery

5: Sample label a ∼ Pa and add (squery, D, a) to B
6: end for
7: // Pretraining model on dataset
8: Initialize model Mθ with parameters θ
9: for i in [E] do

10: Sample (squery, D, a) from B and predict p̂j(·) = Mθ(·|squery, Dj) for all j ∈ [n]
11: Compute loss in eq:pretrain-obj with respect to a and backpropagate to update θ.
12: end for
13: // Offline test-time deployment
14: Sample unknown task τ ∼ Ttest, sample dataset D ∼ Dtest(·; τ)
15: Deploy Mθ in τ by choosing ah ∈a∈A Mθ(a|sh, D) at step h
16: // Online test-time deployment
17: Sample unknown task τ ∼ Dtest and initialize empty D = {}
18: for ep in max_eps do
19: Deploy Mθ by sampling ah ∼ Mθ(·|sh, D) at step h
20: Add (s1, a1, r1, . . .) to D
21: end for

Basic decision models. In the context of our study, we narrow our focus to the multi-armed bandit
problem, which is a special case of the Markov decision process (MDP). A multi-armed bandit
problem can be specified by a tuple ζ = ⟨A, R⟩, where A is the action space and R : A → ∆(R)
is the reward function. Unlike the general MDP, the state space is trivial (a single state) and there
is no state transition, which simplifies the model to: (1) the learner selects an action a from A; (2)
a reward r is received according to R(·|a). This process can be repeated for a specified number of
trials or indefinitely. A policy π in this context maps from the single state to a probability distribution
over actions and is used to determine which arm to pull in each round. We denote the optimal policy
as π∗ which maximizes the expected total reward V (π∗) = maxπ V (π) := maxπ Eπ [

∑
h rh]. The

multi-armed bandit problem requires strategically deciding which arm to pull (i.e., which action to
take) in each round in order to maximize cumulative reward, often under the constraint of limited
knowledge about the true reward distributions of each arm.

Pretraining. In establishing the pretraining task distribution, denoted Tpre, we generate 5-armed
bandits, represented as |A| = 5. The associated reward function for a particular arm a adheres to a
normal distribution, formalized as R(·|s, a) = N(µa, σ

2), where µa is independently sampled from
a uniform distribution Unif[0, 1] and σ is fixed at 0.3. For the creation of in-context datasets, desig-
nated Dpre, we employ a strategy of random action frequency generation. This involves sampling
probabilities using a Dirichlet distribution, which are then combined with a point-mass distribution on
a single, randomly-selected arm, together forming the action distribution Pa. Subsequent action sam-
pling adheres to this particular distribution, ensuring that the data-generating policies have adequate
coverage of the probability simplex. The optimal policy π∗

τ for a given bandit τ is determined by aµa.
Model Mθ is pretrained to predict a∗ from D and is applicable for datasets with a size up to n = 500,
i.e. we want to train a transformer Mθ(·|·) s.t. Mθ(an|s1, a1, ..., sn−1, an−1, sn) ≈ π∗(an|sn) for
each task where π∗ is the optimal policy, and (s1, a1, ..., sn) are generated by Mθ. Formally, we
aim to train a causal GPT-2 transformer model M parameterized by θ, which outputs a distribu-
tion over actions A, to minimize the expected loss over samples from the pretraining distribution:
minθ EPpre

∑
j∈[n] ℓ (Mθ(· | squery, Dj), â) Specifically, we set the loss to be the weighted cross
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(a) label 1 (b) label 2

Figure 1: (a) Offline performance on in-distribution bandits, given random in-context datasets. (b)
Online cumulative regret of the same model. The mean and standard error are computed over 500
test tasks.

entropy for each j ∈ [n] : −
∑

j∈[n] max(r̄aj
− r̄j , 0) · logMθ(aj | squery, Dj) where r̄ is the

average reward over the entire trajectory, and r̄a is the average reward of arm a sample over the entire
trajectory. Note that there is no weighting in the vanilla DPT and aj is replaced with a∗.

Our choice of loss function is motivated by reward-weighted regression [10], where we incentivize
the model to select actions with greater reward. We subtract the average reward across each trajectory
as a normalization. Another key ingredient in our pre-training process is the use of the early stopping
hyperparameter E, which serves as a regularization.

4 Results

Initiating with a practical analysis of DPT-RW within the context of a multi-armed bandit, which is a
comprehensively examined specific instance of the MDP where there is a singular state space S and
a single-step horizon H = 1, the performance of DPT-RW will be scrutinized. This will be done
in contexts of choosing a favorable action based on historical data from offline scenarios, as well
as during online learning, where the objective revolves around optimizing the cumulative reward
starting from the empty dataset. In an offline scenario, it becomes imperative to consider uncertainty
emanating from noise since certain actions might be inadequately sampled. Conversely, in an online
scenario, the essentiality lies in astutely maintaining a balance between exploration and exploitation
to minimize the overarching regret.

The metric we use to evaluate the algorithm in offline setting is the suboptimality µa∗ − µâ

where â is the chosen action, while the metric we use to evaluate the algorithm in online setting is the
cumulative regret

∑
k µa∗ − µâk

where âk is the kth chosen action.

DPT-RW exhibits a notable proficiency in reasoning through uncertainty. In the offline scenario, as
depicted in Figure 1a, when in-context datasets are derived from the same distribution as utilized
during pretraining, DPT-RW markedly excels in its performance. Achieving a performance metric
of 10−1 after 50 trials. The outcomes suggest that the transformer possesses the capacity to work
through uncertainty, especially that which is brought about by the noisy rewards within the dataset.

In a compelling turn, employing the same transformer but opting to sample actions rather than
utilizing an argmax produces a particularly effective online bandit algorithm, as illustrated in Figure
1b. The cumulative regret exhibits a logarithmic trend, with final regret just above 10. This is exactly
the same as the performance of the vanilla DPT and the known optimal algorithm UCB. Even though
DPT-RW was trained entirely throuh weighted imitation learning, it still achieves optimal regret in
the bandit setting.

4



5 Discussion

An initial foray into the intersection of in-context learning and offline reinforcement learning was
achieved by the work of Lee et al. and their focus on supervised pretraining. However, an essential
step of their method is the reliance on sampling from the optimal policy. While providing insightful
theoretical results, this assumption poses challenges in real-world scenarios where access to such
sampling is often impractical.

Adapting to these practical constraints, our algorithm uses an imitation learning loss combined with
reward reweighting. This subtle yet impactful adjustment not only mitigates the need for sampling
from the optimal policy but also broadens the realm of tasks the algorithm can effectively handle.

Moreover, the efficacy of our approach isn’t solely attributed to the imitation learning loss and reward
reweighting. An additional layer of finesse comes into play through the tuning of an early stopping
parameter. This tuning is pivotal in minimizing the online regret, ensuring that we do not overfit to
the online regret.

The practical implications of these modifications become evident in the multi-armed bandit scenario.
Despite having access to strictly less information, our algorithm delivers performance equal with
theirs. However, as the focus shifts to environments characterized by continuous state and action
spaces, the necessity for a value network becomes pronounced.

Of particular intrigue is the observation that our algorithm showcases strong online performance,
specifically midway between the initialization and convergence of the imitation learning loss. This
phenomenon prompts deeper exploration into the inherent learning dynamics. Instead of mere
methodology refinement, we’re invested in uncovering the underlying reasons for this behavior.

As part of our ongoing endeavors, linear bandits and Markov Decision Processes (MDPs) are areas
we have begun to investigated. We anticipate that insights derived from these domains can shed light
on the observed learning dynamics.
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