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ABSTRACT

Contrastive learning has achieved outstanding performance in self-supervised
learning. However, the canonical image-level matching pretext is unsuitable for
multi-object dense prediction tasks like segmentation and detection. Recently,
numerous studies have focused on dense contrastive learning (DCL) that adopts
patch-level contrast to learning representations aware of local information. Al-
though empirical evidence has validated its superiority, to date, there has not been
any theoretical work that could formally explain and guarantee the effectiveness
of DCL methods, which hinders their principled development. To bridge this
gap, using the language of spectral graph theory, we establish the first theoreti-
cal framework for modeling and analyzing DCL by dissecting the corresponding
patch-level positive-pair graph. Specifically, by decoupling the image-level and
patch-level supervision, we theoretically characterize how different positive pair
selection strategies affect the performance of DCL, and verify these insights on
both synthetic and real-world datasets. Furthermore, drawing inspiration from the
theory, we design two unsupervised metrics to guide the selection of positive pairs.

1 INTRODUCTION

In recent years, contrastive learning in computer vision has gained attention for its success in image
classification, rivaling supervised learning methods (Caron et al., 2020; 2021; Chen et al., 2020;
Chen & He, 2021; Grill et al., 2020; He et al., 2020). However, most of these works primarily
focus on image classification as the downstream task, while the transferability of contrastive learning
methods to dense prediction tasks such as object detection and semantic segmentation has received
less attention. Notably, the key distinction between these tasks lies in the fact that image classification
only requires global image features, whereas dense prediction tasks necessitate representations that
encompass pixel-level information. Traditional contrastive learning methods typically learn global
representations as their pretext tasks are designed at the image level, which limits their performance
on dense prediction tasks. This limitation prompted the emergence of approaches that specifically
target the learning of local features within the pretext task (Wang et al., 2021; Xie et al., 2021; Ding
et al., 2022; Wei et al., 2021; Zhou et al., 2021; Zhang et al., 2022; 2023; Yun et al., 2022). These
methods, collectively referred to as dense contrastive learning (DCL), perform contrastive learning
on the image patches1, thereby enabling the learning of pixel-level representations.

Although DCL has developed rapidly in terms of model design, current mainstream theoretical work
on contrastive learning primarily concentrates on global contrastive learning (GCL), which refers to
traditional image-level contrastive learning (Arora et al., 2019; HaoChen et al., 2021; Tsai et al., 2021;
Wang & Isola, 2020; Wang et al., 2022a;b). Consequently, there is still a lack of relevant analysis on
the working principles and generalization ability of DCL. While theories from GCL can be applied to
DCL by simply transferring the analysis unit from images to patches, they do not offer additional
constructive insights such as guidance for selecting positive pairs. This limits our understanding of
the unique characteristics and effectiveness of DCL. To the best of our knowledge, there is only one
work that analyzes DCL from a theoretical perspective (Moon et al., 2022). However, the theoretical
part of this work simply applies the alignment-uniformity theory (Arora et al., 2019) from GCL to
DCL and does not provide further insights on the generalization ability or model design of DCL.

1Here, the term "patches" encompasses both pixels in the feature maps of ResNets (He et al., 2016) and
patches in ViTs (Dosovitskiy et al., 2020). We use the term "patches" collectively, as pixels in feature maps also
represent the features of specific regions in the original views.
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When examining the mechanism of DCL, it becomes apparent that in GCL, positive pairs are
selected based solely on image-level supervision. However, in DCL, both image-level and patch-level
supervision are considered, and the unique feature of DCL lies in the use of local information to form
positive pairs, which varies across different methods. As found in many DCL works, the strategy of
selecting positive samples has a dramatic influence on downstream performance (Xie et al., 2021;
Yun et al., 2022). Given that most strategies rely solely on patch-level supervision, it is critical to
decouple the two types of supervision for matching positive pairs in the theoretical analysis of DCL.

To address the aforementioned issues, we first formulate the positive pairs using a patch-level positive-
pair graph. By decomposing the adjacency matrix of this graph using the Kronecker product, we
decouple the two kinds of supervision into two adjacency matrices. Our analysis of the matrix
corresponding to patch-level supervision sheds light on how various strategies for selecting positive
pairs impact the DCL model performance. Moreover, our theory inspires new unsupervised metrics
to evaluate the strategy of positive pair selection. We summarize the main contributions as follows.

• By constructing a patch-level positive-pair graph on the dataset, we establish a theoretical
framework for DCL, and for the first time give a theoretical guarantee on the downstream
performance of DCL.

• Using the Kronecker product to decompose the adjacency matrix of the patch-level positive-
pair graph, we are able to decouple the image-level and patch-level supervision that are
utilized in the positive pair sampling process. By analyzing the properties of the matrix
corresponding to the patch-level supervision, we theoretically find a trade-off between the
quantity and correctness of positive pairs.

• To empirically validate the proposed understanding, we construct a new dense-labeled
synthetic dataset using the Gaussian mixture model. We then conduct DCL experiments on
this dataset, and the results effectively demonstrate the trade-off that aligns with our theory.

• Motivated by the theory, we introduce two unsupervised metrics that serve as guidelines for
selecting positive pairs in DCL, which are strongly correlated with model performance.

2 THEORETICAL ANALYSIS FOR DENSE CONTRASTIVE LEARNING

2.1 PRELIMINARY: SPECTRAL CONTRASTIVE LEARNING

We begin by introducing the framework of spectral contrastive learning, which was proposed in
HaoChen et al. (2021) for GCL. Let X denote the set of all natural images. We assume that each
image belongs to one of r classes, and let y : X → [r] denote the ground-truth labeling function. For
a given natural image x̄ ∈ X , we use A(·|x̄) to denote the distribution of its augmentations. The
set of all augmented views, denoted by X , has a size n = |X | that is assumed to be exponentially
large but finite. The distribution of X is denoted as PX . Then, we define an image-level positive pair
graph GI(X , wI) to represent the relationships between positive pairs. Its vertices are the augmented
views in X . The edges are defined by the joint probability of two augmented views being sampled
as a positive pair, given by wI

xx′ = Ex̄∼PX
[A(x|x̄)A(x′|x̄)]. We denote its adjacency matrix as

AI := (wI
xx′)x,x′∈X ∈ Rn×n. Denote the normalized adjacency matrix as ĀI := D−1/2AID

−1/2,
where D := diag(wI

x)x∈X , wI
x :=

∑
x′∈X wI

xx′ . Let λ1, · · · , λk be the k largest eigenvalues of ĀI .

It can be proved that training a neural network fI : X → Rk by optimizing the spectral contrastive
loss, as defined below, is equivalent to performing spectral clustering on the positive-pair graph GI .

L(fI) := −2 · Ex,x+

[
fI(x)

⊤fI(x
+)
]
+ Ex,x′

[(
fI(x)

⊤fI(x
′)
)2]

. (1)

Proof of the equivalence between optimizing equation 1 and spectral clustering is given in Appendix
D. Here, (x, x+) is drawn with probability wI

xx+ , which is the positive pair, while x and x′ are
i.i.d. drawn from X , which is the negative pair. Thus, if two augmented views are connected in
the image-level positive-pair graph GI , they are considered as a positive pair in spectral contrastive
learning. In order to give the theoretical guarantee for GCL, we make the following assumptions.
Assumption 2.1 (Realizability). Let F be a hypothesis class containing functions from X to Rk. We
assume that at least one of the global minima of L(fI) belongs to F .
Assumption 2.2 (Labeling error). Consider a natural data sample x̄ ∼ PX and let yI(x̄) denote its
label. Let the augmentation x ∼ A(·|x̄). We assume the existence of a classifier g that can predict
yI(x̄) given x with error at most ε. In other words, g(x) = yI(x̄) with probability at least 1− ε.
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Assumption 2.1 ensures that the function class of neural networks is sufficiently large. Assumption
2.2 assumes that augmentations can rarely convert the labels of the augmented views, i.e., labels are
recoverable from augmentations. Then, we can derive the following theoretical guarantee for GCL.
Theorem 2.3. Denote E(fI) as the linear probe error, i.e., the error of the best possible linear
classifier on the representations calculated by the encoder fI . We can upper-bound it as

E(fI) ≲
2ε

1− λk+1
. (2)

where λk+1 is the (k + 1)-th largest eigenvalue of ĀI .

The formal definition of E(fI) is given in the Appendix C.1.

2.2 A GENERAL THEORETICAL FRAMEWORK FOR DENSE CONTRASTIVE LEARNING

In the context of DCL, the key distinction from GCL is the utilization of patch-level representations
for calculating the contrastive loss. We notice that the positive-pair graph framework in Section 2.1
can naturally incorporate this difference by considering the patch as the node of the positive-pair
graph. Denote XP as the set of patches in the natural images, namely the natural patches. The natural
patches are then augmented into augmented patches (according to the data augmentation performed
on the images), which form the set XP . In particular, we assume that each patch has a unique label
y(p) assigned to it, where y : XP → [r] and r denotes the number of ground-truth classes.

Then, we define a patch-level positive-pair graph G(XP , w) to denote the relationships between the
patches. Similar to the image-level scenario, the edge weight of the adjacency matrix A is defined as

wpp′ := Ep̄∼PXP
[A(p|p̄)A(p′|p̄)]. (3)

Now we can derive the theoretical guarantee for DCL.
Theorem 2.4. Define the labeling error rate α as the average label disagreement among the positive
pairs (p, p+), i.e., α := Ep,p+1[y(p) ̸= y(p+)]. Let E(f) be the linear probe error for DCL, where
f : XP → Rk is the encoder function on patches. We can upper-bound it as

E(f) ≲ α

1− γk+1
. (4)

where γk+1 is the (k + 1)-th largest eigenvalue of Ā.

This theorem provides an error bound for the task of predicting the labels of patches. Note that
the denominator of the error bound becomes the labeling error rate α, but not 2ε in equation 2.
This distinction arises from our consideration of the DCL scenario, where patch augmentations,
particularly cropping, are likely to alter the class of the patches. Consequently, Assumption 2.2 does
not hold for a sufficiently small value of ε.

2.3 DECOUPLING IMAGE-LEVEL AND PATCH-LEVEL SUPERVISION USING KRONECKER
PRODUCT

We observe that while the natural definition of edge weights (Equation 3) provides a mathematical
characterization of DCL, it does not offer additional insights compared to the results in GCL.
Specifically, DCL methods primarily diverge in their strategies for selecting positive pairs, which
remains independent of the data augmentations. Unfortunately, the modeling in the last section
struggles to characterize the strategy effectively, as the edge weight defined in Equation 3 is solely
dependent on data augmentation. This limitation hinders our ability to analyze the essence of DCL and
provide unique insights distinct from the GCL scenario. Therefore, we propose a refined definition for
the patch-level positive-pair graph that decouples these two types of supervision (data augmentation
and positive pair selecting strategy). As discussed in Section 2.4, this alternative modeling of the
patch-level positive-pair graph allows us to analyze how different strategies for selecting positive
pairs impact the performance of DCL.

First, we define the process of positive patch pair sampling, as showed in Figure 1. The process begins
by transforming a natural image into augmented views. In the overlapping region of the augmented
views, we select several patches from each view with exact positional correspondence on the natural
image (depicted by red boxes). This is equivalent to regarding the image-level augmentation as a
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composition of the cropping operator and the taking-overlap operator. Following this, the positive
pair selection strategy aligns patches that demonstrate similarity in terms of features or geometry.

It is crucial to note that the requirement for patches to be chosen in the overlapping area of the
augmented views is significant; otherwise, the correspondence between patches from different
augmented views may be compromised. In practice, DCL methods often adhere to this principle,
typically first finding the common area of two augmented views and only performing dense alignment
within this area (Ding et al., 2022; Xie et al., 2021). Assume that we choose m patches from each
augmented view, we give the definition of the edge weight as follows:

wpip′
j
= Ex̄∼PX

[A(x|x̄)A(x′|x̄)] ·Bij . (5)

In this equation, x and x′ respectively denote the views to which random patches p and p′ belong,
and B ∈ {0, 1}m×m is a symmetric Boolean matrix. The first term characterizes the probability of
two augmented views being generated from the same natural image, capturing the supervision of data
augmentation. The second term serves as an indicator function, governing the positive pair selection
strategy inside a single view. It represents the supervision of the strategy. Here, we name B as the
strategy matrix. Specifically, we assume that when x and x′ form an image-level positive pair, pi and
p′i correspond to patches that are mapped from the same region of the original image.

This definition implicitly assumes that the strategy for matching positive pairs within a view is
consistent across all views. This assumption is reasonable since we have restricted the patch selection
in the overlapping region of the augmented views. In fact, works like Ding et al. (2022); Wei et al.
(2021) indeed use a fixed alignment rule (i.e., a universal B) among patches. Furthermore, We can
simplify the expression of the adjacency matrix using the Kronecker product:

A = AI ⊗B. (6)

In the form of this equation, the (i+ jm)-th vertex is the i-th patch in the j-th augmented view. Under
this formulation, the constructed graph exhibits a hierarchical structure, as illustrated in Figure 1.

It is clear that the image-level adjacency matrix AI represents the supervision of data augmentation,
corresponding to the image-level similarity of patches, while the strategy matrix B represents the
supervision of positive pair selecting strategy, corresponding to the patch-level similarity. Equation
6 utilizes the Kronecker product to decomposite the patch-level adjacency matrix A, effectively
decoupling the two types of supervision. The Kronecker product possesses favorable eigen-properties,
allowing us to analyze the impact of various positive pair selection strategies on model performance
based on the generalization error bound presented in the previous section (Theorem 2.4). Specifically,
Lemma 2.5 shows that it is convenient to calculate the normalized adjacency matrix of the Kronecker
product of two adjacency matrices. Lemma 2.6 gives the eigen-properties of Kronecker product.

Lemma 2.5. Let (̄·) be the normalized form of a matrix defined in Section 2.1. Given A = AI ⊗B,
we have

Ā = ĀI ⊗ B̄. (7)

Lemma 2.6. Let A1 ∈ Rn×n have eigenvalues λi, i ∈ [n], and let A2 ∈ Rm×m have eigenvalues
µj , j ∈ [m]. Then the mn eigenvalues of A1⊗A2 are λ1µ1, . . . , λ1µm, λ2µ1, . . . , λ2µm, . . . , λnµm.

Let the eigenvalues of ĀI be λ1, λ2, · · · , λn, and the eigenvalues of B̄ be µ1, µ2, · · · , µm, which
are ordered from the largest to the smallest. By combining Lemma 2.5 and 2.6, the eigenvalues
of Ā are given by λ1µ1, . . . , λ1µm, λ2µ1, . . . , λ2µm, . . . , λnµm. Thus, if we assume that both the
dataset and the class of data augmentation as consistent (i.e., AI is consistent), the eigenvalues of
the normalized patch-level adjacency matrix Ā, which are {γi}, are positively correlated with the
eigenvalues of the normalized strategy matrix B̄, which are {µj}. In this scenario, by analyzing the
distribution of {µj}, we can gain insights into how different positive pair selection strategies affect
the generalization ability of DCL models.

2.4 THEORETICAL CHARACTERIZATION OF POSITIVE PAIR SELECTION

After decoupling the two types of supervision in the modeling, we can analyze how different strategies
for selecting positive pairs impact the generalization ability of DCL. To ensure that the positive pair
selection strategy is the sole factor affecting model performance, in the following, we assume that the
image-level adjacency matrix AI is consistent.

From equation 4 we know that the performance of DCL is influenced by two main factors: the error
rate α and the eigenvalues of the normalized patch-level adjacency matrix Ā. Given our assumption of
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Figure 1: The construction of the hierarchical patch-level positive-pair graph. First, the images are
mapped into augmented views by random augmentations, and they form an image-level positive-pair
graph (the middle layer). Then, we draw several patches with exact positional correspondence (red
boxes) from the overlapping region (orange boxes). By determining the strategy for selecting positive
pairs in a single view (i.e., the edges inside the black boxes of the bottom layer), we can generate a
patch-level positive-pair graph on top of the image-level positive-pair graph (the bottom layer).

the consistency of AI , the factors that remain are α and the eigenvalues of B̄. Intuitively, when more
positive pairs are matched, the probability of a positive pair belonging to different classes increases,
leading to a higher error rate α. Hence, studying the eigenvalue distribution of the normalized
strategy matrix B̄ can provide insights into how positive pairs impact the model’s performance. In
the following sections, we begin by providing a theoretical discussion of B as a circulant matrix,
corresponding to the scenario of matching spatially close patches into positive pairs under circular
padding. Subsequently, we empirically investigate the case where B is a general matrix.

Eigenvalue Distribution of Circulant Matrix. First, we discuss the eigenvalue distribution when
the strategy matrix B is in the form of a circulant matrix as below.
Assumption 2.7. We consider B to have the following form of a circulant matrix

Bl =


1 b1 · · · bm−2 bm−1

bm−1 1 b1 bm−2
... bm−1 1

. . .
...

b2
. . .

. . . b1
b1 b2 · · · bm−1 1

 , (8)

where we let b1 = · · · = bl = bm−l = · · · = bm−1 = 1, and bl+1 = · · · = bm−l−1 = 0.

To illustrate this assumption further, we provide an example in Figure 2. The "1" elements in the major
diagonals represent patch pairs that are spatially close, while those in the lower-left and upper-right
represent patch pairs that are close due to circular padding. In this case, the normalized strategy
matrix B̄ exhibits favorable properties, leading to the following theorem:
Theorem 2.8. Assume that Bl satisfies Assumption 2.7 and λi′ > 0 where γk+1 = λi′µj′ according
to the decomposition in Lemma 2.6. Then when 2lj′ < m, we have

E(f) ≲ α

h(l)
(9)

where h(l) monotonically increases w.r.t. l.

Since l represents the number of positive pairs, matching more positive pairs will increase the
denominator in equation 23 and force the error bound to be smaller. However, as the number of
positive pairs increases, the spatial distance of a pair will simultaneously increase. Intuitively, as the
spatial distance between patches grows, the probability of them being semantically close decreases.
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(a) (b)

Figure 2: (a) An example matrix for the Assumption 2.7. Here we consider the case with m = 8
patches in the image, and we regard the nearest neighbors with distance l = 1 as positive pairs
for DCL under circular padding. (b) Demonstration of the synthetic images. The two images are
generated by the same label (which is annotated in the images) with different noise scale σ̃ (Left:
σ̃ = 0.05; Right: σ̃ = 0.5). The images are shown by linearly scaling the pixel values into [0, 1].

This phenomenon results in a higher labeling error rate α. Therefore, there is a trade-off when
considering the error bound in relation to the number of positive pairs. On one hand, increasing the
number of positive pairs will decrease the eigenvalues of the normalized strategy matrix B̄, leading
to a smaller error bound. On the other hand, as the number of positive pairs increases, the error rate α
also increases, which results in a larger error bound. Thus, finding the right balance between these
two factors is crucial for achieving optimal performance in selecting positive pairs.

Eigenvalue Distribution of General Matrix. To illustrate the eigenvalue distribution of a general
adjacency matrix, we conduct simulation experiments to find that the eigenvalue µj is negatively
correlated with the number of positive pairs (details can be found in the Appendix). Hence, in the
general condition, the trade-off still exists.

2.5 ANALYZING THE TRADE-OFF OF POSITIVE PAIR SELECTION ON SYNTHETIC DATA

To further illustrate the trade-off between the number of positive pairs and the error rate α, we conduct
a series of experiments on the synthetic dataset.

Dataset Settings. The synthetic dataset consists of 1024 training and 256 validation images. Each
image has 3 channels and 14x14 pixels, with each pixel belonging to one of the r + 1 classes, one of
which is the background class (class 0) and the other r classes are the entity classes (class 1 to r).

To generate an image, we first generate its label by a Gaussian Mixture Model (GMM) to simulate
the distribution of the objects in images. Assume that there are c non-intersecting objects in an image.
We define a generating function for each object as

gi(x|µi, σi) =
1

2πσ2
i

exp

(
−
∥x− µi∥22

2σ2
i

)
, i = 1, · · · , r. (10)

Here x is a 2-dimensional coordinate vector on the image which is normally distributed with mean µi

and variance σ2
i I . The parameters µi and σi are respectively i.i.d. random variables. In particular,

here we make µi uniformly distributed on the image and σi ∼ U([a, b]) to create multiscale objects,
where U stands for uniform distribution and a and b are hyperparameters. For the background class,
the generating function is defined as g0(x) = β0 where β0 is a given threshold.

Then given the random sampled {µi}, {σi}, the label of a pixel x (denoted as y(x)) is determined as

y(x) = argmax
i=0,1,··· ,r

gi(x|µi, σi). (11)

After obtaining labels for pixels, we can generate the pixel values. Note that in reality, objects
belonging to the same class often share similar pixels and features. From this perspective, we utilize
another Gaussian model to generate pixel values. For a pixel x, the pixel value p(x) ∈ R3 is normally
distributed as p(x) ∼ N (p; µ̃y(x), σ̃

2I). Here µ̃y(x) ∼ [U([ay(x), by(x)])]
3 represent the center of the

object feature where (ay(x), by(x)) are non-intersecting intervals, and σ̃ is a fixed hyperparameter
representing the noise magnitude.

Intuitively, for a single pixel, its values are affected by random noise so that sometimes they may fall
to intervals of other classes. However, the effect of noise can be mitigated by combining information
about pixels in the same class (likely to be close to the pixel itself), for example, by simply taking the
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Table 1: DCL on the synthetic dataset with different numbers of positive pairs. l represents that a
pixel forms positive pairs with the pixels in its l× l neighborhood, and σ̃ stands for the noise of pixel
values of the dataset. l = 27 means that every pixel pair in an image is considered as a positive pair.

ACC(σ̃=0.05) ACC(σ̃=0.2) ACC(σ̃=0.5) α µk+1 2α/(1− µk+1)

SUP 98.4±0.1 70.0±1.4 52.9±0.1 - - -
l = 1 95.9±0.5 71.2±0.4 53.7±0.1 0 1 UNDEFINED
l = 3 97.4±0.3 72.3±0.2 54.0±0.1 0.14 0.59 0.68
l = 5 97.7±0.2 72.4±0.1 53.8±0.3 0.27 0.18 0.66
l = 27 77.6±5.1 66.4±0.7 52.4±1.1 0.71 0 1.42

average. Therefore, this setup for generating images is reasonable. In our experiments, we set r = 4,
ai = 0.2 ∗ i, bi = 0.2 ∗ i+0.2. For the sake of class balance, each image contains one object of each
class. Figure 2 demonstrates the synthetic images along with their labels. We can see that when the
noise scale σ̃ is large enough, we can hardly discriminate the pixel label from the image.

Training and Evaluation. We train a 1-layer ViT on the synthetic dataset with the DCL method to
learn unsupervised features of pixels, and evaluate them by training a linear probing for the semantic
segmentation task, where the pixel labels are given in the dataset. In the pre-training, for each
pixel, we match its l × l neighborhood as its positive pairs, and other pixels in the same image as
negative pairs. Moreover, we calculate the error rate α and the (k+1)-th largest eigenvalue of the
normalized strategy matrix B̄, µk+1, where the feature dimension k is 24. Since it is hard to simulate
an image-level positive-pair graph by a simple dataset, we calculate 2α/(1− µk+1) to estimate the
magnitude of the error bound in equation 4, where the denominator can characterize the monotonic
property of the eigenvalue term in the error bound.

Results. In Table 1, “Sup" stands for supervised pre-training with the same backbone and evaluation
with the same metric. For supervised pre-training, when the noise scale is low, it performs better
than unsupervised models. However, when the noise becomes stronger, it gradually becomes difficult
to perform the task since the labels can be hardly discriminated by the raw input of single pixels.
On the contrary, the DCL methods, especially when l = 3 and 5, combine the information of the
neighborhood of a pixel, thus learning better representations for pixels.

Among the DCL methods, the error bounds of l = 3 and 5 are similar, which are much lower than
that of l = 27. In particular, the error bound of l = 1 is undefined since it is the form of 0/0, thus out
of control. The performance of these methods are consistent with their error bound, with l = 3 and 5
being the best in all the noise settings. Although l = 27 has the most number of positive pairs, there
is too much noise among these pairs, resulting in the bad representations learned. This shows that to
get a lower error bound, a method should have more positive pairs but less error rate at the same time.

3 COMPATIBILITY OF OUR THEORETICAL ANALYSIS WITH EXISTING
METHODS

In this section, we show that our theoretical analysis is compatible with a number of existing works.
We take the following DCL methods as examples.

PixPro (Xie et al., 2021) is a classical DCL method. It matches two patches from two augmented
views of the same image as positive pairs when the distance of their corresponding positions in the
original image is smaller than a given threshold T . Although the positive pairs do not share the exact
same position and the matching criterion is not consistent with all views, we argue that its strategy of
selecting positive pairs with a threshold T is aimed at aligning the spatial position of patches. Thus it
can still be applied to our framework. Additionally, it introduces a PPM module to map the feature of
a pixel into the linear aggregation of all the pixels in the same feature map. Since the loss function is
the inner product of two features, aligning the feature of a pixel p with the PPM output of another
pixel p′ is equivalent to aligning the feature of p and the features of all the pixels in the feature map
of p′ with different weights by the back-propagation. Although this module dynamically matches
positive pairs, we argue that this is not the crucial part of PixPro, since, in the following experiment,
we show that without the PPM module, we can still obtain a similar performance with PixPro.

DUPR (Ding et al., 2022) uses the RoI Align module to solve the problem of misaligned patches. In
this method, the pixels of all layers of the ConvNet are involved in DCL. Hence, in the perspective of
our framework, the set of the augmented patches consists of the pixels of all the layers after applying
RoI Align. Moreover, since DUPR only matches patches that have exactly the same position as a
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Table 2: We evaluate different DCL models on different downstream tasks. Specifically, we report
AP for Pascal VOC (Everingham et al., 2009) object detection task and report APmk and APbb for
COCO (Lin et al., 2014) object detection and instance segmentation, respectively. All models are
pre-trained for 100 epochs on the ImageNet (Deng et al., 2009) and evaluated with Faster R-CNN
(R50-C4) (Ren et al., 2015) on PASVAL VOC task and Mask R-CNN (R50-FPN) (He et al., 2017)
on COCO tasks with 1× schedule. *: copied from Xie et al. (2021).

METHOD LOSS VOC DET. COCO DET. COCO SEG.

PIXCONTRAST* (XIE ET AL., 2021) INFONCE 58.1 38.8 -
PIXPRO (XIE ET AL., 2021) MSE 58.8 40.8 36.8
PIXCONTRAST SPECTRAL 59.0 42.0 38.1

positive pair, the strategy matrix B is an identity matrix. Thus our theoretical results can be applied to
this work. SoCo (Wei et al., 2021) generates the patches directly on the natural images using selective
search. They further downsample the images to obtain multi-scale patches. Similar to DUPR, they
also utilize the feature maps of different layers and match positive pairs that share the same position.
Thus our theoretical results can also be applied to this method.

Among the ViT-based methods, recent models like iBOT (Zhou et al., 2021), ADCLR (Zhang
et al., 2022), and PQCL (Zhang et al., 2023) can all be applied to our work. Specifically, iBOT
employs masked image modeling (MIM) on the augmented views and aligns patch features through
self-distillation; ADCLR introduces query patches for patch-level contrasting and leverages the
cross-attention mechanism to produce different encodings of the same query patch, and matches
them as positive pairs; PQCL incorporating cross-attention in each block between positional and
patch embeddings to encode the query patches to different features as positive pairs. It is noteworthy
that all three methods achieve exact 1-to-1 patch correspondence. The essence of these methods is
to generate different encodings of the same patch, which are used to form positive pairs. Same as
DUPR, these approaches correspond to B = I in our paper due to the exact patch correspondence.

Verification on the Compatibility of Our Framework. To further verify the compatibility of our
framework, we test the effect of spectral dense contrastive learning with PixContrast (Xie et al.,
2021), a simplified version of PixPro. Compared with PixPro, PixContrast does not use the PPM
module to aggregate the features of patches, and it takes InfoNCE (Oord et al., 2018) as its loss,
unlike PixPro which uses MSE loss and only utilizes positive pairs. We simply replace the InfoNCE
with spectral contrastive loss, and apply the same process of dense contrastive pre-training and
downstream transferring for both methods. We follow the same training settings in the paper. The
results are shown in Table 4. We surprisingly find that the spectral PixContrast is much better than the
standard version, and even better than PixPro, which has an additional well-designed PPM module.
This verifies both the effectiveness of the spectral DCL and the compatibility of our framework.

4 SURROGATE METRICS FOR POSITIVE PAIR SELECTION

The error bound for DCL (Equation 4) is affected by the error rate of positive pairs α and the
eigenvalues of the normalized patch-level adjacency matrix Ā. However, both quantities can hardly
be measured in the unsupervised pre-training process since α relies on the ground truth and the
eigenvalues are intractable. Although we have previously shown a trade-off between these two
quantities in section 2.4, we still do not know how to select better positive pairs. As a result, we
propose two metrics for each quantity that can be directly computed using pre-trained features and
do not require patch labels. These metrics allow us to easily determine which strategy of selecting
positive pairs is superior.

Metric for Eigenvalue. Due to the large size of the normalized patch-level adjacency matrix Ā,
calculating its eigenvalues directly is infeasible. However, we can use the number of positive pairs
as an approximate estimate of the eigenvalues, or equivalently, the connectivity of the patch-level
positive-pair graph. Taking inspiration from the Average Relative Confusion (ARC) metric in (Wang
et al., 2022b), we define a new locality-aware surrogate metric named Patch Confusion Rate (PCR).
Its definition is given as follows. Let p be an arbitrary patch in a view x. Let p′ = NN(p) be the
nearest neighbor of p in the set of all patches Xp in the feature space. Then the PCR is calculated as
PCR(XP ) = Ep∈XP

1(p ⊂ x, p′ ⊂ x). It represents the ratio of nearest neighboring patches that
originate from the same image as the anchor patch, considering all patch features in the dataset. Thus,
a lower PCR indicates stronger connectivity between patches in the dataset, which in turn implies
better generalization according to our theory.

8
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Table 3: The performance of different positive pair selecting strategies of PixPro/PixContrast and
their PCR and loss over the pre-trained features. The term "Strategy" denotes the strategy of selecting
positive pairs, which is the scope of neighbors within which a patch is matched with its positive pairs.
(The term "PPM" refers to the original PixPro). “PixCon.” stands for PixContrast. *: copied from
Xie et al. (2021).

MODELS STRATEGY VOC DET. COCO DET. COCO SEG. PCR(↓) LOSS(↓)

PIXPRO PPM 58.8 40.8 36.8 0.80 -3.58

SIMPLE PIXPRO 1×1 56.5 40.7 36.5 0.95 -3.60
3×3 56.9 39.2 35.4 0.59 -2.08
5×5 53.9 37.3 33.9 0.15 -0.92
ALL 54.1 39.3 35.7 0.83 -1.44

PIXCON. * 1×1 58.1 38.8 - - -

SPECTRAL PIXCON. 1×1 59.0 42.0 38.1 0.93 -2.06
3×3 57.2 38.2 34.8 0.28 -0.78
5×5 55.8 37.8 34.1 0.11 -0.55
ALL 55.1 38.0 34.5 0.84 -0.83

Metric for Error Rate. The error rate of positive pairs, α, is a quantity decided by both the positive
pairs and the ground truth. However, the ground truth is not accessible in pre-training. We directly
consider the patch-level contrastive loss calculated on the pre-trained features as the metric for the
error rate. For most models, the contrastive loss measures the feature similarity between positive
pairs, and we regard the feature similarity as the probability of a positive pair belonging to the same
class. Therefore, the contrastive loss of the model describes the scale of the error rate α to a certain
extent, i.e., the smaller the loss function over pre-trained features, the smaller the error rate α.

Experiments. We conducted experiments to verify the effectiveness of the suggested metrics. To
compare the performance of the two metrics under different strategies for selecting positive pairs,
we modified the Pixel Propagation Module (PPM) in our base method PixPro. Instead of using a
weighted average process, we used a simple average of the features from neighboring patches of size
N ×N . This is equivalent to matching a patch with its N ×N neighbor patches, as mentioned in
Section 3. By adjusting the value of N , we could control the number of positive pairs selected. We
also performed similar experiments on PixContrast with spectral loss using the same approach.

The results are shown in Table 3. For all these settings of positive pairs, the two metrics give a good
indication of the performance of the models. For example, among simple PixPro methods, compared
with the setting of “All", the “3×3" setting has both a smaller PCR and lower loss, so its error bound
is smaller, resulting in +2.8AP on the PASCAL VOC dataset; compared with the “1×1" setting,
the standard PixPro model has a similar loss but a smaller PCR, which leads better performance on
all the downstream tasks, especially with a +2.2AP performance on the PASCAL VOC dataset. In
addition, this experiment also shows the trade-off between the two quantities: compared with the
“5×5" setting of Spectral PixContrast, the “All" setting has a larger PCR but smaller loss, resulting in
the two models performing similarly. Additionally, to show the effectiveness of the proposed metrics
on other DCL methods, we conduct experiments on SoCo (Wei et al., 2021), which is in Appendix B.

With these two metrics, we can compare different positive pair selection strategies based on the
learned representations. By evaluating their effectiveness, we can determine which strategy performs
better according to the metrics. The metrics can also be used as a filtering metric to select positive
pairs that are more label-consistent, indicated by a smaller value of α. This can help improve the label
consistency and overall performance of the model. In the experiments on SoCo (in the appendix), we
also demonstrate how the metrics can be used to compare models with different training settings such
as training epochs. However, the specific design of the model itself is left for future work.

5 CONCLUSION

In this paper, we introduce a theoretical framework for dense contrastive learning utilizing the
patch-level positive-pair graph. Building upon this graph, we conduct theoretical analyses that
encompass performance error bounds and the impact of positive pairs. Moreover, by decoupling the
image-level and patch-level supervision in dense contrastive learning, we discover a performance
trade-off between the quantity and correctness of positive pairs. Lastly, we propose two unsupervised
metrics to guide the selection of positive pairs in dense contrastive learning.
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A SIMULATION EXPERIMENT OF THE EIGENVALUE DISTRIBUTION OF A
GENERAL MATRIX

For the intra-view adjacency matrix B, we initialize it as an identity matrix. In each iteration, we
randomly change a 0 element to 1. Figure 3 illustrates the evolution of eigenvalues of B̄ during this
process. The eigenvalues are obtained by repeating the experiment 20 times. In the left figure, we set
the dimension of B to be 25, while in the right figure, we set it to be 50. As observed, the eigenvalues
generally decrease as the number of 1 elements in B increases.

Figure 3: Eigenvalues of the simulated normalized strategy matrix B̄.

B ADDITIONAL ABLATION STUDIES ON THE EFFECTIVENESS OF THE
PROPOSED METRICS

In this section, we evaluate the effectiveness of the proposed metrics on another DCL method, i.e.,
SoCo (Wei et al., 2021). As discussed in section 3, this method is also compatible with our theory.

Specifically, we evaluate the proposed metrics on two released pre-trained models of SoCo using
different training epochs. Note that changing pre-training epochs will not affect the augmentation
class and the training loss, thus the proposed metrics are still applicable in principle. The results are
shown below. Even without knowing the information of the training epoch, we can still tell that the
pre-trained model in the bottom performs better from the metrics, since it has smaller PCR and lower
loss.

Table 4: The evaluation performance along with the two proposed metrics (i.e., PCR and loss) of
two released pre-trained SoCo models. The two models differ in their training epochs (100 vs. 400),
and we test its COCO object detection and instance segmentation performance using Mask-RCNN
backbone, which is copied from its original paper.

METHOD EPOCHS APbb APmk PCR LOSS

SOCO 100 42.3 37.6 0.83 -7.80
400 43.0 38.2 0.77 -7.90

C PROOFS

C.1 PROOF OF THEOREM 2.3

We first give the concrete definition of the error term as below. Let a linear classifier has weight
C ∈ Rk×r and predicts gfI ,C(x̄) := argmaxi∈[r](fI(x)

⊤C)i for an augmented view x. Given a
natural image sample x̄, we ensemble the predictions on augmented views and predict ḡfI ,C(x̄) :=
argmaxi∈[r] Prx∼A(·|x̄) [gfI ,C(x) = i]. Then the linear probe error, i.e., the error of the best possible
linear classifier on the representations is defined as E(fI) := minC∈Rk×r Prx̄∼PX

[y(x̄) ̸= ḡfI ,C(x̄)].
In the following, we restate Theorem 2.3.
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Theorem C.1. We can upper-bound the linear probe error E(fI) as

E(fI) ≲
4ε

1− λk+1
. (12)

where λk+1 is the (k + 1)-th largest eigenvalue of ĀI .

Proof. In HaoChen et al. (2021), the error bound is given as

E(F ) ≲
2ϕŷ

1− λk+1
, (13)

where ϕŷI =
∑

x,x′∈X wxx′ · 1 [ŷI(x) ̸= ŷI(x
′)], and ŷI denotes the extended label of augmented

views. This quantity characterizes the difference in semantics between two augmented views of the
same natural image. Combining the fact that ϕŷI ≤ 2ε (Lemma C.5 in HaoChen et al. (2021)), we
can derive equation 12 in Theorem 2.3.

C.2 PROOF OF THEOREM 2.4

To give the formal expression of the linear probe error in the context of dense contrastive learning,
we first introduce some notations. We denote p̄ as a patch in the natural image. In our modeling of
the process of selecting positive pairs, every p̄ has a natural correspondence to the patches in the
augmentation views.

We denote “p is a random patch from the view x" as x → p. When x̄ → p̄ and x ∼ A(·|x̄), we denote
“p is the corresponding patch of p̄" as p ∼ p̄. Let a linear classifier be applied on a patch feature with
weights C ∈ Rk×r. With this, a patch p is predicted as gf,C(p) = argmaxi∈[r](f(p)

⊤C)i. Then,
for a patch p̄ from a natural data sample x̄, the predictions of all its augmentations are aggregated as

ḡf,C(p̄) = argmax
i∈[r]

Pr
x∼A(·|x̄)

x̄→p̄,x→p,p∼p̄

[gf,C(p) = i]. (14)

With these, we define the linear probe error of patches as

E(f) := min
C∈Rk×r

Pr
x̄∼PX
x̄→p̄

[y(p̄) ̸= ḡf,C(p̄)]. (15)

In the following, we restate Theorem 2.4.

Theorem C.2. Define the labeling error rate α as the average label disagreement among the positive
pairs (p, p+), i.e., α := Ep,p+1[y(p) ̸= y(p+)]. We can upper-bound the linear probe error for DCL
as

E(f) ≲ 2α

1− γk+1
. (16)

where γk+1 is the (k + 1)-th largest eigenvalue of Ā.

Proof. In the case of DCL, the labeling error rate α is defined as the difference between the labels
of two patches, which is equivalent to the quantity ϕy =

∑
p,p′∈XP

wpp′ · 1 [y(p) ̸= y(p′)] (ϕy no
longer has connection with ε). As a result, equation 13, which characterizes the error bound in GCL,
can be directly applied to DCL. This corresponds to equation 16.

C.3 PROOF OF LEMMA 2.5

We restate Lemma 2.5 as below.

Lemma C.3. Let (̄·) be the normalized form of a matrix defined in Section 2.1. Given A = A′ ⊗B,
we have

Ā = Ā′ ⊗ B̄. (17)

(For convenience in notation, here we let A′ = AI .)
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Proof. Recall that the dimension of A′ and B are respectively n and m. We further denote Ai,k;j,l :=
Aim+k,jm+l = A′

i,jBk,l. By the definition of normalization, we have

Ā′
i,j =

A′
i,j√(

n∑
k=1

A′
i,k

)(
n∑

k=1

A′
j,k

). (18)

The degree of A is ∑
j,l Ai,k;j,l =

m∑
l=1

n∑
j=1

A′
i,jBk,l

=
n∑

j=1

A′
i,j

m∑
l=1

Bk,l.
(19)

Then we can calculate the element of Ā:

Āi,k;j,l =
Ai,k;j,l√(∑

j,l Ai,k;j,l

)(∑
i,k Ai,k;j,l

)
=

A′
i,jBk,l√√√√( n∑

j=1

A′
i,j

m∑
l=1

Bk,l

)(
n∑

i=1

A′
i,j

m∑
j=1

Bk,l

)
= Ā′

i,jB̄k,l.

(20)

This exactly the definition of Ā = Ā′ ⊗ B̄.

C.4 PROOF OF LEMMA 2.6

We restate Lemma 2.6 as below.
Lemma C.4. Let A1 ∈ Rn×n have eigenvalues λi, i ∈ [n], and let A2 ∈ Rm×m have eigenvalues
µj , j ∈ [m]. Then the mn eigenvalues of A1⊗A2 are λ1µ1, . . . , λ1µm, λ2µ1, . . . , λ2µm, . . . , λnµm.

Proof. The Kronecker product has the following property:

(A1 ⊗A2)(x⊗ z) = A1x⊗A2z, (21)

where A1 ∈ Rn×n, A2 ∈ Rm×m, x ∈ Rn, z ∈ Rm. Then if x is the right eigenvector of A1 with
eigenvalue λ, and z is the right eigenvector of A2 with eigenvalue µ, we have

(A1 ⊗A2)(x⊗ z) = A1x⊗A2z
= λx⊗ µz
= λµ(x⊗ z).

(22)

Thus, λµ is an eigenvalue of A⊗B, which finishes the proof.

C.5 PROOF OF THEOREM 2.8

We restate Theorem 2.8 as below.
Theorem C.5. Assume that Bl satisfies Assumption 2.7 and λi′ > 0 where γk+1 = λi′µj′ according
to the decomposition in Lemma 2.6. Then when 2lj′ < m, we have

E(F ) ≲
α

h(l)
(23)

where h(l) > 0 monotonically increases w.r.t. l.

Proof. The eigenvalues of a general circulant matrix (in the form of equation 8) is well-known as

λk = f(ωk), k = 0, 1, · · · ,m− 1, (24)

14



Under review as a conference paper at ICLR 2024

where f(x) = b0+ b1x+ b2x
2+ · · ·+ bm−1x

m−1 with b0 = 1, and ωk = cos 2kπ
m + i sin 2kπ

m . Then
when bl+1 = · · · = bm−l−1 = 0 and b1 = · · · = bl = bm−l = · · · = bm−1 = 1, the eigenvalues of
B̄l are

µl,k =
1 + 2

∑l
j=1 cos

2jkπ
m

1 + 2l
, k = 0, 1, · · · ,m− 1. (25)

It is evident that when 2kl < m, the eigenvalue µl,k monotonically decreases w.r.t. l. Furthermore,
assuming the consistency of {λi}, it can be observed that as every eigenvalue in {µj} decreases,
the eigenvalue γk+1 also decreases. Consequently, γk+1 monotonically decreases with respect to l,
thereby completing the proof.

D SUPPLEMENTARY INTRODUCTION OF SPECTRAL CONTRASTIVE LEARNING

In this part, we first describe the process of spectral clustering and then prove the equivalence between
spectral clustering and spectral contrastive learning.

In the mathematical formulation described in Section 2.1, let v1, v2, · · · , vk be the corresponding
unit-norm eigenvectors of the k largest eigenvalues γ1, γ2, · · · , γk. By stacking the eigenvectors in
columns, we obtain the matrix F ⋆ = [v1, v2, · · · , vk] ∈ Rn×k. The rows of F ⋆ can be treated as
embeddings of each vertex in the graph GI , which possess good clustering properties. Typically,
spectral clustering algorithms apply K-Means to these embeddings to obtain the clusters.

However, due to the exponentially large size of the patch-level positive-pair graph, it is infeasible
to store the embedding F ⋆ directly. Instead, we parameterize the embeddings as a neural network
function f : X → Rk and optimize it using the low-rank approximation:

min
F∈Rn×k

Lmf(F ) = ∥Ā− FF⊤∥2F , (26)

where the rows of F correspond to the embeddings calculated by the network. In this scenario,
optimizing the network using the matrix factorization loss Lmf(F ) is equivalent to using the spectral
contrastive loss (equation 1), i.e., Lmf(F ) = L(f) + const. Detailed proofs of this equivalence can
be found in HaoChen et al. (2021).

E RELATED WORK

Dense Contrastive Learning. The DCL methods can be divided into two main streams regarding
their strategies for matching positive patch pairs: feature-based and geometry-based methods (Wang
et al., 2022c). Feature-based methods align patches based on feature similarity. For instance, DenseCL
(Wang et al., 2021) establishes patch correspondence by computing cosine similarities between the
feature maps of patches. These methods typically match positive pairs dynamically, which can result
in the challenge of unstable pre-training during early epochs. Geometry-based methods match patch
pairs based on their distance in the original images, which have been more frequently considered in
recent studies and are our main focus in this paper. For instance, PixPro (Xie et al., 2021) determines
positive pairs by the distance between patches, using a threshold. DUPR (Ding et al., 2022) aligns
two misaligned views by applying RoI Align on their intersection, which naturally produces positive
pairs without hyperparameters. SoCo (Wei et al., 2021) aligns patches in various regions and scales
to achieve object-level translation and scale invariance. Recently, several ViT-based DCL methods
have emerged. By generating different encodings of the same patch to form positive pairs, they all
achieve precise correspondence in geometry, leading to outstanding performance (Zhou et al., 2021;
Zhang et al., 2022; 2023).
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