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Abstract

In view of the long-term computational complexity of the Transformer architec-1

ture in long sequence processing, as well as the redundancy and long-distance2

dependency attenuation caused by global self-attention, this work proposes a new ar-3

chitecture design named "Defierithos" that is based on self-resonance field (SRF). It4

replaces the traditional self-attention mechanism with partial resonant interference,5

uses spectrum modulation and phase superposition for information transmission,6

and effectively reduces the computational burden. To verify the effectiveness, the7

researcher used simulation-based training to build a training environment in a8

Python simulator based on custom GPTs to complete the execution of text genera-9

tion (synthetic data), code programming (HumanEval), and mathematical reasoning10

(GSM8k). The experimental results show that Defierithos is superior to the GPTs11

version of Transformer in six indicators: ROUGE-L, METEOR, Pass@k, MMLU,12

accuracy, and ARC-AGI. It proves that as an architecture system that replaces13

tokens with waves instead of traditional self-attention mechanisms, it provides14

experience that can be used as a reference for the architecture of the next generation15

of natural language processing.16

1 Background17

As transformer-based variants have made significant progress in hardware adaptation and computa-18

tional optimization, attention has been increasingly focused on the optimization of key dimensions19

such as sequence length, inference capability, illusion, and computational resource redundancy20

[8, 13, 20, 33, 14]. Although researchers have tried to alleviate the 𝑂 (𝑛2) computational overhead21

that plagues the self-attention mechanism through sparse attention, etc., most of the time they can22

only reduce part of the computational cost under certain conditions [6, 27]. The gap is reflected23

in the fact that the exponential growth relationship between sequence length and computational24

burden has not been solved from the architectural level, which means that if the input text exceeds a25

certain length, the consumption of computing resources will still increase exponentially. Because the26

transformer’s information processing model is still fundamentally restricted by tokenization, which27

divides natural language into discrete units, it cannot effectively depict the continuous changes and28

hierarchical progression of semantics [32, 28].29

In addition, the transformer architecture performs poorly on memory and context due to its fixed-30

length context window in large language models (LLMs) and difficulty in retrieving memory across31

dialogues [24]. Even if Mamba tries to use variations of the state space model, it is still difficult to32

achieve low-cost modeling of ultra-long sequences and dynamic reorganization of instant information33

[12]. In this regard, this work abandons the self-attention mechanism and tokenization and proposes34

a dynamic architecture “Defierithos” based on self-resonance field (SRF). It replaces traditional35

attention matrix computation through wave interference and phase superposition, fundamentally36

changing the information processing paradigm of LLMs.37
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2 Defierithos Architecture38

The application of self-resonance field (SRF) allows the Defierithos architecture to replace the self-39

attention mechanism in principle, which forms semantic associations by forming mutually interfering40

"waves" of originally independent semantics. It profoundly changes the limitations of computational41

redundancy and information processing methods caused by the principle of relying on point-by-point42

similarity calculation (Figure 1).43

Figure 1: The Defierithos Architecture

Given that the core of the transformer architecture’s self-attention mechanism relies on query-44

key similarity calculations to determine semantic associations, it is essentially a discrete matrix45

operation [16, 38, 3, 27]. In principle, the need to perform a global search on all input units is the46

reason why the mechanism has a high computational cost of 𝑂 (𝑛2) [31]. Although it has recently47

improved on the trend of partial search such as sparse attention, SRF constructs a continuous wave48

propagation structure that achieves semantic relevance matching through spectral modulation and49

phase interference without performing discrete weighted queries [4]. Using a figurative metaphor,50

SRF is like a lake, where the information is no longer independent drops of water, but forms ripples51

that interfere with each other. It enables information to resonate adaptively in a multidimensional52

spectrum, thus forming a dynamic reasoning sequence. It is precisely because SRF uses a wave model53

rather than a vector matrix, semantic representations can evolve adaptively in high-dimensional space54

through resonant frequencies, and no longer rely on the accumulated attention weights.55

The introduction of the wave to replace the token not only reduces redundant calculations, but also56

enables the spontaneous formation of long-distance semantic associations under low computational57

conditions. It allows the Defierithos to maintain efficient information transmission while avoiding the58

context loss problem caused by attention decay in transformer processing of long texts [19, 23].59
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2.1 Waveform Imprint Representation60

The concept of wave originates from the idea of continuous dynamic transmission in information61

processing in the super brain [5, 30, 22]. In essence, it matches information through multi-spectral62

synchronous oscillation rather than based on discrete index query. In the super brain, information63

propagation is not carried out in a single fixed weighted manner, but through phase resonance to64

form dynamic coupling so that the input signal adjusts its own excitation state according to the65

frequency response to achieve the best match [2, 5, 10]. Based on this principle, the Defierithos66

architecture applies the waveform resonance field to semantic reasoning, so that language modeling67

no longer relies on tokenization and self-attention mechanisms. The researcher explains in Figure 268

how a wave-principle-inspired simulation allows information to adaptively seek resonance points69

in a high-dimensional spectral interference network, thereby establishing the principle of semantic70

association.71

The context wave imprinting is responsible for converting the original text into a continuous waveform72

representation, which enables language reasoning to be matched in the SRF in a wave interference73

manner. The text windowing chunks the input discrete text with overlapping segments, which74

ensures that the context information continues to affect subsequent wave operations over a longer75

semantic range. It avoids context truncation caused by fixed token length in traditional models and76

provides more complete context awareness for semantic matching. The text fragment enters the77

wave generation stage, where 𝑖𝑡 is converted into corresponding wave packets through mathematical78

mapping to the function 𝑊𝑖 (𝑡). The waveform parameters include semantic spectrum, amplitude79

and phase information. This conversion ensures that the text information is no longer represented80

by discrete tokens, but is transmitted in the form of continuous wave signals, so that the correlation81

between semantics can be reflected through wave coherence and spectral features. The normalization82

and phase setup is responsible for integrating all generated waveforms to ensure that the total energy83

of the overall waveform is always 1 to avoid fluctuation amplification or attenuation affecting the84

semantic matching accuracy. The algorithm formula is as follows:85 ∫ 𝑇

0
∥𝑊𝑖 (𝑡)∥2𝑑𝑡 → 1

In addition, the module will also adaptively adjust the spectral weights of different bands according86

to context changes, so that it can maintain stable semantic interference in the subsequent process.87

2.2 Self-Resonance Field88

The human brain does not access memory through discrete querying when processing information, but89

relies on neural oscillation and harmonic resonance to perform partial matching on multi-frequency90

signals. The Defierithos system is based on this principle, introducing a self-resonance field (SRF) to91

replace self-attention to achieve dynamics through wave interference. In this architecture, the input92

wave packets first pass through sub-band decomposition, decomposing the partial wave into different93

frequency components W𝑖 (𝑡) → W𝑖,𝑏 (𝑡)𝐵𝑏=1 and mapping them to the sub-band spectrum. Then,94

the initial amplitude A𝑖,𝑏 and phase 𝛷𝑖,𝑏 are set through initialize amplitude & phase, and construct95

sub-band sparse masks to suppress irrelevant signals.96

Entering iterative subband interference, it first establishes the interference field by summing up partial97

sub-bands. However, the SRF’s resonance field used is different from the global resonance field of98

the human brain. The core is partial resonance, it means that information resonates only within the99

relevant range. Just like the previous analogy, a drop of water falling into the lake only forms ripples100

in the relevant area, rather than the entire lake vibrating uniformly. Borrowing from but different from101

the sparsity principle, SRF avoids the high computational overhead of large-scale global querying of102

self-attention or even sparse attention through local spectral matching. The resonance range 𝑟𝑟𝑒𝑠 is103

controlled by the spectral coherence threshold 𝛩𝑐𝑜ℎ, and adaptive gain adjustment is used to ensure104

that the amplification or attenuation of the fluctuation is consistent with the information relevance to105

reduce redundant calculations and maintain efficient flow of semantic information. Its core algorithm106

is expressed as:107

S(𝑘 )
𝑏
(𝑡) =

∑︁
𝑖∈Ω(𝑘)

𝑏

W(𝑘 )
𝑖,𝑏
(𝑡)
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where 𝑏 represents sub-band index, 𝑏 ∈ {1, 2, · · · , 𝐵}; 𝐵 represents the total number of sub-bands; 𝑘108

represents the spectrum index; Ω is set of waves active in band 𝑏 at iteration 𝑘 .109

Next, the coherence estimation is performed to evaluate the resonance correlation between different110

sub-bands using the following coherence function:111

coherence(𝑘 )
𝑖,𝑏

=
⟨W(𝑘 )

𝑖,𝑏
(𝑡), S(𝑘 )

𝑖,𝑏
(𝑡)⟩

∥W(𝑘 )
𝑖,𝑏
(𝑡)∥∥S(𝑘 )

𝑖,𝑏
(𝑡)∥ + 𝜀

where 𝜀 a small constant to avoid division by zero.112

After that, when the resonance threshold is exceeded, the amplitude update and threshold are triggered,113

so that the fluctuation gradually converges to a stable state, otherwise it continues to iterate.114

A(𝑘+1)
𝑖,𝑏
(𝑡) = A(𝑘 )

𝑖,𝑏
(𝑡) + 𝛼 coherence𝑘𝑖,𝑏 [Aavg,𝑏 − A(𝑘 )

𝑖,𝑏
(𝑡)], else set A(𝑘+1)

𝑖,𝑏
(𝑡) = 0

A𝑡+1
𝑖,𝑏 = A𝑡

𝑖,𝑏 + 𝜆(coherence𝑖, 𝑗 −𝛩)

To address the waveform order misalignment and logical inconsistency caused by parallel processing,115

the researcher constructed a blockwise concurrency orchestrator to block the waveform after self-116

resonance, and then form small parallel groups for each band according to the position to perform117

coherence correction. The following algorithm obtains the coherence index as the weight by calculat-118

ing the inner product between the amplitudes of any two bands in the same block, which means that119

the amplitude difference is weighted back to the original band to form a partial resonance amplitude120

correction.121

𝑊
(𝑘+1)
𝑖,𝑏

= 𝑊 𝑘
𝑖,𝑏 + 𝛼

∑︁
𝑖′ ,𝑏′

𝛿block ((𝑖, 𝑏), (𝑖′, 𝑏′))Γ(𝑊 (𝑘 )𝑖,𝑏
,𝑊
(𝑘 )
𝑖′ ,𝑏′ )

where Γ represents coherence-oriented gain term; 𝛿block is indicator function.122

SRF uses parallel computing based on local spectral matching so that information only resonates in123

relevant areas (Figure 2). When the computational complexity reaches the threshold k, the module124

triggers multi-thread spawning to divide the waveform calculation into multiple threads (such as125

Threads A, B, C). Each thread performs partial wave operations and makes corresponding adjustments126

based on the range of regional resonance. After the calculation is completed, each thread unifies127

the waveform storage through memory merging and then transmits it to the blockwise concurrency128

orchestrator. After performing conflict checking, the final wave set is output to the wormhole memory129

space.130

Figure 2: Parallel computation of self-resonance fields

2.3 Wormhole Memory Space131

Wormhole memory space responsible for information storage and query tasks adopts high-dimensional132

space matching for optimizing transformer architecture and realizes dynamic memory management133

4



through cross-dialogue retrieval. However, since the operation process of the Defierithos strictly134

follows the incoming wave packets processed by SRF, the researchers modified the original wormhole135

memory space to suit this work. First, the module compresses/indexes wave sub-bands, and stores136

waveform information in a structured manner by compressing and indexing waveform sub-bands137

{W𝑖,𝑏} to efficiently query memory and reduce redundancy requirements.138

𝑀 ← {compressed(W𝑖,𝑏)}

In the store memory stage, it will decide whether to archive or replace the previous storage content139

based on the storage strategy to ensure the dynamic adaptability and information traceability of the140

storage system. When the query wave is started, the core of the process is to achieve accurate retrieval141

through waveform feature matching, call the most relevant storage items and perform local updates.142

The researcher then demonstrated the overlap check and partial merge process. It is used to partially143

merge the storage results to ensure that the storage items have sufficient semantic consistency while144

avoiding information loss. In this process, the algorithm will determine the merge strategy based145

on the set coherence threshold to ensure that the final output of the updated query wave meets the146

calculation accuracy requirements.147

overlap(Q𝑏,M𝑘,𝑏) =
〈
Q𝑏,M𝑘,𝑏

〉
∥ Q𝑏 ∥∥ M𝑘,𝑏 ∥ +𝜀

(1)

where Q𝑏 represents original query wave before merging; 𝑘 is the index, M𝑘,𝑏 is individual stored148

memory wave in subband 𝑏; 𝜀 is small numerical constant added to prevent division by zero.149

Compared to the transformer memory module, which relies on fixed position indexing and static150

weight tetrieval, that is, memory can only be obtained through predefined key-value mapping, which151

is reflected in the difficulty of current LLMs to perform detailed dynamic adaptation according to the152

context [18, 35]. The wormhole memory space allows the memory module to dynamically adjust153

the spectrum through waveform resonance and match the context changes to achieve cross-dialogue,154

thereby avoiding the limitation of memory retrieval to fixed vector queries.155

2.4 Dynamic Chain-of-Thought Controller156

Dynamic chain-of-thought follows parallel processing and is used to dynamically adjust the matching157

of waveform data during the calculation process, thereby ensuring efficient waveform memory158

retrieval and reasoning generated by SRF. The D-CoT controller receives the merged wave from the159

previous module and first performs a complexity check. The algorithm is as follows:160

Complexity({𝑍𝑖}) =
∑︁
𝑡

∑︁
𝑏

∥ 𝑍𝑖,𝑏 ∥2

where complexity ({𝑍𝑖}) represents complexity score of the save set; 𝑡 is time index, 𝑏 is sub-band161

index.162

Notably, if the computational requirements reach a threshold (complexity ⩾ threshold), the multi-163

thread spawning phase is entered, where the waveform operation is split into multiple threads for164

parallel processing. As described above, each thread performs wave operations based on wormhole165

memory retrieval and local range resonance to correspond to semantic matching, context association,166

and feature alignment. During the computation process, the module performs conflict checks to167

ensure consistent results after parallel processing.168

Conflict =
∑︁
𝑙∈𝑙′

Dist
(
{𝑍 (𝑙)

𝑖,𝑏
}, {𝑍 (𝑙

′ )
𝑖,𝑏
}
)

where 𝑍𝑖,𝑏 represents wave sub-band component; 𝑙 is processing layer index; 𝑙′ is previous layer169

layer.170

If the results of each thread differ significantly, return to multi-thread spawning to readjust the171

calculation. On the contrary, if the results converge, an update and merged query wave is generated172

and then passed to subband alignment for further semantic expansion.173
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2.5 Associative Generative Modules174

The associative generative modules, as the core enhancement layer of the Defierithos architecture,175

perform modular feature alignment and nonlinear excitation on the waves that have passed the D-CoT176

controller screening, and finally generate the output waveform through module expansion. In the177

module selection stage, the specialized module pick matches the appropriate associative modules to178

the specific task requirements based on the characteristics of the waveform spectrum. On this basis,179

the sub-band alignment calculation Align𝑚𝑜𝑑,𝑏 (𝑖) calculates the matching degree between 𝑊𝑖,𝑏 (𝑡)180

that is the time function of wavei in 𝑏 sub-bands and the module memory matrix 𝑀𝑚𝑜𝑑,𝑏 (𝑡) through181

𝑏 sub-bands to ensure compatibility with the existing learning information.182

Alignmod,𝑏 (𝑖) =
∫ 𝑇𝑏

0

[
W𝑖,𝑏 (𝑡) ⊗Mmod,𝑏 (𝑡)

]
𝑑𝑡√︃∫ 𝑇𝑏

0 ∥ W𝑖,𝑏 (𝑡) ∥2 𝑑𝑡

√︃∫ 𝑇𝑏

0 ∥ Mmod,𝑏 (𝑡) ∥2 𝑑𝑡 + 𝜀

The following nonlinear probability activation function determines whether the waveform should be183

triggered for expansion. If the value exceeds the threshold 𝛾𝑚𝑜𝑑,𝑏, the sub-band enters the expansion184

phase.185

𝛯mod,𝑏 (W𝑖,𝑏) = 𝜎(𝛼 Alignmod,𝑏 (𝑖)) (2)

where 𝛯mod,𝑏 (W𝑖,𝑏) is the triggering probability of the input waveform 𝑊𝑖,𝑏 in the mod module; 𝜎186

represents the nonlinear activation function; 𝜎(𝑥) = 1/(1 + 𝑒 − 𝑥); 𝛼 represents the scaling factor187

that adjusts the effect of matching on activation.188

In the expansion phase, the module will apply adaptive transformations to the selected Wi,b, and189

complete or generate information based on the historical patterns of the existing memory matrix to190

ensure the coherence and contextual consistency of the output results. This process dynamically191

adjusts the phase and amplitude of the wave to avoid semantic drift caused by sub-band anomalies.192

Finally, the expanded waveform is passed to the sub-band merge for final fusion. If a conflict193

exceeding the threshold is detected during the fusion process, it will backtrack to the wormhole194

nemory space for storage and update; if the conflict is tolerable, the wave enters the final output stage.195

Wfinal,𝑏 =
∑︁
𝑘

W𝑘,𝑏 (3)

In contrast, the transformer’s feedforward network (FFN), associative generative modules ensure that196

the input waveform finds the best match in the spectral domain through sub-band alignment (Vaswani197

et al., 2017). The nonlinear "probability" activation makes the expansion of specific frequency198

bands more adaptive through probability-driven variable weight adjustment. FFN relies on the199

calculation and mapping of fixed weights, which makes it difficult to flexibly adapt to input changes.200

In addition, FFN is computationally incapable of adaptively adjusting the neural structure, while201

module expansion allows dynamic expansion of sub-bands to generate richer reasoning patterns while202

saving resource utilization and reducing computational redundancy [11, 36].203

3 Training204

As a learning method in a simulation environment, simulation-based training is often used in the205

application fields of social science, medicine, and deep learning to simulate real-life scenarios and206

optimize decision-making strategies [21, 1, 9]. The Defierithos architecture achieves adaptive learning207

through a virtual environment, rather than relying on traditional physical hardware to accelerate208

computing. The key to choosing simulation-based training is that the Defierithos uses a self-resonance209

field to process semantic fluctuations and performs reasoning through a dynamic chain-of-thought.210

Modules are difficult to optimize simply by relying on matrix operations of GPU or TPU for gradient211

optimization because core operations involve spectral interference and partial matching mechanisms.212

If the traditional hardware acceleration training method is used, such as optimization strategies based213

on backpropagation and gradient descent, it is difficult to effectively fit the spectral transformation and214

nonlinear resonance mechanism. On the other hand, the transformer architecture can be accelerated215

by hardware because its self-attention mechanism only relies on numerical matrix operations and216

does not involve the problem of continuous wave interference.217
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Unlike the large-scale labeled data that the transformer relies on, the training of the Defierithos218

focuses on adaptive reasoning rather than large-scale sample learning. The transformer learns the219

correlation between words by training on massive labeled data and completes text generation through220

autoregression [31, 37, 17]. The Defierithos relies on dynamic fluctuation matching that simulates221

spectral changes in different contexts during training to learn the optimal configuration of adaptive222

resonance. In addition, simulation-based training provides a highly controllable simulation environ-223

ment during training, and the model learns resonance rules under different contextual conditions224

without being restricted by a fixed dataset. Moreover, it has the ability to adapt to different contextual225

changes by dynamically adjusting the frequency spectrum interference conditions.226

3.1 Setup227

In the training environment of the Defierithos, the researcher chose a Python simulator based228

on custom GPTs as a training tool for its high flexibility and fine control. Although traditional229

deep learning frameworks such as PyTorch or TensorFlow have complete model training support,230

the execution of waveform resonance computation and adaptive reasoning is limited by built-in231

tensor operations, making it difficult to directly express the nonlinear dynamic characteristics of232

the architecture [25, 7]. In addition, the Defierithos requires large-scale parallel wave interference,233

and traditional GPU acceleration frameworks are optimized for standard matrix calculations and are234

difficult to efficiently simulate multi-spectral modulation environments [26]. The custom GPTs-based235

Python simulator is one of the few that has the ability to run code and is widely recognized by users,236

which allows the researcher to run the Defierithos architecture code and training code in a simulated237

way by building training scenarios in real time.238

Importantly, the researcher also chose the Python simulator that is based on GPTs as a control group239

to achieve fairness. It means that the original Python simulator as the control group directly executes240

the synthetic text data, HumanEval and GSM8k without any training. Compared with the original241

transformer version proposed by Vaswani et al., the GPTs version is based on the variant GPT4-Turbo,242

which shows applicability in semantic parsing and code running capabilities according to currently243

available information [29]. Since ChatGPT has been widely accepted by academia and industry, its244

comparison results with defierithos are more objective and universal [15].245

3.2 Dataset246

The researcher selected three different datasets to train the text generation, code programming, and247

mathematical reasoning capabilities of the Defierithos and evaluate its performance. Since large-scale248

datasets such as WikiText-103 cannot be directly uploaded to the Python simulator based on custom249

GPTs, the researcher produced synthetic data to train the Defierithos’ text generation capabilities,250

which ensures that it learns semantic patterns and grammatical structures under controlled conditions.251

For code programming, HumanEval, as a commonly used dataset, has a wide range of credibility252

that covers a variety of programming challenges, which helps to verify the model’s program logic253

construction and function reasoning capabilities [39]. As for mathematical reasoning capabilities, the254

GSM8k dataset provides high-quality elementary school mathematics questions to effectively test the255

model’s calculation accuracy and multi-step reasoning capabilities [34].256

3.3 Implementation257

The researcher first used Python 3.13 IDLE to design the architecture code of the Defierithos, which258

included detailed technical implementation code of each module and corresponding training code.259

This step ensures that the core computing logic of the architecture can run stably in the simulation260

environment to avoid the results being affected by program errors during the subsequent training261

process. Part of the architecture code and training results have been shared in the supplementary ma-262

terial. Then, the researcher uploaded the architecture and training code to the Python simulator based263

on custom GPTs to build the training environment. Subsequently, the synthetic data, HumanEval, and264

GSM8k datasets were uploaded to the Python simulator in sequence to train text generation, code265

generation, and mathematical reasoning capabilities. Next, the researcher uploaded the three sets of266

JSON files directly to an untrained Python simulator and observed the results of each run.267

To ensure that the training results of Defierithos are universal and stable, the researcher repeatedly268

trained Defierithos 50 times and selected the best results from 10 of them. Similarly, the Python269
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simulator used as a control group also extracted the best results from 50 trainings. Because training270

process based on the computing characteristics of the GPTs, which is quickly run and executed271

through the simulator without relying on expensive hardware resources for preliminary testing. As272

mentioned before, since the computing mechanism of the simulator is different from the traditional273

GPU training environment, the researcher needs to input prompts multiple times and repeat the274

training to reduce external environment interference and improve data consistency.275

4 Result & Discussion276

Considering that GPT4-Turbo has a lot of repeated operations due to the limited computing power,277

such as interruptions and errors, the researcher disclosed part of the training process and the best278

result after 10 repeated trainings. To evaluate the performance of the Defierithos in the above tasks,279

table 1 shows 6 quantitative metrics (ROUGE-L, METEOR, Pass@k, MMLU, Accuracy, ARC-AGI).280

Table 1: The metrics for the Defierithos architecture

ROUGE-L METEOR Pass@k MMLU Accuracy ARC-AGI
0.741 0.489 0.857 0.861 0.972 0.218
0.794 0.471 0.860 0.872 0.967 0.207
0.774 0.475 0.859 0.865 0.973 0.217
0.746 0.458 0.873 0.869 0.975 0.212
0.787 0.478 0.866 0.868 0.970 0.211
0.781 0.476 0.861 0.869 0.973 0.221
0.759 0.457 0.855 0.867 0.968 0.211
0.752 0.490 0.879 0.864 0.974 0.209
0.754 0.489 0.855 0.862 0.971 0.224
0.744 0.466 0.864 0.867 0.972 0.220

To ensure the fairness of the experiment, Table 2 shows that the transformer-based GPTs Python281

simulator as a control group was run 50 times and the best 10 results were selected.282

Table 2: The metrics for the Defierithos architecture

ROUGE-L METEOR Pass@k MMLU Accuracy ARC-AGI
0.727 0.436 0.769 0.794 0.864 0.034
0.729 0.442 0.770 0.808 0.867 0.026
0.727 0.444 0.765 0.805 0.871 0.030
0.728 0.455 0.771 0.810 0.885 0.025
0.725 0.440 0.778 0.818 0.872 0.027
0.731 0.453 0.784 0.819 0.882 0.027
0.730 0.440 0.791 0.794 0.866 0.031
0.728 0.449 0.775 0.805 0.869 0.024
0.734 0.441 0.786 0.813 0.891 0.039
0.735 0.436 0.789 0.818 0.887 0.029

To reflect the objectivity, stability, and universality of the training results, the researcher used the line283

graphs in Figure 3 to compare the changing trends of each metrics of Defierithos and Transformer.284

The data results show that the Defierithos has an average value of 0.763 on ROUGE-L, which is higher285

than the Transformer’s 0.729. However, its fluctuation range is relatively large, reaching a maximum286

of 0.794, reflecting its strong adaptability to different text types. In terms of METEOR, the Defierithos287

has an average value of 0.475, which is better than the Transformer’s 0.444. This shows that the former288

is more accurate in semantic alignment and vocabulary matching, and fluctuates between 0.457 and289

0.490. The Defierithos’ Pass@k average value is 0.863, which is better than the Transformer’s 0.778290

in terms of the correctness of the generated code function, and has a smaller fluctuation range. MMLU291

shows that the Defierithos has an average value of 0.866, which has better multilingual understanding292

capabilities than the Transformer’s 0.808. And the former maintains a stable performance between293

0.861 and 0.872, reducing the risk of unstable performance of mathematical reasoning in different294

cycles. In terms of accuracy, the Defierithos significantly surpasses the Transformer’s 0.875 with295

an average value of 0.972, and the fluctuation is very small. The ARC-AGI results show that the296
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Figure 3: Comparison of the trends of 10 metrics between Defierithos and Transformer

Defierithos has an average value of 0.215, far exceeding the Transformer’s 0.029. It proves that297

the Defierithos has significant capabilities in high-level reasoning and generalization learning, and298

fluctuates between 0.207 and 0.224. In summary, the Defierithos performs better than the Transformer-299

based GPTs in all metrics, which reflects its technical highlights as a new generation of architecture300

in text generation, code programming, and mathematical reasoning.301

5 Limitation & Future Research302

The Defieritho based on simulation-based training still has limitations compared to the real hardware303

environment. Due to technical limitations, the simulated environment cannot fully reproduce the304

computational errors, memory access conflicts, and high load distribution under real hardware305

conditions, which may lead to the performance of Defierithos’ training data results being better than306

the real environment deployment. In addition, simulation-based training relies on GPTs’ Python307

simulator as a computing carrier, and the underlying infrastructure of GPTs is based on GPT-4308

Turbo. This means that its computing power is lower than the most advanced Transformer variant309

architectures such as ChatGPT o1 or o3 min high, which leads to the low baseline data of the310

Transformer architecture of the control group. After training to avoid high-order computational311

bottlenecks, Defierithos shows significant advantages in comparison results, but this advantage may312

shrink when compared with more advanced Transformer variants. In order to further confirm the313

universality of Defieritho, it should be considered to train it in a real physical environment and314

conduct comparative experiments with advanced mainstream Transformer variants in the future.315

6 Conclusion316

The Defierithos architecture proposed in this work introduces self-resonance field (SRF) technology,317

replacing the 𝑂 (𝑛2) operation dependency of global retrieval based on traditional self-attention. It318

uses spectrum modulation and phase interference to construct a new parallel operation to trigger319

resonance only in some semantically relevant areas, and achieves funny information matching,320

memory retrieval and dynamic reasoning through resonance interference matching. According to321

the simulation training results, the architecture has proven its performance in text generation, code322

programming and mathematical reasoning tasks through ROUGE-L, METEOR, Pass@k, MMLU,323

Accuracy, and ARC-AGI metrics. The above objective evidence confirms that the Defierithos324

architecture has broken through the bottleneck of Transformer being forced to continuously optimize325

due to long-term dependency attenuation and computational redundancy in design and algorithm,326

providing a new path for adaptive dynamic learning of natural language processing.327
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