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ABSTRACT

Sparse autoencoders (SAEs) are a promising technique for decomposing language
model activations into interpretable linear features. However, current SAEs fall
short of completely explaining model performance, resulting in “dark matter”—
unexplained variance in activations. In this work, we predict and verify that much
of SAE dark matter can be linearly predicted from the activation vector. We exploit
this fact to deconstruct dark matter into three top-level components: 1) unlearned
linear features, 2) unlearned dense features, and 3) nonlinear errors introduced by
the SAE. Through a scaling laws analysis, we estimate that nonlinear SAE errors
stay constant as SAEs scale and serve as a lower bound of SAE performance on
both an average and per-token level. We next empirically analyze the nonlinear
SAE error term and show that it is not entirely a sparse sum of unlearned linear fea-
tures, but that it is still responsible for some of the downstream reduction in cross
entropy loss when SAE activations are inserted back into the model. Finally, we
examine two methods to reduce nonlinear error: inference time gradient pursuit,
which leads to a very slight decrease in nonlinear error, and linear transformations
from earlier layer SAE dictionaries, which leads to a larger reduction.

1 INTRODUCTION

The ultimate goal for ambitious mechanistic interpretability is to understand neural networks com-
pletely from the bottom up by breaking them down into programs (“circuits”) and the variables
(”features”) that those programs operate on (Olah, 2023). One recent successful unsupervised tech-
nique for finding features in language models has been sparse autoencoders (SAEs), which learn a
dictionary of one-dimensional representations that can be sparsely combined to reconstruct model
hidden activations Cunningham et al. (2023); Bricken et al. (2023). However, as observed by Gao
et al. (2024), the scaling behavior of SAE width (number of latents) vs. reconstruction mean squared
error (MSE) is best fit by a power law with a constant error term. This is a concern for the ambitious
agenda because it implies that there are components of model hidden states that are harder for SAEs
to learn and which might not be eliminated by simple scaling of SAEs. Gao et al. (2024) speculate
that this component of SAE error below the asymptote might best be explained by model activations
having components with denser structure than simple SAE features (e.g. Gaussian noise).

In this work, we investigate the SAE error vector as an object worth study in its own right. Thus,
our direction differs from the bulk of prior work that seeks to quantify SAE failures, as these mostly
focus on downstream benchmarks or simple cross entropy loss (see e.g. (Gao et al., 2024; Templeton
et al., 2024; Anders & Bloom, 2024)). We find that some SAE error might come, not from pre-
existing dense structures in the input as Gao et al. (2024) speculates, but from noise introduced by
the SAE itself. We build on this finding to propose a preliminary breakdown of SAE error (see
Fig. 1) and then investigate each component in the breakdown in turn.

1.1 CONTRIBUTIONS

1. To the best of our knowledge, we are the first to show that a large fraction of SAE error can be
explained with a linear transformation of the input activation, and that the norm of SAE error
can be accurately predicted with a linear projection of the input activation. We also provide
explanations for why SAE errors have these properties.
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Figure 1: A breakdown of SAE dark matter. See Section 5 for how we break down the overall frac-
tion of unexplained variance into the unlearned features, dense features/linear error, and nonlinear
error. See Section 7.1 for further separating encoder error from nonlinear error.

2. We use these discovered properties of SAE error to come up with rough estimates for the magni-
tudes of different components of SAE error, including postulating a new type of “nonlinear error”
introduced by the SAE architecture and sparsity constraint.

3. To the best of our knowledge, we are the first to examine per-token SAE scaling. We show that
SAE nonlinear error serves as a per token error lower bound (in addition to serving as an overall
error lower bound).

4. We investigate the nonlinear SAE error component and find that it affects downstream cross
entropy loss in proportion to its norm, is harder to learn SAEs for, and is less likely to consist of
unlearned linear features from the input.

5. We show that inference time gradient pursuit increases the fraction of variance explained by
SAEs, but only very slightly decreases the magnitude of the nonlinear error we discovered. Addi-
tionally, we show that SAEs trained on previous components can also be used to slightly decrease
nonlinear error, and indeed SAE error overall.

2 RELATED WORK

Language Model Representation Structure: The linear representation hypothesis (LRH) (Park
et al., 2023; Elhage et al., 2022) claims that language model hidden states can be decomposed into a
sparse sum of linear feature directions. The LRH has seen recent empirical support with sparse au-
toencoders, which have succeeded in decomposing much of the variance of language model hidden
states into such a sparse sum, as well as a long line of work that has used probing and dimensionality
reduction to find causal linear representations for specific concepts (Alain, 2016; Nanda et al., 2023;
Marks et al., 2024; Gurnee, 2024). On the other hand, some recent work has questioned whether
the linear representation hypothesis is true: Engels et al. (2024) find multidimensional circular rep-
resentations in Mistral (Jiang et al., 2023) and Llama (AI@Meta, 2024), and Csordás et al. (2024)
examine synthetic recurrent neural networks and find “onion-like” non-linear features not contained
in a linear subspace. This has inspired recent discussion about what a true model of activation space
might be: Mendel (2024) argues that the linear representation hypothesis ignores the growing body
of results showing the multi-dimensional structure of SAE latents, and Smith (2024b) argues that
we only have evidence for a “weak” form of the superposition hypothesis holding that only some
features are linearly represented.

SAE Errors and Benchmarking: Multiple works have introduced techniques to benchmark SAEs
and characterize their error: Bricken et al. (2023), Gao et al. (2024), and Templeton et al. (2024)
use manual human analysis of features, automated interpretability, downstream cross entropy loss
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when SAE reconstructions are inserted back into the model, and feature geometry visualizations;
Karvonen et al. (2024) use the setting of board games, where the ground truth features are known,
to determine what proportion of the true features SAEs learn; and Anders & Bloom (2024) use the
performance of the model on NLP benchmarks when the SAE reconstruction is inserted back into the
model. More specifically relevant to our main direction in this paper studying properties of the SAE
reconstruction error vector, Gurnee (2024) finds that SAE reconstruction errors are pathological,
that is, when SAE reconstructions are inserted into the model, they have a larger effect on cross
entropy loss than random perturbations to the same layer equal in norm to the SAE error. Follow
up work by Heimersheim & Mendel (2024) and Lee & Heimersheim (2024) find that this effect
disappears when the random baseline is replaced by a perturbation in the direction of the difference
between two random activations.

SAE Scaling Laws: Anthropic (2024), Templeton et al. (2024), and Gao et al. (2024) study how
SAE MSE scales with respect to FLOPS, sparsity, and SAE width, and define scaling laws with
respect to these quantities. Templeton et al. (2024) also study how specific groups of language
features like chemical elements, cities, animals, and foods, and show that SAEs predictably learn
these features in terms of their occurrence. Finally, Bussmann et al. (2024) find that larger SAEs
learn two types of dictionary vectors not present in smaller SAEs: features not present at all in
smaller SAEs, and more fine-grained “feature split” versions of features in smaller SAEs.

3 DEFINITIONS

In this paper, we adopt the weak linear hypothesis (Smith, 2024b), a generalization of the linear
representation hypothesis which only holds that some features in language models are represented
linearly. Formally, for hidden model activations x ∈ Rd, we write

x =

n∑
i=0

wiyi + Dense(x) (1)

for linear features {y1, . . . ,yn} and random vector w ∈ Rn, where w is sparse (∥w∥1 ≪ d) and
Dense(x) is a random vector representing the dense component of x. Dense(x) might be Gaus-
sian noise, nonlinear features as described by Csordás et al. (2024), or anything else not represented
in a low-dimensional linear subspace.

Now consider a sparse autoencoder Sae ∈ Rd → Rd which seeks to minimize ∥x− Sae(x)∥2
while using a small number of active latents. In this work, we are agnostic as to the architecture or
training procedure of the sparse autoencoder; see (Bricken et al., 2023; Cunningham et al., 2023;
Gao et al., 2024; Templeton et al., 2024) for such details. We now define SaeError(x) such that

x = Sae(x) + SaeError(x). (2)

Now, say the SAE has m latents. Since by assumption Dense(x) cannot be represented in a low-
dimensional linear subspace, the sparsity limited SAE will not be able to learn it. Thus, we will
assume that the SAE learns only the m most common features y0, . . . ,ym−1. Crucially different
from the typical assumptions, however, we will also assume that the SAE introduces some error
when making this approximation. We further break this new error down into that which is linearly
predictable from x, Wx for some W , and that which is not, NonlinearError(x). Thus we have

Sae(x) = NonlinearError(x) +Wx+

m∑
i=0

wiyi (3)

SaeError(x) = −NonlinearError(x)−Wx+ Dense(x) +
n∑

i=m

wiyi (4)

4 TESTS FOR SPLITTING SAE ERROR

4.1 ESTIMATING NONLINEAR ERROR

We now seek tests that will allow us to split SaeError(x) into its components. The first such
test consists of finding the least squares linear transformation a from x to SaeError(x), such that

3
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Figure 2: Top: When controlled amounts of noise are added to synthetic data Sae(x′) and x′, the
result is a plot similar to Fig. 1. Bottom: The nonlinear and linear error estimates (as shown at top)
accurately correlate with the amount of noise added. The exact correlation between synthetic added
noise and resulting estimated error components are shown in Table 1

aTx ≈ SaeError(x). The intuition behind this test is that if −Wx + Dense(x) +
∑n

i=m wiyi

is contained in a linear subspace of x (or equivalently if Wx +
∑m

i=0 wiyi is in such a subspace),
then the error of this regression exactly equals NonlinearError(x). However, although such
a subspace may intuitively seem likely to exist (if the yi are all almost orthogonal, for example),
its existence is not guaranteed. If such a linear transform does not exist, the percent of vari-
ance left unexplained by the regression will be an upper bound on the true variance explained by
NonlinearError(x). Finally, we also note that if this test is accurate, we can use it to estimate
the linear component of the error, Wx+ Dense(x): the difference between the variance explained
by Sae(x) and the variance explained by aTx will approach −Wx+ Dense(x).

Thus, our ability to estimate these quantities depends on how well a linear transform to predict
NonlinearError(x) works on our data. Although we do not have access to the ground truth
vectors yi, we can use a synthetic setup with a similar distribution of vectors. Specifically, given
an SAE, we use the reconstruction, Sae(x), as our “ground truth” activations x′. x′ has the useful
property that it is a sparse linear sum of dictionary features (the ones that the SAE learned), and
assuming the SAE was well trained, the distribution of these features and their weights should be
similar to that of the true features yi.

Now that we have a ground truth x′ that consists solely of a sparse sum of linear features, we can
pass x′ through the SAE; we find that the correct weights are recovered and the reconstruction is
almost perfect: Sae(Sae(x)) ≈ Sae(x) = x′. In this setting, we can now control all of the
quantities we are interested in: we can simulate varying m by masking SAE dictionary elements by
their frequency (least frequent to most), we can simulate Dense(x) by adding Gaussian noise to x′,
and we can simulate NonlinearError(x) by adding Gaussian noise to Sae(x′).

Table 1: Correlation matrix between synthetic noise
and estimated errors.

Estimated
Linear Err

Estimated
Nonlinear Err

x′ Noise
(True linear err) 0.9842 0.1417

Sae(x′) Noise
(True nonlinear err) 0.0988 0.9036

We run this synthetic setup with a Gemma
Scope (Lieberum et al., 2024) layer 20
SAE (width 16k, L0 ≈ 68). The re-
sults for different Gaussian noise amounts
versus percentage of features ablated are
shown in Fig. 2. We can see that, on
this distribution of vectors, the test works
as expected; the variance explained by
Sae(x)+aTx is a horizontal line propor-

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

105 106

SAE Width

101

102
SA

E 
L0

0.088

0.096

0.104

0.112

0.120

0.128

0.136

0.144

No
nl

in
ea

r E
rro

r (
FV

U)

(a) Gemma 9B layer 20 fraction of total variance of
x explained by the nonlinear error as a function of
SAE L0 and SAE width, plotted in log scale as a
contour plot. Larger SAE L0s have a smaller noise
fraction, but noise fraction stays mostly constant
with increasing SAE width.

0 20 40 60 80 100
Token

40

50

60

70

80

90

L2
 N

or
m

SAE Width
16k
32k
65k
131k
262k
524k
1m

(b) Per token norm of nonlinear errors as the size of
the SAE scales. Plotted on layer 20 Gemma 9B SAEs
from Gemma Scope closest to L0 = 100. The per token
nonlinear error norm stays the same as the SAE gets
wider; the decrease in Fig. 4 comes from the norm of
the linearly predictable error decreasing.

Figure 3: NonlinearError(x) scaling analysis.

tional to NonlinearError(x), while the gap between this horizontal line and the asymptote of
the variance explained by Sae(x) is proportional to Nonlinear Error. Indeed, as shown in
Table 1, these quantities are highly correlated. Thus, it seems as though at least on Gemma, this
test is reasonably well supported (although note that because x′ noise is slightly correlated with the
estimated nonlinear error in Table 1, it is possible that some of the contribution to the estimated
nonlinear error is from Dense(x)).

We also tried running this test on a sparse sum of random vectors, which did not work as well, pos-
sibly due to not including the structure of the SAE vectors (Giglemiani et al., 2024); see Appendix B
for more details.

4.2 NORM PREDICTION TEST

The second test we describe aims to determine if a random vector consists mostly of a sparse sum
of one-dimensional vectors. For example, we expect this to be true for x and Sae(x), but not
NonlinearError(x) or Dense(x). First, we claim that given a vector x, if x is mostly a sparse
sum of one-dimensional vectors, then there likely exists a prediction vector a such that aTx ≈ |x|22
(in other words, the norm squared of x can be linearly predicted from x). We prove that this is the
case for sums of orthogonal vectors in Appendix A; the intuition is that we can set the “prediction”
vector a to the sum of the vectors yi weighted by their average value wi.

Similar to the first test described above, when extending to almost orthogonal vectors, we claim that
this test will again be a lower bound. If the R2 of the norm prediction regression is high, it is evidence
that the random vector is composed of a sparse sum of vectors. Although this evidence is not
conclusive (there might be other distributions with this property), it does rule out many possibilities
(as for example random Gaussian noise does not have this norm prediction property).

5 NONLINEAR ERROR SCALING LAWS

For all experiments, unless noted otherwise, we run on 300k tokens of the uncopywrited sub-
set of the Pile (Gao et al., 2020) on layer 20 of Gemma 2 9B (Team et al., 2024) using Gemma
Scope (Lieberum et al., 2024) sparse autoencoders. We run with a context length of 1024 and ignore
all embeddings of tokens before token 200 in each context, as Lieberum et al. (2024) find that earlier
tokens are easier for sparse autoencoders to reconstruct, and we wish to ignore the effect of token
position on our results.

We run the test described in Section 4.1 on all layer 20 Gemma Scope 9B SAEs; that is, we train
a linear transformation a from x to SaeError(x), and use the variance left unexplained when

5
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Figure 4: Per token scaling with constant nonlinear error floor, Gemma 9B SAEs from Gemma
Scope closest to L0 = 60.

predicting x with z = aTx + Sae(x) as an estimate for NonlinearError(x). As an abuse of
notation, we will from now on write NonlinearError(x) to mean the part of SaeError(x)
we cannot explain with a linear projection (which is an estimate of the true NonlinearError(x)
we described above). We will similarly define LinearError(x) to be the part of SaeError(x)
we can explain with a linear transformation, which is approximately equal to −Wx+Dense(x)+∑n

i=m wiyi if our NonlinearError(x) prediction is correct. Additionally, we note that we run
most of our experiments in this section with L0 ≈ 60, since this is the sparsity at which there
exist Gemma Scope SAEs of matched L0 at different widths. Finally, for simplicity, we will drop
consideration of the Wx term, which will effectively merge it into Dense(x) in our analysis.

Our main surprising finding is that at this fixed L0 ≈ 60, the variance unexplained by
z is approximately constant. This result is consistent with there being some component of
NonlinearError(x) introduced by the SAE that is not linearly explainable, assuming the
distribution is similar to that described in our synthetic experiments above. We plot this
NonlinearError(x) as a horizontal line in Fig. 1. In this figure, we also plot the Gemma MSE
vs. SAE width power law fit; it asymptotes above the horizontal NonlinearError(x) line, which
implies the presence of Dense(x).

Another interesting result is that the NonlinearError(x), although constant as SAE width
scales, decreases as SAE L0 increases; see Fig. 3a. We interpret this result to mean that part of
the NonlinearError(x) comes from the sparsity constraint in the SAE. Another interpretation
might be that part of the NonlinearError(x) estimate comes from noise in the input (as de-
scribed in Table 1, this might be a weak yet present effect), and scaling L0 allows this noise to be
better fit by the SAE.

We also find that the norm of the NonlinearError(x) is constant on a per token level as
we scale SAE width (see Fig. 3b). This is surprising because the constant scaling behavior for
NonlinearError(x) described above was only on an average token level. Furthermore, the fig-
ure also shows that the nonlinear error norm floor lower bounds SAE error scaling per token. This is
exciting because fitting a power law to just seven data points that are not averaged can be extremely
noisy, so the noise floor may provide an easy way to lower bound the possible MSE able to be gained
on a given token if we scaled to very large SAE width.

Finally, we note that NonlinearError(x) cannot merely be explained by feature shrinkage; see
Appendix C for more details.
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6 ANALYZING COMPONENTS OF SAE ERROR

In this section, we analyze the nonlinear and linear components to show that the split is meaningful.

6.1 APPLYING THE NORM PREDICTION TEST

Our first result runs the norm prediction test from Section 4.2 on six different random vectors: x,
Sae(x), Sae(x)−NonlinearError(x) (just the linearly predictable part of the SAE reconstruc-
tion), SaeError(x), LinearError(x), and NonlinearError(x). The results are shown as
a violin plot for each component across all layer 20 Gemma Scope SAEs in Fig. 5 under the “Predict
from self” label.

Firstly, we note that ∥x∥22 can almost be perfectly predicted from x. This is reassuring news for the
linear representation hypothesis, as it implies that x can indeed well be modeled as the sum of many
one-dimensional features, at least from the perspective of this test.

We also find that the two components containing NonlinearError(x), the
NonlinearError(x) itself and the SaeError(x), have a very low score on this test.
This supports our hypothesis that unlike x, these components do not consist mostly of a sparse sum
of linear features, and may be partly nonlinear error from the SAE.

One potential problem with this test is that Sae(x) − NonlinearError(x) and
LinearError(x) are by construction both linear transforms of x, so as long as these transforms
are full rank, this test is equivalent to using x as the input to the regression (instead of just the
component itself). To assuage this concern, we again run the norm prediction test but use x as the
input to the regression instead of the target random vector itself. The idea here is that if the vector
consists mostly of linear features that were present in x, then we should be able to predict its norm.
Empirically, we find that this test is more powerful than running just on the vector itself, but results
in the same pattern overall; in Fig. 5, we plot these as “Predict from x”.

Finally, we note as an aside that it is interesting that ∥SaeError(x)∥22 can be almost perfectly
predicted from x, as this implies that a simple linear probe on x can predict the norm of SAE error
with high accuracy across SAE widths and L0s.

6.2 TRAINING SAES ON SAEERROR(x) COMPONENTS

Another empirical test we run is training an SAE on NonlinearError(x) and
LinearError(x). Our hypothesis is that it will be harder to learn an SAE for

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

16
k

32
k

65
k

13
1k

26
2k

52
4k 1m

SAE Width

0

25

50

75

100

Pe
rc

en
t R

ec
ov

er
ed

 W
he

n
Re

pl
ac

in
g 

La
ye

r (
%

)
L0  60

11 20 36 68 13
8

31
0

42
7

L0

Width 16k

R2

Norm / Total SAE Error Norm
Reconstruction + Linear Error
Reconstruction + Nonlinear Error

Figure 7: Results of intervening in the forward pass and replacing x with Sae(x) +
NonlinearError(x) and Sae(x) + LinearError(x) during the forward pass. Reported in
percent of cross entropy loss recovered with respect to the difference between the same intervention
with Sae(x) and with the normal model forward pass.

NonlinearError(x) if it indeed does not consist primarily of one-dimensional SAE vec-
tors. We choose a fixed Gemma Scope layer 20 SAE with 16k latents and L0 ≈ 60 to generate
SaeError(x) from. This SAE has nonlinear and linear components of the error approximately
equal in norm and R2 of the total SaeError(x) they explain, so it presents a fair comparison. We
train SAEs to convergence (about 100M tokens) on each of these components of error and find that
indeed, the SAE trained on NonlinearError(x) converges to a fraction of variance unexplained
an absolute 5 percent higher than the SAE trained on the linear component of SAE error (≈ 0.59
and ≈ 0.54 respectively).

One confounding factor is that the linear component of SAE error additionally contains Dense(x),
which may also be harder for the SAE to learn. Thus, we additionally examine the interpretability
of the learned features using automated interpretability techniques first proposed by Bricken et al.
(2023). Specifically, we use the implementation introduced by Juang et al. (2024), where a language
model (we use Llama 3.1 70b (AI@Meta, 2024)) is given top activating examples to generate an
explanation, and then must use only that explanation to predict if the feature fires on a test context.
Our results, shown in Fig. 6, show that indeed, the SAE trained on linear error produces features
that are about an absolute 5% more interpretable on every decile of feature activation (we run on
1000 random features for both SAEs, and for each feature use 7 examples in each of the 10 feature
activation deciles, as well as 50 negative examples).

6.3 DOWNSTREAM CROSS ENTROPY LOSS OF SAEERROR(x) COMPONENTS

A common metric used to test SAEs is the percent of cross entropy loss recovered when the SAE
reconstruction is inserted into the model in place of the original activation versus an ablation baseline
(see e.g. Bloom (2024)). We modify this test to specifically examine the different components
of SaeError(x): we compare to the baseline of inserting Sae(x) in place of x, and see what
percent of the cross entropy loss is recovered when replacing Sae(x) with the linear and nonlinear
components of SaeError(x). As a baseline, we compare against what percent we would “expect”
each component to recover for two notions of “expectation”: the average percent of the total norm
of the SAE error that the component is, and the percent of the variance that the component recovers
between Sae(x) and x. The results, shown in Fig. 7, show that for the most part these are reasonable
predictions for both types of error. That is, for the most part nonlinear nor linear error proportionally
contribute to the SAE’s increase in downstream cross entropy loss when considered by themselves,
with possibly a slightly higher contribution than expected for the linear component.

8
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Figure 8: Investigations towards reducing nonlinear SAE error.

7 REDUCING NONLINEARERROR(x)

In this section, we investigate whether simple techniques can reduce NonlinearError(x).

7.1 USING A MORE POWERFUL ENCODER

Our first approach for reducing nonlinear error is to try improving the encoder. We use a recent
approach suggested by Smith (2024a): applying a greedy inference time optimization algorithm
called gradient pursuit to a frozen learned SAE decoder matrix. We implement the algorithm exactly
as described by Smith (2024a) and run it on all layer 20 Gemma Scope 9b SAEs closest to L0 ≈ 60.
For each example x with reconstruction Sae(x)(x), we use the gradient pursuit implementation
with an L0 exactly equal to the L0 of x in the original Sae(x)(x).

Using these new reconstructions of x, we again run the test from Section 4.1 and do a linear transfor-
mation from x to the inference time optimized reconstructions. We then regenerate a similar scaling
plot as Fig. 1 and show this figure in Fig. 8a. Our first finding is that pursuit indeed decreases the
FVU of Sae(x) by 3 to 5%; as Smith (2024a) only showed an improvement on a small 1 layer
model, to the best of our knowledge we are the first to show this result on state of the art SAEs. Our
most interesting finding, however, is that the variance explained by NonlinearError(x) stays
almost constant when compared to the original SAE scaling in Fig. 1. In other words, if our tests are
accurate, most of the reduction in FVU comes from better learning Dense(x) and reducing the lin-
early explainable error. Thus, in Fig. 1, we plot the additional reduction in NonlinearError(x)
as the contribution of encoder error, and because NonlinearError(x) stays almost constant this
section is very narrow.

7.2 LINEAR PROJECTIONS BETWEEN ADJACENT SAES

Our second approach for reducing nonlinear error is to try to linearly explain it in terms of the
outputs of previous SAEs. The motivation for this approach is that during circuit analysis (see e.g.
Marks et al. (2024)), an SAE is trained for every component in the model, and being able to explain
parts of the SAE error in terms of prior SAEs would directly decrease the magnitude of noise terms
in the discovered SAE feature circuits. For the Gemma 2 architecture at the locations the SAEs are
trained on, each residual activation can be decomposed in terms of prior components:

Residlayer = MLP outlayer + RMSNorm(Oproj(Attn outlayer)) + Residlayer−1 (5)

In Fig. 8b, we plot the R2 of a regression from each of these right hand side components to each
of the different components of an SAE trained on Residlayer (SaeError(x), LinearError(x),
and NonlinearError(x)). We find that we can explain a small amount (up to ≈ 10%) of total
SaeError(x) using previous components, which may be immediately useful for circuit analysis.

9
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We also find that current layer’s SAE reconstruction is able to explain 50% of the variance in the
nonlinear error, although this may not be entirely surprising, as the nonlinear error is a function of
Sae(x):

NonlinearError(x) = SaeError(x)− LinearError(x)

= (x− Sae(x))− LinearError(x)

These results mean that we might be able to explain some of the SAE Error using a circuits level
view, but that overall, even in this setting, we will still have large parts of each error component
unexplained.

8 CONCLUSION

The fact that SAE error can be predicted and analyzed at all is surprising; thus, our findings are
intriguing evidence that SAE error, and not just SAE reconstructions, are worthy of analysis. Ad-
ditionally, the presence of constant nonlinear error implies that current SAEs may have room for
improvement, and therefore scaling SAEs may not be the only (or best) way to explain more of
model behavior. The precise research direction to take to reduce nonlinear error depends on exactly
why the nonlinear error arises. If it arises because the dictionaries SAEs currently learn are not
good enough, improved SAE training procedures may suffice, while if the root cause is the sparsity
constraint itself, future work might need to explore alternative simplicity penalties besides sparsity.
We note that our tests are also approximate; we argue for the existence of NonlinearError(x)
as a separate term from Dense(x), but the exact magnitude of each component remains uncertain.
Ultimately, we believe that there is still room to make SAEs better, not just bigger.
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patiraju, Léonard Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé, et al. Gemma
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A THEORY

Say we have a set of m unit vectors y1,y2, . . . ,ym ∈ Rd. We will call these “feature vectors”.
Define Y ∈ Rd×m as the matrix with the feature vectors as columns. We then define the Gram
matrix GY ∈ Rm×m of dot products on Y:

(GY)ij = (YTY)ij = yi · yj

We now will define a random column vector x that is a weighted positive sum of the m feature
vectors, that is, x =

∑
i wiyi for a non-negative random vector w ∈ Rm. We say feature vector yi

is active if wi > 0. We now define the autocorrelation matrix Rw ∈ Rm×m for w as

R = E(wwT ).

We are interested in breaking down x into its components, so we define a random matrix X as
Xij = wjYij , i.e. the columns of Y multiplied by w. We can now define the Gram matrix
GX ∈ Rm×m:

(GX)ij = (XTX)ij = wiwjyi · yj

GX = (wwT )⊙GY

E(GX) = Rw ⊙GY,

where ⊙ denotes Schur (elementwise) multiplication. The intuition here is that the expected dot
product between columns of X depends on the dot product between the corresponding columns of
Y and the correlation of the corresponding elements of the random vector.

We will now examine the L2 norm of x:

∥x∥22 =
∑
ij

wiwjyiyj

=
∥∥(wTw)⊙GY

∥∥2
F
= Tr(wwtGY) = wGYwT

We can also take the expected value:

E(∥x∥22) = Tr(RwGY)
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Our goal is to find a direction a ∈ Rd that when dotted with x predicts ∥x∥22. In other words, we
want to find a such that

∥x∥22 ≈ aTx = aT
∑
i

wiyi = aTYw

Combining equations, we want to find a such that

aTYw ≈ ∥x∥22 = (vwTGYw)

Let us first consider the simple case where for all i ̸= j, yi and yj are perpendicular. Then our goal
is to find a such that

aTYw ≈ Tr(wGYwT ) =
∑
i

⟨yi, yi⟩w2
i =

∑
i

w2
i = ∥w∥22 = wTw

Since all of the yi are perpendicular, WLOG we can write a =
∑

i biyi + c for a vector c ∈ Rd

perpendicular to all yi and a vector b ∈ Rm. Then we have

aTYw =

(∑
i

biyi + c

)T

Yw

= bTw

Since ordinary least squares produces an unbiased estimator, we know that if we use ordinary least
squares to solve for b, E(bTw) = E(wTw). Thus,∑

i

biE(wi) =
∑
i

E(w2
i )

bi = E(w2
i )/E(wi)

Now that we have bi, we can solve for the correlation coefficient between aTx = bTw and ∥x∥22 =
wTw. This gets messy when using general distributions, so we focus on a few simple cases.

The first is the case where each wi is a scaled independent Bernoulli distribution, so wi is si with
probability pi and 0 otherwise. Then bi = si. We also have that E(wTw) = E(bTw) =

∑
i s

2
i pi =

µ.

ρ =
E(bTwwTw)− µ2√

E(wTwwTw)− µ2
√
E(bTwbTw)− µ2

=

∑
i s

4
i (pi − p2i )√∑

i s
4
i (pi − p2i )

√∑
i s

4
i (pi − p2i )

= 1

That is, for Bernoulli variables, x =
∑

i siyi is a perfect regression vector.

The second is the case when each wi is an independent Poisson distribution with parameter λi. Then
E(wi) = λi and E(w2

i ) = λ2
i + λi, so bi = λi + 1. We also have that E(wTw) = E(bTw) =∑

i λ
2
i + λi = µ. Finally, we will use the fact that E(w3

i ) = λ3
i + 3λ2

i + λi and E(w4
i ) = λ4 +

6λ3 + 7λ2 + λ. Then via algebra we have that

ρ =

∑
i 2λ

3
i + 3λ2

i + λi√∑
i 4λ

3 + 6λ3
i + λi

√∑
i λ

3
i + 2λ2

i + λi

For the special case λi = 1, we then have

ρ =
6√
66

≈ 0.73

B SYNTHETIC EXPERIMENTS WITH RANDOM DATA

For this set of experiments, we generated a random vector x′ that was the sum of a power law of
100k random gaussian vectors in R4000 with expected L0 of around 100. To simulate the SAE
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reconstruction and SAE error, we simply masked a portion of the vectors in the sum of x′. Unlike
the more realistic synthetic data case we describe in Section 4.1, this did not work as expected: even
in the case with no noise added to x′ or the simulated reconstruction, the variance explained by the
sum of the linear estimate of the error plus the reconstructed vectors plotted against the number of
features “ablated” formed a parabola (with minimum variance explained in the middle region), as
opposed to a straight line as in Fig. 2.

We note that this result is not entirely surprising: other works have found that random vectors are
a bad synthetic test case for language model activations. For example, in the setting of model
sensitivity to perturbations of activations, Giglemiani et al. (2024) found they needed to control
for both sparsity and cosine similarity of SAE latents to produce synthetic vectors that mimic SAE
latents when perturbed.

C NOTE ON FEATURE SHRINKAGE

Earlier SAE variants were prone to feature shrinkage: the observation that Sae(x) systematically
undershot x. Current state of the art SAE variants (e.g. JumpReLU SAEs, which we examine in this
work), are less vulnerable to this problem, although we still find that Gemma Scope reconstructions
have about a 10% smaller norm than x. One potential concern is that the a in Section 4.1 that we
learn is merely predicting this shrinkage. If this was the case, then the cosine similarity of the linear
error prediction zTx would be close to 1; however, in practice we find that it is around 0.5, so z is
indeed doing more than predicting shrinkage.
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