
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

DECOMPOSING THE DARK MATTER OF SPARSE
AUTOENCODERS

Anonymous authors
Paper under double-blind review

ABSTRACT

Sparse autoencoders (SAEs) are a promising technique for decomposing language
model activations into interpretable linear features. However, current SAEs fall
short of completely explaining model performance, resulting in “dark matter”—
unexplained variance in activations. In this work, we predict and verify that much
of SAE dark matter can be linearly predicted from the activation vector. We exploit
this fact to deconstruct dark matter into three top-level components: 1) unlearned
linear features, 2) unlearned dense features, and 3) nonlinear errors introduced by
the SAE. Through a scaling laws analysis, we estimate that nonlinear SAE errors
stay constant as SAEs scale and serve as a lower bound of SAE performance on
both an average and per-token level. We next empirically analyze the nonlinear
SAE error term and show that it is not entirely a sparse sum of unlearned linear fea-
tures, but that it is still responsible for some of the downstream reduction in cross
entropy loss when SAE activations are inserted back into the model. Finally, we
examine two methods to reduce nonlinear error: inference time gradient pursuit,
which leads to a very slight decrease in nonlinear error, and linear transformations
from earlier layer SAE dictionaries, which leads to a larger reduction.

1 INTRODUCTION

The ultimate goal for ambitious mechanistic interpretability is to understand neural networks com-
pletely from the bottom up by breaking them down into programs (“circuits”) and the variables
(”features”) that those programs operate on (Olah, 2023). One recent successful unsupervised tech-
nique for finding features in language models has been sparse autoencoders (SAEs), which learn a
dictionary of one-dimensional representations that can be sparsely combined to reconstruct model
hidden activations Cunningham et al. (2023); Bricken et al. (2023). However, as observed by Gao
et al. (2024), the scaling behavior of SAE width (number of latents) vs. reconstruction mean squared
error (MSE) is best fit by a power law with a constant error term. This is a concern for the ambitious
agenda because it implies that there are components of model hidden states that are harder for SAEs
to learn and which might not be eliminated by simple scaling of SAEs. Gao et al. (2024) speculate
that this component of SAE error below the asymptote might best be explained by model activations
having components with denser structure than simple SAE features (e.g. Gaussian noise).

In this work, we investigate the SAE error vector as an object worth study in its own right. Thus,
our direction differs from the bulk of prior work that seeks to quantify SAE failures, as these mostly
focus on downstream benchmarks or simple cross entropy loss (see e.g. (Gao et al., 2024; Templeton
et al., 2024; Anders & Bloom, 2024)). We find that some SAE error might come, not from pre-
existing dense structures in the input as Gao et al. (2024) speculates, but from noise introduced by
the SAE itself. We build on this finding to propose a preliminary breakdown of SAE error (see
Fig. 1) and then investigate each component in the breakdown in turn.

1.1 CONTRIBUTIONS

1. To the best of our knowledge, we are the first to show that a large fraction of SAE error can be
explained with a linear transformation of the input activation, and that the norm of SAE error
can be accurately predicted with a linear projection of the input activation. We also provide
explanations for why SAE errors have these properties.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

105 106 107
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Unlearned Features

Dense Features / Linear Error

Nonlinear Error
(From Dictionary and Sparsity)

SAE Reconstruction, FVU 0.187 + 2.804W 0.321

SAE Reconstruction + Error Prediction, FVU 0.122
SAE Pursuit Reconstruction + Error Prediction

Encoder Error

SAE Width

Fr
ac

tio
n

Va
ria

nc
e

Un
ex

pl
ai

ne
d

(F
VU

)

Figure 1: A breakdown of SAE dark matter. See Section 5 for how we break down the overall frac-
tion of unexplained variance into the unlearned features, dense features/linear error, and nonlinear
error. See Section 7.1 for further separating encoder error from nonlinear error.

2. We use these discovered properties of SAE error to come up with rough estimates for the magni-
tudes of different components of SAE error, including postulating a new type of “nonlinear error”
introduced by the SAE architecture and sparsity constraint.

3. To the best of our knowledge, we are the first to examine per-token SAE scaling. We show that
SAE nonlinear error serves as a per token error lower bound (in addition to serving as an overall
error lower bound).

4. We investigate the nonlinear SAE error component and find that it affects downstream cross
entropy loss in proportion to its norm, is harder to learn SAEs for, and is less likely to consist of
unlearned linear features from the input.

5. We show that inference time gradient pursuit increases the fraction of variance explained by
SAEs, but only very slightly decreases the magnitude of the nonlinear error we discovered. Addi-
tionally, we show that SAEs trained on previous components can also be used to slightly decrease
nonlinear error, and indeed SAE error overall.

2 RELATED WORK

Language Model Representation Structure: The linear representation hypothesis (LRH) (Park
et al., 2023; Elhage et al., 2022) claims that language model hidden states can be decomposed into a
sparse sum of linear feature directions. The LRH has seen recent empirical support with sparse au-
toencoders, which have succeeded in decomposing much of the variance of language model hidden
states into such a sparse sum, as well as a long line of work that has used probing and dimensionality
reduction to find causal linear representations for specific concepts (Alain, 2016; Nanda et al., 2023;
Marks et al., 2024; Gurnee, 2024). On the other hand, some recent work has questioned whether
the linear representation hypothesis is true: Engels et al. (2024) find multidimensional circular rep-
resentations in Mistral (Jiang et al., 2023) and Llama (AI@Meta, 2024), and Csordás et al. (2024)
examine synthetic recurrent neural networks and find “onion-like” non-linear features not contained
in a linear subspace. This has inspired recent discussion about what a true model of activation space
might be: Mendel (2024) argues that the linear representation hypothesis ignores the growing body
of results showing the multi-dimensional structure of SAE latents, and Smith (2024b) argues that
we only have evidence for a “weak” form of the superposition hypothesis holding that only some
features are linearly represented.

SAE Errors and Benchmarking: Multiple works have introduced techniques to benchmark SAEs
and characterize their error: Bricken et al. (2023), Gao et al. (2024), and Templeton et al. (2024)
use manual human analysis of features, automated interpretability, downstream cross entropy loss

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

when SAE reconstructions are inserted back into the model, and feature geometry visualizations;
Karvonen et al. (2024) use the setting of board games, where the ground truth features are known,
to determine what proportion of the true features SAEs learn; and Anders & Bloom (2024) use the
performance of the model on NLP benchmarks when the SAE reconstruction is inserted back into the
model. More specifically relevant to our main direction in this paper studying properties of the SAE
reconstruction error vector, Gurnee (2024) finds that SAE reconstruction errors are pathological,
that is, when SAE reconstructions are inserted into the model, they have a larger effect on cross
entropy loss than random perturbations to the same layer equal in norm to the SAE error. Follow
up work by Heimersheim & Mendel (2024) and Lee & Heimersheim (2024) find that this effect
disappears when the random baseline is replaced by a perturbation in the direction of the difference
between two random activations.

SAE Scaling Laws: Anthropic (2024), Templeton et al. (2024), and Gao et al. (2024) study how
SAE MSE scales with respect to FLOPS, sparsity, and SAE width, and define scaling laws with
respect to these quantities. Templeton et al. (2024) also study how specific groups of language
features like chemical elements, cities, animals, and foods, and show that SAEs predictably learn
these features in terms of their occurrence. Finally, Bussmann et al. (2024) find that larger SAEs
learn two types of dictionary vectors not present in smaller SAEs: features not present at all in
smaller SAEs, and more fine-grained “feature split” versions of features in smaller SAEs.

3 DEFINITIONS

In this paper, we adopt the weak linear hypothesis (Smith, 2024b), a generalization of the linear
representation hypothesis which only holds that some features in language models are represented
linearly. Formally, for hidden model activations x ∈ Rd, we write

x =

n∑
i=0

wiyi + Dense(x) (1)

for linear features {y1, . . . ,yn} and random vector w ∈ Rn, where w is sparse (∥w∥1 ≪ d) and
Dense(x) is a random vector representing the dense component of x. Dense(x) might be Gaus-
sian noise, nonlinear features as described by Csordás et al. (2024), or anything else not represented
in a low-dimensional linear subspace.

Now consider a sparse autoencoder Sae ∈ Rd → Rd which seeks to minimize ∥x− Sae(x)∥2
while using a small number of active latents. In this work, we are agnostic as to the architecture or
training procedure of the sparse autoencoder; see (Bricken et al., 2023; Cunningham et al., 2023;
Gao et al., 2024; Templeton et al., 2024) for such details. We now define SaeError(x) such that

x = Sae(x) + SaeError(x). (2)

Now, say the SAE has m latents. Since by assumption Dense(x) cannot be represented in a low-
dimensional linear subspace, the sparsity limited SAE will not be able to learn it. Thus, we will
assume that the SAE learns only the m most common features y0, . . . ,ym−1. Crucially different
from the typical assumptions, however, we will also assume that the SAE introduces some error
when making this approximation. We further break this new error down into that which is linearly
predictable from x, Wx for some W , and that which is not, NonlinearError(x). Thus we have

Sae(x) = NonlinearError(x) +Wx+

m∑
i=0

wiyi (3)

SaeError(x) = −NonlinearError(x)−Wx+ Dense(x) +
n∑

i=m

wiyi (4)

4 TESTS FOR SPLITTING SAE ERROR

4.1 ESTIMATING NONLINEAR ERROR

We now seek tests that will allow us to split SaeError(x) into its components. The first such
test consists of finding the least squares linear transformation a from x to SaeError(x), such that

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

50% 40% 30% 20% 10% 0%
% features ablated

0.0

0.1
FV

U
Linear Error f(Activation Noise)

Nonlinear Error
f(Reconstruction Noise)

Sae(x′) Noise Var = 1, x′ Noise Var = 0.6

50% 40% 30% 20% 10% 0%
% features ablated

0.0

0.1

FV
U Linear Error

f(Activation Noise)

Nonlinear Error
f(Reconstruction Noise)

Sae(x′) Noise Var = 0.6, x′ Noise Var = 1

0.0 1.0 2.0 3.0 4.0
True Nonlinear Noise Var

0.0
1.0
2.0
3.0
4.0

Tr
ue

 L
in

ea
r N

oi
se

 V
ar (FVU difference)

0.0 1.0 2.0 3.0 4.0
True Nonlinear Noise Var

0.0
1.0
2.0
3.0
4.0

Tr
ue

 L
in

ea
r N

oi
se

 V
ar (FVU difference)

0.5
1.0

0.2

0.4
Est Nonlinear Error Est Linear Error

Figure 2: Top: When controlled amounts of noise are added to synthetic data Sae(x′) and x′, the
result is a plot similar to Fig. 1. Bottom: The nonlinear and linear error estimates (as shown at top)
accurately correlate with the amount of noise added. The exact correlation between synthetic added
noise and resulting estimated error components are shown in Table 1

aTx ≈ SaeError(x). The intuition behind this test is that if −Wx + Dense(x) +
∑n

i=m wiyi

is contained in a linear subspace of x (or equivalently if Wx +
∑m

i=0 wiyi is in such a subspace),
then the error of this regression exactly equals NonlinearError(x). However, although such
a subspace may intuitively seem likely to exist (if the yi are all almost orthogonal, for example),
its existence is not guaranteed. If such a linear transform does not exist, the percent of vari-
ance left unexplained by the regression will be an upper bound on the true variance explained by
NonlinearError(x). Finally, we also note that if this test is accurate, we can use it to estimate
the linear component of the error, Wx+ Dense(x): the difference between the variance explained
by Sae(x) and the variance explained by aTx will approach −Wx+ Dense(x).

Thus, our ability to estimate these quantities depends on how well a linear transform to predict
NonlinearError(x) works on our data. Although we do not have access to the ground truth
vectors yi, we can use a synthetic setup with a similar distribution of vectors. Specifically, given
an SAE, we use the reconstruction, Sae(x), as our “ground truth” activations x′. x′ has the useful
property that it is a sparse linear sum of dictionary features (the ones that the SAE learned), and
assuming the SAE was well trained, the distribution of these features and their weights should be
similar to that of the true features yi.

Now that we have a ground truth x′ that consists solely of a sparse sum of linear features, we can
pass x′ through the SAE; we find that the correct weights are recovered and the reconstruction is
almost perfect: Sae(Sae(x)) ≈ Sae(x) = x′. In this setting, we can now control all of the
quantities we are interested in: we can simulate varying m by masking SAE dictionary elements by
their frequency (least frequent to most), we can simulate Dense(x) by adding Gaussian noise to x′,
and we can simulate NonlinearError(x) by adding Gaussian noise to Sae(x′).

Table 1: Correlation matrix between synthetic noise
and estimated errors.

Estimated
Linear Err

Estimated
Nonlinear Err

x′ Noise
(True linear err) 0.9842 0.1417

Sae(x′) Noise
(True nonlinear err) 0.0988 0.9036

We run this synthetic setup with a Gemma
Scope (Lieberum et al., 2024) layer 20
SAE (width 16k, L0 ≈ 68). The re-
sults for different Gaussian noise amounts
versus percentage of features ablated are
shown in Fig. 2. We can see that, on
this distribution of vectors, the test works
as expected; the variance explained by
Sae(x)+aTx is a horizontal line propor-

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

105 106

SAE Width

101

102
SA

E
L0

0.088

0.096

0.104

0.112

0.120

0.128

0.136

0.144

No
nl

in
ea

r E
rro

r (
FV

U)

(a) Gemma 9B layer 20 fraction of total variance of
x explained by the nonlinear error as a function of
SAE L0 and SAE width, plotted in log scale as a
contour plot. Larger SAE L0s have a smaller noise
fraction, but noise fraction stays mostly constant
with increasing SAE width.

0 20 40 60 80 100
Token

40

50

60

70

80

90

L2
 N

or
m

SAE Width
16k
32k
65k
131k
262k
524k
1m

(b) Per token norm of nonlinear errors as the size of
the SAE scales. Plotted on layer 20 Gemma 9B SAEs
from Gemma Scope closest to L0 = 100. The per token
nonlinear error norm stays the same as the SAE gets
wider; the decrease in Fig. 4 comes from the norm of
the linearly predictable error decreasing.

Figure 3: NonlinearError(x) scaling analysis.

tional to NonlinearError(x), while the gap between this horizontal line and the asymptote of
the variance explained by Sae(x) is proportional to Nonlinear Error. Indeed, as shown in
Table 1, these quantities are highly correlated. Thus, it seems as though at least on Gemma, this
test is reasonably well supported (although note that because x′ noise is slightly correlated with the
estimated nonlinear error in Table 1, it is possible that some of the contribution to the estimated
nonlinear error is from Dense(x)).

We also tried running this test on a sparse sum of random vectors, which did not work as well, pos-
sibly due to not including the structure of the SAE vectors (Giglemiani et al., 2024); see Appendix B
for more details.

4.2 NORM PREDICTION TEST

The second test we describe aims to determine if a random vector consists mostly of a sparse sum
of one-dimensional vectors. For example, we expect this to be true for x and Sae(x), but not
NonlinearError(x) or Dense(x). First, we claim that given a vector x, if x is mostly a sparse
sum of one-dimensional vectors, then there likely exists a prediction vector a such that aTx ≈ |x|22
(in other words, the norm squared of x can be linearly predicted from x). We prove that this is the
case for sums of orthogonal vectors in Appendix A; the intuition is that we can set the “prediction”
vector a to the sum of the vectors yi weighted by their average value wi.

Similar to the first test described above, when extending to almost orthogonal vectors, we claim that
this test will again be a lower bound. If the R2 of the norm prediction regression is high, it is evidence
that the random vector is composed of a sparse sum of vectors. Although this evidence is not
conclusive (there might be other distributions with this property), it does rule out many possibilities
(as for example random Gaussian noise does not have this norm prediction property).

5 NONLINEAR ERROR SCALING LAWS

For all experiments, unless noted otherwise, we run on 300k tokens of the uncopywrited sub-
set of the Pile (Gao et al., 2020) on layer 20 of Gemma 2 9B (Team et al., 2024) using Gemma
Scope (Lieberum et al., 2024) sparse autoencoders. We run with a context length of 1024 and ignore
all embeddings of tokens before token 200 in each context, as Lieberum et al. (2024) find that earlier
tokens are easier for sparse autoencoders to reconstruct, and we wish to ignore the effect of token
position on our results.

We run the test described in Section 4.1 on all layer 20 Gemma Scope 9B SAEs; that is, we train
a linear transformation a from x to SaeError(x), and use the variance left unexplained when

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

0 20 40 60 80 100
Token

40

60

80

100

120

140
L2

 N
or

m

' t
op

' '-'
'd

ow
n'

' s
ho

ot
er

'
' w

he
re

'
' y

ou
'

' g
et

'
' t

o'
' b

ui
ld

'
' y

ou
r'

' o
wn

'

60

80

100

16k SAE error
32k SAE error

65k SAE error
131k SAE error

262k SAE error
524k SAE error

1m SAE error
Nonlinear error floor

Figure 4: Per token scaling with constant nonlinear error floor, Gemma 9B SAEs from Gemma
Scope closest to L0 = 60.

predicting x with z = aTx + Sae(x) as an estimate for NonlinearError(x). As an abuse of
notation, we will from now on write NonlinearError(x) to mean the part of SaeError(x)
we cannot explain with a linear projection (which is an estimate of the true NonlinearError(x)
we described above). We will similarly define LinearError(x) to be the part of SaeError(x)
we can explain with a linear transformation, which is approximately equal to −Wx+Dense(x)+∑n

i=m wiyi if our NonlinearError(x) prediction is correct. Additionally, we note that we run
most of our experiments in this section with L0 ≈ 60, since this is the sparsity at which there
exist Gemma Scope SAEs of matched L0 at different widths. Finally, for simplicity, we will drop
consideration of the Wx term, which will effectively merge it into Dense(x) in our analysis.

Our main surprising finding is that at this fixed L0 ≈ 60, the variance unexplained by
z is approximately constant. This result is consistent with there being some component of
NonlinearError(x) introduced by the SAE that is not linearly explainable, assuming the
distribution is similar to that described in our synthetic experiments above. We plot this
NonlinearError(x) as a horizontal line in Fig. 1. In this figure, we also plot the Gemma MSE
vs. SAE width power law fit; it asymptotes above the horizontal NonlinearError(x) line, which
implies the presence of Dense(x).

Another interesting result is that the NonlinearError(x), although constant as SAE width
scales, decreases as SAE L0 increases; see Fig. 3a. We interpret this result to mean that part of
the NonlinearError(x) comes from the sparsity constraint in the SAE. Another interpretation
might be that part of the NonlinearError(x) estimate comes from noise in the input (as de-
scribed in Table 1, this might be a weak yet present effect), and scaling L0 allows this noise to be
better fit by the SAE.

We also find that the norm of the NonlinearError(x) is constant on a per token level as
we scale SAE width (see Fig. 3b). This is surprising because the constant scaling behavior for
NonlinearError(x) described above was only on an average token level. Furthermore, the fig-
ure also shows that the nonlinear error norm floor lower bounds SAE error scaling per token. This is
exciting because fitting a power law to just seven data points that are not averaged can be extremely
noisy, so the noise floor may provide an easy way to lower bound the possible MSE able to be gained
on a given token if we scaled to very large SAE width.

Finally, we note that NonlinearError(x) cannot merely be explained by feature shrinkage; see
Appendix C for more details.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

x
Sa

e(x
)

Sa
e(x

) -

 Non
lin

ea
rE

rro
r(x

)

Sa
eE

rro
r(x

)

Lin
ea

rE
rro

r(x
)

Non
lin

ea
rE

rro
r(x

)

0.0

0.2

0.4

0.6

0.8

1.0
No

rm
 P

re
di

ct
io

n
Te

st
 R

2

Predict from x Predict from self

Figure 5: Violin plot of norm prediction tests
for all layer 20 Gemma Scope SAEs. We plot
the R2 of two regressions: from each random
vector to its norm squared, and from x to to each
random vector’s norm squared.

Not Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9
Q10

Decile

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

SAE trained on nonlinear error
SAE trained on linear error

Figure 6: Auto-interpretability results on fea-
tures from SAEs trained on the linear and non-
linear components of SaeError(x). “Not”
means that the example feature did not activate
at all, while each Qi represents activating exam-
ples from decile i.

6 ANALYZING COMPONENTS OF SAE ERROR

In this section, we analyze the nonlinear and linear components to show that the split is meaningful.

6.1 APPLYING THE NORM PREDICTION TEST

Our first result runs the norm prediction test from Section 4.2 on six different random vectors: x,
Sae(x), Sae(x)−NonlinearError(x) (just the linearly predictable part of the SAE reconstruc-
tion), SaeError(x), LinearError(x), and NonlinearError(x). The results are shown as
a violin plot for each component across all layer 20 Gemma Scope SAEs in Fig. 5 under the “Predict
from self” label.

Firstly, we note that ∥x∥22 can almost be perfectly predicted from x. This is reassuring news for the
linear representation hypothesis, as it implies that x can indeed well be modeled as the sum of many
one-dimensional features, at least from the perspective of this test.

We also find that the two components containing NonlinearError(x), the
NonlinearError(x) itself and the SaeError(x), have a very low score on this test.
This supports our hypothesis that unlike x, these components do not consist mostly of a sparse sum
of linear features, and may be partly nonlinear error from the SAE.

One potential problem with this test is that Sae(x) − NonlinearError(x) and
LinearError(x) are by construction both linear transforms of x, so as long as these transforms
are full rank, this test is equivalent to using x as the input to the regression (instead of just the
component itself). To assuage this concern, we again run the norm prediction test but use x as the
input to the regression instead of the target random vector itself. The idea here is that if the vector
consists mostly of linear features that were present in x, then we should be able to predict its norm.
Empirically, we find that this test is more powerful than running just on the vector itself, but results
in the same pattern overall; in Fig. 5, we plot these as “Predict from x”.

Finally, we note as an aside that it is interesting that ∥SaeError(x)∥22 can be almost perfectly
predicted from x, as this implies that a simple linear probe on x can predict the norm of SAE error
with high accuracy across SAE widths and L0s.

6.2 TRAINING SAES ON SAEERROR(x) COMPONENTS

Another empirical test we run is training an SAE on NonlinearError(x) and
LinearError(x). Our hypothesis is that it will be harder to learn an SAE for

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

16
k

32
k

65
k

13
1k

26
2k

52
4k 1m

SAE Width

0

25

50

75

100

Pe
rc

en
t R

ec
ov

er
ed

 W
he

n
Re

pl
ac

in
g

La
ye

r (
%

)
L0 60

11 20 36 68 13
8

31
0

42
7

L0

Width 16k

R2

Norm / Total SAE Error Norm
Reconstruction + Linear Error
Reconstruction + Nonlinear Error

Figure 7: Results of intervening in the forward pass and replacing x with Sae(x) +
NonlinearError(x) and Sae(x) + LinearError(x) during the forward pass. Reported in
percent of cross entropy loss recovered with respect to the difference between the same intervention
with Sae(x) and with the normal model forward pass.

NonlinearError(x) if it indeed does not consist primarily of one-dimensional SAE vec-
tors. We choose a fixed Gemma Scope layer 20 SAE with 16k latents and L0 ≈ 60 to generate
SaeError(x) from. This SAE has nonlinear and linear components of the error approximately
equal in norm and R2 of the total SaeError(x) they explain, so it presents a fair comparison. We
train SAEs to convergence (about 100M tokens) on each of these components of error and find that
indeed, the SAE trained on NonlinearError(x) converges to a fraction of variance unexplained
an absolute 5 percent higher than the SAE trained on the linear component of SAE error (≈ 0.59
and ≈ 0.54 respectively).

One confounding factor is that the linear component of SAE error additionally contains Dense(x),
which may also be harder for the SAE to learn. Thus, we additionally examine the interpretability
of the learned features using automated interpretability techniques first proposed by Bricken et al.
(2023). Specifically, we use the implementation introduced by Juang et al. (2024), where a language
model (we use Llama 3.1 70b (AI@Meta, 2024)) is given top activating examples to generate an
explanation, and then must use only that explanation to predict if the feature fires on a test context.
Our results, shown in Fig. 6, show that indeed, the SAE trained on linear error produces features
that are about an absolute 5% more interpretable on every decile of feature activation (we run on
1000 random features for both SAEs, and for each feature use 7 examples in each of the 10 feature
activation deciles, as well as 50 negative examples).

6.3 DOWNSTREAM CROSS ENTROPY LOSS OF SAEERROR(x) COMPONENTS

A common metric used to test SAEs is the percent of cross entropy loss recovered when the SAE
reconstruction is inserted into the model in place of the original activation versus an ablation baseline
(see e.g. Bloom (2024)). We modify this test to specifically examine the different components
of SaeError(x): we compare to the baseline of inserting Sae(x) in place of x, and see what
percent of the cross entropy loss is recovered when replacing Sae(x) with the linear and nonlinear
components of SaeError(x). As a baseline, we compare against what percent we would “expect”
each component to recover for two notions of “expectation”: the average percent of the total norm
of the SAE error that the component is, and the percent of the variance that the component recovers
between Sae(x) and x. The results, shown in Fig. 7, show that for the most part these are reasonable
predictions for both types of error. That is, for the most part nonlinear nor linear error proportionally
contribute to the SAE’s increase in downstream cross entropy loss when considered by themselves,
with possibly a slightly higher contribution than expected for the linear component.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

105 106 107
0.0

0.1

0.2

0.3

Unlearned Features

Dense Features / Linear Error

Nonlinear Error
(from Dictionary and Sparsity)

Pursuit SAE Reconstruction, FVU 0.136 + 2.342W 0.272

Pursuit SAE Reconstruction + Error Prediction, FVU 0.117

SAE Width

FV
U

(a) SAE error breakdown vs. SAE width for
inference time optimized reconstructions from
Gemma Scope L0 ≈ 60 dictionaries.

res
idu

al

pre
v r

esi
du

al MLP

att
en

tio
n

0.00

0.20

0.40

0.60

R²

0.49

0.14
0.07 0.04

Predicting
Nonlinear Error

res
idu

al

pre
v r

esi
du

al MLP

att
en

tio
n

0.06 0.09 0.07 0.10

Predicting
SAE-Error

res
idu

al

pre
v r

esi
du

al MLP

att
en

tio
n

0.34 0.32

0.16 0.18

Predicting
Linear Error

(b) The R2 of predicting parts of SAE error from the SAE
reconstructions of adjacent model components, layer 20
Gemma Scope L0 ≈ 60, 16k SAE width.

Figure 8: Investigations towards reducing nonlinear SAE error.

7 REDUCING NONLINEARERROR(x)

In this section, we investigate whether simple techniques can reduce NonlinearError(x).

7.1 USING A MORE POWERFUL ENCODER

Our first approach for reducing nonlinear error is to try improving the encoder. We use a recent
approach suggested by Smith (2024a): applying a greedy inference time optimization algorithm
called gradient pursuit to a frozen learned SAE decoder matrix. We implement the algorithm exactly
as described by Smith (2024a) and run it on all layer 20 Gemma Scope 9b SAEs closest to L0 ≈ 60.
For each example x with reconstruction Sae(x)(x), we use the gradient pursuit implementation
with an L0 exactly equal to the L0 of x in the original Sae(x)(x).

Using these new reconstructions of x, we again run the test from Section 4.1 and do a linear transfor-
mation from x to the inference time optimized reconstructions. We then regenerate a similar scaling
plot as Fig. 1 and show this figure in Fig. 8a. Our first finding is that pursuit indeed decreases the
FVU of Sae(x) by 3 to 5%; as Smith (2024a) only showed an improvement on a small 1 layer
model, to the best of our knowledge we are the first to show this result on state of the art SAEs. Our
most interesting finding, however, is that the variance explained by NonlinearError(x) stays
almost constant when compared to the original SAE scaling in Fig. 1. In other words, if our tests are
accurate, most of the reduction in FVU comes from better learning Dense(x) and reducing the lin-
early explainable error. Thus, in Fig. 1, we plot the additional reduction in NonlinearError(x)
as the contribution of encoder error, and because NonlinearError(x) stays almost constant this
section is very narrow.

7.2 LINEAR PROJECTIONS BETWEEN ADJACENT SAES

Our second approach for reducing nonlinear error is to try to linearly explain it in terms of the
outputs of previous SAEs. The motivation for this approach is that during circuit analysis (see e.g.
Marks et al. (2024)), an SAE is trained for every component in the model, and being able to explain
parts of the SAE error in terms of prior SAEs would directly decrease the magnitude of noise terms
in the discovered SAE feature circuits. For the Gemma 2 architecture at the locations the SAEs are
trained on, each residual activation can be decomposed in terms of prior components:

Residlayer = MLP outlayer + RMSNorm(Oproj(Attn outlayer)) + Residlayer−1 (5)

In Fig. 8b, we plot the R2 of a regression from each of these right hand side components to each
of the different components of an SAE trained on Residlayer (SaeError(x), LinearError(x),
and NonlinearError(x)). We find that we can explain a small amount (up to ≈ 10%) of total
SaeError(x) using previous components, which may be immediately useful for circuit analysis.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

We also find that current layer’s SAE reconstruction is able to explain 50% of the variance in the
nonlinear error, although this may not be entirely surprising, as the nonlinear error is a function of
Sae(x):

NonlinearError(x) = SaeError(x)− LinearError(x)

= (x− Sae(x))− LinearError(x)

These results mean that we might be able to explain some of the SAE Error using a circuits level
view, but that overall, even in this setting, we will still have large parts of each error component
unexplained.

8 CONCLUSION

The fact that SAE error can be predicted and analyzed at all is surprising; thus, our findings are
intriguing evidence that SAE error, and not just SAE reconstructions, are worthy of analysis. Ad-
ditionally, the presence of constant nonlinear error implies that current SAEs may have room for
improvement, and therefore scaling SAEs may not be the only (or best) way to explain more of
model behavior. The precise research direction to take to reduce nonlinear error depends on exactly
why the nonlinear error arises. If it arises because the dictionaries SAEs currently learn are not
good enough, improved SAE training procedures may suffice, while if the root cause is the sparsity
constraint itself, future work might need to explore alternative simplicity penalties besides sparsity.
We note that our tests are also approximate; we argue for the existence of NonlinearError(x)
as a separate term from Dense(x), but the exact magnitude of each component remains uncertain.
Ultimately, we believe that there is still room to make SAEs better, not just bigger.

REFERENCES

AI@Meta. Llama 3 model card, 2024. URL https://github.com/meta-llama/llama3/
blob/main/MODEL_CARD.md.

Guillaume Alain. Understanding intermediate layers using linear classifier probes. arXiv preprint
arXiv:1610.01644, 2016.

Evan Anders and Joseph Bloom. Examining language model performance
with reconstructed activations using sparse autoencoders. LessWrong, 2024.
URL https://www.lesswrong.com/posts/8QRH8wKcnKGhpAu2o/
examining-language-model-performance-with-reconstructed.

Transformer Circuits Team Anthropic. Circuits updates april 2024, 2024. URL
https://transformer-circuits.pub/2024/april-update/index.html#
scaling-laws.

Joseph Bloom. Open source sparse autoencoders for all residual stream layers of
gpt2 small. https://www.alignmentforum.org/posts/f9EgfLSurAiqRJySD/
open-source-sparse-autoencoders-for-all-residual-stream, 2024.

Trenton Bricken, Adly Templeton, Joshua Batson, Brian Chen, Adam Jermyn, Tom Con-
erly, Nick Turner, Cem Anil, Carson Denison, Amanda Askell, Robert Lasenby, Yifan Wu,
Shauna Kravec, Nicholas Schiefer, Tim Maxwell, Nicholas Joseph, Zac Hatfield-Dodds, Alex
Tamkin, Karina Nguyen, Brayden McLean, Josiah E Burke, Tristan Hume, Shan Carter,
Tom Henighan, and Christopher Olah. Towards monosemanticity: Decomposing language
models with dictionary learning. Transformer Circuits Thread, 2023. https://transformer-
circuits.pub/2023/monosemantic-features/index.html.

Bart Bussmann, Patrick Leask, Joseph Bloom, Curt Tigges, and Neel Nanda. Stitching saes of
different sizes. AI Alignment Forum, 2024. URL https://www.alignmentforum.org/
posts/baJyjpktzmcmRfosq/stitching-saes-of-different-sizes.

Róbert Csordás, Christopher Potts, Christopher D Manning, and Atticus Geiger. Recurrent neural
networks learn to store and generate sequences using non-linear representations. arXiv preprint
arXiv:2408.10920, 2024.

10

https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://www.lesswrong.com/posts/8QRH8wKcnKGhpAu2o/examining-language-model-performance-with-reconstructed
https://www.lesswrong.com/posts/8QRH8wKcnKGhpAu2o/examining-language-model-performance-with-reconstructed
https://transformer-circuits.pub/2024/april-update/index.html#scaling-laws
https://transformer-circuits.pub/2024/april-update/index.html#scaling-laws
https://www.alignmentforum.org/posts/f9EgfLSurAiqRJySD/open-source-sparse-autoencoders-for-all-residual-stream
https://www.alignmentforum.org/posts/f9EgfLSurAiqRJySD/open-source-sparse-autoencoders-for-all-residual-stream
https://www.alignmentforum.org/posts/baJyjpktzmcmRfosq/stitching-saes-of-different-sizes
https://www.alignmentforum.org/posts/baJyjpktzmcmRfosq/stitching-saes-of-different-sizes

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Hoagy Cunningham, Aidan Ewart, Logan Riggs, Robert Huben, and Lee Sharkey. Sparse autoen-
coders find highly interpretable features in language models. arXiv preprint arXiv:2309.08600,
2023.

Nelson Elhage, Tristan Hume, Catherine Olsson, Nicholas Schiefer, Tom Henighan, Shauna Kravec,
Zac Hatfield-Dodds, Robert Lasenby, Dawn Drain, Carol Chen, Roger Grosse, Sam McCandlish,
Jared Kaplan, Dario Amodei, Martin Wattenberg, and Christopher Olah. Toy models of super-
position. Transformer Circuits Thread, 2022. https://transformer-circuits.pub/
2022/toy_model/index.html.

Joshua Engels, Isaac Liao, Eric J Michaud, Wes Gurnee, and Max Tegmark. Not all language model
features are linear. arXiv preprint arXiv:2405.14860, 2024.

Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason
Phang, Horace He, Anish Thite, Noa Nabeshima, et al. The pile: An 800gb dataset of diverse text
for language modeling. arXiv preprint arXiv:2101.00027, 2020.

Leo Gao, Tom Dupré la Tour, Henk Tillman, Gabriel Goh, Rajan Troll, Alec Radford, Ilya
Sutskever, Jan Leike, and Jeffrey Wu. Scaling and evaluating sparse autoencoders. arXiv preprint
arXiv:2406.04093, 2024.

Giorgi Giglemiani, Nora Petrova, Chatrik Singh Mangat, Jett Janiak, and Stefan Heimersheim. Eval-
uating synthetic activations composed of sae latents in gpt-2. arXiv preprint arXiv:2409.15019,
2024.

Wes Gurnee. Sae reconstruction errors are (empirically) pathological. In AI Alignment Forum, pp.
16, 2024.

Stefan Heimersheim and Jake Mendel. Activation plateaus & sensitive directions in gpt2. Less-
Wrong, 2024. URL https://www.lesswrong.com/posts/LajDyGyiyX8DNNsuF/
interim-research-report-activation-plateaus-and-sensitive-1.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

Caden Juang, Gonçalo Paulo, Jacob Drori, and Nora Belrose. Open source automated interpretability
for sparse autoencoder features. https://blog.eleuther.ai/autointerp/, 2024.

Adam Karvonen, Benjamin Wright, Can Rager, Rico Angell, Jannik Brinkmann, Logan Smith,
Claudio Mayrink Verdun, David Bau, and Samuel Marks. Measuring progress in dictio-
nary learning for language model interpretability with board game models. arXiv preprint
arXiv:2408.00113, 2024.

Daniel Lee and Stefan Heimersheim. Investigating sensitive directions in gpt-
2: An improved baseline and comparative analysis of saes. LessWrong, 2024.
URL https://www.lesswrong.com/posts/dS5dSgwaDQRoWdTuu/
investigating-sensitive-directions-in-gpt-2-an-improved.

Tom Lieberum, Senthooran Rajamanoharan, Arthur Conmy, Lewis Smith, Nicolas Sonnerat, Vikrant
Varma, János Kramár, Anca Dragan, Rohin Shah, and Neel Nanda. Gemma scope: Open sparse
autoencoders everywhere all at once on gemma 2. arXiv preprint arXiv:2408.05147, 2024.

Samuel Marks, Can Rager, Eric J Michaud, Yonatan Belinkov, David Bau, and Aaron Mueller.
Sparse feature circuits: Discovering and editing interpretable causal graphs in language models.
arXiv preprint arXiv:2403.19647, 2024.

Jake Mendel. Sae feature geometry is outside the superposition hypothesis. AI Alignment Forum,
2024. URL https://www.alignmentforum.org/posts/MFBTjb2qf3ziWmzz6/
sae-feature-geometry-is-outside-the-superposition-hypothesis.

Neel Nanda, Andrew Lee, and Martin Wattenberg. Emergent linear representations in world models
of self-supervised sequence models. arXiv preprint arXiv:2309.00941, 2023.

11

https://transformer-circuits.pub/2022/toy_model/index.html
https://transformer-circuits.pub/2022/toy_model/index.html
https://www.lesswrong.com/posts/LajDyGyiyX8DNNsuF/interim-research-report-activation-plateaus-and-sensitive-1
https://www.lesswrong.com/posts/LajDyGyiyX8DNNsuF/interim-research-report-activation-plateaus-and-sensitive-1
https://blog.eleuther.ai/autointerp/
https://www.lesswrong.com/posts/dS5dSgwaDQRoWdTuu/investigating-sensitive-directions-in-gpt-2-an-improved
https://www.lesswrong.com/posts/dS5dSgwaDQRoWdTuu/investigating-sensitive-directions-in-gpt-2-an-improved
https://www.alignmentforum.org/posts/MFBTjb2qf3ziWmzz6/sae-feature-geometry-is-outside-the-superposition-hypothesis
https://www.alignmentforum.org/posts/MFBTjb2qf3ziWmzz6/sae-feature-geometry-is-outside-the-superposition-hypothesis

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Chris Olah. Interpretability dreams. Transformer Circuits, May 2023. URL https:
//transformer-circuits.pub/2023/interpretability-dreams/index.
html.

Kiho Park, Yo Joong Choe, and Victor Veitch. The linear representation hypothesis and the geometry
of large language models. arXiv preprint arXiv:2311.03658, 2023.

Lewis Smith. Replacing sae encoders with inference-time optimisation. https://www.
alignmentforum.org/s/AtTZjoDm8q3DbDT8Z/p/C5KAZQib3bzzpeyrg, 2024a.

Lewis Smith. The ‘strong’ feature hypothesis could be wrong. AI Alignment Forum,
2024b. URL https://www.alignmentforum.org/posts/tojtPCCRpKLSHBdpn/
the-strong-feature-hypothesis-could-be-wrong.

Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya Bhu-
patiraju, Léonard Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé, et al. Gemma
2: Improving open language models at a practical size. arXiv preprint arXiv:2408.00118, 2024.

Adly Templeton, Tom Conerly, Jonathan Marcus, Jack Lindsey, Trenton Bricken, Brian Chen,
Adam Pearce, Craig Citro, Emmanuel Ameisen, Andy Jones, Hoagy Cunningham, Nicholas L
Turner, Callum McDougall, Monte MacDiarmid, C. Daniel Freeman, Theodore R. Sumers,
Edward Rees, Joshua Batson, Adam Jermyn, Shan Carter, Chris Olah, and Tom Henighan.
Scaling monosemanticity: Extracting interpretable features from claude 3 sonnet. Trans-
former Circuits Thread, 2024. URL https://transformer-circuits.pub/2024/
scaling-monosemanticity/index.html.

A THEORY

Say we have a set of m unit vectors y1,y2, . . . ,ym ∈ Rd. We will call these “feature vectors”.
Define Y ∈ Rd×m as the matrix with the feature vectors as columns. We then define the Gram
matrix GY ∈ Rm×m of dot products on Y:

(GY)ij = (YTY)ij = yi · yj

We now will define a random column vector x that is a weighted positive sum of the m feature
vectors, that is, x =

∑
i wiyi for a non-negative random vector w ∈ Rm. We say feature vector yi

is active if wi > 0. We now define the autocorrelation matrix Rw ∈ Rm×m for w as

R = E(wwT).

We are interested in breaking down x into its components, so we define a random matrix X as
Xij = wjYij , i.e. the columns of Y multiplied by w. We can now define the Gram matrix
GX ∈ Rm×m:

(GX)ij = (XTX)ij = wiwjyi · yj

GX = (wwT)⊙GY

E(GX) = Rw ⊙GY,

where ⊙ denotes Schur (elementwise) multiplication. The intuition here is that the expected dot
product between columns of X depends on the dot product between the corresponding columns of
Y and the correlation of the corresponding elements of the random vector.

We will now examine the L2 norm of x:

∥x∥22 =
∑
ij

wiwjyiyj

=
∥∥(wTw)⊙GY

∥∥2
F
= Tr(wwtGY) = wGYwT

We can also take the expected value:

E(∥x∥22) = Tr(RwGY)

12

https://transformer-circuits.pub/2023/interpretability-dreams/index.html
https://transformer-circuits.pub/2023/interpretability-dreams/index.html
https://transformer-circuits.pub/2023/interpretability-dreams/index.html
https://www.alignmentforum.org/s/AtTZjoDm8q3DbDT8Z/p/C5KAZQib3bzzpeyrg
https://www.alignmentforum.org/s/AtTZjoDm8q3DbDT8Z/p/C5KAZQib3bzzpeyrg
https://www.alignmentforum.org/posts/tojtPCCRpKLSHBdpn/the-strong-feature-hypothesis-could-be-wrong
https://www.alignmentforum.org/posts/tojtPCCRpKLSHBdpn/the-strong-feature-hypothesis-could-be-wrong
https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html
https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Our goal is to find a direction a ∈ Rd that when dotted with x predicts ∥x∥22. In other words, we
want to find a such that

∥x∥22 ≈ aTx = aT
∑
i

wiyi = aTYw

Combining equations, we want to find a such that

aTYw ≈ ∥x∥22 = (vwTGYw)

Let us first consider the simple case where for all i ̸= j, yi and yj are perpendicular. Then our goal
is to find a such that

aTYw ≈ Tr(wGYwT) =
∑
i

⟨yi, yi⟩w2
i =

∑
i

w2
i = ∥w∥22 = wTw

Since all of the yi are perpendicular, WLOG we can write a =
∑

i biyi + c for a vector c ∈ Rd

perpendicular to all yi and a vector b ∈ Rm. Then we have

aTYw =

(∑
i

biyi + c

)T

Yw

= bTw

Since ordinary least squares produces an unbiased estimator, we know that if we use ordinary least
squares to solve for b, E(bTw) = E(wTw). Thus,∑

i

biE(wi) =
∑
i

E(w2
i)

bi = E(w2
i)/E(wi)

Now that we have bi, we can solve for the correlation coefficient between aTx = bTw and ∥x∥22 =
wTw. This gets messy when using general distributions, so we focus on a few simple cases.

The first is the case where each wi is a scaled independent Bernoulli distribution, so wi is si with
probability pi and 0 otherwise. Then bi = si. We also have that E(wTw) = E(bTw) =

∑
i s

2
i pi =

µ.

ρ =
E(bTwwTw)− µ2√

E(wTwwTw)− µ2
√
E(bTwbTw)− µ2

=

∑
i s

4
i (pi − p2i)√∑

i s
4
i (pi − p2i)

√∑
i s

4
i (pi − p2i)

= 1

That is, for Bernoulli variables, x =
∑

i siyi is a perfect regression vector.

The second is the case when each wi is an independent Poisson distribution with parameter λi. Then
E(wi) = λi and E(w2

i) = λ2
i + λi, so bi = λi + 1. We also have that E(wTw) = E(bTw) =∑

i λ
2
i + λi = µ. Finally, we will use the fact that E(w3

i) = λ3
i + 3λ2

i + λi and E(w4
i) = λ4 +

6λ3 + 7λ2 + λ. Then via algebra we have that

ρ =

∑
i 2λ

3
i + 3λ2

i + λi√∑
i 4λ

3 + 6λ3
i + λi

√∑
i λ

3
i + 2λ2

i + λi

For the special case λi = 1, we then have

ρ =
6√
66

≈ 0.73

B SYNTHETIC EXPERIMENTS WITH RANDOM DATA

For this set of experiments, we generated a random vector x′ that was the sum of a power law of
100k random gaussian vectors in R4000 with expected L0 of around 100. To simulate the SAE

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

reconstruction and SAE error, we simply masked a portion of the vectors in the sum of x′. Unlike
the more realistic synthetic data case we describe in Section 4.1, this did not work as expected: even
in the case with no noise added to x′ or the simulated reconstruction, the variance explained by the
sum of the linear estimate of the error plus the reconstructed vectors plotted against the number of
features “ablated” formed a parabola (with minimum variance explained in the middle region), as
opposed to a straight line as in Fig. 2.

We note that this result is not entirely surprising: other works have found that random vectors are
a bad synthetic test case for language model activations. For example, in the setting of model
sensitivity to perturbations of activations, Giglemiani et al. (2024) found they needed to control
for both sparsity and cosine similarity of SAE latents to produce synthetic vectors that mimic SAE
latents when perturbed.

C NOTE ON FEATURE SHRINKAGE

Earlier SAE variants were prone to feature shrinkage: the observation that Sae(x) systematically
undershot x. Current state of the art SAE variants (e.g. JumpReLU SAEs, which we examine in this
work), are less vulnerable to this problem, although we still find that Gemma Scope reconstructions
have about a 10% smaller norm than x. One potential concern is that the a in Section 4.1 that we
learn is merely predicting this shrinkage. If this was the case, then the cosine similarity of the linear
error prediction zTx would be close to 1; however, in practice we find that it is around 0.5, so z is
indeed doing more than predicting shrinkage.

14

	Introduction
	Contributions

	Related Work
	Definitions
	Tests for Splitting SAE Error
	Estimating Nonlinear Error
	Norm Prediction Test

	Nonlinear Error Scaling Laws
	Analyzing Components of SAE Error
	Applying the Norm Prediction Test
	Training SAEs on SaeError(x) Components
	Downstream Cross Entropy Loss of SaeError(x) Components

	Reducing NonlinearError(x)
	Using a More Powerful Encoder
	Linear Projections Between Adjacent SAEs

	Conclusion
	Theory
	Synthetic Experiments with Random Data
	Note on Feature Shrinkage

