TIGHT CLUSTERS MAKE SPECIALIZED EXPERTS

Anonymous authors

Paper under double-blind review

ABSTRACT

At the core of Sparse Mixture-of-Experts (MoE) models is the router that learns the clustering structure of the input distribution in order to direct tokens to suitable experts. However these latent clusters may be unidentifiable, causing slow convergence, vulnerability to contamination, and degraded representations. We examine the router through the lens of clustering optimization, deriving optimal feature weights that maximally distinguish these clusters. Using these weights, we compute token-expert assignments in an adaptively transformed space that better separates clusters, helping identify the best-matched expert for each token. In particular, for each expert cluster, we compute weights that scale features according to whether that expert clusters tightly along that feature. We term this novel router the Adaptive Clustering (AC) router. Our AC router confers three connected benefits: 1) faster convergence, 2) better robustness, and 3) overall performance improvement, as experts are specialized in semantically distinct regions of the input space. We empirically demonstrate the advantages of our AC router in language modeling and image classification in both clean and corrupted settings.

023 024

000

001 002 003

004

006 007

008 009

010

011

012

013

014

015

016

017

018

019

021

1 INTRODUCTION

025 026

Scaling up model capacity continues to yield performance gains across tasks, notably in visual representation learning and language modeling (Alexey, 2020; Bao et al., 2021; Raffel et al., 2020).
However, larger models incur increasing computational cost, prompting research in Sparse Mixture-of-Experts (MoE) models (Shazeer et al., 2017; Fedus et al., 2022; Lepikhin et al., 2020), which activate only sub-modules, or *experts*, to reduce overhead. These models can outperform dense architectures with nearly constant computation on speech recognition, image recognition, machine translation, and language modeling (Riquelme et al., 2021; Kumatani et al., 2021).

034 At the core of the MoE layer is the learned router which segments the input space such that semantically similar input tokens are assigned to corresponding experts. Recent work explores various rout-035 ing strategies, from linear programs (Lewis et al., 2021) and cosine similarity-based methods (Chi et al., 2022) to soft assignments (Puigcerver et al., 2023) and top-k routing (Shazeer et al., 2017; 037 Zhou et al., 2022). These methods rely on dot-products between inputs and experts, which can be suboptimal when semantic regions are not easily identified in high-dimensional space. Typically, we expect that the true underlying clusters present in the data will cluster on different, potentially 040 disjoint, subsets of features, and may not be discoverable when using the full feature set. This phe-041 nomenon can lead to slower convergence as experts are unable to specialize on semantically similar 042 regions of the data, poor robustness as data contamination can spuriously assign inputs to unsuitable 043 experts, and degraded overall downstream performance due to suboptimal input-expert matching.

044 **Contribution.** We introduce the Adaptive Clustering (AC) router and Adaptive Clustering Mixtureof-Experts (ACMoE), a novel MoE method in which the router computes token-expert assignments 046 in a transformed space that maximally identifies latent clusters in the data and more easily discov-047 ers the best-matched expert for each token. This produces three benefits: 1) faster convergence 048 as experts are able to specialize more quickly by being allocated semantically similar inputs, 2) better robustness as latent clusters are better separated, thereby minimizing the risk that data corruption erroneously assigns tokens to unsuitable experts, and 3) better downstream performance due to 051 improved expert specialization. In order to discover the corresponding weights, we present a featureweighted clustering optimization perspective on the MoE framework and demonstrate how the clus-052 tering solution obtains the required feature weights. We theoretically prove that our proposed routing mechanism learns the latent clustering structure of the data faster than standard routers and that our

063 Figure 1: ACMoE discovers semantically distinct regions. We show 14x14 image reconstructions where 064 patches are colored by assigned experts. Top row: Swin fails to segment the bird precisely while ACMoE 065 accurately discovers the bird and relevant foreground. Bottom row: When the background and foreground are 066 hard to distinguish, Swin fails to register the stingray (left) or shark (right) and allocates one expert for virtu-067 ally the entire image. ACMoE, however, accurately discovers the semantically distinct regions and utilizes one expert (green) to specialize on the stingray and shark and different experts to specialize on the the background. 068

069 mechanism is more robust to data contamination. Furthermore, our proposed method involves no 070 learnable parameters and can be computed highly efficiently. In summary, our contributions are:

- 1. We develop the novel Adaptive Clustering router for MoE architectures, which computes token-expert assignments in a transformed space that promotes separation of latent clusters in the data and more easily identifies the best-matched expert for each token.
 - 2. We propose a feature-weighted clustering optimization perspective on token-expert assignment and derive the optimal feature weights for routing.
 - 3. We provide a theoretical framework demonstrating how MoE robustness and convergence depend on the clustering structure of the input space.

079 We empirically demonstrate that 1) the AC router outperforms baseline routers in language modeling and downstream finetuning, and image classification in clean and contaminated settings, 2) 081 the AC router exhibits faster convergence than baseline methods, and 3) the AC router attains these 082 performance improvements with no learnable parameters and negligible computational overhead.

Preliminaries. We consider Transformer (Vaswani, 2017) based MoE architectures and follow the 084 approach of previous work where the MoE layer is inserted after the self-attention layer, replacing 085 the traditional feed-forward network (Fedus et al., 2022; Du et al., 2022; Liu et al., 2021). Let $h \in \mathbb{R}^d$ be a hidden representation and $e_1, e_2, \ldots, e_N \in \mathbb{R}^d$ be the N learnable expert embeddings for model 087 hidden dimension d. The MoE layer selecting the top k experts is described by:

$$\mathcal{K} \coloneqq \operatorname{topk}_k(s_k) = \operatorname{topk}_k(\boldsymbol{h}^{\mathsf{T}} \boldsymbol{e}_k) \tag{1}$$

$$e^{SMoE}(\boldsymbol{h}) = \boldsymbol{h} + \sum_{k \in \mathcal{K}} g(\boldsymbol{h}^{\mathsf{T}} \boldsymbol{e}_k) f_k^{\mathrm{FFN}}(\boldsymbol{h}),$$
 (2)

where f_k^{FFN} is the k^{th} expert feed-forward network, $s_k = h^{\mathsf{T}} e_k$ is the similarity score between token h and the k^{th} expert e_k and $q(\cdot)$ is a gating function often chosen as softmax. We refer to Eqn. 1 as the router, which learns the best matched experts per token, and Eqn. 2 as the overall MoE layer.

A CLUSTERING OPTIMIZATION PERSPECTIVE 2

Ĵ

We analyze the MoE router through the lens of feature-weighted clustering (Witten & Tibshirani, 2010; Friedman & Meulman, 2004; Brusco & Cradit, 2001). We explicitly model the router's task 100 as learning a token assignment that groups together similar tokens. We incorporate learnable feature weights in solving a clustering optimization problem to optimally reveal latent clusters and present an analytical solution for any given routing assignment. We discuss how this solution improves the MoE router before providing the full formulation of our AC router in the next section.

103 104 105

106

054

056

060 061 062

071

073

074

075

076

077

078

090

091

092

093 094

095 096

097 098

099

101

- 2.1 CLUSTERING OPTIMIZATION
- Let $h_i = [h_{i1}, \dots, h_{id}]^{\mathsf{T}}$ be the *i*th hidden representation and $D_{ij}(w) = \sum_{q \in [d]} w_q \rho_{ijq}$ be the dis-107 tance between pairs of vectors h_i and h_j where $w = [w_1, \ldots, w_d]$ are nonnegative feature weights

Figure 2: Fast Convergence of ACMoE. Left: Convergence speed on WikiText-103 pretraining using GLaM (Du et al., 2022) backbone. Right: Convergence speed on Banking-77 finetuning using Switch Transformer (Fedus et al., 2022) backbone. We see faster convergence and better final perplexity (PPL) and accuracy (Acc.).

summing to 1 and ρ_{ijq} is a chosen distance metric over the q^{th} feature. We wish to learn a classifier r(i) = k assigning the i^{th} object to a group k over the input set of N objects, where objects within the same group are more similar to each other than to those in other groups. We furthermore wish to model the scenario that groupings exist in different latent subspaces with varying dependence on possibly disjoint subsets of features. We therefore use clustering criterion with cluster-dependent feature weights $\{w_k\}_{k=1}^E$ for E groups, given by:

> $(r^*, \{\boldsymbol{w}_k^*\}_{k=1}^E) = \arg\min_{r, \{\boldsymbol{w}_k\}} \sum_{k \in [E]} \frac{1}{N_k^2} \sum_{r(i)=k} \sum_{r(j)=k} D_{ij}^J(\boldsymbol{w}_k),$ such that $\sum_{q \in [d]} w_{qk} = 1, \quad \forall k \in [E],$ (3)

where $D_{ij}^{J}(\boldsymbol{w}_k) = \sum_{l=1}^{d} w_{qk} \rho_{ijq} + \lambda J(\boldsymbol{w}_k)$ denotes the weighted distance between *i* and *j* combined with regularization *J* and regularization strength λ . We set the regularizer to the Kullback-Leibler divergence between *w* and the uniform distribution $\boldsymbol{u} = (1/d, \dots, 1/d) \in \mathbb{R}^d$, denoted by $J(\boldsymbol{w}_k) = D_{\text{KL}}(\boldsymbol{u} || \boldsymbol{w}_k)$, where λ reflects our preference to maintain more or less features in the solution.

2.2 MOE AS CLUSTERING OPTIMIZATION

In the MoE setting, the router performs the role of the classifier $r : \mathbb{R}^d \to [E]$, which is learned via gradient descent on the output loss. Therefore, we fix r and optimize the criterion with respect to cluster-wise feature weights w_k . Under this interpretation, the router learns via backpropagation to optimally allocate representations to experts, with representations adaptively transformed to maximally reveal the clustering structure of the input data. The objective in Eqn. 3 then becomes

$$\{\boldsymbol{w}_{k}^{*}\}_{k=1}^{E} = \arg\min_{\{\boldsymbol{w}_{k}\}} \sum_{k \in [E]} \frac{1}{N_{k}^{2}} \sum_{r(i)=k} \sum_{r(j)=k} D_{ij}^{J}(\boldsymbol{w}_{k}),$$
(4)

145 146 147

120

127

128 129 130

131 132

137 138

139

with the same summation to unity constraints as in Eqn. 3. The following theorem presents the optimal weights per feature q and cluster k:

Theorem 1 (Optimal feature weights). Let $s_{qk} \coloneqq N_k^{-2} \sum_{r(i)=k} \sum_{r(j)=k} \rho_{ijq}$ be a measure of dispersion on the q^{th} feature for the representations assigned to cluster k. Then, for a given router function $r : \mathbb{R}^d \to [E]$, the corresponding optimal weights $\{w_k\}_{k \in [E]}$ that minimize the featureweighted clustering optimization problem in Eqn. 4 are given by

$$w_{qk} = \frac{\lambda/d}{s_{qk} + \alpha_k},\tag{5}$$

156 157

154

for $(q,k) \in [d] \times [E]$, where $\{\alpha_k\}_{k \in [E]}$ are constants that for any $\lambda > 0$ satisfy $\sum_{q \in [d]} \frac{1}{s_{qk} + \alpha_k} = \frac{d}{\lambda}$. The existence α_k and the proof of Theorem 1 is provided in Appendix A.1. The optimal weights for a cluster k given in Eqn. 5 take an intuitive form in that they are inversely proportional to the measure of dispersion in cluster k along each dimension, $w_k \propto [\frac{1}{s_{1k}}, \dots, \frac{1}{s_{dk}}]$. Hence, the optimal cluster-wise feature weights scale features according to their contribution to forming tight clusters. This method enables the MoE router to perform better token-expert matching. The cluster-wise feature weights w_k scale each token according to the specialization of the experts, as large weights indicate those features are highly important to the identification of that expert cluster, thereby allowing the router to best identify the most suitable expert for each token. Note that this solution is local in that we learn the optimal weights adaptively *per cluster*, obtaining w_k for all $k \in [E]$, and so we compute a unique scaling of the feature space adaptively *per cluster* as well.

168 169 170

171

172

173 174

175

191

192 193

199

3 A TIGHT CLUSTER IS A SPECIALIZED EXPERT

In this section, we use the solution from the optimization problem in Eqn. 5 to obtain the AC router and present theoretical results on how AC routing promotes faster convergence and robustness.

3.1 FULL TECHNICAL FORMULATION

We first integrate the weights from Eqn. 5 into the transformation in Definition 1, which scales each dimension according to the k^{th} expert's specialization:

Definition 1 (AC Router Transformation M_k). Let $C_k^{\ell} = \{h_1^{\ell}, \dots, h_{N_k}^{\ell}\}$ be the tokens assigned to expert k at layer ℓ . Let $s_{qk}^{\ell} \in \mathbb{R}$ be a measure of a spread in the q^{th} dimension for cluster k, such as mean absolute deviation $s_{qk}^{\ell} = \frac{1}{N_k} \sum_{i \in C_k^{\ell}} |h_{iq}^{\ell} - \bar{h}_q^{\ell}|$. Then, the cluster-dependent router transformation for expert k at layer ℓ is given by a diagonal matrix $M_k^{\ell} := \text{diag}(1/s_{1k}^{\ell}, \dots, 1/s_{dk}^{\ell})$.

Using M_k^{ℓ} to adaptively scale the feature space according to the experts' specialization yields our AC router and corresponding ACMoE layer:

Definition 2 (Adaptive Clustering Router and MoE Layer). Let $h^{\ell} \in \mathbb{R}^{d}$ be the hidden representation of an input, $e_{1}^{\ell}, \ldots, e_{N}^{\ell} \in \mathbb{R}^{d}$ be expert embeddings at layer ℓ . Let $h^{\ell-1} \in C_{k^{*}}^{\ell-1}$ have been assigned to expert k^{*} in the previous layer. Let $M_{k^{*}}^{\ell-1} \in \mathbb{R}^{d \times d}$ be the Adaptive Clustering transformation (Definition 1) for input **h** at layer $\ell - 1$. Let $g(\cdot)$ be the softmax function. Then the following equations describe the Adaptive Clustering router (Eqn. 6) and overall ACMoE layer (Eqn. 7):

$$\mathcal{K} \coloneqq \operatorname{topk}_k(s_k) = \operatorname{topk}_k(\boldsymbol{h}^{\ell^{\top}} \boldsymbol{M}_{k^*}^{\ell-1} \boldsymbol{e}_k^{\ell}) \tag{6}$$

$$f^{\text{ACMoE}}(\boldsymbol{h}^{\ell}) = \boldsymbol{h}^{\ell} + \sum_{k \in \mathcal{K}} g(\boldsymbol{h}^{\ell \top} \boldsymbol{M}_{k^*}^{\ell-1} \boldsymbol{e}_k^{\ell}) f_k^{\text{FFN},\ell}(\boldsymbol{h}^{\ell}).$$
(7)

Remark 1. We see from Eqns. 6 and 7 that standard routers and MoE layer are recovered by setting the adaptive clustering router transformation to the identity matrix, $M_k = I_d$ for all $k \in [E]$. Within our framework, standard routers assume all experts $k \in [E]$ depend equally on all dimensions.

3.2 Adaptive Clustering Promotes Robustness and Fast Convergence

We now present theoretical propositions on how our method improves robustness and convergence
 speed. Robustness follows from the exponentially lower probability of erroneous expert assignment
 and faster convergence follows from improved Hessian conditioning with respect to expert embed dings. Proofs are deferred to Appendix A.3.

Robustness. Lemma 1 shows that our AC transformation (Def. 1) increases inter-cluster separation, and Lemma 2 provides a probability bound for incorrect assignments as a function of inter-cluster distance. Robustness of AC routing then follows as a direct combination of these two lemmas.

Lemma 1 (Adaptive Clustering Router Transformation Increases Cluster Separation). Let the data be generated from a Gaussian mixture model with components, $g_c = \mathcal{N}(\mu_c, \Sigma_c)$ for $c \in [E]$. Without loss of generality, consider two expert clusters $c \in \{a, b\}$ where a token representation $\mathbf{h} \sim g_a$ belongs to cluster a. Let $\mathbf{M}_a = \text{diag}(1/s_{1a}, \dots, 1/s_{da})$ be the router transformation constructed from the feature-wise dispersions, s_{qa} , of cluster g_a for each feature $q \in [d]$ as given by Definition 1. Then the distance between cluster means in the \mathbf{M}_a -transformed space, defined as $\|\boldsymbol{\mu}_k - \boldsymbol{\mu}_a\|_{\mathbf{M}_a}^2 :=$ $(\boldsymbol{\mu}_k - \boldsymbol{\mu}_a)^{\top} \mathbf{M}_a(\boldsymbol{\mu}_k - \boldsymbol{\mu}_a)$, is larger than in the original Euclidean space: $\|\boldsymbol{\mu}_k - \boldsymbol{\mu}_a\|_{\mathbf{M}_a}^2 \ge \|\boldsymbol{\mu}_k - \boldsymbol{\mu}_a\|^2$.

In Lemma 2, we derive the probability of mis-assignment as a function of inter-cluster distance, highlighting how cluster separation mitigates the effect of noise that can confuse the router.

Lemma 2 (Incorrect Assignment Probability). Let $h \sim \mathcal{N}_{k^*}(\mu_{k^*}, \Sigma_{k^*})$ be a representation belonging to cluster k^* . Let $h' = h + \epsilon$ be contaminated by some 0-mean noise $\epsilon \sim (0, \Sigma_{\epsilon})$. Let k be the nearest, incorrect cluster to k^* . Let the inter-cluster mean distance between k^* and k be given by $\|\delta\mu\| \coloneqq \|\mu_{k^*} - \mu_k\|$. Let the routing assignment be given by $r \colon \mathbb{R}^d \to [E]$ and denote the cumulative density of a standard normal distribution by Φ . Then the probability of incorrect assignment is

221 222

223

$$\Pr(r(\boldsymbol{h}') \neq k^*) = 1 - \Phi\left(\frac{\|\delta\boldsymbol{\mu}\|^2}{2\sqrt{\delta\boldsymbol{\mu}^{\mathsf{T}}(\boldsymbol{\Sigma}_{k^*} + \boldsymbol{\Sigma}_{\epsilon})\delta\boldsymbol{\mu}}}\right).$$
(8)

It is worth noting that since $1 - \Phi(x) \sim (\sqrt{2\pi}x)^{-1}e^{-x^2/2}$ for large x and $\sqrt{\delta\mu^{\top}(\Sigma_{k^*} + \Sigma_{\epsilon})\delta\mu} = O(\|\mu\|)$, we find that the probability of incorrect cluster assignment as given by Eqn. 8, $\Pr(r(h') \neq k^*) = e^{-O(\|\delta\mu\|^2)}$ is an exponentially decreasing function in $\|\delta\mu\|$. We now combine the notions in Lemmas 1 and 2 to obtain that the probability of erroneous assignment using the AC router is exponentially smaller than under a standard routing scheme:

Proposition 1 (Robustness of ACMoE). Consider an expert assignment setting for the representation $\mathbf{h} \sim \mathcal{N}_{k^*}(\boldsymbol{\mu}_{k^*}, \boldsymbol{\Sigma}_{k^*})$ as in Lemma 2 with two routers given by $r : \mathbb{R}^d \to [E]$ and $r^{AC} : \mathbb{R}^d \to [E]$ for standard (Eqn. 2) and AC routers (Definition 2), respectively. Then the probabilities of incorrect assignments of routers r and r^{AC} satisfy $\Pr\left(r^{AC}(\mathbf{h}') \neq k^*\right) \leq \Pr\left(r(\mathbf{h}') \neq k^*\right)$.

Convergence. Our AC router reduces the conditioning number of the Hessian of the loss with respect to the expert e_k , improving the loss landscape and enabling faster convergence of the router. We find this result empirically supported, as shown in Fig. 2. Formally this is:

Proposition 2 (Faster convergence of ACMoE). Let $\mathcal{L}^{MoE} : \Theta \to \mathbb{R}_+$ and $\mathcal{L}^{ACMoE} : \Theta \to \mathbb{R}_+$ be the network loss functions over parameters Θ when employing the standard (Eqn. 2) and AC routers (Definition 2), respectively. Let $\kappa(\mathbf{A}) = \lambda_{\max}/\lambda_{\min}$ denote the conditioning number of a matrix \mathbf{A} with largest and smallest eigenvalues λ_{\max} and λ_{\min} respectively. Let the Hessian of an *i*th expert be given by $\nabla_{e_i}^2$. Then for each $i \in [E]$ the following holds with high probability

242 243

244

245

253

254

$\kappa \left(\nabla_{\boldsymbol{e}_{i}}^{2} \mathcal{L}^{\text{ACMoE}} \right) \leq \kappa \left(\nabla_{\boldsymbol{e}_{i}}^{2} \mathcal{L}^{\text{MoE}} \right)$

(9)

4 EXPERIMENTAL RESULTS

We evaluate our method on Wikitext-103 (Merity et al., 2016) language modeling and ImageNet (Deng et al., 2009) image classification. We integrate our AC router into Switch Transformer (Fedus et al., 2022), Generalist Language Model (GLaM) (Du et al., 2022), and Swin Transformer (Liu et al., 2021) backbones. We show i) ACMOE obtains substantive improvements over baseline models across both language and vision tasks; ii) ACMOE offers robust improvements on contaminated samples. We additionally show in Appendix B that ACMOE attains these gains with negligible additional computational overhead. Results are averaged over 5 runs with different seeds.

4.1 LANGUAGE MODELING

Setup. Following Pham et al. (2024), we compare ACMoE against Switch Transformer and GLaM using 16 experts and top-2 routing with 220M parameters. We report pretraining test perplexity (PPL) for Wikitext-103 and top-1 accuracy for finetuning classification tasks on Stanford Sentiment Treebank-2 (SST2) (Socher et al., 2013), Stanford Sentiment Treebank-5 (SST5) (Socher et al., 2013), and Banking-77 (B77) (Casanueva et al., 2020). Full details are provided in Appendix C.

Language Modeling Results. Table 2 show test PPL on clean WikiText-103 and when contaminated by Text Attack, where words are randomly swapped with a token 'AAA'. We follow the setup of Han et al. (2024) and assess models by training them on clean data before attacking the test data. ACMoE outperforms baseline Switch and GlaM in both clean and contaminated settings with gains of up to 5.8%. Table 1 further shows ACMoE pretrained models surpass the performance of baselines in finetuning, with strong, consistent improvements of approximately 3%.

- 4.2 IMAGE CLASSIFICATION
- **Setup.** Following Liu et al. (2021), we evaluate ACMoE against a 280M parameter Swin Transformer with 16 experts. We evaluate robustness under white box attacks fast gradient sign method

Model		Test PI	PL (↓)	SST2 (†)	SST5	(†) F	3 77 (†)
Switch Transformer (F Switch-ACMoE (Ours	Switch Transformer (Fedus et al., 2022) Switch-ACMoE (Ours)			76.27 77.32	39.1 40.0	3 4	83.82 86.01
<i>GLaM</i> (Du et al., 2022) GLaM-ACMoE (Ours	38.2 36. 2	27 26	69.97 71.90	33.6 34.2	9 4	80.89 82.33	
Table 2: Clean a	ed Test P	erplexi	ty (PPL)	on Wiki	Fext-1	03	
Model	Clean T	est PPL	(\downarrow) Co	ntaminate	d Test	PPL (↓)	
Switch Transformer (Fe Switch-ACMoE (Ours)	35.48 34.42			48.12 47.61			
<i>GLaM</i> (Du et al., 2022) GLaM-ACMoE (Ours)		3 3	88.27 86.26		50 47).84 7.91	
Table 3: Test A	ccuracy on Imag	geNet con	rrupted	PGD, FO	GSM, and	d SPSA	A
Model	PG	D	FGS	SM	SI	PSA	
	10p 1 10p 5	1 Iop I	10p 5	Iop I	10p 5	10p I	10p 5
Swin (Liu et al., 2021) Swin-ACMoE (Ours)	76.10 92.99 76.31 93.14	40.85 43.74	75.51 78.55	54.70 55.78	85.22 85.80	60.57 63.47	82.75 86.05

Table 1: WikiText-103 test PPL and top-1 test accuracy on SST2, SST5, and B77 finetuning.

(FGSM) (Goodfellow et al., 2014) and projected gradient descent (PGD) (Madry et al., 2017), and black box simultaneous perturbation stochastic approximation (SPSA) (Uesato et al., 2018).

Image Classification Results.. Table 3 shows performance on ImageNet against FGSM, PGD, and SPSA. Compared against Swin Transformer, ACMoE improves a noteworthy 7% against PGD.

5 RELATED WORK

Routing Methods. Recent studies propose routers based on reinforcement learning (Bengio et al., 2015), linear programs (Lewis et al., 2021; Nguyen et al., 2024), cosine similarity (Chi et al., 2022), greedy top-k experts per token (Shazeer et al., 2017) and greedy top-k tokens per expert (Zhou et al., 2022). These works have predominantly considered dot-products as a suitable similarity metric. This work continues with dot-product based learnable routing but computes the routing assignments in an adaptively transformed space to maximally identify the latent expert clusters.

MoE and Cluster Analysis. Recent studies on MoE show the router can recover the clustering structure of the input space and each expert specializes in a specific cluster (Dikkala et al., 2023; Chen et al., 2022). Our work considers transformations of the input space to identify expert clusters, and we learn these transformations via feature-weighted cluster analysis (Brusco & Cradit, 2001; Witten & Tibshirani, 2010; Gnanadesikan et al., 1995). Friedman & Meulman (2004) consider cluster-dependent feature weights to augment iterative clustering algorithms. Our approach similarly uses cluster-dependent feature weights but uses a different optimization problem to derive optimal weights that directly capture the importance of each feature to the clustering solution.

6 CONCLUSION AND FUTURE WORK

In this paper, we present the Adaptive Clustering (AC) router and ACMoE layer, a novel MoE rout-ing method that computes token-expert assignments in a transformed space that maximally identifies latent clusters in the data and more easily discovers the best-matched expert for each token. We adap-tively learn for each input which features are relevant to determining its latent cluster assignment and scale its features accordingly, where features that promote tight clustering are upweighted. Our AC routing method enables faster convergence by improving the Hessian conditioning of the router and better robustness by increasing the separation of latent clusters in the transformed space. For ongoing work, we are investigating improved methods for estimating the latent cluster memberships without reliance on previous layers and with provable consistency guarantees.

Reproducibility Statement. Source code for our experiments are provided in the supplementary material. We provide the full details of our experimental setup – including datasets, model specification, train regime, and evaluation protocol – for all experiments in Appendix C. All datasets are publicly available.

Ethics Statement. Our work considers fundamental architectures, and in particular their robustness and convergence properties. Given this, we foresee no issues regarding fairness, privacy, or security, or any other harmful societal or ethical implications in general.

References

332

333

364

365

- Dosovitskiy Alexey. An image is worth 16x16 words: Transformers for image recognition at scale.
 arXiv preprint arXiv: 2010.11929, 2020.
- Hangbo Bao, Li Dong, Songhao Piao, and Furu Wei. Beit: Bert pre-training of image transformers.
 arXiv preprint arXiv:2106.08254, 2021.
- Emmanuel Bengio, Pierre-Luc Bacon, Joelle Pineau, and Doina Precup. Conditional computation
 in neural networks for faster models. *arXiv preprint arXiv:1511.06297*, 2015.
- Michael J Brusco and J Dennis Cradit. A variable-selection heuristic for k-means clustering. *Psychometrika*, 66:249–270, 2001.
- Iñigo Casanueva, Tadas Temčinas, Daniela Gerz, Matthew Henderson, and Ivan Vulić. Efficient
 intent detection with dual sentence encoders. *arXiv preprint arXiv:2003.04807*, 2020.
- Zixiang Chen, Yihe Deng, Yue Wu, Quanquan Gu, and Yuanzhi Li. Towards understanding the mixture-of-experts layer in deep learning. *Advances in neural information processing systems*, 35:23049–23062, 2022.
- Zewen Chi, Li Dong, Shaohan Huang, Damai Dai, Shuming Ma, Barun Patra, Saksham Singhal,
 Payal Bajaj, Xia Song, Xian-Ling Mao, et al. On the representation collapse of sparse mixture of
 experts. Advances in Neural Information Processing Systems, 35:34600–34613, 2022.
- Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi erarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
 pp. 248–255. Ieee, 2009.
- Nishanth Dikkala, Nikhil Ghosh, Raghu Meka, Rina Panigrahy, Nikhil Vyas, and Xin Wang. On the benefits of learning to route in mixture-of-experts models. In *Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing*, pp. 9376–9396, 2023.
- Nan Du, Yanping Huang, Andrew M Dai, Simon Tong, Dmitry Lepikhin, Yuanzhong Xu, Maxim Krikun, Yanqi Zhou, Adams Wei Yu, Orhan Firat, et al. Glam: Efficient scaling of language models with mixture-of-experts. In *International Conference on Machine Learning*, pp. 5547–5569. PMLR, 2022.
 - William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter models with simple and efficient sparsity. *Journal of Machine Learning Research*, 23(120):1–39, 2022.
- Jerome H Friedman and Jacqueline J Meulman. Clustering objects on subsets of attributes (with discussion). *Journal of the Royal Statistical Society Series B: Statistical Methodology*, 66(4): 815–849, 2004.
- Ram Gnanadesikan, Jon R Kettenring, and Shiao Li Tsao. Weighting and selection of variables for
 cluster analysis. *Journal of classification*, 12:113–136, 1995.
- Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
 examples. *arXiv preprint arXiv:1412.6572*, 2014.
- Yongxin Guo, Zhenglin Cheng, Xiaoying Tang, Zhaopeng Tu, and Tao Lin. Dynamic mix ture of experts: An auto-tuning approach for efficient transformer models. *arXiv preprint arXiv:2405.14297*, 2024.

381

403

404 405

406

407

414

- Xing Han, Tongzheng Ren, Tan Nguyen, Khai Nguyen, Joydeep Ghosh, and Nhat Ho. Designing robust transformers using robust kernel density estimation. *Advances in Neural Information Processing Systems*, 36, 2024.
- Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kadavath, Frank Wang, Evan Dorundo, Rahul
 Desai, Tyler Zhu, Samyak Parajuli, Mike Guo, et al. The many faces of robustness: A critical analysis of out-of-distribution generalization. In *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 8340–8349, 2021a.
- Dan Hendrycks, Kevin Zhao, Steven Basart, Jacob Steinhardt, and Dawn Song. Natural adversarial
 examples. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 15262–15271, 2021b.
- Kenichi Kumatani, Robert Gmyr, Felipe Cruz Salinas, Linquan Liu, Wei Zuo, Devang Patel, Eric Sun, and Yu Shi. Building a great multi-lingual teacher with sparsely-gated mixture of experts for speech recognition. *arXiv preprint arXiv:2112.05820*, 2021.
- D Lepikhin, H Lee, Y Xu, D Chen, O Firat, Y Huang, M Krikun, N Shazeer, and Z Gshard.
 Scaling giant models with conditional computation and automatic sharding. *arXiv preprint* arXiv:2006.16668, 2020.
- Mike Lewis, Shruti Bhosale, Tim Dettmers, Naman Goyal, and Luke Zettlemoyer. Base layers:
 Simplifying training of large, sparse models. In *International Conference on Machine Learning*,
 pp. 6265–6274. PMLR, 2021.
- Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
 Swin transformer: Hierarchical vision transformer using shifted windows. In *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 10012–10022, 2021.
 - Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu. Towards deep learning models resistant to adversarial attacks. *stat*, 1050(9), 2017.
 - Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture models. *arXiv preprint arXiv:1609.07843*, 2016.
- Huy Nguyen, Nhat Ho, and Alessandro Rinaldo. On least squares estimation in softmax gating
 mixture of experts. *arXiv preprint arXiv:2402.02952*, 2024.
- Quang Pham, Giang Do, Huy Nguyen, TrungTin Nguyen, Chenghao Liu, Mina Sartipi, Binh T Nguyen, Savitha Ramasamy, Xiaoli Li, Steven Hoi, et al. Competesmoe–effective training of sparse mixture of experts via competition. *arXiv preprint arXiv:2402.02526*, 2024.
 - Joan Puigcerver, Carlos Riquelme, Basil Mustafa, and Neil Houlsby. From sparse to soft mixtures of experts. *arXiv preprint arXiv:2308.00951*, 2023.
- Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
 Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
 transformer. *Journal of machine learning research*, 21(140):1–67, 2020.
- Carlos Riquelme, Joan Puigcerver, Basil Mustafa, Maxim Neumann, Rodolphe Jenatton, André
 Susano Pinto, Daniel Keysers, and Neil Houlsby. Scaling vision with sparse mixture of experts. *Advances in Neural Information Processing Systems*, 34:8583–8595, 2021.
- N Shazeer, A Mirhoseini, K Maziarz, A Davis, Q Le, G Hinton, and J Dean. The sparsely-gated
 mixture-of-experts layer. *Outrageously large neural networks*, 2017.
- Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, Andrew Y Ng, and Christopher Potts. Recursive deep models for semantic compositionality over a sentiment treebank. In *Proceedings of the 2013 conference on empirical methods in natural language processing*, pp. 1631–1642, 2013.
- Jonathan Uesato, Brendan O'donoghue, Pushmeet Kohli, and Aaron Oord. Adversarial risk and the dangers of evaluating against weak attacks. In *International conference on machine learning*, pp. 5025–5034. PMLR, 2018.

432	A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017.
433	Daniela M Witten and Robert Tibshirani. A framework for feature selection in clustering. Journal
435	of the American Statistical Association, 105(490):713–726, 2010.
436	Vangi Zhou, Tao Lei, Hanvigo Liu, Nan Du, Vanning Huang, Vincent Zhao, Andrew M Dai, Quae V
437	Le James Laudon et al Mixture-of-experts with expert choice routing Advances in Neural
438	Information Processing Systems, 35:7103–7114, 2022.
439	
440	
441	
442	
443	
444	
445	
446	
447	
448	
449	
450	
451	
452	
453	
454	
455	
456	
457	
458	
459	
400	
401	
463	
464	
465	
466	
467	
468	
469	
470	
471	
472	
473	
474	
475	
476	
477	
478	
479	
480	
481	
482	
403	
404	
400	

A 1		,
A.I	Proof of Theorem 1	1
A.2	Proof of Proposition 1	1
	A.2.1 Proof of Lemma 1	1
	A.2.2 Proof of Lemma 2	1
A.3	Proof of Proposition 2	1
Imp	ementation Procedure and Computational Efficiency	1
Expo	rimental Details and Additional Experiments	1
C .1	Language Modeling	1
	C.1.1 Datasets	1
	C.1.2 Model, Optimizer, & Train Specification	1
C.2	Image Classification	1
	C.2.1 Datasets and Attacks	1
	C.2.2 Model, Optimizer, & Train Specification	1
C.3	Adversarial Attack At Higher Perturbation Budget	1
C.4	Cluster Visualization	1
C.5	Ablation Studies	1
	C.5.1 Measures of Dispersion	1
	C.5.2 Layer Placement	1
	C.5.3 Random Ablation	2
C.6	Cluster Weight Mixing	2
C.7	Adaptive Clustering Integration into Soft Mixture of Experts	2
C.8	Image Classification in Swin Transformer Base Configuration	2
C.9	Router Stability	2
C .10	Dynamic Routing	2
		2
	A.3 Impl Expe C.1 C.2 C.3 C.4 C.5 C.6 C.7 C.8 C.9 C.10	A.2.1 Proof of Lemma 1 A.2.2 Proof of Lemma 2 A.3 Proof of Proposition 2 Implementation Procedure and Computational Efficiency Experimental Details and Additional Experiments C.1 Language Modeling C.1.1 Datasets C.1.2 Model, Optimizer, & Train Specification C.2 Image Classification C.2.1 Datasets and Attacks C.2.2 Model, Optimizer, & Train Specification C.3 Adversarial Attack At Higher Perturbation Budget C.4 Cluster Visualization C.5 Ablation Studies C.5.1 Measures of Dispersion C.5.2 Layer Placement C.5.3 Random Ablation C.6 Cluster Weight Mixing C.7 Adaptive Clustering Integration into Soft Mixture of Experts C.8 Image Classification in Swin Transformer Base Configuration C.9 Router Stability C.10 Dynamic Routing

Lemma 3. For any $\lambda > 0$, Eqn. ?? has exactly d real solutions with respect to α_k .

Proof of Lemma 3. Without loss of generality, assume that $s_{1k} \ge s_{2k} \ge \cdots \ge s_{dk}$. Denote

$$\varphi(\alpha) \coloneqq \sum_{q \in [d]} \frac{1}{s_{qk} + \alpha} - \frac{d}{\lambda}.$$
 (10)

Then, the existence of solutions to Eqn. ?? is equivalent to the condition $\varphi(\alpha_l) = 0$. Note that $\varphi(\alpha)$ is a strictly decreasing function in its connected continuity domains since

$$\varphi'(\alpha) = -\sum_{q \in [d]} \frac{1}{(s_{qk} + \alpha)^2} < 0 \tag{11}$$

for all $\alpha \in \mathbb{R} \setminus \{-s_{1k}, \ldots, -s_{dk}\}$. Further, we observe that

$$\lim_{\alpha \to -s_{qk}^-} \varphi(\alpha) = -\infty, \quad \lim_{\alpha \to -s_{qk}^+} \varphi(\alpha) = +\infty$$
(12)

for all $q \in [d]$, and

$$\lim_{\alpha \to \pm \infty} \varphi(\alpha) = -\frac{d}{\lambda} < 0.$$
(13)

Now consider the domain of continuity of $\varphi(\alpha)$, namely $(-\infty, -s_{1k}) \cup (-s_{1k}, -s_{2k}) \cup \cdots \cup (-s_{dk}, \infty)$. Due to the monotonicity and limits 12 & 13, there exists a unique solution in each of the intervals except for $(-\infty, -s_{1k})$ where the function is always strictly negative, thus, yielding *d* roots in total.

562 Now we follow up with the main proof of this section.

Proof of Theorem 1. First, let $\mathcal{I}_k := \{i : r(i) = k\}$ for convenience. Now let us restate the clustering optimization problem (3) here once again:

$$\min_{\boldsymbol{w}_{k}} Q(c, \{\boldsymbol{w}_{k}\}_{k \in [E]}) = \sum_{k \in [E]} \frac{1}{N_{k}^{2}} \sum_{i, j \in \mathcal{I}_{k}} \sum_{q \in [d]} \left(w_{qk} \rho_{ijq} + \frac{\lambda}{d} \log \frac{1}{dw_{qk}} \right),$$
such that
$$\sum_{q \in [d]} w_{qk} = 1, \quad \forall k \in [E],$$
(14)

where we have immediately used the fact that

 $D_{\mathrm{KL}}(\boldsymbol{u} \parallel \boldsymbol{w}_k) = \sum_{q \in [d]} \frac{1}{d} \log \frac{1/d}{w_{qk}}.$ (15)

Also, note that

$$\sum_{q \in [d]} \left(w_{qk} \rho_{ijq} + \lambda \frac{1}{d} \log \frac{1}{dw_{qk}} \right) = \sum_{q \in [d]} \left(w_{qk} \rho_{ijq} - \lambda \frac{1}{d} \log(dw_{qk}) \right)$$
$$= \sum_{q \in [d]} \left(w_{qk} \rho_{ijq} - \frac{\lambda}{d} \log w_{qk} \right) - \lambda \log d.$$
(16)

We can ignore the term $\lambda \log d$ since it does not depend on the optimization variable. Method of Lagrange multipliers turns this constrained optimization problem into the following unconstrained counterpart:

$$\min_{\boldsymbol{w}_k,\boldsymbol{\alpha}} \mathcal{L}(c, \{\boldsymbol{w}_k\}_{k \in [E]}, \boldsymbol{\alpha}) = \sum_{k \in [E]} \frac{1}{N_k^2} \sum_{i, j \in \mathcal{I}_k} \sum_{q \in [d]} \left(w_{qk} \rho_{ijq} - \frac{\lambda}{d} \log w_{qk} \right) + \sum_{k \in [E]} \alpha_k \left(\sum_{q \in [d]} w_{qk} - 1 \right),$$

where $\boldsymbol{\alpha} = \begin{bmatrix} \alpha_1 & \dots & \alpha_L \end{bmatrix}^T$ is the vector of Lagrange multipliers. Note that the last optimization problem can be separated into the following *L* independent optimization subproblems:

$$\min_{\boldsymbol{w}_k,\boldsymbol{\alpha}} \mathcal{L}_k(c, \boldsymbol{w}_k, \boldsymbol{\alpha}) = \frac{1}{N_k^2} \sum_{i,j \in \mathcal{I}_k} \sum_{q \in [d]} \left(w_{qk} \rho_{ijq} - \frac{\lambda}{d} \log w_{qk} \right) + \alpha_k \left(\sum_{q \in [d]} w_{qk} - 1 \right),$$

for $k \in [E]$. Since the objective function is a positive combination of convex functions, the optimization problem is also convex. By setting the derivatives of \mathcal{L}_k with respect to both optimization variables to 0, we obtain the following system of equations:

$$\begin{cases} \frac{\partial \mathcal{L}_k}{\partial w_{qk}} = s_{qk} - \frac{\lambda}{d} \frac{1}{w_{qk}} + \alpha_k = 0, \\ \frac{\partial \mathcal{L}_k}{\partial \alpha_k} = \sum_{q \in [d]} w_{qk} - 1 = 0 \end{cases}$$

for all $k \in [E]$, where s_{qk} is the data dispersion measure defined in the theorem statement. The first equation yields

$$w_{qk} = \frac{\lambda}{d} \frac{1}{s_{qk} + \alpha_k},\tag{17}$$

607 where α_k is found from $\sum_{q \in [d]} w_{qk} = 1$ which in fact gives

$$\sum_{q \in [d]} \frac{1}{s_{qk} + \alpha_k} = \frac{d}{\lambda}$$
(18)

for all $k \in [E]$ as desired.

A.2 PROOF OF PROPOSITION 1

To give the probability bound an exact form, we assume the clusters follow a Gaussian mixture model (GMM). We note that GMMs are a highly expressive and general framework, so this assumption does not place significant restrictions on our analysis. We further assume that though clusters may overlap, they are well-separated along the features for which they cluster tightly¹.

Since Proposition 1 is a composition of Lemma 1 and Lemma 2, we proceed by providing their proofs.

622 623 A.2.1 PROOF OF LEMMA 1

624 *Proof of Lemma 1.* Notice that we can expand inequality (1) as

$$\sum_{i \in [d]} m_i \delta \mu_i^2 \ge \sum_{i \in [d]} \delta \mu_i^2,$$

where we let $\delta \mu := \mu_b - \mu_a$. Since M_a entries are mean-scaled, we can rewrite them as

$$m_i = \frac{dm'_i}{\sum_{j \in [d]} m'_j} \tag{19}$$

632 for some initial dispersion estimates $\{m'_j\}_{j \in [d]}$. Without loss of generality, assume that [d'] is the 633 set of dimension indices for which the dispersions are relatively much smaller than those in the rest of the dimensions in the sense that $m'_i \gg m'_j$ for any $i \in [d']$ and $j \in [d] \setminus [d']$. Then, there 634 exists a positive $\alpha \ll 1/2$ such that $\sum_{i \in [d']} m_i > d - \alpha$ and $\sum_{i \in [d] \setminus [d']} m_i < \alpha$. By the assumption 635 636 that clusters are best-separated along the features for which they cluster tightly, this means that the 637 weight matrix M_a maximizes the contribution of largest d' terms in $\sum_{i \in [d]} m_i \delta \mu_i^2$ corresponding to individual feature-wise distances in dimensions where the feature dispersions are the smallest 638 instead of giving uniform weights to all dimensions, which leads to inequality (1). 639

641 A.2.2 PROOF OF LEMMA 2

Froof of Lemma 2. Since we use the \mathcal{L}_2 distance between the token h and μ_c as a similarity metric, we assign cluster g_{k^*} to the token h' iff $||h' - \mu_{k^*}|| \le ||h' - \mu_k||$. Assume that the token h' is a noisy observation of an underlying true token h which actually originates from cluster g_{k^*} . Then, the token h' can be decomposed as $h' = h + \epsilon$ for a random noise $\epsilon \sim \mathcal{N}(0, \Sigma_{\epsilon})$. Now define

597 598

600 601

604 605 606

608 609 610

613

614

629 630 631

640

647

¹Intuitively, this assumption captures the natural property that the semantic regions of the input space are distinct along the dimensions that best identify them.

the decision variable $\mathcal{D}(h') := \|h' - \mu_{k^*}\|^2 - \|h' - \mu_k\|^2$ which turns the clustering condition to $\mathcal{D}(h') \leq 0$ for the cluster g_{k^*} . Let us analyze the decision variable \mathcal{D} as a random variable where randomness may come from the underlying sampling strategy and noise. Note that

$$\mathcal{D}(\boldsymbol{h}') = \|\boldsymbol{h} + \boldsymbol{\epsilon} - \boldsymbol{\mu}_{k^*}\|^2 - \|\boldsymbol{h} + \boldsymbol{\epsilon} - \boldsymbol{\mu}_k\|^2$$

$$= \|\boldsymbol{h} - \boldsymbol{\mu}_{k^*}\|^2 - \|\boldsymbol{h} - \boldsymbol{\mu}_k\|^2 + 2(\boldsymbol{\mu}_k - \boldsymbol{\mu}_{k^*})^{\mathsf{T}}\boldsymbol{\epsilon}$$

$$= \mathcal{D}(\boldsymbol{h}) + 2\delta\boldsymbol{\mu}^{\mathsf{T}}\boldsymbol{\epsilon}, \qquad (20)$$

where $\delta \mu := \mu_k - \mu_{k^*}$. Due to the assumption that h is drawn from the distribution g_{k^*} , it can be rewritten as $h = \mu_{k^*} + \nu$ with $\nu \sim \mathcal{N}(0, \Sigma_{k^*})$. Then for the first term in Eqn. 20, we have

$$\mathcal{D}(\boldsymbol{h}) = \|\boldsymbol{h} - \boldsymbol{\mu}_{k^*}\|^2 - \|\boldsymbol{h} - \boldsymbol{\mu}_k\|^2$$

= $\delta \boldsymbol{\mu}^{\mathsf{T}} (2\boldsymbol{h} - \boldsymbol{\mu}_{k^*} - \boldsymbol{\mu}_k)$
= $\delta \boldsymbol{\mu}^{\mathsf{T}} (2\boldsymbol{\nu} - \delta \boldsymbol{\mu})$
= $2\delta \boldsymbol{\mu}^{\mathsf{T}} \boldsymbol{\nu} - \|\delta \boldsymbol{\mu}\|^2.$ (21)

Substituting this back into Eqn. 20, we get

$$\mathcal{D}(\boldsymbol{h}') = 2\delta\boldsymbol{\mu}^{\mathsf{T}}(\boldsymbol{\nu} + \boldsymbol{\epsilon}) - \|\delta\boldsymbol{\mu}\|^2.$$
(22)

This shows that $\mathcal{D}(h') \sim \mathcal{N}(-\|\delta\mu\|^2, 4\delta\mu^{\top}(\Sigma_{k^*} + \Sigma_{\epsilon})\delta\mu)$. Since $\mathcal{D}(h')$ follows a normal distri-bution with the derived parameters, the probability that h' is assigned to cluster g_{k^*} is given by

$$\Pr(\text{correct cluster}) = \Pr\left(\mathcal{D}(\boldsymbol{h}) \le 0\right) = \Phi\left(\frac{\|\delta\boldsymbol{\mu}\|^2}{2\sqrt{\delta\boldsymbol{\mu}^{\mathsf{T}}(\boldsymbol{\Sigma}_{k^*} + \boldsymbol{\Sigma}_{\epsilon})\delta\boldsymbol{\mu}}}\right),\tag{23}$$

where Φ denotes the CDF of normal distribution as usual. Since Φ is an increasing function, the probability that the noisy token h is assigned to the correct cluster is proportional to the distance between the cluster centroids and inverse proportional to the covariance matrices of the cluster and the additive noise. On the other hand, for the incorrect clustering probability, we have

$$\Pr(\text{incorrect cluster}) = 1 - \Phi\left(\frac{\|\delta\boldsymbol{\mu}\|^2}{2\sqrt{\delta\boldsymbol{\mu}^{\top}(\boldsymbol{\Sigma}_{k^*} + \boldsymbol{\Sigma}_{\epsilon})\delta\boldsymbol{\mu}}}\right)$$
(24)

as claimed.

A.3 PROOF OF PROPOSITION 2

Proof of Proposition 2. Let the router be given by g and let the softmax function be given by $g_{\theta}: \mathbb{R}^d \to \mathbb{R}^d$, parameterized by expert embeddings $\{e_i\}_{i \in [E]}$. The network loss depends on expert embeddings only through the router function g. We shall explore the exclusive contribution of each expert embedding in minimizing \mathcal{L}^{ACMoE} . In order to do this, we look at the network loss as a scalar function of i^{th} expert embedding vector while treating all other network parameters as fixed. Then, we can write $\mathcal{L}^{\text{ACMoE}} : \mathbb{R}^d \to \mathbb{R}$ such that $\mathcal{L}^{\text{ACMoE}} = \mathcal{L}^{\text{ACMoE}}(g_{\theta}(e_i))$. For simplicity, we shall omit the subscript θ . The gradient that comes from back-propagation is then given by

$$\nabla_{\boldsymbol{e}_i} \mathcal{L}^{\text{ACMoE}} = \left(\nabla_g \mathcal{L}^{\text{ACMoE}} \right)^{\mathsf{T}} \nabla_{\boldsymbol{e}_i} g, \qquad (25)$$

where $\nabla_{e_i}g \in \mathbb{R}^{d \times d}$ denotes the Jacobian matrix of g since for $g_k \coloneqq (g_{\theta}(e_i))_k$, we can write

$$\frac{\partial}{\partial e_{is}} \mathcal{L}^{\text{ACMoE}}(g_1, \dots, g_d) = \sum_k \frac{\partial \mathcal{L}^{\text{ACMoE}}}{\partial g_k} \frac{\partial g_k}{\partial e_{is}}.$$
(26)

Note that for $g_k = \operatorname{softmax}(h^{\mathsf{T}} M e_k)$, we have

$$\frac{\partial g_k}{\partial e_{is}} = m_s h_s g_k (\delta_{ki} - g_i) = m_s h_s b_{ki}. \tag{27}$$

Then, the element of the Hessian matrix of the network loss at index $(s,t) \in [d] \times [d]$ can be written as

$$\boldsymbol{H}_{st}^{(i)}(\mathcal{L}^{\text{ACMoE}}) = \frac{\partial^{2} \mathcal{L}^{\text{ACMoE}}}{\partial e_{is} \partial e_{it}} = \frac{\partial}{\partial e_{it}} \sum_{k} \frac{\partial \mathcal{L}^{\text{ACMoE}}}{\partial g_{k}} \frac{\partial g_{k}}{\partial e_{is}}$$
$$= \sum_{k} \left(\sum_{j} \frac{\partial^{2} \mathcal{L}^{\text{ACMoE}}}{\partial g_{k} \partial g_{j}} \frac{\partial g_{j}}{\partial e_{it}} \right) \frac{\partial g_{k}}{\partial e_{is}} + \frac{\partial \mathcal{L}^{\text{ACMoE}}}{\partial g_{k}} \frac{\partial^{2} g_{k}}{\partial e_{is} \partial e_{it}}$$
$$= m_{s} h_{s} m_{t} h_{t} \left[\sum_{k} \left(\sum_{j} \frac{\partial^{2} \mathcal{L}^{\text{ACMoE}}}{\partial g_{k} \partial g_{j}} b_{ji} \right) b_{ki} + \frac{\partial \mathcal{L}^{\text{ACMoE}}}{\partial g_{k}} b'_{ki} \right]$$
$$= m_{s} h_{s} m_{t} h_{t} B_{i}, \tag{28}$$

where B_i is some constant that depends only on index *i*. Due to Eqn. 28, the Hessian takes the following matrix form

$$\boldsymbol{H}^{(i)} = B_i (\boldsymbol{M} \boldsymbol{h}) (\boldsymbol{M} \boldsymbol{h})^{\mathsf{T}}.$$
(29)

Taking expectation from both sides, we obtain

$$\mathbb{E}_{\boldsymbol{h}\sim(\boldsymbol{\mu},\boldsymbol{\Sigma})}\left[\boldsymbol{H}^{(i)}\right] = B_i \mathbb{E}_{\boldsymbol{h}\sim(\boldsymbol{\mu},\boldsymbol{\Sigma})}\left[\boldsymbol{M}(\boldsymbol{h}\boldsymbol{h}^{\mathsf{T}})\boldsymbol{M}\right] = B_i \boldsymbol{M}(\boldsymbol{\Sigma})\boldsymbol{M},\tag{30}$$

where we assume h is centered. Now recall that $M = \text{diag}(m_1, \ldots, m_d)$ where for each i, $m_i \sim 1$ $1/\sqrt{\Sigma_{ii}}$ holds. Assume that the covariance matrix Σ is symmetric positive definite. Then, it is diagonalizable as $\Sigma = U \Lambda U^{\top}$ with $\Lambda = \text{diag}(\lambda_1, \dots, \lambda_d)$, a diagonal matrix with eigenvalues of Σ . With the transformation M, we get

$$M\Sigma M = MU\Lambda U^{\mathsf{T}}M = UM\Lambda MU^{\mathsf{T}}$$
(31)

$$= \boldsymbol{U} \begin{bmatrix} m_1^2 \lambda_1 & & \\ & \ddots & \\ & & m_d^2 \lambda_d \end{bmatrix} \boldsymbol{U}^{\mathsf{T}}.$$
 (32)

Since the eigenvalues capture the variances along the principal components of the covariance matrix, m_i^2 , as a reciprocal of a measure of dimension-wise dispersion, is reasonably correlated with $1/\lambda_i$, as demonstrated by Lemma 4, implying $\lambda_j \leq \lambda_i \implies m_j \geq m_i$ with high probability. Therefore, we obtain that

=

$$\kappa(M\Sigma M) = \frac{\lambda_{\max}(M\Sigma M)}{\lambda_{\min}(M\Sigma M)} \approx \frac{m_{\min}^2 \lambda_{\max}(\Sigma)}{m_{\max}^2 \lambda_{\min}(\Sigma)} \le \kappa(\Sigma),$$
(33)

which implies the claim.

Lemma 4 (Correlation between dimension-wise variances and covariance eigenvalues). Let $\{b_i\}_{i \in d}$ be the set of normalized basis vectors of \mathbb{R}^d . Consider a symmetric positive definite covariance matrix Σ and its unit eigenvectors $\{v_i\}_{i \in [d]}$. Assume that the eigenvector v_i is a reasonably small perturbation of the basis vector \mathbf{b}_i such that $\mathbf{v}_i^{\mathsf{T}} \mathbf{b}_i \geq 1 - \epsilon$ for all $i \in [d]$ and a small constant $\epsilon > 0$. Then, for all $i \in [d]$, we have

$$\lambda_i - \Sigma_{ii} \le \epsilon \cdot \max_{j \neq i} |\lambda_i - \lambda_j|, \qquad (34)$$

where $\{\lambda_i\}_{i \in [d]}$ is the set of ordered eigenvalues of Σ corresponding to eigenvectors $\{v_i\}_{i \in [d]}$.

Proof of Lemma 4. Note that each diagonal element of the SPD covariance matrix Σ can be written as

$$\Sigma_{ii} = \boldsymbol{b}_i^{\mathsf{T}} \boldsymbol{\Sigma} \boldsymbol{b}_i = \boldsymbol{b}_i^{\mathsf{T}} \left(\sum_{j \in [d]} \lambda_j \boldsymbol{v}_j \boldsymbol{v}_j^{\mathsf{T}} \right) \boldsymbol{b}_i = \sum_{j \in [d]} \lambda_j (\boldsymbol{v}_j^{\mathsf{T}} \boldsymbol{b}_i)^2.$$
(35)

		04015
Compute Speed (ms/it)	Max Memory (K)	#Params (M)
422.62	25.69	220
425.15	25.72	220
391.93	34.64	216
393.29	34.68	216
403.36	22.00	280
408.56	22.19	280
	Compute Speed (ms/it) 422.62 425.15 391.93 393.29 403.36 408.56	Compute Speed (ms/it) Max Memory (K) 422.62 25.69 425.15 25.72 391.93 34.64 393.29 34.68 403.36 22.00 408.56 22.19

Table 4: Efficiency Comparison between ACMoE and baseline MoE models

. .

Then, the difference on the left hand side of Eqn. 34 can be bounded as

ı.

$$\begin{aligned} \left|\lambda_{i} - \Sigma_{ii}\right| &= \left|\lambda_{i} - \sum_{j \in [d]} \lambda_{j} (\boldsymbol{v}_{j}^{\mathsf{T}} \boldsymbol{b}_{i})^{2}\right| = \left|\lambda_{i} \left(1 - (\boldsymbol{v}_{i} \boldsymbol{e}_{i})^{2}\right) - \sum_{j \neq i} \lambda_{j} (\boldsymbol{v}_{j}^{\mathsf{T}} \boldsymbol{b}_{i})^{2}\right| \\ &= \left|\lambda_{i} \sum_{j \neq i} (\boldsymbol{v}_{j}^{\mathsf{T}} \boldsymbol{b}_{i})^{2} - \sum_{j \neq i} \lambda_{j} (\boldsymbol{v}_{j}^{\mathsf{T}} \boldsymbol{b}_{i})^{2}\right| \\ &= \left|\sum_{j \neq i} (\lambda_{i} - \lambda_{j}) (\boldsymbol{v}_{j}^{\mathsf{T}} \boldsymbol{b}_{i})^{2}\right| \\ &\leq \max_{j \neq i} \left|\lambda_{i} - \lambda_{j}\right| \sum_{j \neq i} (\boldsymbol{v}_{j}^{\mathsf{T}} \boldsymbol{b}_{i})^{2} \\ &= \max_{j \neq i} \left|\lambda_{i} - \lambda_{j}\right| \left(1 - (\boldsymbol{v}_{i} \boldsymbol{b}_{i})^{2}\right) \\ &\leq \epsilon \max_{j \neq i} \left|\lambda_{i} - \lambda_{j}\right|, \end{aligned}$$
(36)

where we used the fact that

$$\sum_{j \in [d]} (\boldsymbol{v}_j^{\mathsf{T}} \boldsymbol{b}_i)^2 = \left(\sum_{j=1}^n (\boldsymbol{v}_j^{\mathsf{T}} \boldsymbol{b}_i) \boldsymbol{v}_j\right)^{\mathsf{T}} \left(\sum_{k=1}^n (\boldsymbol{v}_k^{\mathsf{T}} \boldsymbol{b}_i) \boldsymbol{v}_k\right) = \boldsymbol{b}^{\mathsf{T}} \boldsymbol{b} = 1$$

to obtain Eqn. 36 and Eqn. 37 since the eigenvectors of Σ are orthonormal.

B IMPLEMENTATION PROCEDURE AND COMPUTATIONAL EFFICIENCY

Training and Inference. Given the AC routing scheme requires requires the expert assignment per token from the previous layer, we can only implement AC routing from the second layer on. We incorporate AC routing into both training and inference stages. This is because, firstly, AC routing is designed to offer improvements to both clean and contaminated data, and so even in the presence of completely clean train and test data, it is advantageous to incorporate the AC method into both stages. Secondly, it is commonplace to encounter data contamination only at the test stage and indeed highly possible to encounter it in train as well. Therefore, in the interest of robustness as well, AC routing is incorporated into both stages.

Computational Efficiency. Computing the required $\{w_k\}_{k \in [E]}$ for number of experts E requires no learnable parameters and is obtained simply by computing the mean absolute deviation for each set of tokens assigned to the k^{th} expert. This can be computed using just two computations of the mean – once for the mean per cluster and once again for the mean of the absolute deviations per cluster – done in parallel over all clusters using torch.index_reduce() and is of the order $\mathcal{O}(2nd) = \mathcal{O}(n)$ for n tokens. Hence the upper-bound time complexity of the MoE layer is un-affected. We provide in Table 4 additional efficiency analysis in terms of throughput, max GPU memory allocated, and parameters which shows no significant efficiency loss compared to baseline MoE architectures.

⁸¹⁰ C EXPERIMENTAL DETAILS AND ADDITIONAL EXPERIMENTS

- 812 C.1 LANGUAGE MODELING 813
- 814 C.1.1 DATASETS

815

816

817

818

829

835

836

837

845

WikiText-103. The WikiText-103² dataset contains around 268K words and its training set consists of about 28K articles with 103M tokens. This corresponds to text blocks of about 3600 words. The validation set and test sets consist of 60 articles with 218K and 246K tokens respectively.

EnWik-8. The EnWik-8 dataset is a byte-level dataset of 100 million bytes derived from Wikipedia that, in addition to English text, also includes markup, special characters, and text in other languages. EnWik-8 contains 90M characters for training, 5M for validation, and 5M for testing.

824 Stanford Sentiment Treebank-2. The Stanford Sentiment Treebank-2 (SST2) (Socher et al., 2013) is a 2 class corpus with fully labeled parse trees for analysis of the compositional effects
826 of sentiment in language. The dataset consists of 11,855 single sentences extracted from movie reviews. It was parsed with the Stanford parser and includes 215,154 unique phrases from the parse
828 trees, each annotated by 3 human judges.

Stanford Sentiment Treebank-5. Stanford Sentiment Treebank-5 (SST5) (Socher et al., 2013)
is a 5 class dataset used for sentiment analysis. It consists of 11,855 single sentences extracted
from movie reviews. It includes 215,154 unique phrases from parse trees, each annotated by 3
human judges. Phrases are classified as negative, somewhat negative, neutral, somewhat positive, or
positive.

Banking-77. Banking-77 (B77) (Casanueva et al., 2020) is a highly fine-grained 77 class classification dataset comprising 13083 customer service queries labelled with 77 intents.

838 C.1.2 MODEL, OPTIMIZER, & TRAIN SPECIFICATION

Models. We use as backbones the Switch Transformer (Fedus et al., 2022) and Generalist Language Model (Du et al., 2022). Table 5 contains the specification over self-attention (SA) layers, feed-forward network (FFN) layers, Mixture-of-Experts (MoE) layers, attention span (Att. Span), embedding size and parameter count for both backbones at small and medium configurations for each pretraining task. All backbones use 16 experts with top-2 expert routing.

Model	SA Layers	FFN Layers	MoE Layers	Att. Span	Embed Size	Params	
		WikiTex	t-103 Pretrain				
Switch-small	3	-	3	256	128	70M	
Switch-medium	6	-	6	1024	352	216M	
GLaM-small	6	3	3	2048	144	79M	
GLaM-medium	12	6	6	2048	352	220M	
EnWik-8 Pretrain							
Switch	8	-	8	2048	352	36M	

Table 5: Language Modeling Backbone Specifications

Optimizer. All experiments use Adam with a base learning rate of 0.0007. Small configurations use 3000 iterations of learning rate warmup while medium configurations use 4000 iterations.

862

²www.salesforce.com/products/einstein/ai-research/the-wikitext-dependency-language-modeling-dataset/

Pretrain Specification. For WikiText-103 pretraining, small Switch backbones are trained for 40 epochs with a batch size of 96 and medium Switch backbones are trained for 80 epochs with a batch size of 48. Small GLaM backbones are trained for 60 epochs with a batch size of 48 and medium GLaM backbones are trained for 120 epochs with a batch size of 48. We use 0.01 auxiliary load balancing loss.

For EnWik-8 pretraining, both Switch and GLaM backbones are trained for 80 epochs with batch size 48. We use 0.01 auxiliary load balancing loss.

Finetune Specification. For SST2 and SST5 finetuning, we finetune for 5 epochs using Adam and a base learning rate of 0.001 without warmup and a batch size of 16. For B77 we finetune for 50 epochs using Adam and a base elarning rate of 0.00001 without warmup and a batch size of 16.

Compute Resources. All models are trained, evaluated, and finetuned on four NVIDIA A100
 SXM4 40GB GPUs.

878

879 C.2 IMAGE CLASSIFICATION 880

881 C.2.1 DATASETS AND ATTACKS

ImageNet-1K. We use the full ImageNet dataset that contains 1.28M training images and 50K validation images. The model learns to predict the class of the input image among 1000 categories. We report the top-1 and top-5 accuracy on all experiments.

ImageNet-A/O/R. ImageNet-A (Hendrycks et al., 2021b) contains real-world adversarially filtered images that fool current ImageNet classifiers. A 200-class subset of the original ImageNet-1K's 1000 classes is selected so that errors among these 200 classes would be considered egregious, which cover most broad categories spanned by ImageNet-1K.

ImageNet-O (Hendrycks et al., 2021b) contains adversarially filtered examples for ImageNet out-of-distribution detectors. The dataset contains samples from ImageNet-22K but not from ImageNet1K, where samples that are wrongly classified as an ImageNet-1K class with high confidence by a ResNet-50 are selected.

Imagenet-R (Hendrycks et al., 2021a) contains various artistic renditions of object classes from the original ImageNet dataset, which is discouraged by the original ImageNet. ImageNet-R contains 30,000 image renditions for 200 ImageNet classes, where a subset of the ImageNet-1K classes is chosen.

Adversarial Attacks. We use produce corrupted ImageNet samples using white box attacks fast gradient sign method (FGSM) (Goodfellow et al., 2014) and projected gradient descent (PGD) (Madry et al., 2017), and black box simultaneous perturbation stochastic approximation (SPSA) (Uesato et al., 2018). FGSM and PGD use a perturbation budget of 1/255 while SPSA uses a perturbation budget 1. All attacks perturb under l_{∞} norm. PGD and uses 20 steps with step size of 0.15 and SPSA uses 20 iterations.

905 906

C.2.2 MODEL, OPTIMIZER, & TRAIN SPECIFICATION

Models. Our results are based off of the Swin Transformer (Liu et al., 2021) architecture. This backbone uses 4 base layers of depth 2, 2, 18, and 2. The first two base layers each contain 2 self-attention layers and 2 feed-forward layers. The third base layer contains 18 self-attention layers with alternating feed-forward and MoE layers. The final base layer contains 2 self-attention layers with one feed-forward and one MoE layer. The embedding dimension is 96 and the heads per base layer are 3, 6, 12, and 24. We use 16 total experts and present results for both top-1 and top-2 expert routing. The total parameter count is 280M.

914

Optimizer. We use AdamW with a base learning rate of 1.25e-4, minimum learning rate of 1.25e7, 0.1 weight decay and cosine scheduling.

918 Train Specification. We train for 60 epochs with a batch size of 128 and 0.1 auxiliary balancing loss.
 920

Compute Resources. All models are trained and evaluated on four NVIDIA A100 SXM4 40GB GPUs.

C.3 ADVERSARIAL ATTACK AT HIGHER PERTURBATION BUDGET

Figure 3: ACMoE and Swin Transformer under PGD attack at increasing perturbation budgets. ACMoE widens its performance gain over Swin at increasingly severe attacks in both top-1 test accuracy (**left**) and top-5 test accuracy (**right**), starting at approximately 7% improvement at 1/255 and ending at just over 10% at 5/255.

Figure 3 shows that for PGD perturbation budgets 1/255 through to 5/255, ACMoE widens its already substantive robust performance gain over Swin, with top-1 and top-5 test accuracy improvements increasing from 7% to approximately 10%.

C.4 CLUSTER VISUALIZATION

Figure 4: Cluster Visualization on ImageNet. Each token is represented as a point and colored by its assigned expert. Left: Swin identifies one cluster clearly (yellow/gold) but otherwise fails to distinguish remaining clusters **Right:** ACMoE learns better-defined expert clusters.

We pass random ImageNet batches through Swin and ACMoE and plot the representations along with their assigned experts, using t-sne to represent the high dimensional data in 2 dimensions. The result is shown in Fig. 4, where we see Swin learns overlapping and indistinguishable expert clusters. ACMoE, on the other hand, performs better in learning the clusters, producing much clearer and better-distinguished clusters. 972 Table 6: Ablation on Measure of Spread in
973 Switch Transformer (Fedus et al., 2022)

Table 7: Ablation on l	Layer Placement in Switch
Transformer (Fedus e	t al., 2022)

Measure of Spread	Test PPL (\downarrow)	Layer Placement	Test PPL (↓
Variance	34.87	Back Half	34.95
1AD	34.42	Alternating	34.80
		Skip 1	34.42
		Full	34.88

980 981

982 C.5 ABLATION STUDIES

983 984 C.5.1 MEASURES OF DISPERSION

985 We present in Tables 6 and 8 results for Switch-ACMoE and Swin-ACMoE when changing the mea-986 sure of dispersion used in the AC routing transformation (Definition 1) from mean absolute deviation 987 (MAD) to variance. We see mean absolute deviation outperforms variance as a measure of spread. 988 This is an intuitive finding given that squared distances, as used in variance computations, are highly 989 sensitive to outliers. Using mean absolute deviation as an alternative measure of spread reduces this issue and produces a more robust estimate of dispersion. We note that MAD is not the only robust 990 measure of spread. We conjecture that taking interquartile range as an additionally robust measure 991 of spread may produce good results in both clean and contaminated data. We, however, leave this 992 interesting direction to future research as interquartile range poses implementation challenges as it 993 requires designing concurrent linear scans over the expert clusters. MAD, by contrast, requires just 994 two computations of the mean which is easily parallelizable using torch.index_reduce(). 995

996 C.5.2 LAYER PLACEMENT

998 We consider the effect of layer placement in the Switch-medium configuration and in the Swin Transformer (see Sections C.1.2 and C.2.2 for the full model specifications). In particular, Switch is 999 a 6 layer model and Swin is a 24 layer model. With regard to Swin, we focus on the deepest block 1000 of depth 18 to implement our ACMoE layers. This is due to the change in embedding size between 1001 base layers, meaning we are restricted to this base layer of depth 18. Note further that Swin only 1002 uses MoE layers in an alternating pattern with feed-forward networks between each MoE layer. For 1003 example, for Switch, a full ACMoE specification would mean placing ACMoE on layers 2,3,4,5,6. 1004 For Swin, a full specification means placing ACMoE on layers 4,6,8,10,12,14,16,18. To examine 1005 the effect of layer placement we consider the following models:

1007 1008

1009

1010

1011

1012

1013

1014

1015

• *Alternating*: For Switch this means we place ACMoE on layers 2,4,6. For Swin this means we place ACMoE on layers 4,8,12,16.

- *Back Half*: For Switch this means we place ACMoE on just the last 3 layers of the network. For Swin this means we place ACMoE on just the last 5 layers of the network.
- *Skip 2*: For Swin this means we palce ACMoE on layers 8,10,12,14,16,18.
- *Skip 1*: For Switch this means we place ACMoE on layers 3,4,5,6. For Swin this means we place ACMoE on layers 6,8,10,12,14,16,18.
 - Full: We place ACMoE on every possible layer.

We present in Table 7 results for Switch and Swin ACMoE models when changing the positions of the ACMoE layers throughout the network. The results agree with our expectation that, generally speaking, more ACMoE layers improve performance, but a in some circumstances a threshold is met at the point where ACMoE layers are used too early in the network such that the model has not been able to learn reasonably good approximations of the cluster membership of the tokens yet.

We find that in the Switch backbone, performance improves the more ACMoE layers we add, which agrees with our expectation that more ACMoE layers improve performance. However, we find that top performance is attained when allowing two standard MoE layers to go before the first ACMoE, as opposed to the minimum of 1 standard MoE layer. We conjecture this is because we need to give the model a few layers before the first ACMoE in order to learn decent representations such that we

Measure of SI	pread Tes Top 1	st Acc. Top 5		Layer Placement	Test Top 1	Acc. Top 5
Swin-Top	1 (Liu et al., 2	021)	=	Swin-Top1 (Liu	ı et al., 20)21)
Variance MAD	75.06 75.39	92.49 92.56		Back Half Skip 2	75.16 75.34	92.46 92.42
Swin-Top	2 (Liu et al., 2	021)	-	Skip I Full	75.35 75.39	92.45 92.56
Variance MAD	76.11 76.31	93.08 93.14	=	Swin-Top2 (Liu	ı et al., 20)21)
				Back Half Skin 2	76.16 76.10	93.02 92.93
				Skip 2 Skip 1	76.29	92.98
				Full	76.31	93.14

1026 Table 8: Ablation on Measure of Spread in Swin 1027 Transformer

Table 9: Ablation on Layer Placement in Swin Transformer

have good enough estimated cluster assignments for use in the ACMoE layer. Encouragingly, we 1044 find just one additional standard MoE layer is sufficient for the benefits of ACMoE to be obtained. 1045

1046 We find in Table 9 that with Swin, best performance is obtained using ACMoE on every possible layer, again agreeing with our expectation that more ACMoE layers improve performance. With 1047 Swin, however, we do not face any drop in performance from placing ACMoE too early in the 1048 network, and indeed we see Full attaining top performance. We conjecture that Swin does not 1049 encounter this issue since Swin uses four layers of feed forward networks before the first MoE layer, 1050 and so by the first MoE layer the representations are of reasonably good quality to produce good 1051 estimates of the cluster membership. 1052

1053 C.5.3 RANDOM ABLATION 1054

1055 We show the efficacy of the adaptive clustering transformation M (Definition 1) in our AC router 1056 at capturing meaningful feature-wise information by ablating it against an alternate $d \times d$ diagonal 1057 matrix made up of normal random variables with mean 1 and standard deviation 0.5 (where we clip any negative values to prevent negative weights). We present in Tables 10 and 11 results for lan-1058 guage modeling (using Switch) and image classification (using Swin), which show fairly substantial 1059 drops in performance in both backbones. This offers evidence to the claim that our AC routing transformation is meaningfully weighting features to improve routing, and that performance gains 1061 of our proposed method do not flow from a kind of implicit regularization of introducing noise into 1062 the router. 1063

Table 10: Random Ablation in Switch (Fedus et al., 2022)

Table 11: Random Ablation in Swin (Liu et al., 2021)

Model	Test PPL (\downarrow)	Model	Top 1 Acc.	Top 5 Acc.
Switch-Random (Fedus et al., 2022)	38.17	Swin-Random	74.22	91.87
Switch-ACMoE	34.42	Swin-ACMoE	76.31	93.14

1070 1071

1064

1067 1068 1069

1028 10

1042 1043

1072 C.6 CLUSTER WEIGHT MIXING 1073

1074 The AC routing scheme estimates the cluster membership of each token based on its highest affinity 1075 cluster assigned in the previous layer. We could also further leverage the top-k structure of the MoE models by mixing the cluster-wise feature weights with weights corresponding to the affinities in the 1076 top-k routing. For example, if h has affinity scores α and $1 - \alpha$ to clusters k and k' respectively, then 1077 we could also obtain the required AC routing transformation for h as $M_{k^*} = \alpha M_k + (1 - \alpha) M_{k'}$. 1078 This approach therefore factors in the confidence with which we believe h belongs to cluster k or 1079 k', and can be used for integrating ACMoE into higher expert granularity backbones (i.e higher 1080 top-k settings). Tables 12 and 13 show results for computing M_{k^*} by mixing the top-affinity cluster weights (Mix 2) in Switch and GLaM with top-2 routing, versus our presented results which compute 1082 M_{k^*} just based off of the highest affinity cluster (Mix 1). We see that GLaM-ACMoE benefits substantially from cluster weight mixing whereas Switch-ACMoE prefers just using its top affinity 1084 cluster weights. For consistency across models, we present in our main body the Mix 1 results, as GLaM-ACMoE already performs extremely strongly using Mix 1 and so we prefer to opt for the added performance gain in the Switch backbone. 1086

1087 Table 12: Results on Cluster Weight Mixing in 1088 Switch (Fedus et al., 2022) 1089

Table 13: Results on Cluster Weight Mixing in GLaM (Du et al., 2022)

Clusters Mixed	Test PPL (\downarrow)	Clusters Mixed	Test PPL (
Mix 2	34.66	Mix 2	35.29
x 1	34.42	Mix 1	36.26

1093 1094 1095

1102

1090 1091

C.7 ADAPTIVE CLUSTERING INTEGRATION INTO SOFT MIXTURE OF EXPERTS 1096

We present here results for integrating ACMoE into SoftMoE (Puigcerver et al., 2023). To use ACMoE in the SoftMoe setting, which can be be understood as a top-E routing setting where all 1099 experts are active for every token, we compute M_{k^*} using cluster weight mixing (Section C.6) 1100 over the top-8 highest affinity clusters. We present the performance of Soft-ACMoE on clean data, 1101 adversarially attacked data, and ImageNet-A/O/R in the following Tables 14 and 15.

1103 Table 14: Test Accuracy on ImageNet corrupted PGD, FGSM, and SPSA using SoftMoE (Puigcerver et al., 2023) backbone 1104

Madal	Clean	Data	PC	GD	FG	SM	SP	SA
Model	Top 1	Top 5						
<i>SoftMoE</i> (Puigcerver et al., 2023)	72.86	90.92	45.29	78.91	56.95	85.60	66.59	88.70
Soft-ACMoE (Ours)	73.21	91.23	48.25	80.49	59.01	86.69	70.63	93.22

1110 Table 15: Test Accuracy on Image Classification in Imagenet-A/O/R using SoftMoE (Puigcerver 1111 et al., 2023) backbone

Model	Im-A	Im-R	Im-O
	Top-1 Acc. (↑)	Top-1 Acc. (↑)	AUPR (↑)
<i>SoftMoE</i> (Puigcerver et al., 2023)	6.69	31.63	17.97
Soft-ACMoE (Ours)	6.93	32.18	18.35

We see in Tables 14 and 15 the efficacy of ACMoE in the SoftMoE backbone, offering evidence of 1117 the adaptability of our framework into further MoE setups. In particular, the SoftMoE framework 1118 models a setting in which expert clusters are highly overlapping, as each token is soft assigned to all 1119 experts. Therefore, the performance gains shown in clean and contaminated data of Soft-ACMoE 1120 demonstrates that our AC router is well-suited to modeling such a clustering structure. 1121

1122

C.8 IMAGE CLASSIFICATION IN SWIN TRANSFORMER BASE CONFIGURATION 1123

1124 We further evaluate the performance ACMoE when scaling up model size in Table 16. We integrate 1125 ACMoE into the Base configuration of Swin (0.5B parameters) and evaluate on clean ImageNet-1K 1126 as well as under adversarial atacks.

- 1127
- 1128 C.9 ROUTER STABILITY 1129

We present in Fig. 5 the routing stability of ACMoE, SMoE, XMoE, and StableMoE in the Switch 1130 backbone evaluated on WikiText-103. Routing instability computes over adjacent layers the propor-1131 tion of tokens that are assigned to different experts across the two layers. Specifically, for n tokens 1132 $[h_1, \ldots, h_n]$, we compute at layer ℓ the matrix $S^{\ell} \in \mathbb{R}^{n \times n}$ such that $S_{ij}^{\ell} = 1$ if the i^{th} and j^{th} tokens 1133 are assigned to the same expert in layer ℓ and is 0 otherwise. The router instability at layer ℓ can

1134	Table 16: Test Accuracy or	ImageNet corrupted	PGD, FGSM,	and SPSA	using Swin	Base (Liu
1135	et al., 2021) backbone					

Model	Clear	n Data	PC	GD	FG	SM	SP	SA
Widdel	Top 1	Top 5	Top 1	Top 5	Top 1	Top 5	Top 1	Top 5
Swin-Base (Liu et al., 2021)	79.06	94.37	44.61	79.20	59.91	87.72	68.94	89.00
Swin-ACMoE-Base (Ours)	79.25	94.42	46.28	80.24	61.78	87.55	70.18	89.33

then be calculated as $r^{\ell} = \text{mean}(|S^{\ell-1} - S^{\ell}|)$. This metric therefore captures the degree to which tokens that are assigned to the same experts remain together through the model. A high r^{ℓ} indicates the router doesn't maintain consistent expert assignments, as tokens that it considers semantically similar at one layer it considers different at the next.

Figure 5: Router Instability of ACMoE, SMoE, XMoE, and StableMoE. ACMoE maintains consistent routing, while baseline routers more frequently change the expert assignments of tokens.

1161
1162 In Fig. 5, we see that baseline routers reach high levels of instability, where in the case of SMoE
and StableMoE, at the last layer over 60% of tokens are assigned to a different expert. ACMoE, by
contrast, maintains a more consistent, stable assignment through the model, with no more than 20%
of tokens changing expert assignment across any layer.

C.10 DYNAMIC ROUTING

We further test the compatibility of our Adaptive Clustering routing scheme in dynamic top-p rout-ing. In this setting, rather than routing each token to its top-k highest affinity experts in each MoE layer, we route each token to all experts that have affinity over a certain threshold p. This setting permits activating more or less experts for different tokens at different layers throughout the model, therefore dynamically assigning experts to tokens. We integrate our AC routing directly into this set-ting using the same setup as in Section 3, where the AC routing transformation is computed based on the estimated cluster membership of each token using the top affinity assignment of the previous layer. We present the results for Switch transformer on WikiText-103 language modeling in the following Table 17.

1177For fixed p, we set p = 0.05. For learnable p, we initialize the parameter to 0.05. We select this ini-
tialization as it reproduces approximately similar performance in the Switch backbone under default
top-2 routing, thereby aiding direct comparison between fixed top-k and dynamic top-p routing. We
see in the dynamic routing setting, ACMoE maintains the same consistent improvement over the
Switch baseline of roughly 1 full PPL. These results suggest ACMoE is well-suited to the dynamic
routing setting.

1184 D BROADER IMPACT

1186 Our research offers benefits to Mixture-of-Expert (MoE) architectures in both clean and contami-1187 nated settings. In particular, our work offers socially beneficial outcomes with regard to defense

1189		× ×					
1190	Model	Test PPL (\downarrow)					
1191							
1192	Fixed top-k routing (Shazeer et a	Fixed top-k routing (Shazeer et al., 2017)					
1193	Switch-medium (Fedus et al., 2022)	35.48					
1194	ACMoE-medium (Ours)	34.42					
1195							
1196	Dynamic top-p routing (Guo et a	al., 2024)					
1197	Switch-Fixed p	35.20					
1198	Switch-ACMoE-Fixed p (Ours)	34.14					
1199		24.20					
1200	Switch-Learnable p	34.29					
1201	Switch-ACMOE-Learnable p (Ours)	33.49					
1000							

Table 17: Results on Top-*p* Dynamic Routing in Switch Backbone (Fedus et al., 2022)

against adversarial attack, which we hope can be used to protect important AI systems from mali-cious actors. Furthermore, as large language models, many of which are built on MoE backbones, continue to profligate and be used in important societal settings, we hope our improved robustness to data contamination can aid this promising technology to continue to grow and improve in realistic settings of noisy training and evaluation data. Our research also shows substantially faster conver-gence than comparative baselines. We believe this faster convergence can deliver significant social benefit in terms of reducing the energy requirements of large model training, thereby helping to ease the growing environmental burden of AI training runs. We recognize there will always be risk of misuse with AI systems, however we hope that our work can be used to enhance and protect socially beneficial AI while also decreasing the environmental impact of this technology. We furthermore hope that our research can spur others on to continue building on robust and efficient AI for social good.