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ABSTRACT

A multitude of machine learning models for source code have been proposed in
the recent years capturing various aspects of the inherent rich structure and se-
mantics of code. However, these models are commonly designed to perform well
on a single task, failing to capture code’s multifaceted nature. To address this,
we present GLUECode, Global and Local Understanding Evaluation of Code, a
benchmark of diverse tasks to evaluate machine learning models of source code.
Crucially, GLUECode accounts for the distinct characteristics of source code: (1)
source code is highly structured and (2) source code is often composed of multi-
ple interacting entities. Existing tasks incentivize researchers to create models and
code representations that perform well on a single task - commonly focusing on
local reasoning. GLUECode aims to allow researchers to experiment with multiple
local and global source code representations, and evaluate these models on their
ability to capture the diverse characteristics of source code, thus driving the com-
munity towards building robust source code models incorporating global reason-
ing. We present results for several baselines. The GLUECode tasks are challenging
for the evaluated baselines; no model achieves convincing performance across all
tasks. This indicates that there is ample room for progress on GLUECode.

1 INTRODUCTION

In recent years, there has been considerable interest in researching machine learning models on
source code artifacts. Machine learning models have been used to address a variety of software
engineering tasks, as the inherent rich structure of code has allowed machine learning researchers to
explore new models and ideas. However, research has focused on single-purpose application mod-
els, targeting a single task each time while using varying source code representations and datasets.
This impedes progress towards general-purpose machine learning models of code that can learn and
reason across many tasks.

In this work, we present GLUECode (Global and Local Understanding Evaluation of Code), with
the goal of measuring progress in source code modelling across a range of tasks that account for the
diverse characteristics of software and require diverse reasoning capabilities over several thousands
of software projects. As GLUE (Wang et al., 2018) and SuperGLUE (Wang et al., 2019) does for
natural language, GLUECode highlights important aspects of reasoning about code: (1) since code in
software is composed of multiple interacting entities, it includes tasks that leverage both local (single
method) and global (multiple inter-related methods, information beyond the local method) reasoning
to varying degrees. This is in contrast to most tasks and models that have been introduced so far
that focus on local reasoning; (2) since source code mixes structured and unstructured information,
GLUECode tasks leverage both kinds of information, and (3) since the space of modelling choices is
large, we provide several source code representations ranging from raw text to abstract syntax trees
(AST) and graph representations, lowering the barrier to entry and ease of experimentation.

The design space for source code models is extremely large and spans a wide range of source code
representations. These range from the simplest (software metrics and n-grams), to very complex
that fully take advantage of the structure and semantics of source code (such as graph-based repre-
sentations). Even seemingly simple choices, such as how to preprocess identifiers, can be handled in
many different ways and have disproportionate impact (Karampatsis et al., 2020). GLUECode aims
to provide a unified benchmark to explore this design space.
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We provide performance results on a set of baselines, ranging from simple neural architectures such
as LSTMs and CNNs, to variants of pre-trained transformers. These models leverage purely local
reasoning and limited amounts of structural information. We show that existing models perform
well in a few tasks but fail to yield good results in others: In contrast to NLP, where (pre-trained)
transformers outperform other models, we find that no single model of code consistently outperforms
the others in all tasks.

Finally, while models can be evaluated on any single task in the benchmark in isolation (as the field
is presently doing), a long-term goal of GLUECode is the creation of unified multi-task source code
models that perform well across multiple tasks. A source code model that is jointly trained and can
perform well on all the task in the benchmark would be a significant step towards more versatile
models, that can, beyond the tasks they were trained, also adapt to downstream tasks, especially
when there is not enough data. Given the performance of our baselines in the single-task scenario,
defining a model that performs well across the board is thus very much an open problem.

2 THE GLUECODE BENCHMARK

Benchmarks are a common practice in machine learning and NLP, prominently featuring GLUE
and SuperGLUE (Wang et al., 2018; 2019) among others. In the domain of machine learning on
source code, several benchmarks have been proposed. However, in contrast to GLUECode, they
consider relatively local contexts and do not incentivize non-local reasoning: Idbench looks at iden-
tifiers, (Wainakh et al., 2019), BigCloneBench (Svajlenko & Roy, 2015) and OJClone (Mou et al.,
2016) at clone detection, and CodeSearchNet at a function-level text-to-code search (Husain et al.,
2020). Finally, COSET concerns classifying small programs by their functionality in 38 classes
(Wang & Christodorescu, 2019), and CoNaLa is a line-level text-to-code generation benchmark
(Yin et al., 2018). In this section, we provide an overview of GLUECode. We first describe the
software-specific characteristics that impact the choice of tasks, before detailing the dataset and the
tasks involved. Details about other related benchmarks can be found in the Appendix D.

2.1 LOCAL VERSUS GLOBAL CONTEXT

Most existing machine learning models of source code work at the level of a single function or
method. We call these local models, as they reason over the local context of a single software
entity. This is in contrast to global models that reason over multiple software entities and scales.
Global models are highly desirable since software systems are composed of multiple entities such
as modules and functions, that communicate with each other. This composition of communicating
entities dictates the behavior of a software system. For instance, a function may have a radically
different behavior, depending on its arguments. Indeed, small local changes can manifest in large
changes in behaviour in distant program locations. Only global models will be able to detect that.
To push forward the state of the art, it is thus critical to focus on global models.

Fully global models are currently out of reach but GLUECode incentivizes building models that
feature some form of global reasoning, in addition to local reasoning. Existing work uses simplified
projections of global representations: the GNN works of Allamanis et al. (2017; 2020) look solely
at file-level tokens, syntax, data and control flow information. CocoGum (Wang et al., 2020) uses
class context represented as abstracted UML diagrams. LambdaNet extracts type dependencies
in JavaScript into a single graph (Wei et al., 2020) for a few mid-sized projects (500-10k lines of
code), ignoring syntactic information, code comments, etc. Finally, Func2Vec (DeFreez et al., 2018)
computes function embeddings over an interprocedural call graph, ignoring local syntax, function
arguments, etc. An extended related work discussion can be found in Appendix D.

Instead to reason over global contexts two limitations need to be overcome: First, time-consuming
interprocedural static analyses need to be performed at scale. These require compiling projects and
resolving all its dependencies. In GLUECode, we take a step towards this direction, by using the
largest publicly available corpus of compilable Java code (Sec. 2.3). (2) Existing methods do not
operate well on large and sparse inputs and thus representations are tailored to use only the necessary
information. In GLUECode, we provide access to a variety of representations and propose a set of
tasks that cannot focus solely on local or global information (Sec 2.2).
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2.2 FLEXIBILITY IN REPRESENTATIONS OF CODE

Representations of source code in machine learning are a central topic of research. Source code has
a known rich structure, as it can be unambiguously parsed, while valuable information is present
in identifiers, literals, and comments, which are unstructured. As a result, there has been sustained
work in exploring architectures and representations that leverage the different structural aspects of
software, ranging from treating software as a textual artifact, to tree and graph-based representations.
These representations come with distinct trade-offs.

Sequence-level models treating source code as text are simpler and easy to scale to large amounts
of data, at the expense of obscuring the information obtained from distinct structural inter-relations
in code. LSTM (Zaremba & Sutskever, 2014), CNN (Allamanis et al., 2016) and transformer (Hu-
sain et al., 2020; Kanade et al., 2020; Feng et al., 2020) based models for source code have been
explored. Meanwhile, more structured models commonly learn from less data thanks to the pro-
vided structure, but are harder to scale as they require extensive pre-processing. Such models use
a program’s abstract syntax tree (AST) in Tree-LSTMs (Wei & Li, 2017), tree-based CNNs (Mou
et al., 2014), or use linearized forms fed to sequence models (LeClair et al., 2019; Kim et al., 2020),
or linearized as bags of AST paths (Alon et al., 2018c;a). Graph representations have been used in
conjunctions with GNNs (Allamanis et al., 2017; Brockschmidt et al., 2018; Wei et al., 2020) and
have been recently combined with RNNs and (relational) transformers (Hellendoorn et al., 2019b).

Yet, most of these works are evaluated on a single task, yielding limited insights on the trade-
offs of various representations and models. GLUECode’s goal is to ease experimentation across
representation and modelling choices on a variety of local and global tasks. To achieve this, we
provide several pre-processed representations at the level of source code files: raw text, tokenized
code, abstract syntax trees, graph representations (as in Allamanis et al. (2017)), and bags of AST
paths as in Alon et al. (2018c;a). For global context we provide project-level call graphs. Across all
representations, source code entities (methods and classes) are identified via a Universally Unique
Identifier (UUID), and can be linked together. Appendix A provides details and examples.

Modelling decisions have significant impact on the performance of models and many different
representations are possible, especially when considering models that perform global reasoning.
GLUECode tasks are defined as a mapping from the UUID of the entity of interest to its label. Re-
searchers can build their own input representations based on how they want to solve GLUECode.
This allows researchers to combine these preprocessed representations as they see fit. GLUECode
provides an API to efficiently access these representations to define the model. We show examples
of the representations in Appendix A.

2.3 DATA

Performing pre-processing at scale is very challenging and time consuming. To extract the represen-
tations and some of the labels for the tasks, we use a variety of tools. Some of these tools perform
extensive static analyses, and for this reason they require code that is compilable. Automatically
compiling large amounts of arbitrary code is surprisingly difficult, as some systems may have con-
voluted build processes, or depend on a large number of libraries that may need to be present at
compile time. We restrict our scope to Java since it is a popular language, with a lot of mature
projects, and extensive tool support. To ease this task, our starting point is the 50K-C dataset (Mar-
tins et al., 2018), which is a set of 50,000 Java projects extracted from GitHub, that are compilable.
Of the 50,000 projects in 50K-C, many are too small to represent realistic software projects, such
as projects authored by students. This is why we restrict our scope to projects that have 50 or more
Java files. This leaves us with 6,925 projects, of which we were able to compile ∼5,300. These
projects have a combined total of 371,492 class files, and 2,361,111 method declarations. Once the
projects are compiled, we run additional tools to extract all the representations, and extract some
of the labels that the tasks need. Note that the entire process took several months, which we thus
spare other researchers—simply trying to compile ∼7,000 projects is a weeks-long endeavour. We
provide additional data processing details in Appendix A.
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Figure 1: Code snippet illustrating the five tasks in GLUECode.

2.4 THE GLUECODE TASKS

To incentivize the community to develop models that leverage the structured and unstructured nature
of code to perform global reasoning, we define several tasks that cover a spectrum in terms of
reliance on the structure of code, and the need for non-local reasoning. Thus, each of the five
GLUECode tasks is meant to test different reasoning capabilities of a model. An overview is shown
in Table 1. We describe the tasks next and provide an extended discussion on the design of each
tasks in Appendix B, including discussion of alternatives we discarded. Figure 1 shows how each
task looks like in an artificial snippet. Note that global tasks may need additional context; for
instance, a caller of countBlueElements passing a buffer that triggers a null dereference.

Task Selection Rationale. We selected five tasks: three are inspired by practical scenarios, while
two have labels generated by static analyzers. Models that succeed at the Operator Prediction task
may be used to spot potential bugs in existing code (Pradel & Sen, 2018); models that succeed at
Method Naming may be used to provide refactoring recommendations on legacy code bases; and
models that succeed at Code Completion may be integrated in an IDE’s code completion engine.
For the two tasks that have labels generated by static analyzers (NPath complexity and NullToken),
we are not interested in merely replicating these programs. Rather, our goal is to incentivize the
development of neural architectures that can demonstrate these forms of reasoning (fine-grained
reasoning about the control and data flow of programs, both locally and globally), so that future
models may incorporate these reasonings to succeed in more practical tasks.

Task format and metrics. Two tasks in GLUECode are classification tasks, while the other three
other are sequence generation tasks. We initially wanted all the tasks to use the same format, for
simplicity and uniformity. However, this proved too restrictive as it severely limited the tasks that we
could include, or led to variants of the tasks that were too easy. The sequence generation tasks use
different metrics, to more closely fit to the scenario they represent. Since all performance metrics
range between 0 and 1, we simply average them to obtain an overall score for a given model.

Unit of interest. In all GLUECode tasks, the unit of interest is a method. Thus, for each task, the
dataset is a mapping from a unique method ID to a label. As part of pre-processing, researchers
can retrieve the representation they wish, including related source code entities (e.g., callers and
callees of the current method). Note that we mask information that could lead to data leakage in
these additional source code entities (e.g., for the method naming task, we mask the method call
in the callers). To further prevent data leakage, for tasks that rely on global context, the training,
validation, and test set is split at the project level, such that samples from projects in the validation
and test set are unseen during evaluation. We also provide a development set.

Size of datasets. The size of the dataset is dictated by several factors. Overall, we are limited by the
number of projects we have analyzed, as adding more projects requires a significant pre-processing
effort. For tasks like Method Naming and Code Completion we have about a million samples per
task. While for other tasks (e.g. NullToken), the number of available examples is limited, as the
analysis is expensive to run and returns a small number of examples. For classification tasks, some
classes are less common, and we take as many samples as possible across all classes to have a
balanced dataset. While several other works propose larger datasets, which may be more desirable
for some purposes, we note that smaller datasets have two advantages: they ease the computational
burden, and incentivize the community to work towards more sample-efficient models. Moreover,
other models may use the pre-training paradigm to generate convincing results with limited samples.
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2.4.1 NPATH COMPLEXITY

NPath complexity prediction is purely structural and local: it can be solved while fully ignoring iden-
tifiers and non-local context. We used PMD to extract the NPath code complexity metric (Nejmeh,
1988), which counts the number of distinct paths control flow can take in a method. To succeed at
this task, a model needs to keep track of the control structures and how they relate to each other
(e.g. via nesting). It needs to do this while considering the entire scope of each method. The task
is formulated as a classification task, with a balanced set of 12 complexity buckets. Note that since
NPath is unevenly distributed, we use buckets that redistribute the complexity values in our dataset
evenly. The target metric is classification accuracy.

2.4.2 OPERATOR PREDICTION

The second task involves mostly local reasoning, but in contrast to NPath complexity, it leverages
both structured and unstructured information. The task consists of predicting a masked operator in
the method body, similar to DeepBug (Pradel & Sen, 2018). This involves structural reasoning as
the context is useful in determining the type of operators (e.g., Is the operator in an if condition?), as
well on the identifier names which may embed information valuable in determining the operator type
(e.g., an identifier “maxQuantity”). While we expect the task to mostly rely on local reasoning
in the method body, non-local reasoning may be helpful too (e.g., getting type information from
instance variables or method return types).

The task has 12 classes spanning the most common operators: The 5 arithmetic operators (basic op-
erations and modulo), six Boolean comparison operators, and the assignment operator. The classes
are balanced, and we use accuracy as a metric. For each method, a single operator is masked, even
if there are multiple operators present in the method.

2.4.3 METHOD NAMING IN CONTEXT

In method naming task (Allamanis et al., 2016; Alon et al., 2018c), the method name is masked and
needs to be predicted. This can be seen as a summarization task (of the method body). A model
must reason over the body, both at the level of the structure (control and data flow), and at the level
of identifiers, to succeed at this task.

While most existing formulations of the task have been restricted to using the method body,
GLUECode does not impose such a restriction; indeed we expect that adding additional context,
such as class-level information and information from the calling contexts, to lead to performance
improvements. For instance, having access to the class context may allow a model to better lever-
age naming conventions of the project. Likewise, useful information may be found on method
usages (invocations), such as the names or values given to the parameters or the return value. Thus,
GLUECode provides the facilities to incorporate such information in models and representations.
Note that to avoid data leakage, we mask the target method name in each caller’s context, across
representations. In contrast to traditional method naming, we use a character-level BLEU as an
evaluation metric. The rationale is that is independent of tokenization (Denoual & Lepage, 2005),
and reduces the weight of common, but short subwords such as “get” (see Appendix B for details).

2.4.4 CODE COMPLETION IN CONTEXT

Code completion is another task that has been used to evaluate recommendation algorithms (Robbes
& Lanza, 2010) and source code models, particularly autoregressive language models (Hellendoorn
& Devanbu, 2017; Karampatsis et al., 2020). We recast the task as masked language modelling task,
similar to Alon et al. (2020). Having a code completion task as a masked language modelling task
allows model to leverage both the preceding context and the following context, which makes the
task relevant in a scenario where a programmer would be modifying existing code. Furthermore, we
restrict the task to predict only method calls, not other types of tokens. This has two benefits: 1) it
makes the task more challenging by removing tokens that are very easy to predict such as parentheses
and semicolon, and 2) it emphasizes the tokens for which non-local reasoning is beneficial.

Since the goal is to predict a method call inside a method body, the whole project scope is relevant.
While in method naming, models summarize an entire method body in a new — possibly unseen —
name, in code completion, a model should identify which of the existing method calls fits. These
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Table 1: GLUECode: Tasks at a Glance

Task Structure Identifiers Global Scope Type Train Test Dev
NPath +++ - - Classification 9,600 1,200 1,200
Operators ++ ++ +/- Classification 9,600 1,200 1,200
Naming ++ ++ + Generation 800K 100K 100K
Completion + +++ ++ Generation 800K 100K 100K
NullToken +++ + +++ Generation 10K 1K 1K

methods could be defined in the same class, in another class or package in the system, or imported
from a dependency. This makes the method completion task much more amenable to performance
improvements when the non-local context is taken into account.

For this task, GLUECode uses exact match accuracy: models should generate the exact masked
token. Unlike method naming, a close match does is not valid (in a practical scenario, a close match
would likely result in an error). The call graph representation of the system hides any links between
the target and the called method, to avoid data leakage.

2.4.5 NULL DEREFERENCE PREDICTION

The last task is null dereference prediction. This task should benefit the most from non-local rea-
soning. To succeed at this task, models should be able to reason across the control flow and the data
flow of several methods at once. For this task, we use the Infer static analyzer (Facebook, 2015) to
find possible null dereferences. Infer performs full-program static analysis to track the possible val-
ues of variables, and emits warnings when it finds a possible execution path in which a null pointer
dereference can occur. These execution paths can span several methods, across several files, and
point to the line number and exact token in which the null dereference can occur. This kind of rea-
soning requires non-local reasoning for most of the warnings emitted by Infer (except those where
the execution path that was found does not exit the method body). We ran Infer on all the projects in
the dataset. Since Infer’s analysis is precise, it does not produce many warnings (∼20,000 in total),
unlike other static analysis tools such as FindBugs (Ayewah et al., 2008) which are more prone to
false positives.

The goal of the task is to output the token where the null dereference may occur. Similar to code
completion, we measure accuracy, considering only exact matches. We also added 20% of negative
examples, in which the model has to output a special token signifying that no null dereference
warning could be found, to incentivize models to account for this eventuality. Thus, a naive baseline
always predicting this token would have a maximum accuracy of 20%.

3 EVALUATION

We provide performance results for several simple baselines (MLPs, LSTMs and CNNs), as well
as a more advanced model: a pre-trained transformer. All these models perform local reasoning,
and treat the source code as a sequence of tokens. There are, of course, many more advanced
models that could be evaluated on GLUECode, starting with models that are limited to local reasoning
but also exploit source code’s structure, such as Tree-LSTMs, linearized ASTs, or Graph Neural
Networks. The space of possibilities grows even further if we consider models that incorporate
non-local reasoning; if not, there would not be a need for GLUECode in the first place. Thus, the
baselines we provide should be taken as a starting point, giving insights on the lower bound exhibited
by simple baselines, as well as the performance of a pre-trained transformers that are closer to the
state of the art. Significant exploration of the performance of models lies ahead, a task for which we
welcome the involvement of the community.

MLP. A simple Multilayer Perceptron with a single hidden layer, intended to represent a very simple
but non-naive baseline. The input embedding layer has a maximum size of 200 tokens. The single
dense hidden layer has 64 hidden units. The output layer is a softmax layer over the all the classes
for classification, or the entire vocabulary for the generation task.
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Table 2: GLUECode results across baselines

Model NPath Operators Naming Completion NullToken
MLP 0.326 0.357 0.169 0.288 0.344
BiLSTM 0.372 0.465 0.221 0.480 0.316
CNN 0.331 0.297 0.194 0.451 0.296
Seq2Seq/Seq2Tok 0.543 0.368 0.262 0.524 0.228
Transformer 0.747 0.782 0.389 0.534 0.239

CNN. A Convolutional Neural Network, with an embedding layer, followed by a 1D convolution
layer of size 5, and by a global average pooling layer. These are followed by a dense hidden layer
and an output layer similar to the MLP above. We use it to explore the impact of the inductive bias
of convolution on the GLUECode tasks.

BiLSTMs A Bidirectional sequential model, where the embedding layer is followed by a single
bidirectional LSTM layer, a dense layer and the output layer. It also uses a softmax layer for all
tasks (predicting tokens over all the vocabulary for sequence generation tasks).

Seq2Seq/Seq2Tok Another LSTM variant that uses a unidirectional encoder-decoder architecture
and predict tokens as sequences of camelCase-separated subtokens (Seq2Seq), or a single token for
the classification tasks (Seq2Tok). Both variants allow us to explore the impact of the sequential
inductive bias. Seq2Seq and Seq2Tok allow us to reduce the impact of OoV tokens as we use
subtokens.

Transformer. We include a stronger baseline, a Transformer, to explore the impact of the popular
NLP pre-training then fine-tune paradigm. CodeBERTa is a pre-trained, 6-layer Transformer trained
on the CodeSearchNet challenge dataset (Husain et al., 2020) by HuggingFace. We fine-tune it
separately on each task. We chose this as our stronger baseline since pretrained transformers for
code have performed very well on other tasks (Kanade et al., 2020)

3.1 RESULTS

The baseline evaluation results on the GLUECode tasks are presented in Table 2 above.

Overall, we see that the Transformer exhibits higher performance on the first four tasks (NPath
prediction, Operator prediction, Method naming), but is only having reasonably acceptable perfor-
mance on the first two tasks (Npath prediction and Operator prediction), which are the most local
ones. For the tasks which have some globalness aspect to it, the transformers have an average accu-
racy of 40% with highest score being barely above the fifty percent threshold for the method call
completion task. Even in the local tasks, where the transformers score well, there is still a margin
for improvement of more than 20%.

It is important to note here that unlike method naming, completion task has many labels (method
api calls) which belong to the Java standard library, such as println(), toString() etc. which are
commonly used, and which are easier to predict for DL models (Hellendoorn et al.,2019a). About
20% of the dataset consist of standard library method calls. This might explain why the models
perform better in comparison solely against the method naming task.

We suspect that we may have over-sampled API methods, which are easier to predict for DL models.
We are considering making the task more challenging by using stratified sampling, to force the
sample to have more locally defined methods than it has now.

4 DISCUSSION

There is ample room for improvement. Our goal was to provide tasks that are challenging for
models that employ only local reasoning. None of the models have high performance across all the
tasks; struggling on most tasks. While we expect state of the art structured models (e.g., using ASTs
or graphs) to perform better on the tasks requiring mostly local reasoning, we do not except that they
will reach acceptable performance on the tasks that require non-local reasoning.
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Incorporating non-local reasoning. Significant improvements are required to develop models that
better handle more global context. We expect that simple solutions such as growing models to
accommodate more context will hit diminishing returns as the size of the input grows considerably.
Better strategies will need to be devised.

Impact of inductive bias. On some tasks, the performance of the models vary widely. We hypoth-
esize that the inductive bias of some of the models is not a good fit for some task. For instance, the
Transformer trained with the MLM objective works very well for operator prediction (even without
fine-tuning!), but the MLP outperforms it on the NullToken task.

Multi-task models. While a longer-term goal is to define multi-task models that perform well on
all the tasks in the benchmark, the tasks proved challenging enough that we expect most short-term
development should be geared towards single-task performance first.

4.1 LIMITATIONS OF THE BENCHMARK

Additional software characteristics. With GLUECode, we focus on two principal characteristics
of software: the fact that it is structured, and that non-local reasoning is necessary. There are other
characteristics we didn’t take into account, such as the prevalence of natural language comments
(Allamanis et al., 2015b), the fact that code can be executed (Wang, 2019), or that it evolves (Hoang
et al., 2019). Other benchmarks or an extension of GLUECode would be needed to account for this.

Comparison with previous work. Some of our tasks (code completion and method naming) exist
in previous work. While comparing with the literature would be insightful, it is difficult, as our task
formulation (and our dataset) are quite different.

Shortcuts. Deep learning models can take shortcuts and exploit spurious correlations if they are
present in the data (Geirhos et al., 2020). We spent considerable time iterating on the task selection
and formulation to avoid these issues (particularly on the Nulldef task), by thoroughly investigating
when our baselines had suspiciously high performance. However we cannot guarantee we have
found all issues.

Choice of metrics. We tried to select metrics that present a fair view of performance, at the expense
sometimes of reformulating a task (e.g. for method naming). When using accuracy, we were careful
to balance the datasets.

Limited number of baselines. Our principal focus in this work is the definition of the tasks. We
have a limited number of baselines that we include as a result. We plan to evalaute more baselines
in future work, and we invite the community to contribute.

Code duplication. Code duplication is known to be extensive in software (Allamanis, 2019). A
simple approach that filters out duplicated code would not work in our case, as it would make the
projects to be incomplete for global contexts. We ensured that the methods in the test set are not
seen in the training set, but it is possible that a handful of methods are duplicated, with unknown
effects.

5 CONCLUSION AND FUTURE WORK

We introduce GLUECode, a benchmark for source code machine learning models that empha-
sizes that code is composed of interacting entities and has a fundamental structured nature. The
GLUECode tasks include both tasks that require local and global reasoning, to account for source
code’s interacting entities. Moreover, to facilitate experimentation on range of structures, includes an
exhaustive set of pre-processed source code representations (textual, ASTs, graphs) that researchers
are free to leverage when they are building their models. The data collection and preprocessing for
the task datasets and generating multiple representations for each data sample, scaled at the size of
thousands of projects, took several months, which we spare the community. We also tested several
baselines, ranging from simple neural models to pretrained transformers. The results indicate that
there is a lot of progress to be made on the GLUECode tasks. The design space of models that lever-
age global reasoning on complex, structured data is even larger than for local models. Thus, we
invite the community to download our code representations, write “glue code” to transform these
representations as they see fit, and evaluate the resulting source code models on GLUECode tasks.
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A APPENDIX: ADDITIONAL DETAILS ON THE DATASET AND
REPRESENTATIONS

A.1 THE 50K-C DATASET

The projects in 50K-C (Martins et al., 2018) where harvested from GitHub, and selected as they
included a build script which made automated compilation of the dataset available. We need
compilable projects as additional post-processing tools require Java bytecode to work. However,
many of the projects are small, so we selected the ∼7,000 projects with 50 or more classes, as a
proxy for more mature projects. While trying to compile the projects, we did notice some fail-
ures, mainly related to some unresolved libraries. Since we had still ∼5,300 projects that com-
piled successfully, we did not investigate it further. We use Andrew Rice’s feature graph extractor
(https://github.com/acr31/features-javac) to extract feature graphs similar to the
ones in Allamanis et al. (2017), but for Java instead of C#. This representation allows us to also ex-
tract the AST and token representations, by simply omitting unnecessary edges. Note that compiling
projects and extracting feature graphs both took several weeks to simply execute.

Of note, these feature graphs are at the file level, not the project level. We thus use the Java call graph
extractor (https://github.com/gousiosg/java-callgraph) of Georgios Gousios to
extract inter-procedural call graphs. We then link the entities across representations using their
UUIDs, and apply further post-processing to disambiguate some method calls between file. In the
cases where a method call can not be disambiguated (e.g., a polymorphic method call), we include
all possible edges in the call graph.

A.2 AVAILABLE REPRESENTATIONS IN GLUECODE

Here, we present the code representations readily-available with our benchmark. We choose a data
sample from our dataset, and present the same data sample in various representations. Based on ma-
chine learning model, different representations corresponding to the same data samples are readily
available making evaluation on tasks versatile across different model types. All representations are
stored in a database, where they are accessible via a sample’s UUID.

Raw Text The first text representation we have for every data sample is the raw text. Each line is
comma separated, and even the line breaks and tab spaces are preserved.

public static Key getKey(String ahex)
, {
, try
, {
, byte[] bytes = CHexString.toByteArr(ahex);
, SecretKeySpec skeySpec = new SecretKeySpec(bytes, "AES");
, return skeySpec;
, }
, catch( Exception e )
, {
, System.err.println("CAesEncrypt.getKey: " + e);
, return null;
, }
, }

Tokens The second representation is the list of method tokens which are ready to use, or further
pre-processed if a model using subword units is desired.

PUBLIC,STATIC,Key,getKey,LPAREN,String,ahex,RPAREN,LBRACE,TRY,LBRACE,byte,
LBRACKET,RBRACKET,bytes,EQ,CHexString,DOT,toByteArr,LPAREN,ahex,RPAREN,SEMI,
SecretKeySpec,skeySpec,EQ,NEW,SecretKeySpec,LPAREN,bytes,COMMA,"AES",RPAREN,
SEMI,RETURN,skeySpec,SEMI,RBRACE,CATCH,LPAREN,Exception,e,RPAREN,LBRACE,
System,DOT,err,DOT,println,LPAREN,"CAesEncrypt.getKey:",PLUS,e,RPAREN,SEMI,
RETURN,null,SEMI,RBRACE,RBRACE
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AST We also have AST representation of every data sample, where the ast labels are the list of
nodes of the data sample, and ast edges are the list of tuples with parent-child edges.

{
"ast_labels": ["METHOD", "NAME", "MODIFIERS", "FLAGS", "RETURN_TYPE",

"IDENTIFIER", "NAME", "PARAMETERS", "VARIABLE", "NAME", "TYPE",
"IDENTIFIER", "NAME", "BODY", "BLOCK", "STATEMENTS", "TRY",
"BLOCK", "STATEMENTS", "VARIABLE", "NAME", "TYPE", "ARRAY_TYPE",
"TYPE", "PRIMITIVE_TYPE", "PRIMITIVE_TYPE_KIND", "INITIALIZER",
"METHOD_INVOCATION", "METHOD_SELECT", "MEMBER_SELECT",
"EXPRESSION", "IDENTIFIER", "NAME", "IDENTIFIER", "ARGUMENTS",
"IDENTIFIER", "NAME", "VARIABLE", "NAME", "TYPE", "IDENTIFIER",
"NAME", "INITIALIZER", "NEW_CLASS", "ARGUMENTS", "IDENTIFIER",
"NAME", "STRING_LITERAL", "IDENTIFIER", "NAME", "RETURN",
"EXPRESSION", "IDENTIFIER", "NAME", "CATCHES", "CATCH", "BLOCK",
"STATEMENTS", "EXPRESSION_STATEMENT", "EXPRESSION",
"METHOD_INVOCATION", "METHOD_SELECT", "MEMBER_SELECT",
"EXPRESSION", "MEMBER_SELECT", "EXPRESSION", "IDENTIFIER",
"NAME", "IDENTIFIER", "IDENTIFIER", "ARGUMENTS", "PLUS",
"LEFT_OPERAND", "STRING_LITERAL", "RIGHT_OPERAND", "IDENTIFIER",
"NAME", "RETURN", "EXPRESSION", "NULL_LITERAL", "VALUE",
"PARAMETER", "VARIABLE", "NAME", "TYPE", "IDENTIFIER", "NAME"],

"ast_edges": [
[0, 1],
[0, 4],
[0, 7],
[0, 13],
[0, 2],
[2, 3],
...
[54, 55],
[55, 81],
[55, 56],
[56, 57],
...
[79, 80],
[81, 82],
[82, 83],
[82, 84],
[84, 85],
[85, 86]

]
}

Code2Vec We have Code2Vec representations for every data sample. Each method is represented
as a set of up to 200 AST paths; in case the method has more than 200 possible paths, the 200 paths
are selected at random. Each path is a combination of AST node labels, represented as a unique
symbol.

get|key key,362150388,getKey key,714300710,ahex
key,-1248995371,string getKey,-1103308019,ahex

getKey,1228363196,string
...
e,-850278433,println e,910578178,null println,-1488546123,null
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Code2Seq We also have Code2Seq representations for the entire dataset of samples. These are
similar to Code2Vec representations, but the identifiers are sequences of camelCase-separated to-
kens, while the paths are sequences of AST node labels.

get|key key,Cls0|Mth|Nm1,getKey key,Cls0|Mth|Prm|VDID0,ahex
key,Cls0|Mth|Prm|Cls1,string getKey,Nm1|Mth|Prm|VDID0,ahex
getKey,Nm1|Mth|Prm|Cls1,string
...
e,Nm1|Plus2|Cal|Nm3,println e,Nm1|Plus2|Cal|Ex|Bk|Ret|Null0,null

println,Nm3|Cal|Ex|Bk|Ret|Null0,null

Feature Graphs Finally, we have the feature graph representation for each sample of the dataset.
The node labels key lists all nodes in the feature graph, while the edges key has information about
every edge type and the corresponding connections.

{
"backbone_sequence": [13, 14, 15, 16, 17, 18, 19, 20, 21, 22],
"node_labels": ["METHOD", "NAME", "MODIFIERS", "FLAGS",

"RETURN_TYPE", "IDENTIFIER", "NAME", "BODY", "BLOCK",
"STATEMENTS", "RETURN", "EXPRESSION", "STRING_LITERAL", "PUBLIC",
"String", "METH_PLACEHOLDER", "LPAREN", "RPAREN", "LBRACE",
"RETURN", "\"Login request processing\"", "SEMI", "RBRACE"],

"edges": {
"CH": [

[0, 1],
[0, 4],
[0, 7],
[0, 2],
[2, 3],
[4, 5],
[5, 6],
[7, 8],
[8, 9],
[9, 10],
[10, 11],
[11, 12]

],
"NT": [

[13, 14],
[14, 15],
[15, 16],
[16, 17],
[17, 18],
[18, 19],
[19, 20],
[20, 21],
[21, 22]

],
"LU": [],
"LW": [],
"CF": [],
"LL": [],
"RT": [],
"FA": [],
"GB": [],
"GN": []

},
"method_name": ["get", "Servlet", "Info"]

}
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Figure 2: Illustration for global context

A.3 COMBINING REPRESENTATIONS FOR GLOBAL CONTEXT

For global context we provide project-level call graphs. Across all representations, source code
entities (methods and classes) are identified via a Universally Unique Identifier (UUID), and can be
linked together.

For every project, we provide a call graph representation of the entire project. This representation
is a graph where the nodes are method UUIDs, and the edges represent caller/callees relationships.
This representation can be used to retrieve callers and callees of the method of interest, or even the
entire project’s call graph, should researchers wish to do so.
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B APPENDIX: ADDITIONAL DETAILS ON THE GLUECODE TASKS

B.1 NPATH

We used the PMD static analyzer to compute the NPATH complexity of the methods in the
dataset. PMD implements a variety of static analysis checks. The detailed description of the
NPATH complexity metric, as implemented in PMD, is available at https://pmd.github.io/
latest/pmd_java_metrics_index.html#npath-complexity-npath. Of note,
NPATH grows exponentially, as consecutive statements have their complexity multiplied. This can
lead to very high NPATH values. The distribution of the metric is highly skewed, with many more
methods that have low complexity values than ones with higher ones. In addition, there are peaks
in the distribution as values that are powers of two are more numerous than others. As a result, we
defined variable size bins to have an appropriately balanced dataset. Our bins are 1,2,3,4,5-6,7-8,9-
10,11-15,16-20,21-30,31-50,51-100

Alternatives we considered. We considered several other tasks that incentivize structure at the
local level, such as tasks that would involve replicating local static analyzes. We considered having
four tasks representing each canonical local static analyses: Live variables (“backwards may”);
Reaching definitions (“forwards may”); available expressions (“forwards must”); and very busy
expressions (“backwards must”). However, we felt this would have weighted too heavily on local
tasks, hence we decided for a single task. We had considered other common complexity metrics
such as Halstead’s complexity metrics and McCabe’s cyclomatic complexity, and we prototyped a
version of this task using McCabe’s complexity. Ultimately, we decided against it, as it did not
require models to reason on how control flow statements relate to each other; it was limited to
counting operators.

B.2 OPERATOR PREDICTION

Since not all operators are equally rare, we made choices among the most common operators, in
order to have a balanced dataset in the end. We also had to select operators that could be plausi-
bly mistaken from one another, leading us to discard additional operators. We ended up choosing
the following operators: ‘‘+’’, ‘‘-’’, ‘‘*’’, ‘‘/’’, ‘‘%’’, ‘‘=’’, ‘‘==’’, ‘‘!=’’,
‘‘<’’, ‘‘>’’, ‘‘<=’’, and ‘‘>=’’. Thus, we have two larger classes of arithmetic operators
on the one hand, and boolean operators on the other. We find that models do pick up on this, and
tend to missclassify arithmetic operators with other arithmetic operators, and boolean operators with
other boolean operators.

Alternatives we considered. We considered other tasks that, similarly to operator prediction, were
mostly local but were more “holistic” in their reasoning. An early candidate was the “VarMisuse”
task of (Allamanis et al., 2017), where models have to detect whether a variable is replaced by
another, type-compatible variable. However, this requires extensive static analysis, that is so far
only implemented for C#, not Java. We also considered other “Misuse” variants, such as an “Op-
eratorMisuse” variant of operator prediction. We decided against this as we were concerned that
substituting an operator with another may turn out to be too easy of a task, and that models may take
shortcuts in their reasoning. An interesting other task would be predicting the output of programs,
as in (Zaremba & Sutskever, 2014); this would however diverge from our goal, as the task involves
generated code snippets.

B.3 METHOD NAMING

We initially considered all the methods in the corpus, after accounting for code duplication. We did
find that a significant number of methods had very short names, which inflated performance on the
task. Thus, we filtered out most method names that were shorter than 4 characters; we left a small
portion of them (around 23,000) in order to arrive at a round number of one million method names.
We use the character-level BLEU metric described in Denoual & Lepage (2005), with smoothing
“Smoothing1” from (Chen & Cherry, 2014). We replace the method name with a special mask token,
also replacing it in the method body (in case the method is recursive or forwards it to a similar, or
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uses super, and also replacing it in the callers of the method, for models that want to use those in
their global reasoning.

Alternatives we considered. We considered other tasks that involve reasoning over the whole
method body, such as a summarization variant in which the task is to predict a method comment
(such as in (LeClair et al., 2019). This task had the advantage of also requiring models to generate
natural language, but we felt this complexified the architecture on the decoding side, and would
dillute the focus of the benchmark. We also considered clone detection tasks (Mou et al., 2016; Wei
& Li, 2017), but these would require the models to reason over a pair of entities, which would also
complexify the models for a single task (a more drastic change, as it is on the encoder side).

We also had extensive discussions on the metric to use. The state of the art evaluates method naming
by tokenizing the prediction and the target according to camelCase convention. This has two disad-
vantages: 1) it adds a bias towards models that tokenize identifiers in the same way (while recent
models tend to use variants of byte-pair encoding (Sennrich et al., 2015), that may not respect the
camelCase convention), and 2) it weights common subwords such as “get”, “set”, or “is” too
heavily, distorting performance. We instead use a character-level BLEU metric that is independent
of the tokenization (Denoual & Lepage, 2005), and reduces the weight of these common, but very
short subwords. This allows researchers to experiment with the tokenization that they prefer, and
makes the task more challenging while still rewarding close, but not exact matches (e.g., similar
words but with different endings). We also considered other character-level metrics, such as the
Jaro-Winkler string distance (Winkler, 1990). However, we found that it had a “high floor”, giving
relatively high scores to very distant guesses, and emphasizing similarities in the prefix, which in-
creased the weight of the easy subwords; both issues made it harder to accurately measure progress
on the task.

B.4 METHOD COMPLETION

In each method in the dataset (the same one as method naming), we mask a single method call in the
method body, at random. The task is to predict this token, with only exact matches allowed: a code
completion engine that would recommend “near misses” would not be very useful. The method call
could be to a method in the same class, to a method in a different class in the same java package,
to a method anywhere in the system, or to a method imported from a library. Each of these cases
involves different kinds sizes of context and different kinds of reasoning. Models leveraging only
local reasoning will have to generate identifiers from scratch, increasing the probability of these
“near misses”. Models that use global reasoning could, on the other hand, learn to copy an identifier
in the extended context. Existing work show that deep learning with local reasoning can be more
successful in predicting API method calls (more likely to be seen in training) than method calls
found in the project (Hellendoorn et al., 2019a). Beyond masking the method call token, we also
mask call edges to the method that might be present in other representations.

Alternatives we considered. While looking for tasks that involve local masking of the method
body, but would require models to take into account global context, a very close second alternative
we considered was type prediction, for which a few more global models already exist (Wei et al.,
2020; Allamanis et al., 2020). We ultimately preferred method call completion as the set of potential
candidates (methods) is larger and finer grained than in type prediction (classes). We also discussed
variants of method call completion, namely whether to ask models to hide and complete the argu-
ments to the method call, as is done in (Alon et al., 2020). However, completing the arguments to the
method call would have increased the weight of the local context, as most arguments are variables
defined in the context. This would have made the task less aligned with the benchmark’s goal.

B.5 NULLTOKEN

For each warning, Infer produces a report that contains: an error message, the line number where
the null dereference happens, and a trace of abstract interpretation steps that Infer took to find the
potential null dereference. This trace ranges from simple, local cases (e.g., taking a particular if
branch while a variable is not yet initialized), to highly complex cases covering dozens of steps
across multiple methods, scattered over several files. Over all the projects, infer took several weeks
to execute, and produces on the order of 20,000 warnings, showing that these warnings are pretty
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rare. We did filter some of the warnings: some methods had more than one warning, which would
make the task ambiguous for the models, so we discarded all warnings in this case.

Alternatives we considered. Infer (Facebook, 2015) has several precise, interprocedural analyses
that are strong candidates for tasks that require precise modelling and reasoning over multiple enti-
ties. Examples include reachability analysis (finding whether method A can call method B, directly
or indirectly), or an analysis that estimates the runtime cost of a method (including the cost of meth-
ods that it calls). All of these tasks have the drawback that we are asking the model to emulate the
reasoning of an existing tool. One of the deciding factors was that Null dereference detection, while
being a task that requires us to emulate the reasoning of a tool, is closer to a practical scenario, as
it provides warnings for real bugs. Another alternative in that area would be to use a Taint analysis
tool, such as (Arzt et al., 2014); however, we would expect that taint analysis warnings would be
even rarer than possible null dereferences.

We initially tried a simpler version of the task, which was a straightforward binary classification at
the method level (whether there a null dereference warning in this method), with a balanced sample
of positive and negative methods. However, selecting negative examples proved to be difficult, as
even simple models found spurious correlations that led to inflated performance in this simplified
version of the task. We thus settled for a generation version of the task, where the goal is to output the
token in which the null dereference can occur. We also discussed the amount of negative examples
to include, finding that 20% was a reasonable tradeoff, that required models to envision that having
no null dereference was a possiblity, while not inflating disproportionately the performance of trivial
baselines that always predict this label.

We also considered more complex version of the task, such as requiring models to predict steps
in Infer’s execution traces, but we thought they might prove too difficult at this time. We also
considered a variant where the model would need to predict the line number (starting from the
beginning of the method) instead of the actual token, but didn’t choose this since task would then
become sensitive to code formatting choices.
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C APPENDIX: DETAILS ON THE BASELINES

Vocabulary MLP, CNN and BiLSTM all use a full-token vocabulary of 10,000 elements, initialized
on the training set of each task. Tokens that are not in the top 10,000 are replaced by OOV tokens.
Seq2Seq splits token via the camelCase coding convention to reduce vocabulary size, while the
pretrained Transformer uses it’s original open vocabulary (using Byte-Pair encoding).

MLP: A model with an embedding layer of vocabulary size 10,000, embedding dimension 64, and
input maximum length 200, as its first layer. This converts our words or tokens into meaningful
embedding vectors. This is fed into a single, dense hidden layer of size 64. We use ReLU as our
activation function. The output layer has a softmax activation. We compile the model with the
Adam (Kingma & Ba, 2014) optimizer, and use sparse categorical cross-entropy as our loss since
we are going to use the same model for classification and generation (this models treat generation
as classification over the entire vocabulary).

BiLSTM: A model with an embedding layer of vocabulary size 10,000, embedding dimension
64, and input maximum length 200, as its first layer. This converts our words or tokens into
meaningful embedding vectors. Then we add our Bidirectional LSTM layer. The standalone LSTM
layer is initialized with the value of the embedding dimension. The LSTM layer is then wrapped
with a Bidirectional layer wrapper. We then add a densely-connected neural network layer on
top of that with the number of units equal to the embedding dimension, and use ReLU as our
activation function. And yet another layer, with softmax activation, which is our output layer.
We compile the model with the Adam (Kingma & Ba, 2014) optimizer, and use sparse categor-
ical cross-entropy as our loss since we are going to use the same model for multi-class classification.

Seq2Seq/Seq2Tok: Same as BiLSTM, but is unidirectional with an encoder/decoder architecture
and uses camelCase-separated tokens, reducing OOV.

CNN: For our base CNN model, use an embedding layer of vocabulary size 10,000, embedding
dimension 64, and input maximum length 200, as our first layer. We then add a 1D convolution
layer, specifying the dimensionality of the output space 128, the size of 1D convolution window 5,
and the activation function which we set to ReLU. We then add a 1D global average pooling layer
to reduce the data dimensionality, so as to make our model faster. The last two layers on top of
the pooling layer are identical to our LSTM model, we add a densely-connected neural network
layer with the number of units equal to the embedding dimension, and use ReLU as our activation
function. We then add another dense layer as our output layer, with a softmax activation.

We also choose sparse categorical cross-entropy as our loss function as we use the same model for
all the tasks. We compile the CNN model with the Adam Kingma & Ba (2014) optimizer.

Transformer: We use CodeBERTa-small1, a pre-trained, 6-layer transformer based on the
RoBERTa (Liu et al., 2019) architecture. The model was pre-trained on 2 million functions writ-
ten in six different languages (including Java) from the CodeSearchNet dataset(Husain et al., 2020)
and released by Huggingface (Wolf et al., 2020).

1https://huggingface.co/huggingface/CodeBERTa-small-v1
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D APPENDIX: RELATED WORK

D.1 BENCHMARKS

Many communities create benchmarks to advance the state-of-the-art of their field. Arguably, the
ImageNet challenge (Russakovsky et al., 2014) is one of the most well-known benchmarks in the
machine learning and computer vision community. In software engineering, Sim et al. (2003) urged
to adopt benchmarking as an evaluation measure, based on the impact it has on community building.
While in the performance community, benchmarks such as the one from Blackburn et al. (2006) have
been used. Below we provide a brief overview of some NLP benchmarks, as an extended related
work, which focus beyond a single task.

bAbI Tasks Weston et al. (2015) present several NLP tasks in simple question-answering format
intended to test dialogue agents on natural language understanding. bAbI aimed to provide
a yardstick for researchers to assess their NLP models for intelligent dialogue agents. The
tasks in bAbI are artificial, but measure specific aspects of reading comprehension, such
as reasoning by chaining facts, simple induction, deduction, etc., and have well-defined
degrees of difficulty.

GLUE Benchmark To progress towards the generalizability of NLP models, Wang et al. (2018)
present the GLUE benchmark to evaluate and analyze the performance of NLP models
across a diverse range of existing tasks. They further evaluate baselines for multi-task and
transfer learning, comparing them to training a separate model per task.

SuperGLUE Benchmark With the performance of NLP models on the GLUE benchmark surpass-
ing the level of non-expert humans, Wang et al. (2019) reinforce their GLUE benchmark
by presenting the SuperGLUE benchmark with harder tasks and more diverse task formats.

DecaNLP Benchmark Going beyond the paradigm of task-specific NLP models, McCann et al.
(2018) present a set of ten tasks, to evaluate general NLP models. They cast all tasks in a
Question-Answering format over a given context, and present their own Multitask Question
Answering Network (MQAN) that jointly learns on all tasks.

D.2 CODE PROBLEM TASKS

Here we detail some related problem tasks in the source code domain, for machine learning source
code models. Several studies have worked on source code-related tasks (Allamanis et al., 2018),
some of which we discuss here. These tasks are examples of problem tasks we could address to a
great degree with the aid of modern deep learning methods.

MethodNaming A machine learning model of source code aims to predict the name of a certain
method, given its code body. This problem task was explored by multiple studies (Allama-
nis et al., 2015a; 2016; Alon et al., 2018a; Fernandes et al., 2018).

VarMisuse This goal of this task is to detect and fix incorrect variable uses within a program. Given
the source code, a machine learning model should determine if a certain variable has been
misused at a given location. For example, a developer, might use i instead of j in an index.
Allamanis et al. (2017); Hellendoorn et al. (2019b) addressed this task and showed that a
graph neural network learns to reason about the correct variable that should be used at a
given program location; they could also identify a number of bugs in mature open-source
projects.

Defect Prediction Finding a broader set of defects in source code is another task with the potential
to be extremely useful. Pradel & Sen (2017) address the problem of defect prediction by
training a deep-learning based model that can distinguish correct from incorrect code. They
present a general framework for extracting positive training examples from a code corpus,
make simple code transformations to convert them into negative training samples, and then
train a model to indicate one or the other.

Clone Detection This tasks deals with the identification of code clones. With available pairs of
code fragments, a source code model should be able to indicate whether the sample pairs
are clones. White et al. (2016) utilize a deep learning approach for the classic task of code
clone detection, both at the file and the method level with promising results.
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D.3 SOURCE CODE REPRESENTATIONS

Representing source code for the consumption in machine learning models is an active research
area. In the recent past, programs were generally represented as a bag of tokens to be fed into ma-
chine learning models, but multiple studies (Allamanis et al., 2017; Alon et al., 2018a;b; Maddison
& Tarlow, 2014) have now shown that leveraging the structured nature of source code helps ma-
chine learning models to reason better over code; and the models trained on such representations
perform consistently well over sequential or less-structured program representations. Therefore, in
our discussion here we include program representations which make use of some form of program
structure, whether by extracting information from abstract syntax tress, control-flow or data-flow
graphs, or similar structures.

AST The abstract syntax tree (AST) is one of the most commonly used structured representation
for code. There are multiple ways to exploit this structure. Some studies directly model the
AST as a sequence of applications of a context-free grammar (Bielik et al., 2016; Maddison
& Tarlow, 2014), and augment the grammar with long-range information (Yin & Neubig,
2017; Brockschmidt et al., 2018). Various other approaches have considered “summariz-
ing” the tree-like structures recursively, inspired from work in NLP. For example, Büch &
Andrzejak (2019) use the AST node type and node content to create node representations
of a function. Mou et al. (2016) use a convolutional architecture on ASTs.
More recently, Alon et al. (2018b;a) linearize an AST into a bag of AST paths. By sampling
paths from one leaf node to another, they generate a set of these paths. Finally, they use
representations of the paths for the task of MethodNaming as code summarization, and
code captioning.

Path-based Embedding of CFGs DeFreez et al. (2018) utilize inter-procedural control flow graphs
(CFG) to generate function embeddings for code. They consider paths from random walks
on the inter-procedural control flow graph of a program to generate the embeddings. They
then use the embeddings, for C code, to detect function clones.

Feature Graphs Allamanis et al. (2017); Fernandes et al. (2018); Raychev et al. (2015) combine
information from multiple sources, such as token sequences, ASTs, control-flow, data-flow
graphs etc. of a program to generate feature graphs, which consider long-range dependen-
cies and the structural nature of source code, to reason over source code. To learn from
these graphs, these works use methods such as conditional random fields (CRF) and graph
neural networks (GNN).
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