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ABSTRACT

We show theoretically and empirically that the linear Transformer, when applied
to graph data, can implement algorithms that solve canonical problems such as
electric flow and eigenvector decomposition. The Transformer has access to in-
formation on the input graph only via the graph’s incidence matrix. We present
explicit weight configurations for implementing each algorithm, and we bound
the constructed Transformers’ errors by the errors of the underlying algorithms.
We verify our theoretical findings experimentally on synthetic data. Additionally,
on a real-world molecular regression task, we observe that the linear Transformer
is capable of learning a better positional encoding than the default one based on
Laplacian eigenvectors. Our work is an initial step towards elucidating the inner-
workings of the Transformer for graph data.

1 INTRODUCTION

The Transformer architecture (Vaswani et al., 2017) has seen a lot of success in the design of graph
neural networks (GNNs) (Dwivedi & Bresson, 2020; Ying et al., 2021; Kim et al., 2022; Müller
et al., 2023), and have demonstrated impressive performance in many applications ranging from
prediction of chemical properties to analyzing social networks (Yun et al., 2019; Dwivedi et al.,
2023; Rong et al., 2020). In contrast to their empirical success, the underlying reasons for why
Transformers adapt well to graph problems are less well understood. Several works have proved the
expressivity of attention-based architectures (Kreuzer et al., 2021; Kim et al., 2021; 2022; Ma et al.,
2023), but such analysis often rely on the ability neural networks to approximate arbitrary functions,
and may require a prohibitiveley large number of parameters.

This paper is motivated by the need to understand, at a mechanistic level, how the Transformer
processes graph-structured data. Specifically, we study the ability of a linear Transformer to solve
certain classes of graph problems. The linear Transformer is similar to the standard Transformer,
but softmax-based activation is replaced with linear attention, and MLP layers are replaced by linear
layers. Notably, the linear Transformer contains no a priori knowledge of the graph structure; all
information about the graph is provided via an incidence matrix B. For unweighted graphs, the
columns of B are just {−1, 0, 1}-valued indicator vectors that encode whether an edge touches a
vertex; no other explicit positional or structural encodings are provided.

Even in this minimal setup, we are able to design simple configurations of the weight matrices
that enable the Transformer to solve fundamental problems such as electric flow and Laplacian
eigenvector decomposition; furthermore, we provide explicit error bounds that scale well with the
number of Transformer layers. Several of our constructions rely crucially on the structure of the
linear attention module, and may help shed light on the success of attention-based GNNs. We
hope that our analysis paves the way to better understanding of the learning landscape of graph
Transformers, such as concrete bounds on their generalization and optimization errors.

Besides enhancing our understanding, our results are also useful for the practical design of graph
Transformers. In Sections 3 and 4, we show that essentially the same linear Transformer architecture
is capable of learning a number of popular positional encodings (PE). In Section 6, we provide
experimental evidence that the linear Transformer can learn better PEs than hard-coded PEs.

1.1 SUMMARY OF CONTRIBUTIONS

Below, we summarize the main contributions of our paper.
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Lemma Task Transformer Implements: # layers for ε error
1 Electric Flow (L†) Gradient Descent log(1/ε)
4 Electric Flow (L†) Multiplicative Expansion log log(1/ε)

2 Resistive Embedding (
√
L†) Power Series log(1/ε)

3 Heat Kernel (e−sL) Power Series log(1/ε) + sλmax

5 Heat Kernel (e−sL) Multiplicative Expansion log(1/ε) + log(sλmax)
6 & 7 k-Eigenvector Decomp. of L Subspace Iteration (subspace-iteration steps)/k

Table 1: Summary of Error Bounds proved for various Transformer constructions. L is the graph
Laplacian; L† denotes its pseudoinverse.

1. We provide explicit weight configurations for which the Transformer implements efficient algo-
rithms for several fundamental graph problems. These problems serve as important primitives
in various graph learning algorithms, and have also been useful as PEs in state-of-the-art GNNs.

(a) Lemma 1 constructs a Transformer that solves electric flows by implementing steps of gradi-
ent descent to minimize flow energy; consequently, it can also invert the graph Laplacian.

(b) Lemmas 2 and 3 construct Transformers that compute low-dimensional resistive embeddings
and heat kernels. Both constructions are based on implementing suitable power series.

(c) By implementing a multiplicative polynomial expansion, Lemma 4 provides a construction
for electric flow with exponentially higher accuracy than Lemma 1. Similarly, Lemma 5 pro-
vides a construction that computes the heat kernel in much fewer layers than Lemma 3.

(d) In Lemma 6, we show that the Transformer can implement subspace iteration for finding
the top-k (or bottom-k) eigenvectors of the graph Laplacian. Central to this analysis is the
ability of self-attention to compute a QR decomposition of the feature vectors.

We derive explicit error bounds for the Transformer based on the convergence rates of the
underlying algorithm implemented by the Transformer. We summarize these results in Table 1.

2. In Section 5, we provide a constrained version of the linear Transformer with much fewer param-
eters. Although the constrained Transformer is less expressive by definition, we show that it can
nonetheless implement all the above-mentioned constructions. Further, we show in Lemma 9 that
the parameter-efficient linear Transformer has desirable invariance and equivariance properties.

3. We test the empirical performance of our theory on synthetic random graphs. In Section 3.5, we
verify that Transformers with a few layers can achieve high accuracy in computing electric flows,
resistive embeddings, as well as heat kernels. In Section 4.1, we verify that the Transformer can
accurately compute top-k and bottom-k eigenevectors of the graph Laplacian.

4. In Section 6, we demonstrate the advantage of using the linear Transformer as a replacement
for Laplacian eigenvector positional encoding, in a real-world molecular regression task on the
QM9 and ZINC datasets (Ruddigkeit et al., 2012; Ramakrishnan et al., 2014; Irwin et al., 2012).
After replacing the Laplacian eigenvector-based PE with the linear Transformer, and training on
the regression loss, we verify that the linear Transformer automatically learns a good PE for the
downstream regression task that can outperform the original PE by a wide margin.

1.2 RELATED WORK
Numerous authors have proposed different ways of adapting Transformers to graphs (Dwivedi &
Bresson, 2020; Ying et al., 2021; Rampášek et al., 2022; Müller et al., 2023). A particularly promis-
ing approach is to use a suitable positional encoding to incorporate structural information in the
input, examples include Laplacian eigenvectors (Dwivedi & Bresson, 2020; Kreuzer et al., 2021),
heat kernel (Choromanski et al., 2022), resistance distance and commute time (Ma et al., 2023; Vel-
ingker et al., 2024; Zhang et al., 2023) and shortest path distance (Ying et al., 2021). Lim et al.
(2022) designed a neural network to transform eigenvectors into an encoding that has certain invari-
ance properties. Black et al. (2024) compared the expressivity of different PE schemes. (Srinivasan
& Ribeiro, 2020) studied the relationship between PE and structural graph representations.

Kim et al. (2021) explore the possibility of using pure Transformers for graph learning. They provide
both nodes and edges as input tokens, with a simple encoding scheme. They also prove that such a
Transformer is as expressive as a second-order invariant graph network.
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A number of works have explored the use of learned PEs (Mialon et al., 2021; Eliasof et al., 2023;
Park et al., 2022; Ma et al., 2023; Kreuzer et al., 2021; Dwivedi et al., 2021). In particular Ma
et al. (2023) is based on relative random walk probabilities (RRWP), and Kreuzer et al. (2021)’s
approach is based on learned eigenfunctions. In comparison, using a linear-Transformer to learn
PEs has two advantages: 1. self attention can implement operations such as orthogonalization,
necessary for learning multiple eigenvectors (Lemma 6). Second, self-attention enables highly-
efficient algorithms based on multiplicative polynomial expansions (Lemma 4). These enable linear
Transformers to learn good PEs given only the incidence matrix as input.

Finally, we note several relevant papers that are unrelated to graph neural networks. A recent body of
work proves the ability of Transformers to implement learning algorithms, to explain the in-context
learning phenomenon (Schlag et al., 2021; Von Oswald et al., 2023). Surprisingly, our construction
for Lemma 1 bears several remarkable parallels to the gradient descent construction by Von Oswald
et al. (2023). We conjecture that the proof of Lemma 4 may be applicable for understanding the
GD++ algorithm in the same paper. In another direction, Charton (2021) show experimentally that
Transformers can compute linear algebra operations such as eigenvector decomposition. Their work
requires a relatively complicated matrix encoding and a large number of parameters.

2 PRELIMINARIES AND NOTATION

2.1 GRAPHS

We use G = (V, E) to denote a graph with vertex set V and edge set E ; n denotes |V| and d represents
|E|. When unambiguous, we sometimes identify the vertex vi with its index i for i = 1...n, and the
edge ej with j for j = 1...d. We will generally consider weighted graphs, where r(·) : E → R+

gives the edge weights. We will use rj := r(ej).

A central object of interest is the incidence matrix B ∈ Rn×d, defined as follows: to each edge
ej ∈ E , assign an arbitrary orientation, i.e. e = (u→ v) ∈ E . The matrix B is given by

Bij =

 −1/√rj , if exists v ∈ V such that ej = (ui → v)
+1/
√
rj , if exists v ∈ V such that ej = (v → ui)

0, otherwise.
(1)

Next, we define the graph Laplacian as L := BB⊤. We will often need to refer to the maximum
eigenvalue of L, which we denote as λmax. Note that L always has 0 as its smallest eigenvalue, with
corresponding eigenvector 1√

n
1⃗, the all-ones vector. This fact can be verified by noticing that each

column of B sums to 0. For a connected graph (as we will assume is the case throughout the paper),
the second-smallest eigenvalue is always non-zero, and we will denote it as λmin.

Finally, we will frequently refer to the matrix In×n − 1
n 1⃗⃗1

⊤ at various points in the paper; for ease
of reference, we will write În×n := In×n − 1

n 1⃗⃗1
⊤. This matrix is the projection onto span(L), and

it essentially functions as the identity matrix, as we work within span(L) most of the time.

2.2 LINEAR TRANSFORMER

We will use Z0 ∈ Rh×n to denote the input to the Transformer. Z0 encodes a graph G, and each
column of Z0 encodes a single vertex in h dimensions. Let WQ,WK ,WV ∈ Rh×h denote the key,
query and value parameter matrices. We define linear attention Attn as

AttnWV ,WQ,WK (Z) :=WV ZZ⊤WQ⊤
WKZ, (2)

unlike standard attention, (2) does not contain softmax activation. We construct an L-layer Trans-
former by stacking L layers of the attention module (with linear feed-forward). To be precise, let Zl
denote the output of the (l − 1)th layer of the Transformer. Then

Zl+1 := Zl +AttnWV
l ,W

Q
l ,W

K
l
(Zl) +WRZl, (3)

where WV
l ,W

Q
l ,W

K
l are the value, query and key weight matrices of the linear attention mod-

ule at layer l, and WR ∈ Rh×h is the weight matrix of the linear module. Henceforth, we let
WV := {WV

l }l=0...L, WQ := {WQ
l }l=0...L, WK

l := {WK
l }l=0...L, WR

l := {WR
l }l=0...L denote

collections of the parameters across all layers of an L-layer Transformer.

3
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3 TRANSFORMERS AS POWERFUL SOLVERS FOR LAPLACIAN PROBLEMS

In this section, we discuss the capacity of the linear Transformer 3 to solve certain classes of canon-
ical graph problems. We begin with the problem of Electric Flow in Section 3.2, where the con-
structed Transformer can be interpreted as implementing steps of gradient descent with respect to
the energy of the induced flow. Subsequently, in Section 3.3, we provide constructions for comput-
ing the resistive embedding, as well as the heat kernel, based on implementing a truncated power
series. Finally, in Section 3.4, we provide faster alternative constructions for solving electric flow
and computing heat kernels, based on implementing a multiplicative polynomial expansion. In each
case, we bound the error of the Transformer by the convergence rate of the underlying algorithms.

3.1 ADDITIONAL SETUP

We introduce some additional setup that is common to many lemmas in this section. We will gener-
ally consider an L-layer Transformer, as defined in (3), for some arbitrary L ∈ Z+. As in (3), we use
Zl to denote the input to layer l. The input Z0 will encode information about a graph G, along with
a number of query/demand vectors ψ1 . . . ψk ∈ Rn. We use Ψ to denote the n× k matrix whose ith

column is ψi. Unless otherwise stated, Zl ∈ R(d+2k)×n, where n is the number of nodes, d is the
number of edges, and k is the number of demands/queries. Z⊤

0 := [B, Ψ, 0n×k].

On parameter size: In a straightforward implementation, the above Transformer has feature dimen-
sion h = (d+2k). The size of WQ,WK ,WV ,WR is O(h2) = O(d2+k2), which is prohibitively
large as d can itself be O(n2). The size of parameter matrices can be significantly reduced to O(k2)
by imposing certain constraints on the parameter matrices; we present this reduction in (7) in Sec-
tion 5. For simplicity of exposition, lemmas in this section will use the naive implementation in (3).
We verify later that all the constructions presented in this section can also be realized in (7).

3.2 SOLVING ELECTRIC FLOW WITH GRADIENT DESCENT

Assume we are given a graph G = (V, E), along with a non-negative vector of resistances r ∈ Rd+.
Let R be the diagonal matrix with r on its diagonal. A flow is represented by f ∈ Rd, where
fj denotes the (directed) flow on edge ej . The energy of an electric flow is given by

∑d
j=1 rjf

2
j .

Let ψ ∈ Rn denote a vector of demands. Throughout this paper, we will assume that the demand
vectors satisfy flow conservation, i.e., ⟨ψ, 1⃗⟩ = 0. The ψ-electric flow is the unique minimizer of
the following (primal) flow-optimization problem (by convex duality, this is equivalent to a dual
potential-optimization problem):

(primal) min
f∈Rd

d∑
j=1

rjf
2
j subject to the constraint BR1/2f = ψ. (4)

(dual) − min
ϕ∈Rn

ϕ⊤Lϕ− 2ϕ⊤ψ. (5)

The argument is standard; for completeness, we provide a proof of equivalence between (4) and (5)
in (8) in Appendix 10.1. It follows that the optimizer ϕ∗ of (5) has closed-form solution ϕ∗ = L†ψ.
In Lemma 1 below, we show a simple construction that enables the Transformer in (3) to compute
in parallel, the optimal potential assignments for a set of k demands {ψi}i=1...k, where ψi ∈ Rn.

Motivation: Effective Resistance Metric
An important practical motivation for solving the electric flow (or equivalently computing L†) is
to obtain the Effective Resistance matrix R ∈ Rn×n. GNNs that use positional encodings derived
from R have demonstrated state-of-the-art performance on numerous tasks, and can be shown to
have good theoretical expressivity (Zhang et al., 2023; Velingker et al., 2024; Black et al., 2024).

Formally, R is defined as Rij := (ui − uj)⊤L†(ui − uj), where ui denotes the vector that has a 1
in the ith coordinate, and 0s everywhere else. Intuitively, Rij is the potential drop required to send
1-unit of electric flow from node i to node j. Let ℓ ∈ Rn denote the vector of diagonals of L† (i.e.
ℓi := Lii). ThenR = 1⃗ℓ⊤ + ℓ⃗1⊤ − 2L†; thus solving L† essentially also solves forR.

Lemma 1 (Transformer solves Electric Flow by implementing Gradient Descent) Consider
the setup in Section 3.1. Assume that ⟨ψi, 1⃗⟩ = 0 for each i = 1...k. For any δ > 0 and for any
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L-layer Transformer, there exists a choice of weights WV ,WQ,WK ,WR, such that each layer
of the Transformer (3) implements a step of gradient descent with respect to the dual electric flow
objective in (5), with stepsize δ. Consequently, the following holds for all i = 1...k and for any
graph Laplacian with maximum eigenvalue λmax ≤ 1/δ and minimum nontrivial eigenvalue λmin:∥∥∥[ZL]⊤d+k+i − L†ψi

∥∥∥
2
≤ e−δLλmin/2

√
λmax/λmin∥ψi∥2.

Discussion and proof sketch. In the special case when k = n and Ψ := In×n − 1
n 1⃗⃗1

⊤,
[ZL]d+1...d+k = L†. Generally, an ε-approximation requires L = O(log(1/ε)) layers. We de-
fer the proof of Lemma 1 to Appendix 10, and provide a sketch below:
Consider the dual objective (5) given by Fψ(ϕ) := 1

2ϕ
⊤Lϕ − ϕ⊤ψ. We show that a single at-

tention layer can implement exactly a single gradient descent step wrt Fψ , i.e. [Zl+1]
⊤
d+k+i :=

[Zl]
⊤
d+k+i − δ∇Fψi([Zl]

⊤
d+k+i). The log(1/ε) rate then follows immediately from the convergence

rate of gradient descent, combined with smoothness and (restricted) strong convex of Fψ . In Lemma
4 below, we show an alternate construction that reduces the rate to O(log log(1/ε)).

Explicit choice of weight matrices are given (10) in the full proof. The constructed weight matrices
are very sparse; each of them contains a single identity matrix in a sub-block. This sparse structure
makes it possible to drastically reduce the number of parameters needed, which we exploit in Section
5 to design a more memory efficient Transformer. We empirically validate Lemma 1 in Section 3.5.

3.3 TRANSFORMER CAN IMPLEMENT POWER SERIES.
In this section, we present two more constructions: one for computing

√
L† (Lemma 2), and one

for computing the heat kernel e−sL (Lemma 3). Both quantities have been successfully used for
positional encoding in various GNNs. The constructions proposed in these two lemmas are also
similar, and involve implementing the power series of the respective targets.

3.3.1 COMPUTING THE PRINCIPAL SQUARE ROOT
√
L†

Motivation : Resistive Embedding
The following fact relates the effective resistance matrixR to any “square root” of L†:

Fact 1 LetM denote any matrix that satisfiesMM⊤ = L†. Let R ∈ Rn×n+ denote the matrix of
effective resistances (see Section 3.2). ThenRij = ∥Mi −Mj∥22, whereMi is the ith row ofM.

One can verify the above by noticing that ∥Mi −Mj∥22 = M⊤
i Mi +M⊤

jMj − 2M⊤
i Mj =

[L]ii+ [L]jj − 2Lij . In some settings, it is more natural to use the rows ofM, instead ofR directly
to embed node position: By assigning an embedding vector wi := Mi to vertex i, the Euclidean
distance between wi and wj equals the resistance distance. The matrixM is under-determined, and
for any m > n, there are infinitely many choices ofM that satisfyMM⊤ = L†. Fact 1 applies to
any suchM. Velingker et al. (2024) uses the rows ofM = L†B for resistive embedding. Mi has
dimension d, which is the number of edges and can be quite large. Consequently, Velingker et al.
(2024) additionally performs a dimension-reduction step using Johnson Lidenstrauss.

Among all valid choices ofM, there is a unique choice that is symmetric and minimizes ∥M∥F ,
namely, UΛ−1/2U⊤ (where UΛU⊤ = L is the eigenvector decomposition of L). We reserve

√
L†

to denote this matrix;
√
L† is called the principal square root of L†. In practice,

√
L† might be

preferable to, say, L⊤B because it has an embedding dimension of n, as opposed to the possibly
much larger d. We present in Lemma 2 a Transformer construction for computing

√
L†.

Lemma 2 (Principal Square Root
√
L†) Consider the setup in Section 3.1. Assume that ψ1...ψk ∈

Rn satisfy ⟨ψi, 1⃗⟩ = 0. For any L-layer Transformer (3), there exists a configuration of weights
WV ,WQ,WK ,WR such that the following holds: For any graph with maximum Laplacian eigen-
value λmax and minimum non-trivial Laplacian eigenvalue λmin, and for all i = 1...k:∥∥∥[ZL]⊤d+k+i −√L†ψi

∥∥∥
2
≤ 2e−Lλmin/λmax

λmin

√
L/λmax

∥ψi∥2.

Discussion. We defer a proof of Lemma 2 to Appendix 10.2. The high-level idea is that each layer
of the Transformer implements one additional term of the power series expansion of

√
L†. Under
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the choice k = n and Ψ = In×n − 1/n1⃗⃗1⊤, [ZL]d+k+1...d+2k ≈
√
L†, an ε approximation requires

log(1/ε) layers. We consider the more general setup involving arbitrary ψ′
is as they are useful for

projecting the resistive embedding onto an even lower-dimensional space; this is relevant when ψi’s
are trainable parameters (see e.g., Appendix 14.3). We empirically validate Lemma 2 in Section 3.5.

3.3.2 COMPUTING THE HEAT KERNEL: exp (−sL)

Finally, we present a result on learning heat kernels. The heat kernel has connections to random
walks and diffusion maps Coifman & Lafon (2006). It plays a central role in semi-supervised learn-
ing on graphs (Xu et al., 2020); it is also used for positional encoding (Choromanski et al., 2022).

Lemma 3 (Heat Kernel e−sL) Consider the same setup as Lemma 2. Let s > 0 be an arbitrary
temperature parameter. There exists a configuration of weights for the L-layer Transformer (3) such
that the following holds: assume L satisfies 8sλmax ≤ L, then for all i = 1...k,∥∥∥[Z]⊤L,i − e−sLψi∥∥∥

2
≤ 2−L+8sλmax+1∥ψi∥2

Discussion. We defer the proof of Lemma 3 to Appendix 10.3. Roughly, to obtain an ε approxi-
mation error, we need L > O(log(1/ε) + sλmax). As with the preceding lemmas, the flexibility of
choosing any number of ψi’s enables the Transformer to learn a low-dimensional projection of the
heat kernel. The dependence on sλmax is fundamental, stemming from the fact that the power series
of esL has shrinking error only after O(sλmax) terms. In Lemma 5 in the next section, we weaken
this dependence to log(sλmax). We empirically validate Lemma 3 in Section 3.5.

3.4 IMPLEMENTING MULTIPLICATIVE POLYNOMIAL EXPANSIONS

We present two alternative Transformer constructions that can achieve vastly smaller error than the
ones in the preceding sections: Lemma 4 computes an ε-accurate electric flow in exponentially fewer
layers than Lemma 1. Lemma 5 approximates the heat kernel with higher accuracy than Lemma 3
when the number of layers is small. The key idea in both Lemmas 4 and 5 is to use the Transformer
to implement a multiplicative polynomial; this in turn makes key use of the self-attention module.

The setup for Lemmas 4 and 5 differs in two ways from that presented in Section 3.1. First, the
input to layer l, Zl, are now in R3n×n, instead of R(d+2k)×n. When the graph G is sparse and the
number of demands/queries k is small, the constructions in Lemma 1 and 3 may use considerably
less memory. This difference is fundamental, due to the storage required for raising matrix powers.
Second, the input is also different; in particular, information about the graph is provided via (In×n−
δL) as part of the input Z0, as opposed to via the incidence matrix B⊤ as done in Section 3.1. This
difference is not fundamental: one can obtain L = B⊤B from B in a single attention layer; in the
spirit of brevity, we omit this step. We begin with the faster construction for electric flow:

Lemma 4 Let δ > 0. Let Z⊤
0 :=

[
(In×n − δL), In×n, δ

(
In×n − 1⃗⃗1⊤/n

)]
. Let λmin denote

the smallest non-trivial eigenvalue of L. Then there exist a choice of WV ,WQ,WK ,WR for a
L-layer Transformer (3) such that∥∥[ZL]2n+1...3n − L

†∥∥
2
≤ 1

λmin
exp

(
−δ2L−1λmin

)
.

Discussion. Lemma 4 shows that the Transformer can compute an ε-approximation to L† (which is
sufficient but not necessary for solving arbitrary electric flow demands) using log log(1/ε) layers.
This is much fewer than the log(1/ε) layers required in Lemma 1. The key idea in the proof is to
implement a multiplicative polynomial expansion for L†. We defer the proof to Appendix 10.4.

We next show the alternate construction for computing the heat kernel:

Lemma 5 (Fast Heat Kernel) Let s > 0. Let L be the number of Transformer layers. Let Z⊤
0 :=[

(In×n − 3−LsL), In×n
]
. Then there exist a choice ofWV ,WQ,WK ,WR such that for any graph

whose Laplacian satisfies sλmax ≤ 3L−2,∥∥[ZL]n+1...2n − exp(−sL)
∥∥
2
≤ s2λ2max

3L−1
.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Discussion. Lemma 5 shows that the Transformer can compute an ε-approximation to e−sL using
O(log(1/ε) + log(sλmax)) layers. The ε dependence is the same as Lemma 3, but the logarithmic
dependence on sλmax is better. When the number of layers is small, Lemma 5 gives a significantly
more accurate approximation. The proof is based on the well-known approximation ea ≈ (1 +
a/L)L. We defer proof details for Lemma 5 to Appendix 10.4.

3.5 EXPERIMENTS

In Figure 1, we experimentally verify that the Transformer is capable of learning to solve the
three objectives presented in Lemmas 1, 2 and 3. The setup is as described in Section 3.1, with
the Transformer described in (3), with k = n. In order to train > 5 layers, we need the fol-
lowing additional normalization per layer: [Zl]1...n ← [Zl]1...n/∥[Zl]1...n∥F , [Zl]n+1...n+2k ←
[Zl]n+1...n+2k/∥[Zl]n+1...n+2k∥F , where ∥∥F is the Frobenius norm.

We plot the loss over two kinds of random graphs: fully-connected graphs (n = 10, d = 45)
and Circular Skip Links (CSL) graphs (n = 10, d = 20). Edge resistances are randomly sam-
pled. We provide details in Appendix 13.1. For each input graph G, we sample n demands
ψ1...ψn ∈ Rn independently from the unit sphere. Let Ψ = [ψ1...ψn]. The input to the
Transformer is

[
B⊤, Ψ⊤, 0n×n

]
, as stated in Section 3.1. The training/test loss is given by

lossU := E

[
1
n

∑n
i=1

∥∥∥∥ [Zl]
⊤
d+n+i

∥[Zl]d+n+i∥2
− Uψi

∥Uψi∥2

∥∥∥∥2
2

]
, where U ∈

{
L†,
√
L†, e−0.5L

}
. We learn the

correct solutions only up to scaling, because we need to normalize Zl per-layer. The expectation is
over randomness in L and Ψ. We plot the log of the respective losses against number of layers after
training has converged. As can be seen, in each plot, and for both types of architectures, the loss
appears to decrease exponentially with the number of layers.
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Figure 1: lossU against number of layers at convergence for U ∈
{
L†,
√
L†, e−0.5L

}
.

4 TRANSFORMERS CAN IMPLEMENT SUBSPACE ITERATION TO COMPUTE
EIGENVECTORS

We present a Transformer construction for finding the eigenvectors of the graph Laplacian L. The
eigenvector of the smallest non-trivial eigenvalue, for example, has been applied with great success
for graph segmentation (Shi & Malik, 1997) and clustering (Bühler & Hein, 2009). Additionally,
the Laplacian eigenvector is also a very popular choice of positional encoding (see Section 1.2).
Our construction is based on the subspace iteration algorithm, aka block power method—see e.g.,
(Bentbib & Kanber, 2015). The output Φ of algorithm 1 converges to the top-k eigenvectors of L.
We show in Corollary 7 that a modified construction can also find the bottom-k eigenvectors of L.

ALGORITHM 1 – Subspace Iteration

Φ0 ∈ Rn×k has full column rank .
while not converged do

Φ̂← LΦ
Φ← QR(Φ)

end while
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For the purposes of this section, we consider a variant of the Transformer defined in (3).

Ẑl+1 := Zl +AttnWV
l ,W

Q
l ,W

K
l
(Zl) +WRZl

Zl+1 = normalize(Ẑl+1), (6)

where normalize(Ẑl+1) normalizes [Z]i ← [Z]i/∥[Z]i∥2 for i = d...d+ k. We use Bl ∈ Rn×d and
Φl ∈ Rn×k to denote the corresponding columns of Z⊤

l , i.e. Z⊤
l =:

[
BTl , Φ⊤

l

]
. The notation is

chosen as Φl corresponds to Φ in Algorithm 1. We initialize B0 = B and let Φ0 be some arbitrary
matrix with full column rank.
Lemma 6 (Subspace Iteration for Finding Top k Eigenvectors) Consider the Transformer de-
fined in (6). There exists a choice of WV ,WQ,WK ,WR such that k + 1 layers of the Transformer
implements one iteration of Algorithm 1. Consequently, the output ΦL of a L-layer Transformer
approximates the top-k eigenvectors of L to the same accuracy as L/(k + 1) steps of Algorithm 1.
Discussion. We bound the Transformer’s error by the error of Algorithm 1, but do not provide
an explicit convergence rate. This omission is because the convergence rate of Algorithm 1 itself is
difficult to characterize, and has a complicated dependence on pairwise spectral gaps; with additional
dependence on how "well-conditioned" Φ0 is. The high-level proof idea is to use self-attention to
orthogonalize the columns of Φl (Lemma 10. We defer the proof of Lemma 6 to Appendix 12. We
experimentally validate Lemma 6 in Section 4.1.

The construction in Lemma 6 explicitly requires k + 1 layers to perform a QR decomposition of
Φ plus multiply by L. The layer usage can be much more efficient in practice. First, multiple
L-multiplications can take place before a single QR-factorization step. Second, the k layers for
performing QR decomposition can be implemented in a single layer with k parallel heads.

In graph applications, one is often interested in the bottom-k eigenvectors of L. The following corol-
lary shows that a minor modification of Lemma 6 will instead compute the bottom k eigenvectors.

Corollary 7 (Subspace Iteration for Finding Bottom k Eigenvectors) Consider the same setup
as Lemma 6. Let C > 0 be some constant. There exists a construction for a L-layer Transformer
(similar to Lemma 6), which implements Algorithm 1 with L replaced by CI − L, and ΦL approxi-
mates the bottom k eigenvectors of L if λmax(L) ≤ C.

Alternatively, one can first compute L† (via Lemma 4), and then perform subspace iteration for L†.

4.1 EXPERIMENTS FOR LEMMA 6

We verify Lemma 6 and Corollary 7 experimentally by evaluating the ability of the Transformer
(3) to learn top-k and bottom-k eigenvectors. As in Section 3.5, we consider two kinds of random
graphs: fully connected and CSL with 10 nodes; each edge is has a randomly sampled resistance;
see Appendix 13.1 for details. For a graph G with Laplacian L, let λ1 ≤ λ2 ≤ ...λ10 denote its
eigenvalues. Let v1, . . . , v10 denote its eigenvectors; e.g. λ1 = 0 and v1 = 1⃗/

√
n.

The Transformer architecture is as defined in Section 6, with k = n. We increase the dimension of
Zl to (d + n + n) × n, and read out the last n rows of ZL as output; this makes the architecture
consistent with the one used in the experiments in Section 3.5; the construction in Lemmas 6 and
Corollary 7 extend to this setting by setting appropriate parameters to 0. In addition, we also nor-
malize [Zl]1...d each layer by its Frobenius norm, i.e., [Zl]1...d ← [Zl]1...d/∥[Zl]1...d∥F (the proof
of Lemma 6 still holds as subspace iteration is scaling-invariant). The input to the Transformer is
Z⊤
0 = [B, Φ0], and we make Φ0 a trainable parameter along withWV ,WQ,WK ,WR. We define

lossi := E
[
min

{
∥ϕL,i − vi∥22, ∥ϕL,i + vi∥22

}]
, where ϕL,i is the ith column of ΦL and expectation

is taken with respect to randomness in sampling the graph. We train and evaluate the Transformer
on two kinds of losses: loss1−5 := 1

5

∑5
i=1 lossi and loss1−10 := 1

10

∑10
i=1 lossi. We plot the results

in Figure 2, and summarize our few findings below:

1. 2(a) and 2(d): Both loss1−5 and loss1−10 appear to decrease exponentially with number of Trans-
former layers, for both FC and CSL graphs. This is consistent with Lemma 6 and Corollary 7.

2. When the Transformer is trained on loss1−5, smaller eigenvectors are learned more accurately
(see 2(b) and 2(c)). In contrast, when the Transformer is trained on loss1−10, larger eigenvectors
are learned more accurately, with the exception of loss2 (see 2(e) and 2(f)).
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These suggest that the Transformer first finds dominant eigenvectors, then less-dominant ones via
orthogonalization: For loss1−5, λ2 is the most dominant both for CI −L, and for L† (see Corollary
7). For loss1−10, λ10 is the most dominant for L. We omit loss1 from Figures 2(b), 2(c), 2(e), 2(f)
because v1 is a constant so loss1 goes to 0 extremely fast, making it hard to see the other lines.
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Figure 2: log(loss∗) vs. number of layers. Top row: various losses for the Transformer trained on
loss1−5. Bottom row: various losses for the Transformer trained on loss1−10.

5 PARAMETER-EFFICIENT IMPLEMENTATION

As explained in Section 3.1, the sizes of the WQ,WK ,WV ,WR matrices can scale with O(n4) in
the worst case, where n is the number of nodes. This makes the memory requirement prohibitive.
To alleviate this, we present below in (7) a more efficient Transformer implementation than the one
defined in (3). The representation in (7) is strictly more constrained than (3), but it is still expressive
enough to implement all the previous constructions. For each layer l, let αVl , αQl , αKl , αRl be scalar
weight parameters, and let WV,Φ

l , WQ,Φ
l , WK,Φ

l , WR,Φ
l ∈ R2k×2k. Let Bl,Φl evolve as

B⊤
l+1 = (1 + αRl )B

⊤
l + αVl B

⊤
l

(
αQl α

K
l BlB

⊤
l +ΦlW

Q,Φ
l

⊤
WK,Φ
l Φ⊤

l

)
(7)

Φ⊤
l+1 =

(
I +WR,Φ

l

)
Φ⊤
l +WV,Φ

l Φ⊤
l

(
αQl α

K
l BlB

⊤
l +ΦlW

Q,Φ
l

⊤
WK,Φ
l Φ⊤

l

)
,

with initialization B0 := B, and Φ0 = [Ψ, 0k×n]. We verify that (7) matches (3), with Zl =[
B⊤
l ,Φ

⊤
l

]
; the difference is that certain blocks of WV

l , WQ
l , WK

l , WR
l constrained to be zero or

some scaling of identity. Nonetheless, we verify that the constructions in Lemmas 1, 2, 3 and 6 can
all be realized within the constrained dynamics (7). We prove this in Lemma 8 in Appendix 11.
In Figure 15, we show that the efficient implementation (7) performs similarly (and in many cases
better than) the standard implementation (3) on all the synthetic experiments.

Besides the reduced parameter size, we highlight two additional advantages of (7):

1. Let TFBl (B,Φ) (resp TFΦ
l (B,Φ)) be defined as the value of B⊤

l (resp Φ⊤
l ) when initialized at

B0 = B and Φ0 = Φ under the dynamics (7). Let U ∈ Rd×d be some permutation matrix over
edge indices. Then

(a) TFBl is equivariant to edge permutation, i.e. TFBl (BU,Φ) = U⊤TFBl (B,Φ)

(b) TFΦ
l is invariant to edge permutation, i.e. TFΦ

l (BU,Φ) = TFΦ
l (B,Φ).

We provide a short proof of this in Lemma 9 in Appendix 11.
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2. If Bl is sparse, then B⊤
l Bl can be efficiently computed using sparse matrix multiply. This is the

case for all of our constructions for all layers l.

6 LEARNING POSITIONAL ENCODING FOR MOLECULAR REGRESSION

In Sections 3.5 and 4.1, we saw that the Transformer is capable of learning a variety of objectives:
L†,
√
L, e−sL, and EVD(L), when we explicitly train on that objective. An natural question is

then: Can a GNN perform as well on a downstream task if we replace its PE by a linear Transformer,
and train the GNN together with the linear Transformer? There are two potential benefits to this
approach: First, the Transformer can learn a PE that is better-suited to the task than hard-coded
PEs, and thus achieve higher accuracy. Second, the Transformer with a few layers/dimensions
may learn to compute only the most relevant features, and achieve comparable accuracy to the
hard-coded PE using less computation. To test this, we evaluate the performance of our proposed
linear Transformer on a molecular regression task on two real-world datasets: QM9 (Ruddigkeit
et al., 2012; Ramakrishnan et al., 2014) and ZINC (Irwin et al., 2012). The regression target is
constrained solubility (Dwivedi et al., 2023). Our experiments are based on the Graph Transformer
(GT) implementation from Dwivedi & Bresson (2020). In Table 2, we compare three loss values:
GT without PE, GT with Laplacian Eigenvector as PE (LapPE), and GT with linear Transformer
as PE. We present details of the datasets in Appendix 14.1. The architecture is a modified version
of (7), detailed in Appendix 14.2. Other experiment details, including precise definitions of each
model, can be found in Appendix 14.3.

Model # Parameters Loss

Z
IN

C Graph Transformer 800771− 891 0.286± 0.0078
Graph Transformer + LapPE 800771 0.201± 0.0034
Graph Transformer + Linear Transformer 800771 + 488 0.138± 0.012

Q
M

9 Graph Transformer 799747− 512 0.419± 0.0047
Graph Transformer + LapPE 799747 0.227± 0.0094
Graph Transformer + Linear Transformer 799747 + 240 0.221± 0.0060

Table 2: Regression Loss for ZINC and QM9 for different choices of PE.

The difference between GT and GT + LapPE is substantial for both QM9 and ZINC, highlighting
the importance of PE in both cases. Going from GT + LapPE to GT + Linear Transformer for
ZINC, there is a significant further improvement in loss (about 30%). This is remarkable, consid-
ering that the linear Transformer accounts for less than 0.7% of the total number of parameters.
Note that the SOTA error for ZINC regression is significantly lower than 0.138 on more recent ar-
chitectures; the significance of our result is in demonstrating the improvement just by replacing the
LapPE with the linear Transformer, while keeping everything else fixed. In contrast, going from GT
+ LapPE to GT + Linear Transformer for QM9, the difference is essentially zero. We conjecture
that this may be because QM9 molecules (average of about 9 nodes and 19 edges) are considerably
smaller than ZINC (average of about 23 nodes and 40 edges). Thus there may not be too many
additional useful features to learn, and LapPE close to optimal. It is still consistent with our theory,
for the Linear Transformer to do as well as LapPE.

7 CONCLUSION

We proved by explicit construction that the linear Transformer is capable of numerous graph prop-
erties of interest, given the graph incidence matrix as input. Our construction (3) is efficient: on
a graph of n nodes and d edges, we require O(d2 + n2) parameters per-layer. We also a more
parameter-efficient implementation (7) that uses only O(k2) parameters per-layer, where k is the
dimension of the query. In a series of synthetic experiments, we verify that the Transformer is ca-
pable of learning various graph features with high accuracy. On a real-world molecular regression
task, we verify that the linear Transformer can learn PEs which surpass the hard-coded PE based on
Laplacian Eigenvectors, leading to improved loss on the down-stream regression loss.

Our result sheds light on how Transformers can be used to process graph-structured data, and sug-
gests promising directions for the design of more efficient and representative graph Transformers.
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9 REPRODUCIBILITY

We use both synthetic data and open-source molecular datasets in our experiments. Details of our
experiment procedures and implementations have been provided in Section 3.5, Section 4.1, Section
6 and Appendix 14.
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10 PROOFS OF LEMMAS IN SECTION 3

10.1 ELECTRIC FLOW

Proof of Primal Dual Equivalence for Electric Flow
By convex duality, the primal problem in (4) can be reformulated as

min
f :BR1/2f=ψ

d∑
j=1

rjf
2
j

=min
f

max
ϕ

f⊤Rf − 2ϕ⊤(BR1/2f − ψ)

=max
ϕ

min
f
f⊤Rf − 2ϕ⊤(BR1/2f − ψ)

=max
ϕ
−ϕ⊤BB⊤ϕ+ 2ϕ⊤ψ

=− min
ϕ∈Rn

ϕ⊤Lϕ− 2ϕ⊤ψ (8)

Proof of Lemma 1
Let Fψ(ϕ) := 1

2ϕ
⊤Lϕ−ϕ⊤ψ denote (half of) the dual optimization objective from (5). Its gradient

is given by

∇Fψ(ϕ) = Lϕ− ψ.
Let Zl denote the output after l layers of the Transformer (3), i.e. Zl evolves according to (3):

Zl+1 := Zl +WV
l ZlZ

⊤
l W

Q
l

⊤
WK
l Zl +WR

l Zl.

We use B⊤
l to denote the first d rows of Zl, Λ⊤

l to denote the (d + 1)th row to (d + k)th row of

Zl and Φ⊤
l to denote the last k rows of Zl, i.e. Zl =

B⊤
l

Λ⊤
l

Φ⊤
l

. For i = 1...k, let ϕl,i denote the ith

column of Φl. Then there exists a choice of WV ,WQ,WK ,WR, such that for all i,

ϕl+1,i = ϕl,i − δ∇Fψi
(ϕl,i). (9)

Before proving (9), we first consider its consequences. We can verify that ∇2Fψ(·) = 2L, which is
in turn upper and lower bounded by λmin ≺ L ≺ λmax. By standard analysis of gradient descent
for strongly convex and Lipschitz smooth functions, for δ < 1

λmax
, we verify that

Fψi(ϕl,i)− F ∗

≤e−δlλmin(Fψi
(ϕ0,i)− F ∗)

≤e−δlλminλmax∥ψi∥22.
By strong convexity,

∥ϕl,i − L†ψ∥22 ≤ e−δlλmin
λmax

λmin
∥ψi∥22

As a final note, F is only weakly convex along the 1⃗ direction, but we can ignore this because ϕl,i
will always be orthogonal to 1⃗ as long as ϕl,0 is (as we assumed in the lemma statement).

The remainder of the proof will be devoted to showing (9). Recall that the input to the Transformer

Z0 is initialized as Z0 =

 B⊤

Ψ⊤

0k×n

 ∈ R(d+2k)×n. For some fixed δ, our choice of parameter matrices

will be the same across layers:

WV
l =

[
0d×d 0d×k 0d×k
0k×d 0k×k 0k×k
0k×d 0k×k −δIk×k

]
, WQ

l

⊤
WK
l =

[
Id×d 0d×k 0d×k
0k×d 0k×k 0k×k
0k×d 0k×k 0k×k

]
, WR

l =

[
0d×d 0d×k 0d×k
0k×d 0k×k 0k×k
0k×d δIk×k 0k×k

]
(10)

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

By the choice of WV ,WR in (10), we verify that for all layers l, Bl = B0 = B, so that
Z⊤
l (W

Q
l )⊤WK

l Zl = L. Again by choice of WV ,WR in (10), Λl = Ψ for all l. It thus follows
from induction that

Φl+1 = Φl − δLΦl + δΨ (11)
⇔ ϕl+1,i = ϕl,i − δLϕl,i + δψi = ϕl,i − δ∇Fψi

(ϕl,i) for i = 1...k,

thus proving (9).

10.2 RESISTIVE EMBEDDING

Proof of Lemma 2
Let Î := In×n − 1

n 1⃗⃗1
⊤. Let δ := 1/λmax.

Consider the matrix power series, which converges under our choice of δ:

√
L† =

√
δ

√(
Î − (Î − δL)

)†
=
√
δ

∞∑
l=0

(
2l

l

)
(I − δL)l

4l
Î ,

where the second inequality uses the fact that (I − δL)Î =
(
Î − δL

)
Î .

We define αl :=
√
δ
(
2l
l

)
1
4l

.

WV
l =

[
0d×d 0d×k 0d×k
0k×d −δIk×k 0k×k
0k×d 0k×k 0k×k

]
, WQ

l

⊤
WK
l =

[
Id×d 0d×k 0d×k
0k×d 0k×k 0k×k
0k×d 0k×k 0k×k

]
, WR

l =

[
0d×d 0d×k 0d×k
0k×d 0k×k 0k×k
0k×d αlIk×k 0k×k

]
(12)

Recall that Zl =:

B⊤
l

Λl
Φ⊤
l

. We verify that for all l, Bl = B, and

Λl+1 = (I − δL)Λl = (I − δL)l

Φl+1 = Φl + αlΛl =

l∑
i=0

αi(I − δL)iÎΨ,

where we use the fact that Ψ = ÎΨ by assumption. Therefore,∥∥∥[Z]⊤L,i −√L†ψi

∥∥∥
2
≤

∥∥∥∥∥
∞∑
i=L

αi(Î − δL)i
∥∥∥∥∥
2

∥ψi∥2

By upper and lower bounds of Stirling’s formula
√
2πLLLe−L ≤ L! ≤ e

√
LLLe−L, we can bound

αL ≤ 2
√
δ/L. Using the fact that (Î − δL) ≺ e−δλmin Î , and using the bound on gemetric sum, the

above is bounded by 2e−Lδλmin

λmin

√
δL
∥ψi∥2. The conclusion follows by plugging in δ = 1/λmax.

10.3 HEAT KERNEL

Proof of Lemma 3
The power series for e−sL is given by

e−sL =

∞∑
l=0

(−s)lLl

l!
.

We define αl :=
(−s)l
l! . For each layer l, define

WV
l =

[
0d×d 0d×k 0d×k
0k×d Ik×k 0k×k
0k×d 0k×k 0k×k

]
, WQ

l

⊤
WK
l =

[
Id×d 0d×k 0d×k
0k×d 0k×k 0k×k
0k×d 0k×k 0k×k

]
, WR

l =

[
0d×d 0d×k 0d×k
0k×d −Ik×k 0k×k
0k×d αlIk×k 0k×k

]
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Recall that Zl =:

B⊤
l

Λl
Φ⊤
l

. We verify that for all l, Bl = B, and

Λl+1 = LΛl = Ll+1Ψ

Φl+1 = Φl + αlΛl =

l∑
i=0

αiLiΨ.

Therefore, ∥∥∥[Z]⊤L,i − e−sLψi∥∥∥
2
≤

∥∥∥∥∥
∞∑

i=L+1

αiLi
∥∥∥∥∥
2

∥ψi∥2

By upper and lower bounds of Stirling’s formula, L! ≥ (L/e)
L. Therefore, for L ≥ 8sλmax, we

have
∥∥αLLL∥∥2 ≤ (

1
2

)L−8sλmax . For L ≥ 2, the infinite sum is within a factor 2 of the first term,

thus
∥∥∑∞

i=L+1 αiLi
∥∥
2
≤ 2

(
1
2

)L−8sλmax .

10.4 FASTER CONSTRUCTIONS

Proof of Lemma 4
We begin by recalling the Taylor expansion of L†:

L† = δ

∞∑
l=0

(
Î − δL

)l
= δ

∞∑
l=0

(I − δL)lÎ .

(recall that Î := In×n − 1⃗⃗1⊤/n).

Our proof of this section uses a simple but powerful alternative expansion (see e.g. Peng & Spielman
(2014)): for any integer t,

δ

t∏
l=0

(
I + (I − δL)2

l
)
= δ

2t∑
l=0

(I − δL)l. (13)

Notice that t terms in the LHS equals 2t terms of the RHS. This is exactly why we will get a double
exponential convergence.

As seen in the proof of Lemma 1, each term in the RHS expansion coincides with one step of
gradient descent. Therefore, if one layer of the Transformer can implement one additional product
on the LHS, a t layer Transformer can efficiently implement 2t steps of gradient descent. In the
remainder of the proof, we will show exactly this. For all layers l, let

WV
l =

[
In×n 0n×n 0n×n
0n×n 0n×n 0n×n
In×n 0n×n 0n×n

]
, WQ

l

⊤
WK
l =

[
0n×n 0n×n 0n×n
In×n 0n×n 0n×n
0n×n 0n×n 0n×n

]
, WR

l =

[−In×n 0n×n 0n×n
0n×n 0n×n 0n×n
0n×n 0n×n 0n×n

]
.

Let Z⊤
l =: [Γl, Λl, Φl], where Γl,Λl,Φl ∈ Rn×n. Under the configuration of weight matrices

above, we verify that Λl = In×n for all l, and thus Z⊤
l W

Q
l

⊤
WK
l Zl = Γl. for all l. Next, we verify

by induction that Γl+1 = Γl − Γl + Γ⊤
l Γl = Γ⊤

l Γl = (I − δL)2
l

. Note that Γl is symmetric.

Finally, we verify that Φl+1 = Φl + Γ⊤
l Φl =

(
I + (I − δL)2

l
)
Φl. Thus by induction,

ΦL = δ

L∏
i=0

(
I + (I − δL)2

i
)
Î .

Finally, again using (13), the residual term is given by

L† − ΦL = δ

∞∑
i=2L+1

(I − δL)i.
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Noting that (I − δL) ≺ (1− δλminL)I , we can bound∥∥L† − ΦL
∥∥
2
≤

exp
(
−2L−1δL

)
λmin

Proof of Lemma 5
Let C := 3L. We will use the bound

(I − sL/C)C ≺ e−sL ≺ (I − sL/C)C
(
1− s2L2/C

)−1 ≺ (I − sL/C)C
(
I + 2s2L2/C

)
,

where the last inequality is by our assumption on L. Therefore,∥∥∥(I − sL/C)C − exp(−sL)
∥∥∥
2
≤ 2s2L2

C
∥exp(−sL)∥2 ≤

s2λ2max

C
.

Let Z⊤
l =: [Γl, Λl]. We will now show that ΓL = (I − sL/C)C . Let us define, for all l,

WV
l =

[
In×n 0n×n
0n×n 0n×n

]
, WQ

l

⊤
WK
l =

[
In×n 0n×n
0n×n 0n×n

]
, WR

l =

[
−In×n 0n×n
0n×n 0n×n

]
.

Then we verify that Γl+1 = Γl − Γl + ΓlΓ
⊤
l Γl = Γ3

l (by symmetry of Γl). Thus by induction,

Γl = Γ3l

0 = (I − sL/C)3
l

= (I − sL/C)C .

11 PROOFS OF LEMMAS IN SECTION 5

Lemma 8 (Constructions under (7)) The constructions in Lemmas 1, 2, 3 and 6 can be realized
within the constrained dynamics (7).

For readability, we leave the proof below in black color.

Proof of Lemma 8

In general, we verify that (7) is equivalent to (3) with weights satisfying the following form:

WV
l =

[
αVl Id×d 0d×2k

02k×d WV,Φ
l

]
, WQ

l =

[
αQl Id×d 0d×2k

02k×d WQ,Φ
l

]
, WK

l =

[
αKl Id×d 0d×2k

02k×d WK,Φ
l

]
, WR

l =

[
αRl Id×d 0d×2k

02k×d WR,Φ
l

]
.

Below, we state the weight configurations for (7) which will recover the constructions in each of the
stated lemmas. Note that there is a small change in notation: Φl as defined in Section 5 corresponds
to [Λl; Φl] from the proofs of Lemmas 1, 2 and 3.

We leave the simple verification of this equivalence to the reader.

The construction in Lemma 1 is equivalent to (7) with weight configuration αVl = 0, αQl = αKl = 1,

αRl = 0, WV,Φ
l =

[
0k×k 0k×k
−δIk×k 0k×k

]
, WQ,Φ

l =WK,Φ
l = 0, WR

l =

[
0k×k 0k×k
δIk×k 0k×k

]
.

The construction in Lemma 2 is equivalent to (7) with weight configuration αVl = 0, αQl = αKl = 1,

αRl = 0, WV,Φ
l =

[
− 1
λmax

Ik×k 0k×k
0k×k 0k×k

]
, WQ,Φ

l =WK,Φ
l = 0, WR

l =

[
0k×k 0k×k
1

λmax
Ik×k 0k×k

]
.

The construction in Lemma 3 is equivalent to (7) with weight configuration αVl = 0, αQl = αKl = 1,

αRl = 0, WV,Φ
l =

[
Ik×k 0k×k
0k×k 0k×k

]
, WQ,Φ

l = WK,Φ
l = 0, WR

l =

[ −Ik×k 0k×k
(−s)l
l! Ik×k 0k×k

]
, where s is

the temperature parameter.

The construction in Lemma 6 is equivalent to (7) with the following weight configurations:

1. To implement the first step inside the loop of Algorithm 1, let αVl = 0, αQl = αKl = 1,

αRl = 0, WV,Φ
l =

[
0k×k 0k×k
0k×k Ik×k

]
, WQ,Φ

l =WK,Φ
l = 0, WR

l =

[
0k×k 0k×k
0k×k −Ik×k

]
.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

2. To implement the QR decomposition step inside the loop of Algorithm 1, we will need to
an equivalent construction as in Lemma 10. Let αVl = 0, αQl = αKl = 1, αRl = 0, and let

WV,Φ
l =

[
0k×k 0k×k
0k×k A

]
, WQ,Φ

l

⊤
WK,Φ
l =

[
0k×k 0k×k
0k×k H

]
, WR

l = 0, where A and H are

as defined in the proof of Lemma 10.

Lemma 9 (Invariance and Equivariance) Let TFBl and TFΦ
l be as defined in Section 5. Let U ∈

Rd×d be any permutation matrix. Then for all layers l,

TFBl (BU,Φ) = U⊤TFBl (B,Φ)

TFΦ
l (BU,Φ) = TFΦ

l (B,Φ) (14)

Proof
We will prove these two claims by induction simultaneously. Recall from (7) that

B⊤
l+1 = (1 + αR,l)B

⊤
l + αV,lB

⊤
l

(
αQ,lαK,lBlB

⊤
l +ΦlW

Q,Φ
l WK,Φ

l Φ⊤
l

)
Φ⊤
l+1 =

(
I +WR,Φ

l

)
Φ⊤
l +WV,Φ

l Φ⊤
l

(
αQ,lαK,lBlB

⊤
l +ΦlW

Q,Φ
l WK,Φ

l Φ⊤
l

)
.

Recall from the definition that TFB0 (B,Φ) := B0 := B and TFΦ
l (B,Φ) := Φ0 := Φ. Thus (14)

holds by definition. Now suppose (14) holds for some l. By (7),

TFBl+1(BU,Φ)

=(1 + αR,l)TF
B
l (BU,Φ)

+ αV,lTF
B
l (BU,Φ)

(
αQ,lαK,lTF

B
l (BU,Φ)

⊤TFBl (BU,Φ)
)

+ αV,lTF
B
l (BU,Φ)

(
TFΦ

l (BU,Φ)
⊤WQ,Φ

l WK,Φ
l TFΦ

l (BU,Φ)
)

=(1 + αR,l)U
⊤TFBl (B,Φ)

+ αV,lU
⊤TFBl (B,Φ)

(
αQ,lαK,lTF

B
l (B,Φ)

⊤TFBl (B,Φ)
)

+ αV,lU
⊤TFBl (B,Φ)

(
TFΦ

l (B,Φ)
⊤WQ,Φ

l WK,Φ
l TFΦ

l (B,Φ)
)

=U⊤TFBl+1(B,Φ),

where we use the fact that UU⊤ = Id×d. By similar steps as above, we also verify that

TFΦ
l+1(BU,Φ) = TFΦ

l+1(B,Φ).

This concludes the proof.

12 PROOFS OF LEMMAS IN SECTION 4

Lemma 10 (Single Index Orthogonalization) Consider the same setup as Lemma 6, with Trans-
former defined in (6). Let ϕl,j denote the jth column of Φl, for j = 1...k. Let i denote an arbitrary
coordinate. Assume that ϕl,i = 1 for all i. Then there exists choices of WV ,WQ,WK ,WR, such
that

ϕ̂l+1,i = ϕl,i −
k∑

j=i+1

⟨ϕl,i, ϕl,j⟩ϕl,j , ϕl+1,i =
ϕ̂l+1,i∥∥∥ϕ̂l+1,i

∥∥∥
2

,

and for any j ̸= i,

ϕl+1,j = ϕl,j .

Proof of Lemma 10
Recall that Z⊤

l =: [Bl, Φl]. Let A ∈ Rk×k denote the matrix where Aii = 1 and is 0 everywhere
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else. Let C denote the matrix where Cjj = 1 for all j > i, and is 0 everywhere else. Let the weight
matrices be defined as

WV
l = −

[
0d×d 0d×k
0k×d A

]
, WQ

l

⊤
WK
l =

[
0d×d 0d×k
0k×d H

]
, WR =0

Under the above definition, B⊤
l = B⊤ is a constant across all layers l. We verify that Φl evolves as

Φ⊤
l+1 = Φ⊤

l −AΦ⊤
l ΦlHΦ⊤

l .

We verify that the effect of left-multiplication by A "selects the ith row of Φ⊤
l Φl" and the effect of

right-multiplication by H "selects the (i+ 1)th...kth columns of Φ⊤
l Φl". Thus

AΦ⊤ΦH =


0 ... 0 ... 0
...

...
...

0 ... ⟨ϕl,i, ϕl,j+1⟩ ... ⟨ϕl,i, ϕl,k⟩
...

...
...

0 ... 0 ... 0

 .

The conclusion can be verified by right-multiplying the above matrix with Φ⊤
l , and then apply-

ing columnn-wise normalization to Φl as in (6) (equivalent to applying row-wise normalization to
[Z]d...d+k).

Proof of Lemma 6
Recall that Zl =:

[
BTl
Φ⊤
l

]
. Assume for now that Bl = B for all layers l. Let ϕl,i denote the ith

column of Φl. Let l be some fixed layer with weights

WV
l = −

[
0d×d 0d×k
Ik×d 0k×k

]
, WQ

l

⊤
WK
l =

[
Id×d 0d×k
0k×d 0k×k

]
, WR

l =

[
Id×d 0d×k
0k×d −Ik×k

]
. (15)

Combined with (6), these imply that Φ̂l+1 = LΦl, and that ϕl+1,i = ϕl+1,i/∥ϕl+1,i∥2. This im-
plements the first step in the loop of Algorithm 1. Although Algorithm 1 does not contain the
normalization step, the result is identical, because QR(Φ) is invariant to column-scaling of Φ.

We now show a (different) configuration of weight matrices which enable a sequence of layers to
perform QR decomposition: Consider the construction in Lemma 10. For each i, we can use a single
layer to make ϕl+1,i orthogonal with to ϕl,j for all j > i. By putting k such layers in sequence,
ϕl+k,i is orthogonal to ϕl+k,j for all i = 1...k and for all j = i+ 1...k. Thus Φl+k is exactly a QR
decomposition of Φl.

Finally, we observe that Bl is unchanged in both (15) and in the construction of Lemma 10. Thus
we verify the assumption at the beginning of the proof that Bl = B for all l. This concludes the
proof.

Proof of Corollary 7
The construction is almost identical to that in the proof of Lemma 6 above. The only difference is
that we replace the weight choice in (15) by

WV
l = −

[
0d×d 0d×k
Ik×d 0k×k

]
, WQ

l

⊤
WK
l =

[
Id×d 0d×k
0k×d 0k×k

]
, WR

l =

[
Id×d 0d×k
0k×d (C − 1)Ik×k

]
,

where the change is highlighted in red. Under this, we verify that Φ̂l+1 = (CI − L)Φl.
The remainder of the proof, including construction for the QR(Φ) operation, are unchanged from
Lemma 6.

13 DETAILS FOR SYNTHETIC EXPERIMENTS

13.1 DATA GENERATION FOR SYNTHETIC EXPERIMENTS

We consider two ways of sampling random graphs:
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1. Fully Connected (FC) graphs: n = 10 nodes and d = 45 edges.
2. Circular Skip Links (CSL) graphs: n = 10 nodes and d = 20 edges. The skip-length is

sampled uniformly at random from {2, 4, 6, 8}. See (Dwivedi et al., 2023) for a detailed
definition of CSL graphs.

For both FC and CSL graphs, the resistance of an edge e is r(e) = eu(e), where u(e) is independently
sampled uniformly from [−2, 2].

14 DETAILS FOR MOLECULAR REGRESSION EXPERIMENT

Below, we provide various details for the molecular regression experiment in Section 6.

14.1 DATASET DETAILS

For QM9, the training set size is 20,000, the validation set size is 2000, the test set size is 100,000.
The training/validation set are subsampled from the full training/validation set. The average number
of nodes is 8.79, and the average number of edges is 18.8.

For ZINC, the training set size is 20,000, the validation set size is 2000, the test set size is 24,445.
The training/validation set are subsampled from the full training/validation set. The average number
of nodes is 23.16, and the average number of edges is 39.83.

14.2 ARCHITECTURE FOR MOLECULAR REGRESSION EXPERIMENT

The linear Transformer we use for the experiment in Section 6 is described in (16) below:

B⊤
l+1 = (1 + αR,l)B

⊤
l + αV,lB

⊤
l

(
βl,1αQ,lαK,lD

−1/2
l BlB

⊤
l D

−1/2
l + βl,2ΦlW

Q,Φ
l WK,Φ

l Φ⊤
l

)
Φ⊤
l+1 =

(
I +WR,Φ

l

)
Φ⊤
l +WV,Φ

l Φ⊤
l

(
βl,3αQ,lαK,lD

−1/2
l BlB

⊤
l D

−1/2
l + βl,4ΦlW

Q,Φ
l WK,Φ

l Φ⊤
l

)
Bl+1 ← Bl+1/∥Bl+1∥F
ϕl+1,i ← ϕl+1,i/∥ϕl+1,i∥2 (for i=1...k) (16)

It is similar to the memory-efficient Transformer architecture (7) from Section 5, with a number of
modifications which we explain below. Let the input to the transformer be Z0 ∈ Rd+k, where d
denotes the number of edges, and k is the dimension of learned features.

1. Scaling by D−1: The GT in Dwivedi & Bresson (2020) uses eigenvectors of the normalized
Laplacian L̄ := D−1/2LD−1/2, where D is the diagonal matrix whose ith diagonal entry is
given by [D]ii := |Lii| =

∑d
j=1 |Bij |. To be consistent with this setup, we modify the dy-

namics in (7) to add the scaling by D−1/2
l on the part of the self-similarity matrix involving Bl,

highlighted in red in (16), where Dl is the diagonal matrix with the ith diagonal entry given by

[Dl]ii :=

d∑
j=1

|Bl|ij .

With this additional scaling in the dynamics, the same weight constructions in all the lemmas in
this paper will compute the corresponding quantities for the normalized Laplacian L̄ instead. For
instance, with theD−1/2

l scaling, the construction in Lemma 1 computes L̄†, and the construction
in Lemma 6 computes the top-k eigenvectors of L̄. This can be verified using the following two
observations: First, in all our constructions, Φl interacts with Bl only via the self-similarity
matrix BlB⊤

l . Second, D−1/2BB⊤D−1/2 = L̄.
2. Independently scaled similarity matrix: For each layer l, we introduce additional scalar pa-

rameters βl,1, βl,2, βl,3, βl,4. One layer of (16) is more expressive than one layer of (7) but less
expressive than two layers of (7) (ignoring D−1/2).

3. Diagonal constraints on W : We constrain WV,Φ,WQ,Φ,WK,Φ to be diagonal, and WR,Φ to
be a scaling of identity.
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4. Weight sharing: Layers 3l, 3l + 1, 3l + 2 share the same parameters, for all integers l. Phrased
another way, each layer is looped 3 times.

5. Per-layer Scaling: after each layer, we scale Bl to have Frobenius norm 1, and we scale each
column of Φl to have Euclidean norm 1.

Items 2-4 help to reduce the parameter count, improve generalization. Item 5 makes training feasible
for deeper layers. The construction in Lemma 4 for subspace iteration can still be realised under the
changes in items 2-5. Under the change in item 1, the construction in Lemma 4 will find eigenvectors
of L̄ instead of L.

14.3 EXPERIMENT DETAILS

The GT we use has 128 hidden dimensions, 8 heads, and 4 layers. The position encoding dimension
is 3 for QM9, and 6 for ZINC.

The linear Transformer we use contain L = 9 layers, with parameters shared every 3 layers (see
details in Section 14.2). The dimension of Φl is 8. We use a linear map M to project ΦL down to
the PE dimension (PE_dim=3 for QM9 and PE_dim=6 for ZINC). This output is then passed to the
GNN in the same way as the LapPE. To clarify the process, we provide a pseudo-code for Graph
Transformer, Graph Transformer + LapPE and Graph Transformer + linear Transformer
below:

Let GT denote the graph transformer from (Dwivedi & Bresson, 2020). Let G denote the collection
of basic graph information, including edge list, edge features, and node features. Let LapPE(G)
return the Laplacian eigenvector positional encoding for G. Let B be the incidence matrix of G. Let
LT denote the linear Transformer, which takes B as input (Φ0 can be viewed as internal parameters
of LT)

Then the predictions for each model in Table 2 are given by

Graph Transformer GT(G,None)

Graph Transformer + LapPE GT(G,LapPE(G))

Graph Transformer + linear Transformer GT(G,linear(M,LT(B))) (17)

The trainable parameters are given by

{all the parameters of GT} + {all the parameters of LT}
={all the parameters of GT} + {M , Φ0, (α’s, β’s, W ’s from (16))}.

Before training on the actual regression task, we pretrain the linear Transformer to return the top
PE_dim Laplacian eigenvectors. This gives a good initialization, and improves the optimization
landscape.

We train using AdamW. Graph Transformer parameters are updated with 0.001 lr. Linear Trans-
former parameters are updated with 0.01 lr. For ZINC, we train for 2000 epochs with lr halved
every 800 epochs. For QM9, we train for 1000 epochs with lr halved ever 400 epochs. The means
and standard deviations in Table 2 are each computed over 4 independent seeded runs.

15 EXPERIMENTS FOR EFFICIENT IMPLEMENTATION
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Figure 3: Plot of loss against number of layers for the 4 problems. Figures {3(a), 3(b), 3(c), 3(d)}
correspond to Figures {1(a),1(b),1(c),2(d)} respectively. The experiment setup of each correspond-
ing pair of plots are identical, except for the architecture used: all plots in Figure 3 are made using
the efficient implementation described in Section 5.
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