
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

GRAPH TRANSFORMERS DREAM OF ELECTRIC FLOW

Anonymous authors
Paper under double-blind review

ABSTRACT

We show theoretically and empirically that the linear Transformer, when applied
to graph data, can implement algorithms that solve canonical problems such as
electric flow and eigenvector decomposition. The Transformer has access to in-
formation on the input graph only via the graph’s incidence matrix. We present
explicit weight configurations for implementing each algorithm, and we bound
the constructed Transformers’ errors by the errors of the underlying algorithms.
We verify our theoretical findings experimentally on synthetic data. Additionally,
on a real-world molecular regression task, we observe that the linear Transformer
is capable of learning a better positional encoding than the default one based on
Laplacian eigenvectors. Our work is an initial step towards elucidating the inner-
workings of the Transformer for graph data.

1 INTRODUCTION

The Transformer architecture (Vaswani et al., 2017) has seen a lot of success in the design of graph
neural networks (GNNs) (Dwivedi & Bresson, 2020; Ying et al., 2021; Kim et al., 2022; Müller
et al., 2023), and have demonstrated impressive performance in many applications ranging from
prediction of chemical properties to analyzing social networks (Yun et al., 2019; Dwivedi et al.,
2023; Rong et al., 2020). In contrast to their empirical success, the underlying reasons for why
Transformers adapt well to graph problems are less well understood. Several works have proved the
expressivity of attention-based architectures (Kreuzer et al., 2021; Kim et al., 2021; 2022; Ma et al.,
2023), but such analysis often rely on the ability neural networks to approximate arbitrary functions,
and may require a prohibitiveley large number of parameters.

This paper is motivated by the need to understand, at a mechanistic level, how the Transformer
processes graph-structured data. Specifically, we study the ability of a linear Transformer to solve
certain classes of graph problems. The linear Transformer is similar to the standard Transformer,
but softmax-based activation is replaced with linear attention, and MLP layers are replaced by linear
layers. Notably, the linear Transformer contains no a priori knowledge of the graph structure; all
information about the graph is provided via an incidence matrix B. For unweighted graphs, the
columns of B are just {−1, 0, 1}-valued indicator vectors that encode whether an edge touches a
vertex; no other explicit positional or structural encodings are provided.

Even in this minimal setup, we are able to design simple configurations of the weight matrices
that enable the Transformer to solve fundamental problems such as electric flow and Laplacian
eigenvector decomposition; furthermore, we provide explicit error bounds that scale well with the
number of Transformer layers. Several of our constructions rely crucially on the structure of the
linear attention module, and may help shed light on the success of attention-based GNNs. We
hope that our analysis paves the way to better understanding of the learning landscape of graph
Transformers, such as concrete bounds on their generalization and optimization errors.

Besides enhancing our understanding, our results are also useful for the practical design of graph
Transformers. In Sections 3 and 4, we show that essentially the same linear Transformer architecture
is capable of learning a number of popular positional encodings (PE). In Section 6, we provide
experimental evidence that the linear Transformer can learn better PEs than hard-coded PEs.

1.1 SUMMARY OF CONTRIBUTIONS

Below, we summarize the main contributions of our paper.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Lemma Task Transformer Implements: # layers for ε error
1 Electric Flow (L†) Gradient Descent log(1/ε)
4 Electric Flow (L†) Multiplicative Expansion log log(1/ε)

2 Resistive Embedding (
√
L†) Power Series log(1/ε)

3 Heat Kernel (e−sL) Power Series log(1/ε) + sλmax

5 Heat Kernel (e−sL) Multiplicative Expansion log(1/ε) + log(sλmax)
6 & 7 k-Eigenvector Decomp. of L Subspace Iteration (subspace-iteration steps)/k

Table 1: Summary of Error Bounds proved for various Transformer constructions. L is the graph
Laplacian; L† denotes its pseudoinverse.

1. We provide explicit weight configurations for which the Transformer implements efficient algo-
rithms for several fundamental graph problems. These problems serve as important primitives
in various graph learning algorithms, and have also been useful as PEs in state-of-the-art GNNs.

(a) Lemma 1 constructs a Transformer that solves electric flows by implementing steps of gradi-
ent descent to minimize flow energy; consequently, it can also invert the graph Laplacian.

(b) Lemmas 2 and 3 construct Transformers that compute low-dimensional resistive embeddings
and heat kernels. Both constructions are based on implementing suitable power series.

(c) By implementing a multiplicative polynomial expansion, Lemma 4 provides a construction
for electric flow with exponentially higher accuracy than Lemma 1. Similarly, Lemma 5 pro-
vides a construction that computes the heat kernel in much fewer layers than Lemma 3.

(d) In Lemma 6, we show that the Transformer can implement subspace iteration for finding
the top-k (or bottom-k) eigenvectors of the graph Laplacian. Central to this analysis is the
ability of self-attention to compute a QR decomposition of the feature vectors.

We derive explicit error bounds for the Transformer based on the convergence rates of the
underlying algorithm implemented by the Transformer. We summarize these results in Table 1.

2. In Section 5, we provide a constrained version of the linear Transformer with much fewer param-
eters. Although the constrained Transformer is less expressive by definition, we show that it can
nonetheless implement all the above-mentioned constructions. Further, we show in Lemma 9 that
the parameter-efficient linear Transformer has desirable invariance and equivariance properties.

3. We test the empirical performance of our theory on synthetic random graphs. In Section 3.5, we
verify that Transformers with a few layers can achieve high accuracy in computing electric flows,
resistive embeddings, as well as heat kernels. In Section 4.1, we verify that the Transformer can
accurately compute top-k and bottom-k eigenevectors of the graph Laplacian.

4. In Section 6, we demonstrate the advantage of using the linear Transformer as a replacement
for Laplacian eigenvector positional encoding, in a real-world molecular regression task on the
QM9 and ZINC datasets (Ruddigkeit et al., 2012; Ramakrishnan et al., 2014; Irwin et al., 2012).
After replacing the Laplacian eigenvector-based PE with the linear Transformer, and training on
the regression loss, we verify that the linear Transformer automatically learns a good PE for the
downstream regression task that can outperform the original PE by a wide margin.

1.2 RELATED WORK
Numerous authors have proposed different ways of adapting Transformers to graphs (Dwivedi &
Bresson, 2020; Ying et al., 2021; Rampášek et al., 2022; Müller et al., 2023). A particularly promis-
ing approach is to use a suitable positional encoding to incorporate structural information in the
input, examples include Laplacian eigenvectors (Dwivedi & Bresson, 2020; Kreuzer et al., 2021),
heat kernel (Choromanski et al., 2022), resistance distance and commute time (Ma et al., 2023; Vel-
ingker et al., 2024; Zhang et al., 2023) and shortest path distance (Ying et al., 2021). Lim et al.
(2022) designed a neural network to transform eigenvectors into an encoding that has certain invari-
ance properties. Black et al. (2024) compared the expressivity of different PE schemes. (Srinivasan
& Ribeiro, 2020) studied the relationship between PE and structural graph representations.

Kim et al. (2021) explore the possibility of using pure Transformers for graph learning. They provide
both nodes and edges as input tokens, with a simple encoding scheme. They also prove that such a
Transformer is as expressive as a second-order invariant graph network.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

A number of works have explored the use of learned PEs (Mialon et al., 2021; Eliasof et al., 2023;
Park et al., 2022; Ma et al., 2023; Kreuzer et al., 2021; Dwivedi et al., 2021). In particular Ma
et al. (2023) is based on relative random walk probabilities (RRWP), and Kreuzer et al. (2021)’s
approach is based on learned eigenfunctions. In comparison, using a linear-Transformer to learn
PEs has two advantages: 1. self attention can implement operations such as orthogonalization,
necessary for learning multiple eigenvectors (Lemma 6). Second, self-attention enables highly-
efficient algorithms based on multiplicative polynomial expansions (Lemma 4). These enable linear
Transformers to learn good PEs given only the incidence matrix as input.

Finally, we note several relevant papers that are unrelated to graph neural networks. A recent body of
work proves the ability of Transformers to implement learning algorithms, to explain the in-context
learning phenomenon (Schlag et al., 2021; Von Oswald et al., 2023). Surprisingly, our construction
for Lemma 1 bears several remarkable parallels to the gradient descent construction by Von Oswald
et al. (2023). We conjecture that the proof of Lemma 4 may be applicable for understanding the
GD++ algorithm in the same paper. In another direction, Charton (2021) show experimentally that
Transformers can compute linear algebra operations such as eigenvector decomposition. Their work
requires a relatively complicated matrix encoding and a large number of parameters.

2 PRELIMINARIES AND NOTATION

2.1 GRAPHS

We use G = (V, E) to denote a graph with vertex set V and edge set E ; n denotes |V| and d represents
|E|. When unambiguous, we sometimes identify the vertex vi with its index i for i = 1...n, and the
edge ej with j for j = 1...d. We will generally consider weighted graphs, where r(·) : E → R+

gives the edge weights. We will use rj := r(ej).

A central object of interest is the incidence matrix B ∈ Rn×d, defined as follows: to each edge
ej ∈ E , assign an arbitrary orientation, i.e. e = (u→ v) ∈ E . The matrix B is given by

Bij =

 −1/√rj , if exists v ∈ V such that ej = (ui → v)
+1/
√
rj , if exists v ∈ V such that ej = (v → ui)

0, otherwise.
(1)

Next, we define the graph Laplacian as L := BB⊤. We will often need to refer to the maximum
eigenvalue of L, which we denote as λmax. Note that L always has 0 as its smallest eigenvalue, with
corresponding eigenvector 1√

n
1⃗, the all-ones vector. This fact can be verified by noticing that each

column of B sums to 0. For a connected graph (as we will assume is the case throughout the paper),
the second-smallest eigenvalue is always non-zero, and we will denote it as λmin.

Finally, we will frequently refer to the matrix In×n − 1
n 1⃗⃗1

⊤ at various points in the paper; for ease
of reference, we will write În×n := In×n − 1

n 1⃗⃗1
⊤. This matrix is the projection onto span(L), and

it essentially functions as the identity matrix, as we work within span(L) most of the time.

2.2 LINEAR TRANSFORMER

We will use Z0 ∈ Rh×n to denote the input to the Transformer. Z0 encodes a graph G, and each
column of Z0 encodes a single vertex in h dimensions. Let WQ,WK ,WV ∈ Rh×h denote the key,
query and value parameter matrices. We define linear attention Attn as

AttnWV ,WQ,WK (Z) :=WV ZZ⊤WQ⊤
WKZ, (2)

unlike standard attention, (2) does not contain softmax activation. We construct an L-layer Trans-
former by stacking L layers of the attention module (with linear feed-forward). To be precise, let Zl
denote the output of the (l − 1)th layer of the Transformer. Then

Zl+1 := Zl +AttnWV
l ,W

Q
l ,W

K
l
(Zl) +WRZl, (3)

where WV
l ,W

Q
l ,W

K
l are the value, query and key weight matrices of the linear attention mod-

ule at layer l, and WR ∈ Rh×h is the weight matrix of the linear module. Henceforth, we let
WV := {WV

l }l=0...L, WQ := {WQ
l }l=0...L, WK

l := {WK
l }l=0...L, WR

l := {WR
l }l=0...L denote

collections of the parameters across all layers of an L-layer Transformer.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3 TRANSFORMERS AS POWERFUL SOLVERS FOR LAPLACIAN PROBLEMS

In this section, we discuss the capacity of the linear Transformer 3 to solve certain classes of canon-
ical graph problems. We begin with the problem of Electric Flow in Section 3.2, where the con-
structed Transformer can be interpreted as implementing steps of gradient descent with respect to
the energy of the induced flow. Subsequently, in Section 3.3, we provide constructions for comput-
ing the resistive embedding, as well as the heat kernel, based on implementing a truncated power
series. Finally, in Section 3.4, we provide faster alternative constructions for solving electric flow
and computing heat kernels, based on implementing a multiplicative polynomial expansion. In each
case, we bound the error of the Transformer by the convergence rate of the underlying algorithms.

3.1 ADDITIONAL SETUP

We introduce some additional setup that is common to many lemmas in this section. We will gener-
ally consider an L-layer Transformer, as defined in (3), for some arbitrary L ∈ Z+. As in (3), we use
Zl to denote the input to layer l. The input Z0 will encode information about a graph G, along with
a number of query/demand vectors ψ1 . . . ψk ∈ Rn. We use Ψ to denote the n× k matrix whose ith

column is ψi. Unless otherwise stated, Zl ∈ R(d+2k)×n, where n is the number of nodes, d is the
number of edges, and k is the number of demands/queries. Z⊤

0 := [B, Ψ, 0n×k].

On parameter size: In a straightforward implementation, the above Transformer has feature dimen-
sion h = (d+2k). The size of WQ,WK ,WV ,WR is O(h2) = O(d2+k2), which is prohibitively
large as d can itself be O(n2). The size of parameter matrices can be significantly reduced to O(k2)
by imposing certain constraints on the parameter matrices; we present this reduction in (7) in Sec-
tion 5. For simplicity of exposition, lemmas in this section will use the naive implementation in (3).
We verify later that all the constructions presented in this section can also be realized in (7).

3.2 SOLVING ELECTRIC FLOW WITH GRADIENT DESCENT

Assume we are given a graph G = (V, E), along with a non-negative vector of resistances r ∈ Rd+.
Let R be the diagonal matrix with r on its diagonal. A flow is represented by f ∈ Rd, where
fj denotes the (directed) flow on edge ej . The energy of an electric flow is given by

∑d
j=1 rjf

2
j .

Let ψ ∈ Rn denote a vector of demands. Throughout this paper, we will assume that the demand
vectors satisfy flow conservation, i.e., ⟨ψ, 1⃗⟩ = 0. The ψ-electric flow is the unique minimizer of
the following (primal) flow-optimization problem (by convex duality, this is equivalent to a dual
potential-optimization problem):

(primal) min
f∈Rd

d∑
j=1

rjf
2
j subject to the constraint BR1/2f = ψ. (4)

(dual) − min
ϕ∈Rn

ϕ⊤Lϕ− 2ϕ⊤ψ. (5)

The argument is standard; for completeness, we provide a proof of equivalence between (4) and (5)
in (8) in Appendix 10.1. It follows that the optimizer ϕ∗ of (5) has closed-form solution ϕ∗ = L†ψ.
In Lemma 1 below, we show a simple construction that enables the Transformer in (3) to compute
in parallel, the optimal potential assignments for a set of k demands {ψi}i=1...k, where ψi ∈ Rn.

Motivation: Effective Resistance Metric
An important practical motivation for solving the electric flow (or equivalently computing L†) is
to obtain the Effective Resistance matrix R ∈ Rn×n. GNNs that use positional encodings derived
from R have demonstrated state-of-the-art performance on numerous tasks, and can be shown to
have good theoretical expressivity (Zhang et al., 2023; Velingker et al., 2024; Black et al., 2024).

Formally, R is defined as Rij := (ui − uj)⊤L†(ui − uj), where ui denotes the vector that has a 1
in the ith coordinate, and 0s everywhere else. Intuitively, Rij is the potential drop required to send
1-unit of electric flow from node i to node j. Let ℓ ∈ Rn denote the vector of diagonals of L† (i.e.
ℓi := Lii). ThenR = 1⃗ℓ⊤ + ℓ⃗1⊤ − 2L†; thus solving L† essentially also solves forR.

Lemma 1 (Transformer solves Electric Flow by implementing Gradient Descent) Consider
the setup in Section 3.1. Assume that ⟨ψi, 1⃗⟩ = 0 for each i = 1...k. For any δ > 0 and for any

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

L-layer Transformer, there exists a choice of weights WV ,WQ,WK ,WR, such that each layer
of the Transformer (3) implements a step of gradient descent with respect to the dual electric flow
objective in (5), with stepsize δ. Consequently, the following holds for all i = 1...k and for any
graph Laplacian with maximum eigenvalue λmax ≤ 1/δ and minimum nontrivial eigenvalue λmin:∥∥∥[ZL]⊤d+k+i − L†ψi

∥∥∥
2
≤ e−δLλmin/2

√
λmax/λmin∥ψi∥2.

Discussion and proof sketch. In the special case when k = n and Ψ := In×n − 1
n 1⃗⃗1

⊤,
[ZL]d+1...d+k = L†. Generally, an ε-approximation requires L = O(log(1/ε)) layers. We de-
fer the proof of Lemma 1 to Appendix 10, and provide a sketch below:
Consider the dual objective (5) given by Fψ(ϕ) := 1

2ϕ
⊤Lϕ − ϕ⊤ψ. We show that a single at-

tention layer can implement exactly a single gradient descent step wrt Fψ , i.e. [Zl+1]
⊤
d+k+i :=

[Zl]
⊤
d+k+i − δ∇Fψi([Zl]

⊤
d+k+i). The log(1/ε) rate then follows immediately from the convergence

rate of gradient descent, combined with smoothness and (restricted) strong convex of Fψ . In Lemma
4 below, we show an alternate construction that reduces the rate to O(log log(1/ε)).

Explicit choice of weight matrices are given (10) in the full proof. The constructed weight matrices
are very sparse; each of them contains a single identity matrix in a sub-block. This sparse structure
makes it possible to drastically reduce the number of parameters needed, which we exploit in Section
5 to design a more memory efficient Transformer. We empirically validate Lemma 1 in Section 3.5.

3.3 TRANSFORMER CAN IMPLEMENT POWER SERIES.
In this section, we present two more constructions: one for computing

√
L† (Lemma 2), and one

for computing the heat kernel e−sL (Lemma 3). Both quantities have been successfully used for
positional encoding in various GNNs. The constructions proposed in these two lemmas are also
similar, and involve implementing the power series of the respective targets.

3.3.1 COMPUTING THE PRINCIPAL SQUARE ROOT
√
L†

Motivation : Resistive Embedding
The following fact relates the effective resistance matrixR to any “square root” of L†:

Fact 1 LetM denote any matrix that satisfiesMM⊤ = L†. Let R ∈ Rn×n+ denote the matrix of
effective resistances (see Section 3.2). ThenRij = ∥Mi −Mj∥22, whereMi is the ith row ofM.

One can verify the above by noticing that ∥Mi −Mj∥22 = M⊤
i Mi +M⊤

jMj − 2M⊤
i Mj =

[L]ii+ [L]jj − 2Lij . In some settings, it is more natural to use the rows ofM, instead ofR directly
to embed node position: By assigning an embedding vector wi := Mi to vertex i, the Euclidean
distance between wi and wj equals the resistance distance. The matrixM is under-determined, and
for any m > n, there are infinitely many choices ofM that satisfyMM⊤ = L†. Fact 1 applies to
any suchM. Velingker et al. (2024) uses the rows ofM = L†B for resistive embedding. Mi has
dimension d, which is the number of edges and can be quite large. Consequently, Velingker et al.
(2024) additionally performs a dimension-reduction step using Johnson Lidenstrauss.

Among all valid choices ofM, there is a unique choice that is symmetric and minimizes ∥M∥F ,
namely, UΛ−1/2U⊤ (where UΛU⊤ = L is the eigenvector decomposition of L). We reserve

√
L†

to denote this matrix;
√
L† is called the principal square root of L†. In practice,

√
L† might be

preferable to, say, L⊤B because it has an embedding dimension of n, as opposed to the possibly
much larger d. We present in Lemma 2 a Transformer construction for computing

√
L†.

Lemma 2 (Principal Square Root
√
L†) Consider the setup in Section 3.1. Assume that ψ1...ψk ∈

Rn satisfy ⟨ψi, 1⃗⟩ = 0. For any L-layer Transformer (3), there exists a configuration of weights
WV ,WQ,WK ,WR such that the following holds: For any graph with maximum Laplacian eigen-
value λmax and minimum non-trivial Laplacian eigenvalue λmin, and for all i = 1...k:∥∥∥[ZL]⊤d+k+i −√L†ψi

∥∥∥
2
≤ 2e−Lλmin/λmax

λmin

√
L/λmax

∥ψi∥2.

Discussion. We defer a proof of Lemma 2 to Appendix 10.2. The high-level idea is that each layer
of the Transformer implements one additional term of the power series expansion of

√
L†. Under

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

the choice k = n and Ψ = In×n − 1/n1⃗⃗1⊤, [ZL]d+k+1...d+2k ≈
√
L†, an ε approximation requires

log(1/ε) layers. We consider the more general setup involving arbitrary ψ′
is as they are useful for

projecting the resistive embedding onto an even lower-dimensional space; this is relevant when ψi’s
are trainable parameters (see e.g., Appendix 14.3). We empirically validate Lemma 2 in Section 3.5.

3.3.2 COMPUTING THE HEAT KERNEL: exp (−sL)

Finally, we present a result on learning heat kernels. The heat kernel has connections to random
walks and diffusion maps Coifman & Lafon (2006). It plays a central role in semi-supervised learn-
ing on graphs (Xu et al., 2020); it is also used for positional encoding (Choromanski et al., 2022).

Lemma 3 (Heat Kernel e−sL) Consider the same setup as Lemma 2. Let s > 0 be an arbitrary
temperature parameter. There exists a configuration of weights for the L-layer Transformer (3) such
that the following holds: assume L satisfies 8sλmax ≤ L, then for all i = 1...k,∥∥∥[Z]⊤L,i − e−sLψi∥∥∥

2
≤ 2−L+8sλmax+1∥ψi∥2

Discussion. We defer the proof of Lemma 3 to Appendix 10.3. Roughly, to obtain an ε approxi-
mation error, we need L > O(log(1/ε) + sλmax). As with the preceding lemmas, the flexibility of
choosing any number of ψi’s enables the Transformer to learn a low-dimensional projection of the
heat kernel. The dependence on sλmax is fundamental, stemming from the fact that the power series
of esL has shrinking error only after O(sλmax) terms. In Lemma 5 in the next section, we weaken
this dependence to log(sλmax). We empirically validate Lemma 3 in Section 3.5.

3.4 IMPLEMENTING MULTIPLICATIVE POLYNOMIAL EXPANSIONS

We present two alternative Transformer constructions that can achieve vastly smaller error than the
ones in the preceding sections: Lemma 4 computes an ε-accurate electric flow in exponentially fewer
layers than Lemma 1. Lemma 5 approximates the heat kernel with higher accuracy than Lemma 3
when the number of layers is small. The key idea in both Lemmas 4 and 5 is to use the Transformer
to implement a multiplicative polynomial; this in turn makes key use of the self-attention module.

The setup for Lemmas 4 and 5 differs in two ways from that presented in Section 3.1. First, the
input to layer l, Zl, are now in R3n×n, instead of R(d+2k)×n. When the graph G is sparse and the
number of demands/queries k is small, the constructions in Lemma 1 and 3 may use considerably
less memory. This difference is fundamental, due to the storage required for raising matrix powers.
Second, the input is also different; in particular, information about the graph is provided via (In×n−
δL) as part of the input Z0, as opposed to via the incidence matrix B⊤ as done in Section 3.1. This
difference is not fundamental: one can obtain L = B⊤B from B in a single attention layer; in the
spirit of brevity, we omit this step. We begin with the faster construction for electric flow:

Lemma 4 Let δ > 0. Let Z⊤
0 :=

[
(In×n − δL), In×n, δ

(
In×n − 1⃗⃗1⊤/n

)]
. Let λmin denote

the smallest non-trivial eigenvalue of L. Then there exist a choice of WV ,WQ,WK ,WR for a
L-layer Transformer (3) such that∥∥[ZL]2n+1...3n − L

†∥∥
2
≤ 1

λmin
exp

(
−δ2L−1λmin

)
.

Discussion. Lemma 4 shows that the Transformer can compute an ε-approximation to L† (which is
sufficient but not necessary for solving arbitrary electric flow demands) using log log(1/ε) layers.
This is much fewer than the log(1/ε) layers required in Lemma 1. The key idea in the proof is to
implement a multiplicative polynomial expansion for L†. We defer the proof to Appendix 10.4.

We next show the alternate construction for computing the heat kernel:

Lemma 5 (Fast Heat Kernel) Let s > 0. Let L be the number of Transformer layers. Let Z⊤
0 :=[

(In×n − 3−LsL), In×n
]
. Then there exist a choice ofWV ,WQ,WK ,WR such that for any graph

whose Laplacian satisfies sλmax ≤ 3L−2,∥∥[ZL]n+1...2n − exp(−sL)
∥∥
2
≤ s2λ2max

3L−1
.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Discussion. Lemma 5 shows that the Transformer can compute an ε-approximation to e−sL using
O(log(1/ε) + log(sλmax)) layers. The ε dependence is the same as Lemma 3, but the logarithmic
dependence on sλmax is better. When the number of layers is small, Lemma 5 gives a significantly
more accurate approximation. The proof is based on the well-known approximation ea ≈ (1 +
a/L)L. We defer proof details for Lemma 5 to Appendix 10.4.

3.5 EXPERIMENTS

In Figure 1, we experimentally verify that the Transformer is capable of learning to solve the
three objectives presented in Lemmas 1, 2 and 3. The setup is as described in Section 3.1, with
the Transformer described in (3), with k = n. In order to train > 5 layers, we need the fol-
lowing additional normalization per layer: [Zl]1...n ← [Zl]1...n/∥[Zl]1...n∥F , [Zl]n+1...n+2k ←
[Zl]n+1...n+2k/∥[Zl]n+1...n+2k∥F , where ∥∥F is the Frobenius norm.

We plot the loss over two kinds of random graphs: fully-connected graphs (n = 10, d = 45)
and Circular Skip Links (CSL) graphs (n = 10, d = 20). Edge resistances are randomly sam-
pled. We provide details in Appendix 13.1. For each input graph G, we sample n demands
ψ1...ψn ∈ Rn independently from the unit sphere. Let Ψ = [ψ1...ψn]. The input to the
Transformer is

[
B⊤, Ψ⊤, 0n×n

]
, as stated in Section 3.1. The training/test loss is given by

lossU := E

[
1
n

∑n
i=1

∥∥∥∥ [Zl]
⊤
d+n+i

∥[Zl]d+n+i∥2
− Uψi

∥Uψi∥2

∥∥∥∥2
2

]
, where U ∈

{
L†,
√
L†, e−0.5L

}
. We learn the

correct solutions only up to scaling, because we need to normalize Zl per-layer. The expectation is
over randomness in L and Ψ. We plot the log of the respective losses against number of layers after
training has converged. As can be seen, in each plot, and for both types of architectures, the loss
appears to decrease exponentially with the number of layers.

1 3 5 7 9
Layer

10

8

6

4

2

lo
g(

Lo
ss

)

CSL-linear
FC-linear

1 3 5 7 9
Layer

12

10

8

6

4

lo
g(

Lo
ss

)

CSL-linear
FC-linear

1 3 5 7 9
Layer

8

7

6

5

4

3

2

1

lo
g(

Lo
ss

)
CSL-linear
FC-linear

1(a) lossL† (electric) 1(b) loss√L† (resistive) 1(c) lossexp (−0.5L) (heat)

Figure 1: lossU against number of layers at convergence for U ∈
{
L†,
√
L†, e−0.5L

}
.

4 TRANSFORMERS CAN IMPLEMENT SUBSPACE ITERATION TO COMPUTE
EIGENVECTORS

We present a Transformer construction for finding the eigenvectors of the graph Laplacian L. The
eigenvector of the smallest non-trivial eigenvalue, for example, has been applied with great success
for graph segmentation (Shi & Malik, 1997) and clustering (Bühler & Hein, 2009). Additionally,
the Laplacian eigenvector is also a very popular choice of positional encoding (see Section 1.2).
Our construction is based on the subspace iteration algorithm, aka block power method—see e.g.,
(Bentbib & Kanber, 2015). The output Φ of algorithm 1 converges to the top-k eigenvectors of L.
We show in Corollary 7 that a modified construction can also find the bottom-k eigenvectors of L.

ALGORITHM 1 – Subspace Iteration

Φ0 ∈ Rn×k has full column rank .
while not converged do

Φ̂← LΦ
Φ← QR(Φ)

end while

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

For the purposes of this section, we consider a variant of the Transformer defined in (3).

Ẑl+1 := Zl +AttnWV
l ,W

Q
l ,W

K
l
(Zl) +WRZl

Zl+1 = normalize(Ẑl+1), (6)

where normalize(Ẑl+1) normalizes [Z]i ← [Z]i/∥[Z]i∥2 for i = d...d+ k. We use Bl ∈ Rn×d and
Φl ∈ Rn×k to denote the corresponding columns of Z⊤

l , i.e. Z⊤
l =:

[
BTl , Φ⊤

l

]
. The notation is

chosen as Φl corresponds to Φ in Algorithm 1. We initialize B0 = B and let Φ0 be some arbitrary
matrix with full column rank.
Lemma 6 (Subspace Iteration for Finding Top k Eigenvectors) Consider the Transformer de-
fined in (6). There exists a choice of WV ,WQ,WK ,WR such that k + 1 layers of the Transformer
implements one iteration of Algorithm 1. Consequently, the output ΦL of a L-layer Transformer
approximates the top-k eigenvectors of L to the same accuracy as L/(k + 1) steps of Algorithm 1.
Discussion. We bound the Transformer’s error by the error of Algorithm 1, but do not provide
an explicit convergence rate. This omission is because the convergence rate of Algorithm 1 itself is
difficult to characterize, and has a complicated dependence on pairwise spectral gaps; with additional
dependence on how "well-conditioned" Φ0 is. The high-level proof idea is to use self-attention to
orthogonalize the columns of Φl (Lemma 10. We defer the proof of Lemma 6 to Appendix 12. We
experimentally validate Lemma 6 in Section 4.1.

The construction in Lemma 6 explicitly requires k + 1 layers to perform a QR decomposition of
Φ plus multiply by L. The layer usage can be much more efficient in practice. First, multiple
L-multiplications can take place before a single QR-factorization step. Second, the k layers for
performing QR decomposition can be implemented in a single layer with k parallel heads.

In graph applications, one is often interested in the bottom-k eigenvectors of L. The following corol-
lary shows that a minor modification of Lemma 6 will instead compute the bottom k eigenvectors.

Corollary 7 (Subspace Iteration for Finding Bottom k Eigenvectors) Consider the same setup
as Lemma 6. Let C > 0 be some constant. There exists a construction for a L-layer Transformer
(similar to Lemma 6), which implements Algorithm 1 with L replaced by CI − L, and ΦL approxi-
mates the bottom k eigenvectors of L if λmax(L) ≤ C.

Alternatively, one can first compute L† (via Lemma 4), and then perform subspace iteration for L†.

4.1 EXPERIMENTS FOR LEMMA 6

We verify Lemma 6 and Corollary 7 experimentally by evaluating the ability of the Transformer
(3) to learn top-k and bottom-k eigenvectors. As in Section 3.5, we consider two kinds of random
graphs: fully connected and CSL with 10 nodes; each edge is has a randomly sampled resistance;
see Appendix 13.1 for details. For a graph G with Laplacian L, let λ1 ≤ λ2 ≤ ...λ10 denote its
eigenvalues. Let v1, . . . , v10 denote its eigenvectors; e.g. λ1 = 0 and v1 = 1⃗/

√
n.

The Transformer architecture is as defined in Section 6, with k = n. We increase the dimension of
Zl to (d + n + n) × n, and read out the last n rows of ZL as output; this makes the architecture
consistent with the one used in the experiments in Section 3.5; the construction in Lemmas 6 and
Corollary 7 extend to this setting by setting appropriate parameters to 0. In addition, we also nor-
malize [Zl]1...d each layer by its Frobenius norm, i.e., [Zl]1...d ← [Zl]1...d/∥[Zl]1...d∥F (the proof
of Lemma 6 still holds as subspace iteration is scaling-invariant). The input to the Transformer is
Z⊤
0 = [B, Φ0], and we make Φ0 a trainable parameter along withWV ,WQ,WK ,WR. We define

lossi := E
[
min

{
∥ϕL,i − vi∥22, ∥ϕL,i + vi∥22

}]
, where ϕL,i is the ith column of ΦL and expectation

is taken with respect to randomness in sampling the graph. We train and evaluate the Transformer
on two kinds of losses: loss1−5 := 1

5

∑5
i=1 lossi and loss1−10 := 1

10

∑10
i=1 lossi. We plot the results

in Figure 2, and summarize our few findings below:

1. 2(a) and 2(d): Both loss1−5 and loss1−10 appear to decrease exponentially with number of Trans-
former layers, for both FC and CSL graphs. This is consistent with Lemma 6 and Corollary 7.

2. When the Transformer is trained on loss1−5, smaller eigenvectors are learned more accurately
(see 2(b) and 2(c)). In contrast, when the Transformer is trained on loss1−10, larger eigenvectors
are learned more accurately, with the exception of loss2 (see 2(e) and 2(f)).

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

These suggest that the Transformer first finds dominant eigenvectors, then less-dominant ones via
orthogonalization: For loss1−5, λ2 is the most dominant both for CI −L, and for L† (see Corollary
7). For loss1−10, λ10 is the most dominant for L. We omit loss1 from Figures 2(b), 2(c), 2(e), 2(f)
because v1 is a constant so loss1 goes to 0 extremely fast, making it hard to see the other lines.

1 3 5 7 9
Layers

0.5

0.0

0.5

1.0

1.5

lo
g(

Lo
ss

)

fully connected
CSL

1 3 5 7 9
Layer

2.5

2.0

1.5

1.0

0.5

0.0

lo
g(

lo
ss

) 2
3
4
5

1 3 5 7 9
Layer

3.0

2.5

2.0

1.5

1.0

0.5

0.0

0.5

lo
g(

lo
ss

) 2
3
4
5

2(a) loss1−5 2(b) {lossi}i=2...5, FC 2(c) {lossi}i=2...5, CSL

1 3 5 7 9
Layers

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

lo
g(

Lo
ss

)

fully connected
CSL

1 3 5 7 9
Layer

3.0

2.5

2.0

1.5

1.0

0.5

0.0

0.5
lo

g(
lo

ss
)

2
3
4
5
6
7
8
9
10

1 3 5 7 9
Layer

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

0.5

lo
g(

lo
ss

)

2
3
4
5
6
7
8
9
10

2(d) loss1−10 2(e) {lossi}i=2...10, FC 2(f) {lossi}i=2...10, CSL

Figure 2: log(loss∗) vs. number of layers. Top row: various losses for the Transformer trained on
loss1−5. Bottom row: various losses for the Transformer trained on loss1−10.

5 PARAMETER-EFFICIENT IMPLEMENTATION

As explained in Section 3.1, the sizes of the WQ,WK ,WV ,WR matrices can scale with O(n4) in
the worst case, where n is the number of nodes. This makes the memory requirement prohibitive.
To alleviate this, we present below in (7) a more efficient Transformer implementation than the one
defined in (3). The representation in (7) is strictly more constrained than (3), but it is still expressive
enough to implement all the previous constructions. For each layer l, let αVl , αQl , αKl , αRl be scalar
weight parameters, and let WV,Φ

l , WQ,Φ
l , WK,Φ

l , WR,Φ
l ∈ R2k×2k. Let Bl,Φl evolve as

B⊤
l+1 = (1 + αRl)B

⊤
l + αVl B

⊤
l

(
αQl α

K
l BlB

⊤
l +ΦlW

Q,Φ
l

⊤
WK,Φ
l Φ⊤

l

)
(7)

Φ⊤
l+1 =

(
I +WR,Φ

l

)
Φ⊤
l +WV,Φ

l Φ⊤
l

(
αQl α

K
l BlB

⊤
l +ΦlW

Q,Φ
l

⊤
WK,Φ
l Φ⊤

l

)
,

with initialization B0 := B, and Φ0 = [Ψ, 0k×n]. We verify that (7) matches (3), with Zl =[
B⊤
l ,Φ

⊤
l

]
; the difference is that certain blocks of WV

l , WQ
l , WK

l , WR
l constrained to be zero or

some scaling of identity. Nonetheless, we verify that the constructions in Lemmas 1, 2, 3 and 6 can
all be realized within the constrained dynamics (7). We prove this in Lemma 8 in Appendix 11.
In Figure 15, we show that the efficient implementation (7) performs similarly (and in many cases
better than) the standard implementation (3) on all the synthetic experiments.

Besides the reduced parameter size, we highlight two additional advantages of (7):

1. Let TFBl (B,Φ) (resp TFΦ
l (B,Φ)) be defined as the value of B⊤

l (resp Φ⊤
l) when initialized at

B0 = B and Φ0 = Φ under the dynamics (7). Let U ∈ Rd×d be some permutation matrix over
edge indices. Then

(a) TFBl is equivariant to edge permutation, i.e. TFBl (BU,Φ) = U⊤TFBl (B,Φ)

(b) TFΦ
l is invariant to edge permutation, i.e. TFΦ

l (BU,Φ) = TFΦ
l (B,Φ).

We provide a short proof of this in Lemma 9 in Appendix 11.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

2. If Bl is sparse, then B⊤
l Bl can be efficiently computed using sparse matrix multiply. This is the

case for all of our constructions for all layers l.

6 LEARNING POSITIONAL ENCODING FOR MOLECULAR REGRESSION

In Sections 3.5 and 4.1, we saw that the Transformer is capable of learning a variety of objectives:
L†,
√
L, e−sL, and EVD(L), when we explicitly train on that objective. An natural question is

then: Can a GNN perform as well on a downstream task if we replace its PE by a linear Transformer,
and train the GNN together with the linear Transformer? There are two potential benefits to this
approach: First, the Transformer can learn a PE that is better-suited to the task than hard-coded
PEs, and thus achieve higher accuracy. Second, the Transformer with a few layers/dimensions
may learn to compute only the most relevant features, and achieve comparable accuracy to the
hard-coded PE using less computation. To test this, we evaluate the performance of our proposed
linear Transformer on a molecular regression task on two real-world datasets: QM9 (Ruddigkeit
et al., 2012; Ramakrishnan et al., 2014) and ZINC (Irwin et al., 2012). The regression target is
constrained solubility (Dwivedi et al., 2023). Our experiments are based on the Graph Transformer
(GT) implementation from Dwivedi & Bresson (2020). In Table 2, we compare three loss values:
GT without PE, GT with Laplacian Eigenvector as PE (LapPE), and GT with linear Transformer
as PE. We present details of the datasets in Appendix 14.1. The architecture is a modified version
of (7), detailed in Appendix 14.2. Other experiment details, including precise definitions of each
model, can be found in Appendix 14.3.

Model # Parameters Loss

Z
IN

C Graph Transformer 800771− 891 0.286± 0.0078
Graph Transformer + LapPE 800771 0.201± 0.0034
Graph Transformer + Linear Transformer 800771 + 488 0.138± 0.012

Q
M

9 Graph Transformer 799747− 512 0.419± 0.0047
Graph Transformer + LapPE 799747 0.227± 0.0094
Graph Transformer + Linear Transformer 799747 + 240 0.221± 0.0060

Table 2: Regression Loss for ZINC and QM9 for different choices of PE.

The difference between GT and GT + LapPE is substantial for both QM9 and ZINC, highlighting
the importance of PE in both cases. Going from GT + LapPE to GT + Linear Transformer for
ZINC, there is a significant further improvement in loss (about 30%). This is remarkable, consid-
ering that the linear Transformer accounts for less than 0.7% of the total number of parameters.
Note that the SOTA error for ZINC regression is significantly lower than 0.138 on more recent ar-
chitectures; the significance of our result is in demonstrating the improvement just by replacing the
LapPE with the linear Transformer, while keeping everything else fixed. In contrast, going from GT
+ LapPE to GT + Linear Transformer for QM9, the difference is essentially zero. We conjecture
that this may be because QM9 molecules (average of about 9 nodes and 19 edges) are considerably
smaller than ZINC (average of about 23 nodes and 40 edges). Thus there may not be too many
additional useful features to learn, and LapPE close to optimal. It is still consistent with our theory,
for the Linear Transformer to do as well as LapPE.

7 CONCLUSION

We proved by explicit construction that the linear Transformer is capable of numerous graph prop-
erties of interest, given the graph incidence matrix as input. Our construction (3) is efficient: on
a graph of n nodes and d edges, we require O(d2 + n2) parameters per-layer. We also a more
parameter-efficient implementation (7) that uses only O(k2) parameters per-layer, where k is the
dimension of the query. In a series of synthetic experiments, we verify that the Transformer is ca-
pable of learning various graph features with high accuracy. On a real-world molecular regression
task, we verify that the linear Transformer can learn PEs which surpass the hard-coded PE based on
Laplacian Eigenvectors, leading to improved loss on the down-stream regression loss.

Our result sheds light on how Transformers can be used to process graph-structured data, and sug-
gests promising directions for the design of more efficient and representative graph Transformers.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

8 ETHICS STATEMENT

The authors have adhered to ICLR’s code of ethics during the writing of this paper, and when
conducting the research described herein. There are no ethics concerns which need to be highlighted.

9 REPRODUCIBILITY

We use both synthetic data and open-source molecular datasets in our experiments. Details of our
experiment procedures and implementations have been provided in Section 3.5, Section 4.1, Section
6 and Appendix 14.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

REFERENCES

AH Bentbib and A Kanber. Block power method for svd decomposition. Analele ştiinţifice ale
Universităţii" Ovidius" Constanţa. Seria Matematică, 23(2):45–58, 2015.

Mitchell Black, Zhengchao Wan, Gal Mishne, Amir Nayyeri, and Yusu Wang. Comparing graph
transformers via positional encodings. arXiv preprint arXiv:2402.14202, 2024.

Thomas Bühler and Matthias Hein. Spectral clustering based on the graph p-laplacian. In Proceed-
ings of the 26th annual international conference on machine learning, pp. 81–88, 2009.

François Charton. Linear algebra with transformers. arXiv preprint arXiv:2112.01898, 2021.

Krzysztof Choromanski, Han Lin, Haoxian Chen, Tianyi Zhang, Arijit Sehanobish, Valerii Likhosh-
erstov, Jack Parker-Holder, Tamas Sarlos, Adrian Weller, and Thomas Weingarten. From block-
toeplitz matrices to differential equations on graphs: towards a general theory for scalable masked
transformers. In International Conference on Machine Learning, pp. 3962–3983. PMLR, 2022.

Ronald R Coifman and Stéphane Lafon. Diffusion maps. Applied and computational harmonic
analysis, 21(1):5–30, 2006.

Vijay Prakash Dwivedi and Xavier Bresson. A generalization of transformer networks to graphs.
arXiv preprint arXiv:2012.09699, 2020.

Vijay Prakash Dwivedi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and Xavier Bresson.
Graph neural networks with learnable structural and positional representations. arXiv preprint
arXiv:2110.07875, 2021.

Vijay Prakash Dwivedi, Chaitanya K Joshi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and
Xavier Bresson. Benchmarking graph neural networks. Journal of Machine Learning Research,
24(43):1–48, 2023.

Moshe Eliasof, Fabrizio Frasca, Beatrice Bevilacqua, Eran Treister, Gal Chechik, and Haggai
Maron. Graph positional encoding via random feature propagation. In International Conference
on Machine Learning, pp. 9202–9223. PMLR, 2023.

John J Irwin, Teague Sterling, Michael M Mysinger, Erin S Bolstad, and Ryan G Coleman. Zinc:
a free tool to discover chemistry for biology. Journal of chemical information and modeling, 52
(7):1757–1768, 2012.

Jinwoo Kim, Saeyoon Oh, and Seunghoon Hong. Transformers generalize deepsets and can be
extended to graphs & hypergraphs. Advances in Neural Information Processing Systems, 34:
28016–28028, 2021.

Jinwoo Kim, Dat Nguyen, Seonwoo Min, Sungjun Cho, Moontae Lee, Honglak Lee, and Seunghoon
Hong. Pure transformers are powerful graph learners. Advances in Neural Information Processing
Systems, 35:14582–14595, 2022.

Devin Kreuzer, Dominique Beaini, Will Hamilton, Vincent Létourneau, and Prudencio Tossou. Re-
thinking graph transformers with spectral attention. Advances in Neural Information Processing
Systems, 34:21618–21629, 2021.

Derek Lim, Joshua Robinson, Lingxiao Zhao, Tess Smidt, Suvrit Sra, Haggai Maron, and Stefanie
Jegelka. Sign and basis invariant networks for spectral graph representation learning. arXiv
preprint arXiv:2202.13013, 2022.

Liheng Ma, Chen Lin, Derek Lim, Adriana Romero-Soriano, Puneet K Dokania, Mark Coates,
Philip Torr, and Ser-Nam Lim. Graph inductive biases in transformers without message passing.
In International Conference on Machine Learning, pp. 23321–23337. PMLR, 2023.

Grégoire Mialon, Dexiong Chen, Margot Selosse, and Julien Mairal. Graphit: Encoding graph
structure in transformers. arXiv preprint arXiv:2106.05667, 2021.

Luis Müller, Mikhail Galkin, Christopher Morris, and Ladislav Rampášek. Attending to graph
transformers. arXiv preprint arXiv:2302.04181, 2023.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Wonpyo Park, Woonggi Chang, Donggeon Lee, Juntae Kim, and Seung-won Hwang. Grpe: Relative
positional encoding for graph transformer. arXiv preprint arXiv:2201.12787, 2022.

Richard Peng and Daniel A Spielman. An efficient parallel solver for sdd linear systems. In Pro-
ceedings of the forty-sixth annual ACM symposium on Theory of computing, pp. 333–342, 2014.

Raghunathan Ramakrishnan, Pavlo O Dral, Matthias Rupp, and O Anatole Von Lilienfeld. Quantum
chemistry structures and properties of 134 kilo molecules. Scientific data, 1(1):1–7, 2014.

Ladislav Rampášek, Michael Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and Do-
minique Beaini. Recipe for a general, powerful, scalable graph transformer. Advances in Neural
Information Processing Systems, 35:14501–14515, 2022.

Yu Rong, Yatao Bian, Tingyang Xu, Weiyang Xie, Ying Wei, Wenbing Huang, and Junzhou Huang.
Self-supervised graph transformer on large-scale molecular data. Advances in neural information
processing systems, 33:12559–12571, 2020.

Lars Ruddigkeit, Ruud Van Deursen, Lorenz C Blum, and Jean-Louis Reymond. Enumeration of 166
billion organic small molecules in the chemical universe database gdb-17. Journal of chemical
information and modeling, 52(11):2864–2875, 2012.

Imanol Schlag, Kazuki Irie, and Jürgen Schmidhuber. Linear transformers are secretly fast weight
programmers. In International Conference on Machine Learning, pp. 9355–9366. PMLR, 2021.

Jianbo Shi and Jitendra Malik. Normalized cuts and image segmentation. In Proceedings of IEEE
computer society conference on computer vision and pattern recognition, pp. 731–737. IEEE,
1997.

Balasubramaniam Srinivasan and Bruno Ribeiro. On the equivalence between positional node em-
beddings and structural graph representations. In International Conference on Learning Repre-
sentations, 2020. URL https://openreview.net/forum?id=SJxzFySKwH.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information
processing systems, pp. 5998–6008, 2017. URL http://arxiv.org/abs/1706.03762.

Ameya Velingker, Ali Sinop, Ira Ktena, Petar Veličković, and Sreenivas Gollapudi. Affinity-aware
graph networks. Advances in Neural Information Processing Systems, 36, 2024.

Johannes Von Oswald, Eyvind Niklasson, Ettore Randazzo, João Sacramento, Alexander Mordv-
intsev, Andrey Zhmoginov, and Max Vladymyrov. Transformers learn in-context by gradient
descent. In International Conference on Machine Learning, pp. 35151–35174. PMLR, 2023.

Bingbing Xu, Huawei Shen, Qi Cao, Keting Cen, and Xueqi Cheng. Graph convolutional networks
using heat kernel for semi-supervised learning. arXiv preprint arXiv:2007.16002, 2020.

Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, and
Tie-Yan Liu. Do transformers really perform badly for graph representation? Advances in neural
information processing systems, 34:28877–28888, 2021.

Seongjun Yun, Minbyul Jeong, Raehyun Kim, Jaewoo Kang, and Hyunwoo J Kim. Graph trans-
former networks. Advances in neural information processing systems, 32, 2019.

Bohang Zhang, Shengjie Luo, Liwei Wang, and Di He. Rethinking the expressive power of gnns via
graph biconnectivity. arXiv preprint arXiv:2301.09505, 2023.

13

https://openreview.net/forum?id=SJxzFySKwH
http://arxiv.org/abs/1706.03762

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

10 PROOFS OF LEMMAS IN SECTION 3

10.1 ELECTRIC FLOW

Proof of Primal Dual Equivalence for Electric Flow
By convex duality, the primal problem in (4) can be reformulated as

min
f :BR1/2f=ψ

d∑
j=1

rjf
2
j

=min
f

max
ϕ

f⊤Rf − 2ϕ⊤(BR1/2f − ψ)

=max
ϕ

min
f
f⊤Rf − 2ϕ⊤(BR1/2f − ψ)

=max
ϕ
−ϕ⊤BB⊤ϕ+ 2ϕ⊤ψ

=− min
ϕ∈Rn

ϕ⊤Lϕ− 2ϕ⊤ψ (8)

Proof of Lemma 1
Let Fψ(ϕ) := 1

2ϕ
⊤Lϕ−ϕ⊤ψ denote (half of) the dual optimization objective from (5). Its gradient

is given by

∇Fψ(ϕ) = Lϕ− ψ.
Let Zl denote the output after l layers of the Transformer (3), i.e. Zl evolves according to (3):

Zl+1 := Zl +WV
l ZlZ

⊤
l W

Q
l

⊤
WK
l Zl +WR

l Zl.

We use B⊤
l to denote the first d rows of Zl, Λ⊤

l to denote the (d + 1)th row to (d + k)th row of

Zl and Φ⊤
l to denote the last k rows of Zl, i.e. Zl =

B⊤
l

Λ⊤
l

Φ⊤
l

. For i = 1...k, let ϕl,i denote the ith

column of Φl. Then there exists a choice of WV ,WQ,WK ,WR, such that for all i,

ϕl+1,i = ϕl,i − δ∇Fψi
(ϕl,i). (9)

Before proving (9), we first consider its consequences. We can verify that ∇2Fψ(·) = 2L, which is
in turn upper and lower bounded by λmin ≺ L ≺ λmax. By standard analysis of gradient descent
for strongly convex and Lipschitz smooth functions, for δ < 1

λmax
, we verify that

Fψi(ϕl,i)− F ∗

≤e−δlλmin(Fψi
(ϕ0,i)− F ∗)

≤e−δlλminλmax∥ψi∥22.
By strong convexity,

∥ϕl,i − L†ψ∥22 ≤ e−δlλmin
λmax

λmin
∥ψi∥22

As a final note, F is only weakly convex along the 1⃗ direction, but we can ignore this because ϕl,i
will always be orthogonal to 1⃗ as long as ϕl,0 is (as we assumed in the lemma statement).

The remainder of the proof will be devoted to showing (9). Recall that the input to the Transformer

Z0 is initialized as Z0 =

 B⊤

Ψ⊤

0k×n

 ∈ R(d+2k)×n. For some fixed δ, our choice of parameter matrices

will be the same across layers:

WV
l =

[
0d×d 0d×k 0d×k
0k×d 0k×k 0k×k
0k×d 0k×k −δIk×k

]
, WQ

l

⊤
WK
l =

[
Id×d 0d×k 0d×k
0k×d 0k×k 0k×k
0k×d 0k×k 0k×k

]
, WR

l =

[
0d×d 0d×k 0d×k
0k×d 0k×k 0k×k
0k×d δIk×k 0k×k

]
(10)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

By the choice of WV ,WR in (10), we verify that for all layers l, Bl = B0 = B, so that
Z⊤
l (W

Q
l)⊤WK

l Zl = L. Again by choice of WV ,WR in (10), Λl = Ψ for all l. It thus follows
from induction that

Φl+1 = Φl − δLΦl + δΨ (11)
⇔ ϕl+1,i = ϕl,i − δLϕl,i + δψi = ϕl,i − δ∇Fψi

(ϕl,i) for i = 1...k,

thus proving (9).

10.2 RESISTIVE EMBEDDING

Proof of Lemma 2
Let Î := In×n − 1

n 1⃗⃗1
⊤. Let δ := 1/λmax.

Consider the matrix power series, which converges under our choice of δ:

√
L† =

√
δ

√(
Î − (Î − δL)

)†
=
√
δ

∞∑
l=0

(
2l

l

)
(I − δL)l

4l
Î ,

where the second inequality uses the fact that (I − δL)Î =
(
Î − δL

)
Î .

We define αl :=
√
δ
(
2l
l

)
1
4l

.

WV
l =

[
0d×d 0d×k 0d×k
0k×d −δIk×k 0k×k
0k×d 0k×k 0k×k

]
, WQ

l

⊤
WK
l =

[
Id×d 0d×k 0d×k
0k×d 0k×k 0k×k
0k×d 0k×k 0k×k

]
, WR

l =

[
0d×d 0d×k 0d×k
0k×d 0k×k 0k×k
0k×d αlIk×k 0k×k

]
(12)

Recall that Zl =:

B⊤
l

Λl
Φ⊤
l

. We verify that for all l, Bl = B, and

Λl+1 = (I − δL)Λl = (I − δL)l

Φl+1 = Φl + αlΛl =

l∑
i=0

αi(I − δL)iÎΨ,

where we use the fact that Ψ = ÎΨ by assumption. Therefore,∥∥∥[Z]⊤L,i −√L†ψi

∥∥∥
2
≤

∥∥∥∥∥
∞∑
i=L

αi(Î − δL)i
∥∥∥∥∥
2

∥ψi∥2

By upper and lower bounds of Stirling’s formula
√
2πLLLe−L ≤ L! ≤ e

√
LLLe−L, we can bound

αL ≤ 2
√
δ/L. Using the fact that (Î − δL) ≺ e−δλmin Î , and using the bound on gemetric sum, the

above is bounded by 2e−Lδλmin

λmin

√
δL
∥ψi∥2. The conclusion follows by plugging in δ = 1/λmax.

10.3 HEAT KERNEL

Proof of Lemma 3
The power series for e−sL is given by

e−sL =

∞∑
l=0

(−s)lLl

l!
.

We define αl :=
(−s)l
l! . For each layer l, define

WV
l =

[
0d×d 0d×k 0d×k
0k×d Ik×k 0k×k
0k×d 0k×k 0k×k

]
, WQ

l

⊤
WK
l =

[
Id×d 0d×k 0d×k
0k×d 0k×k 0k×k
0k×d 0k×k 0k×k

]
, WR

l =

[
0d×d 0d×k 0d×k
0k×d −Ik×k 0k×k
0k×d αlIk×k 0k×k

]

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Recall that Zl =:

B⊤
l

Λl
Φ⊤
l

. We verify that for all l, Bl = B, and

Λl+1 = LΛl = Ll+1Ψ

Φl+1 = Φl + αlΛl =

l∑
i=0

αiLiΨ.

Therefore, ∥∥∥[Z]⊤L,i − e−sLψi∥∥∥
2
≤

∥∥∥∥∥
∞∑

i=L+1

αiLi
∥∥∥∥∥
2

∥ψi∥2

By upper and lower bounds of Stirling’s formula, L! ≥ (L/e)
L. Therefore, for L ≥ 8sλmax, we

have
∥∥αLLL∥∥2 ≤ (

1
2

)L−8sλmax . For L ≥ 2, the infinite sum is within a factor 2 of the first term,

thus
∥∥∑∞

i=L+1 αiLi
∥∥
2
≤ 2

(
1
2

)L−8sλmax .

10.4 FASTER CONSTRUCTIONS

Proof of Lemma 4
We begin by recalling the Taylor expansion of L†:

L† = δ

∞∑
l=0

(
Î − δL

)l
= δ

∞∑
l=0

(I − δL)lÎ .

(recall that Î := In×n − 1⃗⃗1⊤/n).

Our proof of this section uses a simple but powerful alternative expansion (see e.g. Peng & Spielman
(2014)): for any integer t,

δ

t∏
l=0

(
I + (I − δL)2

l
)
= δ

2t∑
l=0

(I − δL)l. (13)

Notice that t terms in the LHS equals 2t terms of the RHS. This is exactly why we will get a double
exponential convergence.

As seen in the proof of Lemma 1, each term in the RHS expansion coincides with one step of
gradient descent. Therefore, if one layer of the Transformer can implement one additional product
on the LHS, a t layer Transformer can efficiently implement 2t steps of gradient descent. In the
remainder of the proof, we will show exactly this. For all layers l, let

WV
l =

[
In×n 0n×n 0n×n
0n×n 0n×n 0n×n
In×n 0n×n 0n×n

]
, WQ

l

⊤
WK
l =

[
0n×n 0n×n 0n×n
In×n 0n×n 0n×n
0n×n 0n×n 0n×n

]
, WR

l =

[−In×n 0n×n 0n×n
0n×n 0n×n 0n×n
0n×n 0n×n 0n×n

]
.

Let Z⊤
l =: [Γl, Λl, Φl], where Γl,Λl,Φl ∈ Rn×n. Under the configuration of weight matrices

above, we verify that Λl = In×n for all l, and thus Z⊤
l W

Q
l

⊤
WK
l Zl = Γl. for all l. Next, we verify

by induction that Γl+1 = Γl − Γl + Γ⊤
l Γl = Γ⊤

l Γl = (I − δL)2
l

. Note that Γl is symmetric.

Finally, we verify that Φl+1 = Φl + Γ⊤
l Φl =

(
I + (I − δL)2

l
)
Φl. Thus by induction,

ΦL = δ

L∏
i=0

(
I + (I − δL)2

i
)
Î .

Finally, again using (13), the residual term is given by

L† − ΦL = δ

∞∑
i=2L+1

(I − δL)i.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Noting that (I − δL) ≺ (1− δλminL)I , we can bound∥∥L† − ΦL
∥∥
2
≤

exp
(
−2L−1δL

)
λmin

Proof of Lemma 5
Let C := 3L. We will use the bound

(I − sL/C)C ≺ e−sL ≺ (I − sL/C)C
(
1− s2L2/C

)−1 ≺ (I − sL/C)C
(
I + 2s2L2/C

)
,

where the last inequality is by our assumption on L. Therefore,∥∥∥(I − sL/C)C − exp(−sL)
∥∥∥
2
≤ 2s2L2

C
∥exp(−sL)∥2 ≤

s2λ2max

C
.

Let Z⊤
l =: [Γl, Λl]. We will now show that ΓL = (I − sL/C)C . Let us define, for all l,

WV
l =

[
In×n 0n×n
0n×n 0n×n

]
, WQ

l

⊤
WK
l =

[
In×n 0n×n
0n×n 0n×n

]
, WR

l =

[
−In×n 0n×n
0n×n 0n×n

]
.

Then we verify that Γl+1 = Γl − Γl + ΓlΓ
⊤
l Γl = Γ3

l (by symmetry of Γl). Thus by induction,

Γl = Γ3l

0 = (I − sL/C)3
l

= (I − sL/C)C .

11 PROOFS OF LEMMAS IN SECTION 5

Lemma 8 (Constructions under (7)) The constructions in Lemmas 1, 2, 3 and 6 can be realized
within the constrained dynamics (7).

For readability, we leave the proof below in black color.

Proof of Lemma 8

In general, we verify that (7) is equivalent to (3) with weights satisfying the following form:

WV
l =

[
αVl Id×d 0d×2k

02k×d WV,Φ
l

]
, WQ

l =

[
αQl Id×d 0d×2k

02k×d WQ,Φ
l

]
, WK

l =

[
αKl Id×d 0d×2k

02k×d WK,Φ
l

]
, WR

l =

[
αRl Id×d 0d×2k

02k×d WR,Φ
l

]
.

Below, we state the weight configurations for (7) which will recover the constructions in each of the
stated lemmas. Note that there is a small change in notation: Φl as defined in Section 5 corresponds
to [Λl; Φl] from the proofs of Lemmas 1, 2 and 3.

We leave the simple verification of this equivalence to the reader.

The construction in Lemma 1 is equivalent to (7) with weight configuration αVl = 0, αQl = αKl = 1,

αRl = 0, WV,Φ
l =

[
0k×k 0k×k
−δIk×k 0k×k

]
, WQ,Φ

l =WK,Φ
l = 0, WR

l =

[
0k×k 0k×k
δIk×k 0k×k

]
.

The construction in Lemma 2 is equivalent to (7) with weight configuration αVl = 0, αQl = αKl = 1,

αRl = 0, WV,Φ
l =

[
− 1
λmax

Ik×k 0k×k
0k×k 0k×k

]
, WQ,Φ

l =WK,Φ
l = 0, WR

l =

[
0k×k 0k×k
1

λmax
Ik×k 0k×k

]
.

The construction in Lemma 3 is equivalent to (7) with weight configuration αVl = 0, αQl = αKl = 1,

αRl = 0, WV,Φ
l =

[
Ik×k 0k×k
0k×k 0k×k

]
, WQ,Φ

l = WK,Φ
l = 0, WR

l =

[−Ik×k 0k×k
(−s)l
l! Ik×k 0k×k

]
, where s is

the temperature parameter.

The construction in Lemma 6 is equivalent to (7) with the following weight configurations:

1. To implement the first step inside the loop of Algorithm 1, let αVl = 0, αQl = αKl = 1,

αRl = 0, WV,Φ
l =

[
0k×k 0k×k
0k×k Ik×k

]
, WQ,Φ

l =WK,Φ
l = 0, WR

l =

[
0k×k 0k×k
0k×k −Ik×k

]
.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

2. To implement the QR decomposition step inside the loop of Algorithm 1, we will need to
an equivalent construction as in Lemma 10. Let αVl = 0, αQl = αKl = 1, αRl = 0, and let

WV,Φ
l =

[
0k×k 0k×k
0k×k A

]
, WQ,Φ

l

⊤
WK,Φ
l =

[
0k×k 0k×k
0k×k H

]
, WR

l = 0, where A and H are

as defined in the proof of Lemma 10.

Lemma 9 (Invariance and Equivariance) Let TFBl and TFΦ
l be as defined in Section 5. Let U ∈

Rd×d be any permutation matrix. Then for all layers l,

TFBl (BU,Φ) = U⊤TFBl (B,Φ)

TFΦ
l (BU,Φ) = TFΦ

l (B,Φ) (14)

Proof
We will prove these two claims by induction simultaneously. Recall from (7) that

B⊤
l+1 = (1 + αR,l)B

⊤
l + αV,lB

⊤
l

(
αQ,lαK,lBlB

⊤
l +ΦlW

Q,Φ
l WK,Φ

l Φ⊤
l

)
Φ⊤
l+1 =

(
I +WR,Φ

l

)
Φ⊤
l +WV,Φ

l Φ⊤
l

(
αQ,lαK,lBlB

⊤
l +ΦlW

Q,Φ
l WK,Φ

l Φ⊤
l

)
.

Recall from the definition that TFB0 (B,Φ) := B0 := B and TFΦ
l (B,Φ) := Φ0 := Φ. Thus (14)

holds by definition. Now suppose (14) holds for some l. By (7),

TFBl+1(BU,Φ)

=(1 + αR,l)TF
B
l (BU,Φ)

+ αV,lTF
B
l (BU,Φ)

(
αQ,lαK,lTF

B
l (BU,Φ)

⊤TFBl (BU,Φ)
)

+ αV,lTF
B
l (BU,Φ)

(
TFΦ

l (BU,Φ)
⊤WQ,Φ

l WK,Φ
l TFΦ

l (BU,Φ)
)

=(1 + αR,l)U
⊤TFBl (B,Φ)

+ αV,lU
⊤TFBl (B,Φ)

(
αQ,lαK,lTF

B
l (B,Φ)

⊤TFBl (B,Φ)
)

+ αV,lU
⊤TFBl (B,Φ)

(
TFΦ

l (B,Φ)
⊤WQ,Φ

l WK,Φ
l TFΦ

l (B,Φ)
)

=U⊤TFBl+1(B,Φ),

where we use the fact that UU⊤ = Id×d. By similar steps as above, we also verify that

TFΦ
l+1(BU,Φ) = TFΦ

l+1(B,Φ).

This concludes the proof.

12 PROOFS OF LEMMAS IN SECTION 4

Lemma 10 (Single Index Orthogonalization) Consider the same setup as Lemma 6, with Trans-
former defined in (6). Let ϕl,j denote the jth column of Φl, for j = 1...k. Let i denote an arbitrary
coordinate. Assume that ϕl,i = 1 for all i. Then there exists choices of WV ,WQ,WK ,WR, such
that

ϕ̂l+1,i = ϕl,i −
k∑

j=i+1

⟨ϕl,i, ϕl,j⟩ϕl,j , ϕl+1,i =
ϕ̂l+1,i∥∥∥ϕ̂l+1,i

∥∥∥
2

,

and for any j ̸= i,

ϕl+1,j = ϕl,j .

Proof of Lemma 10
Recall that Z⊤

l =: [Bl, Φl]. Let A ∈ Rk×k denote the matrix where Aii = 1 and is 0 everywhere

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

else. Let C denote the matrix where Cjj = 1 for all j > i, and is 0 everywhere else. Let the weight
matrices be defined as

WV
l = −

[
0d×d 0d×k
0k×d A

]
, WQ

l

⊤
WK
l =

[
0d×d 0d×k
0k×d H

]
, WR =0

Under the above definition, B⊤
l = B⊤ is a constant across all layers l. We verify that Φl evolves as

Φ⊤
l+1 = Φ⊤

l −AΦ⊤
l ΦlHΦ⊤

l .

We verify that the effect of left-multiplication by A "selects the ith row of Φ⊤
l Φl" and the effect of

right-multiplication by H "selects the (i+ 1)th...kth columns of Φ⊤
l Φl". Thus

AΦ⊤ΦH =


0 ... 0 ... 0
...

...
...

0 ... ⟨ϕl,i, ϕl,j+1⟩ ... ⟨ϕl,i, ϕl,k⟩
...

...
...

0 ... 0 ... 0

 .

The conclusion can be verified by right-multiplying the above matrix with Φ⊤
l , and then apply-

ing columnn-wise normalization to Φl as in (6) (equivalent to applying row-wise normalization to
[Z]d...d+k).

Proof of Lemma 6
Recall that Zl =:

[
BTl
Φ⊤
l

]
. Assume for now that Bl = B for all layers l. Let ϕl,i denote the ith

column of Φl. Let l be some fixed layer with weights

WV
l = −

[
0d×d 0d×k
Ik×d 0k×k

]
, WQ

l

⊤
WK
l =

[
Id×d 0d×k
0k×d 0k×k

]
, WR

l =

[
Id×d 0d×k
0k×d −Ik×k

]
. (15)

Combined with (6), these imply that Φ̂l+1 = LΦl, and that ϕl+1,i = ϕl+1,i/∥ϕl+1,i∥2. This im-
plements the first step in the loop of Algorithm 1. Although Algorithm 1 does not contain the
normalization step, the result is identical, because QR(Φ) is invariant to column-scaling of Φ.

We now show a (different) configuration of weight matrices which enable a sequence of layers to
perform QR decomposition: Consider the construction in Lemma 10. For each i, we can use a single
layer to make ϕl+1,i orthogonal with to ϕl,j for all j > i. By putting k such layers in sequence,
ϕl+k,i is orthogonal to ϕl+k,j for all i = 1...k and for all j = i+ 1...k. Thus Φl+k is exactly a QR
decomposition of Φl.

Finally, we observe that Bl is unchanged in both (15) and in the construction of Lemma 10. Thus
we verify the assumption at the beginning of the proof that Bl = B for all l. This concludes the
proof.

Proof of Corollary 7
The construction is almost identical to that in the proof of Lemma 6 above. The only difference is
that we replace the weight choice in (15) by

WV
l = −

[
0d×d 0d×k
Ik×d 0k×k

]
, WQ

l

⊤
WK
l =

[
Id×d 0d×k
0k×d 0k×k

]
, WR

l =

[
Id×d 0d×k
0k×d (C − 1)Ik×k

]
,

where the change is highlighted in red. Under this, we verify that Φ̂l+1 = (CI − L)Φl.
The remainder of the proof, including construction for the QR(Φ) operation, are unchanged from
Lemma 6.

13 DETAILS FOR SYNTHETIC EXPERIMENTS

13.1 DATA GENERATION FOR SYNTHETIC EXPERIMENTS

We consider two ways of sampling random graphs:

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

1. Fully Connected (FC) graphs: n = 10 nodes and d = 45 edges.
2. Circular Skip Links (CSL) graphs: n = 10 nodes and d = 20 edges. The skip-length is

sampled uniformly at random from {2, 4, 6, 8}. See (Dwivedi et al., 2023) for a detailed
definition of CSL graphs.

For both FC and CSL graphs, the resistance of an edge e is r(e) = eu(e), where u(e) is independently
sampled uniformly from [−2, 2].

14 DETAILS FOR MOLECULAR REGRESSION EXPERIMENT

Below, we provide various details for the molecular regression experiment in Section 6.

14.1 DATASET DETAILS

For QM9, the training set size is 20,000, the validation set size is 2000, the test set size is 100,000.
The training/validation set are subsampled from the full training/validation set. The average number
of nodes is 8.79, and the average number of edges is 18.8.

For ZINC, the training set size is 20,000, the validation set size is 2000, the test set size is 24,445.
The training/validation set are subsampled from the full training/validation set. The average number
of nodes is 23.16, and the average number of edges is 39.83.

14.2 ARCHITECTURE FOR MOLECULAR REGRESSION EXPERIMENT

The linear Transformer we use for the experiment in Section 6 is described in (16) below:

B⊤
l+1 = (1 + αR,l)B

⊤
l + αV,lB

⊤
l

(
βl,1αQ,lαK,lD

−1/2
l BlB

⊤
l D

−1/2
l + βl,2ΦlW

Q,Φ
l WK,Φ

l Φ⊤
l

)
Φ⊤
l+1 =

(
I +WR,Φ

l

)
Φ⊤
l +WV,Φ

l Φ⊤
l

(
βl,3αQ,lαK,lD

−1/2
l BlB

⊤
l D

−1/2
l + βl,4ΦlW

Q,Φ
l WK,Φ

l Φ⊤
l

)
Bl+1 ← Bl+1/∥Bl+1∥F
ϕl+1,i ← ϕl+1,i/∥ϕl+1,i∥2 (for i=1...k) (16)

It is similar to the memory-efficient Transformer architecture (7) from Section 5, with a number of
modifications which we explain below. Let the input to the transformer be Z0 ∈ Rd+k, where d
denotes the number of edges, and k is the dimension of learned features.

1. Scaling by D−1: The GT in Dwivedi & Bresson (2020) uses eigenvectors of the normalized
Laplacian L̄ := D−1/2LD−1/2, where D is the diagonal matrix whose ith diagonal entry is
given by [D]ii := |Lii| =

∑d
j=1 |Bij |. To be consistent with this setup, we modify the dy-

namics in (7) to add the scaling by D−1/2
l on the part of the self-similarity matrix involving Bl,

highlighted in red in (16), where Dl is the diagonal matrix with the ith diagonal entry given by

[Dl]ii :=

d∑
j=1

|Bl|ij .

With this additional scaling in the dynamics, the same weight constructions in all the lemmas in
this paper will compute the corresponding quantities for the normalized Laplacian L̄ instead. For
instance, with theD−1/2

l scaling, the construction in Lemma 1 computes L̄†, and the construction
in Lemma 6 computes the top-k eigenvectors of L̄. This can be verified using the following two
observations: First, in all our constructions, Φl interacts with Bl only via the self-similarity
matrix BlB⊤

l . Second, D−1/2BB⊤D−1/2 = L̄.
2. Independently scaled similarity matrix: For each layer l, we introduce additional scalar pa-

rameters βl,1, βl,2, βl,3, βl,4. One layer of (16) is more expressive than one layer of (7) but less
expressive than two layers of (7) (ignoring D−1/2).

3. Diagonal constraints on W : We constrain WV,Φ,WQ,Φ,WK,Φ to be diagonal, and WR,Φ to
be a scaling of identity.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

4. Weight sharing: Layers 3l, 3l + 1, 3l + 2 share the same parameters, for all integers l. Phrased
another way, each layer is looped 3 times.

5. Per-layer Scaling: after each layer, we scale Bl to have Frobenius norm 1, and we scale each
column of Φl to have Euclidean norm 1.

Items 2-4 help to reduce the parameter count, improve generalization. Item 5 makes training feasible
for deeper layers. The construction in Lemma 4 for subspace iteration can still be realised under the
changes in items 2-5. Under the change in item 1, the construction in Lemma 4 will find eigenvectors
of L̄ instead of L.

14.3 EXPERIMENT DETAILS

The GT we use has 128 hidden dimensions, 8 heads, and 4 layers. The position encoding dimension
is 3 for QM9, and 6 for ZINC.

The linear Transformer we use contain L = 9 layers, with parameters shared every 3 layers (see
details in Section 14.2). The dimension of Φl is 8. We use a linear map M to project ΦL down to
the PE dimension (PE_dim=3 for QM9 and PE_dim=6 for ZINC). This output is then passed to the
GNN in the same way as the LapPE. To clarify the process, we provide a pseudo-code for Graph
Transformer, Graph Transformer + LapPE and Graph Transformer + linear Transformer
below:

Let GT denote the graph transformer from (Dwivedi & Bresson, 2020). Let G denote the collection
of basic graph information, including edge list, edge features, and node features. Let LapPE(G)
return the Laplacian eigenvector positional encoding for G. Let B be the incidence matrix of G. Let
LT denote the linear Transformer, which takes B as input (Φ0 can be viewed as internal parameters
of LT)

Then the predictions for each model in Table 2 are given by

Graph Transformer GT(G,None)

Graph Transformer + LapPE GT(G,LapPE(G))

Graph Transformer + linear Transformer GT(G,linear(M,LT(B))) (17)

The trainable parameters are given by

{all the parameters of GT} + {all the parameters of LT}
={all the parameters of GT} + {M , Φ0, (α’s, β’s, W ’s from (16))}.

Before training on the actual regression task, we pretrain the linear Transformer to return the top
PE_dim Laplacian eigenvectors. This gives a good initialization, and improves the optimization
landscape.

We train using AdamW. Graph Transformer parameters are updated with 0.001 lr. Linear Trans-
former parameters are updated with 0.01 lr. For ZINC, we train for 2000 epochs with lr halved
every 800 epochs. For QM9, we train for 1000 epochs with lr halved ever 400 epochs. The means
and standard deviations in Table 2 are each computed over 4 independent seeded runs.

15 EXPERIMENTS FOR EFFICIENT IMPLEMENTATION

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

1 3 5 7 9
Layer

12

10

8

6

4

2

lo
g(

Lo
ss

)

FC
CSL

1 3 5 7 9
Layer

14

12

10

8

6

4

lo
g(

Lo
ss

)

FC
CSL

1 3 5 7 9
Layer

12

10

8

6

4

2
lo

g(
Lo

ss
)

FC
CSL

1 3 5 7 9
Layer

0.5

1.0

1.5

2.0

2.5

lo
g(

lo
ss

)

FC
CSL

3(a) lossL† (electric) 3(b) loss√L† (resistive) 3(c) lossexp (−0.5L) (heat) 3(d) Eigenvector

Figure 3: Plot of loss against number of layers for the 4 problems. Figures {3(a), 3(b), 3(c), 3(d)}
correspond to Figures {1(a),1(b),1(c),2(d)} respectively. The experiment setup of each correspond-
ing pair of plots are identical, except for the architecture used: all plots in Figure 3 are made using
the efficient implementation described in Section 5.

22

	Introduction
	Summary of Contributions
	Related Work

	Preliminaries and Notation
	Graphs
	Linear Transformer

	Transformers as powerful solvers for Laplacian problems
	Additional Setup
	Solving Electric Flow with Gradient Descent
	Transformer can implement power series.
	Computing The Principal Square Root L
	Computing the heat kernel: (-sL)

	Implementing Multiplicative Polynomial Expansions
	Experiments

	Transformers can implement Subspace Iteration to compute Eigenvectors
	Experiments for Lemma 6

	Parameter-Efficient Implementation
	Learning Positional Encoding for Molecular Regression
	Conclusion
	Ethics Statement
	Reproducibility
	Proofs of Lemmas in Section 3
	Electric Flow
	Resistive Embedding
	Heat Kernel
	Faster Constructions

	Proofs of Lemmas in Section 5
	Proofs of lemmas in Section 4
	Details for Synthetic Experiments
	Data Generation for Synthetic Experiments

	Details for Molecular Regression Experiment
	Dataset Details
	Architecture for Molecular Regression Experiment
	Experiment Details

	Experiments for Efficient Implementation

