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ABSTRACT

Constructing valid prediction intervals rather than point estimates is a well-
established method for uncertainty quantification in the regression setting. Models
equipped with this capacity output an interval of values in which the ground truth
target will fall with some prespecified probability. This is an essential require-
ment in many real-world applications in which simple point predictions’ inability
to convey the magnitude and frequency of errors renders them insufficient for
high-stakes decisions. Quantile regression is well-established as a leading ap-
proach for obtaining such intervals via the empirical estimation of quantiles in the
(non-parametric) distribution of outputs. This method is simple, computationally
inexpensive, interpretable, assumption-free, and highly effective. However, it does
require that the quantiles being learned are chosen a priori. This results in either
(a) intervals that are arbitrarily symmetric around the median which is sub-optimal
for realistic skewed distributions or (b) learning an excessive number of intervals.
In this work, we propose Quantile-Free Regression (QFR), a direct replacement
for quantile regression based interval construction which liberates it from this lim-
itation whilst maintaining its strengths. We demonstrate that this added flexibility
results in intervals with an improvement in desirable qualities (e.g. sharpness)
whilst retaining the essential coverage guarantees of quantile regression.

1 INTRODUCTION

Reliable uncertainty estimation is an essential requirement for safely and robustly deploying neural
networks in real-world applications (Amodei et al., 2016; Dietterich, 2017; Kompa et al., 2021).
However, research has consistently shown this to be a challenging problem in practice (Guo et al.,
2017; Yao et al., 2019; Ayhan & Berens, 2022). Therefore, significant efforts have been made
to address this task in order to contribute towards more reliable and trustworthy models (see e.g.
Gawlikowski et al. (2023)). A significant aspect of this effort is developing regression methods that
output predictive intervals rather than point predictions. This has proven to be a crucial requirement
in high-stakes applications including medical decision-making (Begoli et al., 2019), autonomous
driving (Su et al., 2023), and energy forecasting (Wang et al., 2022).

Especially in the case of neural networks, quantile regression (Koenker & Bassett Jr, 1978) has
emerged as a powerful method for obtaining such intervals. This approach requires the model to
output estimates of two quantiles rather than a single point prediction which is easily optimized
in practice by a simple change in loss function. These quantiles may then be used to construct an
interval (µ1, µ2) within which the true label will lie with probability α (a formal description of
quantile regression is provided in Section 2). Obtaining predictive intervals via quantile regression
has earned substantial popularity in both research and practice (Koenker & Hallock, 2001; Koenker,
2017; Yu et al., 2003; Fitzenberger et al., 2001). This uptake can be attributed to several factors
including (a) methodological simplicity requiring minimal changes to the modeling procedure, (b)
negligible increased computational cost (in contrast to e.g. ensemble methods (Lakshminarayanan
et al., 2017)), (c) simple, easily interpreted characterization of uncertainty (Savelli & Joslyn, 2013;
Goodwin et al., 2010), (d) lack of parametric assumptions on the data-generating process, and (e)
enduring empirical effectiveness (Chung et al., 2021; Tagasovska & Lopez-Paz, 2019). Furthermore,
quantile regression methods can be wrapped in the conformal prediction procedure of Vovk et al.
(2005) to additionally provide finite sample coverage guarantees as demonstrated in Romano et al.
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Figure 1: Symmetric quantiles. We compare two pairs of intervals on an identical (non-symmetric) log-
normal probability distribution where in both cases a fixed level of coverage α is obtained. In the left figure,
the intervals are selected to be symmetric in terms of probability mass around the median q = 0.5 (i.e. the
two lined regions and contain equal probability mass) as in the case of quantile regression. In the right
figure, we remove this constraint and obtain a much narrower interval with identical coverage.

(2019). Several variations of quantile regression have been introduced in recent years (see Section 2)
which are typically evaluated based on desirable properties of their resulting prediction intervals.
These include satisfying the required level of coverage, minimizing interval width, and achieving
improved conditional coverage (also see Section 2).

In this work our contributions are threefold: (1) In Section 3.1 we identify a substantial inefficiency
in the standard procedure of first estimating quantiles from which predictive intervals are then de-
rived. We show that this typically results in intervals with their midpoint fixed at the median which
is undesirable for non-symmetric distributions (Figure 1) or requires learning more quantiles than
necessary resulting in a more difficult learning problem and, therefore, sub-optimal performance
(see e.g. SQR in Section 2); (2) In Section 3.2 we propose a novel objective which directly learns
intervals without a priori specifying particular quantiles. We then equip this function with a regular-
ization term that aids in selecting among possible interval choices by rewarding desirable properties
such as narrower intervals or improved conditional coverage. This results in a method we term
Quantile-Free Regression (QFR); (3) We theoretically show that the solution of our regularized ob-
jective asymptotically achieves valid coverage (Section 3.2). Empirically, we find that it results in
superior performance to existing methods when evaluated on standard benchmarks (Section 4).

2 BACKGROUND

In this section, we provide a summary of relevant existing works that convert neural networks from
outputting point estimates to outputting predictive intervals (i.e. single model approaches). In Ap-
pendix A we provide a broad summary of predictive interval generation more generally and highlight
some of the unique advantages of the single model approach that we consider in this text.

Deriving intervals from quantiles. Throughout this work we consider the standard regression
task consisting of input/target pairs (X, Y ) ∈ Rd × R with d ∈ N where bold denotes vectors
and non-bold denotes scalars. We express realizations of these random variables (i.e. data) using
lower-case (x, y). Denoting the cumulative distribution function of a probability distribution with
F, we recall that a quantile function is given by F−1(p) = inf{q ∈ R : p ≤ F(q)} where p ∈
(0, 1) is the desired quantile probability. Specifically, this provides some quantile value q such that
P(Y ≤ q) = p. In the machine learning setting, we are generally interested in the probability
distribution of Y conditional on a given input X = x. Throughout this work, we refer to the task
of estimating a quantile value q corresponding to a particular quantile probability p from data as
estimating quantiles. Once we have some function µ : Rd → R for estimating quantiles (e.g. a
neural network), we might wish to construct an interval such that P(µ1(x) ≤ Y ≤ µ2(x)) = α with
µ1(x) < µ2(x)

1 and α ∈ (0, 1). In other words, a pair of bounds between which the target will lie
with some desired probability α. We will generally drop the dependence of µ1 and µ2 on x for ease
of notation. Clearly, this interval can be easily derived from the quantile function by simply noting
that P(µ1 ≤ Y ≤ µ2) = P(Y ≤ µ2) − P(Y ≤ µ1). Therefore the problem of constructing valid
intervals may be solved by approximating the quantile function to estimate the appropriate quantiles
and then constructing an interval from these quantile values. However, this assumes that we know

1In fact, our proposed method described in Section 3.2 is permutation invariant with respect to the two
bounds as we discuss in detail in Appendix E.
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Table 1: Quantile regression methods. Several desirable properties of these methods are considered. Note
that 1/2 denotes partially satisfying a property as the WS, SQR & IR objectives can trade-off between coverage
and interval width but do not directly consider conditional coverage.

Property QR WS SQR IR This work

Suitable for non-centered distributions ✗ ✗ ✓ ✓ ✓

Avoids explicitly learning all quantiles ✓ ✓ ✗ ✓ ✓

Dynamically controls the trade-off between
any desirable objectives ✗ 1/2 1/2 1/2 ✓

Asymptotic coverage guarantees ✓ ✓ ✓ ✗ ✓

No Gaussian approximation or assumption
of iid miscoverage of instances ✓ ✓ ✓ ✗ ✓

which quantile probabilities we should use in advance as any pair of quantile probabilities pl < pu
such that pu − pl = α will result in an interval with α coverage. We discuss the consequences of
this fact in Section 3.1.

Quantile Regression (QR). Here we refer to such methods that aim to provide intervals by accu-
rately estimating quantiles. In the case of neural networks, the key distinction from standard point
estimation methods which predict the expected value E(Y |X) lies in the choice of loss function. We
require a loss function L : · → R+ mapping from a quantile estimate to a scalar loss upon which
we can apply gradient descent. Perhaps the most widely known approach is that of the pinball loss
function (also known as quantile loss) of Koenker & Bassett Jr (1978); Steinwart & Christmann
(2011). For a quantile estimator µ : Rd → R, the pinball loss expression is

ρq(µ,x, y) =

{
q(y − µ(x)) if y − µ(x) ≥ 0

(q − 1)(y − µ(x)) if y − µ(x) < 0 .

Then a strategy to construct an interval of targeted coverage level of 1− α involves estimating two
specific conditional quantiles, denoted as ql and qu, where ql corresponds to the α

2 quantile, and qu
corresponds to the 1− α

2 quantile. Thus, the loss function optimized by the neural network is given
by

LQR
α ((µ1, µ2),x, y) = ρα

2
(µ1,x, y) + ρ1−α

2
(µ2,x, y).

This methodology ensures that the probability of the ground truth target y falling within the interval
[µ1, µ2] is 1−α, thereby establishing the desired mean coverage. In practice, two particular quantiles
are typically predefined and learned using a single neural network with two outputs. We refer to this
antecedent approach as quantile regression (QR) throughout this work.

Simultaneous Quantile Regression (SQR). Rather than predefining two particular quantiles,
Tagasovska & Lopez-Paz (2019) propose to learn all possible quantiles with a single output model
by augmenting the neural network with an additional input for the desired quantile. We express
this simultaneous quantile regressor as µq(x). Throughout training the quantile q is stochastically
selected from a uniform distribution where any quantile loss function may be applied (e.g. pinball).

Winkler Score (WS). As an alternative to the pinball loss objective, Chung et al. (2021) introduce
the Winkler score (or interval score) as a substitute. Expressing the standard indicator function as I,
this objective is given by

LWS
α ((µ1, µ2),x, y) = (µ2 − µ1) +

2

α
(µ1 − y)Iy<µ1

+
2

α
(y − µ2)Iy>µ2

.

The authors show that the minimum of the expectation of this objective is obtained when µ1 and µ2

attain the true (symmetric) conditional quantiles. This objective can lead to sharper intervals (i.e.
more adaptive coverage conditional on a given example x). Just as in the case of SQR, if we wish to
avoid selecting quantile values a priori, the authors propose learning all possible quantiles selected
using a uniform distribution during training.

Interval Regression (IR). Learning the intervals directly without the intermediate step of first learn-
ing quantiles is an alternative approach that has emerged somewhat independently of the quantile
regression literature. A method proposed in Pearce et al. (2018) achieves best-in-class empirical
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performance by introducing a loss function that attempts to balance coverage with interval width.
By making the strong assumptions that (a) the cases of miscoverage are iid and (b) batch sizes are
sufficiently large for the binomial distribution to be well approximation by a Gaussian, the authors
derive the following objective

LIR
α ((µ1, µ2),x, y) =

n

c
(µ2 − µ1) · Iµ1≤y≤µ2

+ λ
n

α(1− α)
max(0, (1− α)− c

n
)

where c :=

n∑
i=1

Iµ1≤y≤µ2 .

Here λ ∈ R denotes a hyperparameter weighting term and n denotes the batch size. Unfortunately,
unlike quantile regression methods, this approach does not achieve asymptotic coverage guarantees.

Evaluation. Competing approaches to obtaining prediction intervals are typically compared across
a range of desirable properties. As we only have access to a finite dataset, asymptotic coverage is
not guaranteed resulting in the need to evaluate calibration. Ideally, we would produce intervals that
accurately model the conditional probability P (µ1(x) < y < µ2(x)|x). Of course, in the standard
setting, we cannot directly estimate this quantity (Zhao et al., 2020) and instead often consider the
marginal probability P (µ1(x) < y < µ2(x)). We can estimate the marginal calibration on the test
set using the Prediction Interval Coverage Probability (PICP) which simply measures the ratio of
observations falling inside their intervals (Kuleshov et al., 2018; Tagasovska & Lopez-Paz, 2019).

Despite the aforementioned impossibility of exactly estimating the former conditional quantity, sev-
eral proxy metrics have been proposed that test for independence between examples x and instances
of miscoverage. These include using Pearson’s correlation between interval width and miscover-
age cases (Feldman et al., 2021) and the independence promoting Hilbert-Schmidt independence
criterion (HSIC) (Greenfeld & Shalit, 2020).

However, probably the most common criteria of evaluation considers aggregate interval width. For
a fixed level of coverage, narrower intervals are often considered preferable. This can also prevent
trivial solutions with some potentially infinite width intervals which may still satisfy empirical tests
of coverage. Sometimes referred to as sharpness (Gneiting et al., 2007) or adaptive coverage (Seedat
et al., 2023), we primarily consider Mean Prediction Interval Width (MPIW) which measures the
mean interval width across the test data (Tagasovska & Lopez-Paz, 2019). We provide (a) some
extended discussion on the motivation of interval width as an objective in Appendix F and (b) a
formal description of all evaluation metrics in Appendix D to ensure this work is self-contained.

3 A FLEXIBLE ALTERNATIVE TO QUANTILE REGRESSION

3.1 HIGHLIGHTING THE LIMITATION OF EXISTING QUANTILE REGRESSION METHODS

Using quantile estimation as a means for obtaining predictive intervals may be viewed as an example
of Vapnik’s famous heuristic that “when solving a problem of interest, do not solve a more general
problem as an intermediate step” (Vapnik, 2006). The fundamental issue becomes apparent by
closely considering the quantile regression approach.

The standard quantile regression approach consists of selecting the two quantiles a priori such that
the region between them results in a predictive interval. In practice, for a desired coverage level
α, the standard approach is to select the α

2 and 1 − α
2 quantiles. Indeed, a principled selection

of specific non-symmetric quantiles would require knowledge of the underlying noise distribution
which is unknown. As illustrated in Figure 1, when the underlying noise distribution around Y
is, in fact, non-symmetric this results in wider than necessary intervals due to being arbitrarily
centered (in terms of probability mass) around the median2. On real-world tasks, we should expect
a non-symmetric noise distribution to be ubiquitous. This has been highlighted in previous work
(Tagasovska & Lopez-Paz, 2019) and we further illustrate this by including histograms of the target
distributions of popular, real-world datasets in Table 3 and their summary statistics in Table 6. Whilst
the true noise distribution cannot be known on real data, the shapes of these empirical distributions
suggest that perfect symmetry is a very strong assumption to hold over natural phenomena.

2Of course, if centered intervals are required then quantile regression is appropriate. However, this is
unlikely to be a wise requirement in the prevalent case of a skewed target distribution.
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The existing resolution to this issue, as introduced by Tagasovska & Lopez-Paz (2019), is to learn
all possible quantile probabilities in (0, 1) (see e.g. SQR in Section 2). This is explicitly aimed
at rectifying the aforementioned limitation as the authors note that it enables them to “model non-
Gaussian, skewed, asymmetric, multimodal, and heteroskedastic aleatoric noise in data”. The idea
being that, once all quantiles are learned, any pair may be selected such that they satisfy α coverage
in addition to other qualities (e.g. narrower intervals). However, this introduces a significantly more
challenging learning problem of estimating an infinite number of quantiles rather than exactly two
for each example which can impact the performance of the underlying quantile estimator. In our
experiments in Section 4, we show that this approach generally results in poorer performance when
compared against the former approach despite its added flexibility.

In Section 3.2 we introduce an alternative approach that solves the interval estimation problem di-
rectly. Although the previous work of Pearce et al. (2018) also considers a direct interval regression
approach, ours is the first to emerge from the quantile regression literature and thereby is imbued
with a notion of distributional quantiles and converges to a solution that achieves asymptotic cov-
erage guarantees. This is reflected in superior coverage when evaluated empirically in Section 4.
Table 1 summarizes the key differences between our proposed method and those of previous works.

3.2 PROPOSED RESOLUTION: QUANTILE-FREE REGRESSION

Quantile-Free Regression (QFR). We begin by introducing a novel objective which directly learns
intervals without the intermediate step of prespecifying quantiles. For a targeted coverage level α
and a neural network outputting two interval bounds (µ1, µ2) we minimize

LQFR
α ((µ1, µ2),x, y) =

{
ακ if κ ≥ 0

(α− 1)κ if κ < 0
with κ = (y − µ1)(y − µ2). (1)

This expression makes no assumptions about the shape of the target noise distribution. It does not
require the interval bounds to be placed at specific quantile values nor does it require the neural
network to explicitly model all quantiles. Theorem 3.1 provides formal guarantees that the min-
imization of this loss function asymptotically yields a valid interval i.e. the coverage rate α is
achieved. Note that proofs for all theorems and propositions are provided in Appendix B.

Theorem 3.1 (QFR Coverage). For any random variable Y associated with an input x, ∀α ∈ [0, 1],

(µ∗
1(x), µ

∗
2(x)) = argmin

µ1,µ2

{EY (LQFR
α ((µ1, µ2), x, Y ))} =⇒ P(µ∗

1(x) < Y < µ∗
2(x)) = α

Additionally, in Theorem 3.2 we show that this objective achieves the correct finite sample coverage
when fit to arbitrary data.

Theorem 3.2 (QFR with finite samples). For any random variable Y associated with an input x,
we consider N realizations of this random variable : {yi}i=1,N . ∀α ∈ [0, 1] such that α ·N ∈ N,

(µ∗
1(x), µ

∗
2(x)) = argmin

µ1,µ2

{
N∑
i=1

LQFR
α ((µ1, µ2), x, yi)} =⇒ 1

N

N∑
i=1

Iyi∈[µ1∗,µ2∗] = α

Rewarding preferable solutions. Given the added flexibility of shifting intervals rather than bound-
ing them around the median, there now exists a potentially infinite number of competing solutions
that achieve the desired level of coverage. As the QFR expression is largely agnostic to solutions
that obtain additional desirable properties such as narrower interval widths or better conditional cov-
erage we would like to induce some preference among solutions. A natural strategy is to upweight
preferable solutions (e.g. narrower intervals or improved conditional coverage) via an additive reg-
ularization term R and a scalar weighting term λ ∈ R+. Thereby we provide practitioners with the
flexibility to choose whichever interval properties provide the most utility. Therefore, the complete
QFR-R (regularized) objective takes the form

LQFR-R
α ((µ1, µ2),x, y) = LQFR

α ((µ1, µ2),x, y) + λ · R(·). (2)

Given this structure, we now introduce two specific choices for R.
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1 QFR-W: width minimizing R. As discussed in Section 2, interval width is a principal criterion
for evaluating methods for obtaining predictive intervals (Tagasovska & Lopez-Paz, 2019; Feldman
et al., 2021; Romano et al., 2019). A direct approach for minimizing interval width is to penalize
the sample-wise squared interval width such that

LQFR-W
α ((µ1, µ2),x, y) = LQFR

α ((µ1, µ2),x, y) + λ
(µ2 − µ1)

2

2
.

By integrating this penalty term, we aim to effectively navigate the landscape of potential solutions,
encouraging the model to prioritize intervals of reduced length whilst still maintaining the targeted
coverage. Analogous to the approach taken in Theorem 3.1, we can extend our analysis to consider
this complete loss function. We find that the introduced penalty term induces a bias to the coverage
of the interval estimator – the result is now P(µ∗

1 < Y < µ∗
2) = α − 2λ. However, we can easily

remove the bias by modifying the targeted coverage rate. By choosing α̂ = α + 2λ, we obtain
P(µ∗

1 < Y < µ∗
2) = α̂− 2λ = α

Theorem 3.3 (QFR-W Coverage). For any random variable Y associated with an input x, ∀α ∈
[0, 1],

(µ∗
1(x), µ

∗
2(x)) = argmin

µ1,µ2

{EY (LQFR-W
α+2λ (µ1, µ2), x, Y ))} =⇒ P(µ∗

1(x) < Y < µ∗
2(x)) = α

Proposition 3.1 (Existence and Uniqueness of Solution). µmin
1 and µmax

2 denote the boundaries of
our optimization problem. For a target distribution Y with a cumulative distribution function that
is k-Lipschitz continuous with k < 1 + α

µmax
2 −µmin

1
, when λ > max(0,

∫ µmax
2

µmin
1

dPY (y) − α), the

minimum of LQFR-W
α+2λ exists and is unique.

An important additional benefit of the penalty term, presented in Proposition 3.1, is that it makes
the loss function convex for a wide range of target distributions and λ. Hence, leading to a welcome
additional result: the existence and uniqueness of its minimum. We later empirically verify (see
Section 4) that this objective does perform well on real-world data.

2 QFR-O: width-coverage independence R. As discussed in Section 2, whilst interval construc-
tion methods are most commonly evaluated based on their resulting interval width for a realized
coverage level (sometimes referred to as the high-quality principle (Pearce et al., 2018)), alternative
objectives may also be desirable. Feldman et al. (2021) introduced orthogonal quantile regression
(OQR) which instead optimized for a notion of conditional coverage rather than minimizing interval
width. Specifically, the authors introduce a regularization term that promotes independence between
the size of the intervals and occurrences of a (mis)coverage event. They combine their proposed
regularization term with both QR and IR and report significant gains in measures of conditional
coverage. We can easily combine their term with our QFR instead by setting it as the regularization
term R in Equation (2) where

R(·) =
∣∣∣∣ Cov(w,m)

Var(w)Var(m)

∣∣∣∣ .
With w denoting the vector of interval widths where wi = |µ2(xi) − µ1(xi)| and m denoting the
indicator vector of coverage events where mi = Iyi∈[µ1(xi),µ2(xi)] – both calculated on the training
data. Thus, this regularization term can simply be interpreted as the Pearson correlation between the
interval widths and instances of coverage or miscoverage3. We refer to this complete objective as
QFR-O (orthogonal) and, as with the other objectives, we provide proof for its asymptotic coverage
in Appendix B.

Trading-off width and orthogonality. We note that there is typically a trade-off between minimiz-
ing interval width and maximizing conditional coverage. As we later observe in Figure 2, obtaining
near optimal conditional coverage generally requires wider intervals than is strictly necessary for
obtaining valid marginal coverage. We emphasize that in this work we are agnostic as to which
qualities are preferable and, instead, we enable the practitioner to make this decision based on their
specific application. In the remainder of this paper, we empirically verify that our proposed objective
behaves as expected and successfully utilizes its added flexibility to outperform benchmark methods
at achieving their respective goals whilst maintaining empirical coverage.

3Note that taking the absolute value results in this term penalizing correlation between interval width and
either instances of coverage or miscoverage (as we would desire).
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Table 2: Empirical verification. Coverage and width (± standard errors) are assessed for producing predic-
tive intervals on symmetric and non-symmetric noise distributions. As expected, for realistic, skewed noise
distributions, width-minimizing QFR (QFR-W) produces narrower intervals.

Coverage Width Dist. Histogram

QR 0.81 (±0.007) 0.26 (±0.003)
QFR (w/o reg) 0.81 (±0.003) 0.26 (±0.002)

QFR-W (with reg) 0.82 (±0.004) 0.26 (±0.002)

QR 0.80 (±0.002) 1.61 (±0.007)
QFR (w/o reg) 0.80 (±0.007) 1.72 (±0.010)

QFR-W (with reg) 0.81 (±0.002) 1.50 (±0.005)

4 EXPERIMENTS

Empirical verification. We begin by empirically verifying the predicted gains of the QFR objective
over quantile regression on non-symmetric noise distributions. As the noise distribution cannot be
known on real-world data, here we generate synthetic data according to a known process. The data
is generated according to a data-generating process in which the label is determined according to
Y = X + ϵ, where X ∈ R represents a deterministic component which is set as constant and ϵ ∈ R
is the noise component. Then the noise distribution is selected as either a (symmetric) Gaussian
or a (non-symmetric) truncated Gaussian. We fit a simple linear neural network consisting of just
a single layer. As illustrated in Table 2, the empirical results match our theoretical expectations.
All methods perform equally well on the symmetric Gaussian noise where intervals centered at the
median are optimal. However, QR fails to achieve optimal width on the truncated Gaussian due to
being arbitrarily centered at the median. Whilst QFR (w/o reg) is unbiased, it is not incentivized to
produce narrower intervals and thus performs similarly to QR. Only QFR-W (with reg) achieves the
optimally narrow interval solution.
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Figure 2: Applying QFR-W & QFR-O in practice. Resulting intervals on robotics distance estimation task.
(left) The QFR-W objective achieves generally narrower intervals across the 1639 test examples. (right) The
QFR-O achieves more consistent coverage across different interval widths.

Applying QFR-W & QFR-O in practice. We now turn our attention to applying our proposed
interval prediction approach to practical tasks in high-stakes domains. To illustrate, we consider a
task in the robotics domain in which safety and reliability are essential, especially when applied in
close proximity to humans (Baek & Kröger, 2023). We consider the task of estimating a robot arm-
effector’s distance from a target given noisy measurements of inputs such as joint positions or twist
angles. The kin8nm dataset provides an example of such a task consisting of 8192 measurements
(Ghahramani, 1996). For this problem, we desire accurate intervals such that the arm may be used
safely and effectively and, depending on the specifics of the application, either interval width or
conditional coverage may be important. In Figure 2 we provide the results of applying QFR to this
problem using the same experimental setup as described later in the benchmarking experiments.

In the left-hand side of this plot, we optimize for interval width using QFR-W and compare the
resulting intervals to those using QR. For presentation we sort the test set points according to in-
creasing target magnitude and apply a Savitzky–Golay filter to smooth the intervals (see Figure 4
for a version without smoothing applied). We observe that the QFR-W intervals are noticeably
narrower despite providing the same marginal coverage. Then, in the right-hand side subplots, we
demonstrate the effects of instead optimizing for conditional coverage using QFR-O and evaluate
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Table 3: Benchmarking QFR-W. We evaluate each method across 9 datasets where the first row reports the
marginal coverage obtained and the second row reports interval width as measured using MPIW. All results
report the test set mean over 20 runs (± a standard error). We(((((strikethrough results where desired coverage is
not achieved (see text for details).

Dataset Ours QR SQR WS IR Dist. Hist.

concrete 89.95 (0.88) 89.73 (0.67) ���86.49 (0.96) 89.73 (0.75) 92.16 (0.53)
0.43 (0.01) 0.43 (0.01) 1.10 (0.09) 2.42 (0.05) 0.47 (0.01)

power 90.73 (0.58) 92.11 (0.51) 91.56 (0.35) 89.96 (0.35) ���99.04 (0.17)
0.03 (0.00) 0.03 (0.00) 0.15 (0.02) 1.86 (0.02) 0.05 (0.00)

wine 89.44 (0.72) 90.91 (0.79) 87.27 (0.57) 89.56 (0.98) 91.05 (0.50)
0.35 (0.01) 0.35 (0.01) 0.48 (0.02) 1.95 (0.03) 0.35 (0.03)

yacht 93.23 (1.90) ���96.37 (0.65) 87.30 (1.10) 86.85 (2.7) ���94.03 (0.72)
0.27 (0.01) 0.28 (0.01) 0.80 (0.05) 3.20 (0.17) 0.63 (0.02)

naval 90.95 (1.90) 92.11 (1.30) 92.33 (0.24) 89.61 (0.37) ���100.0 (0.00)
0.01 (0.00) 0.02 (0.00) 0.13 (0.02) 2.95 (0.03) 0.04 (0.00)

energy 89.87 (1.70) ���98.31 (0.34) 89.19 (0.70) 90.19 (0.87) 93.15 (1.40)
0.13 (0.00) 0.18 (0.01) 0.44 (0.02) 2.22 (0.05) 0.65 (0.08)

boston 89.80 (0.93) ���94.41 (0.37) ���84.88 (0.93) 87.99 (1.40) 89.61 (2.40)
0.51 (0.01) 0.58 (0.01) 0.54 (0.02) 2.17 (0.03) 0.55 (0.10)

kin8nm 90.59 (0.23) 91.56 (0.41) 90.89 (0.25) ���95.47 (1.04) 90.41 (0.16)
0.34 (0.00) 0.39 (0.01) 0.65 (0.03) 2.31 (0.03) 0.34 (0.00)

protein 90.07 (0.10) 92.01 (0.10) 91.46 (0.31) ���97.94 (0.90) 91.87 (0.18)
1.59 (0.00) 1.64 (0.00) 1.86 (0.03) 3.81 (0.03) 1.61 (0.01)

the empirical coverage when the test set is divided into subgroups based on interval width. In the
left of the two histograms, we observe that the baseline method, OQR, under-covers for narrower
intervals whilst over-covering for wider intervals. This is in contrast to QFR-O on the right which
achieves generally balanced coverage across all interval widths. Given that conditional coverage is
the exclusive goal in this case, the QFR-O solution discovers that wider intervals are necessary to
achieve this. As a result, it is able to ensure that the probability of error is not dependent on interval
width resulting in a more consistent solution.

Therefore, unlike previous works, QRF may be viewed as a general-purpose approach to construct-
ing intervals in which the practitioner may choose to prioritize among additional interval properties
depending on a particular application. In this robotics example, minimizing interval width may re-
sult in a more accurate estimate of the object’s distance while improving conditional coverage may
help prevent specific failure modes.

Benchmarking QFR-W. We now proceed to investigate the performance of QFR-W on the standard
quantile regression benchmark tasks used in Tagasovska & Lopez-Paz (2019); Chung et al. (2021);
Pearce et al. (2018) consisting of nine datasets from Asuncion & Newman (2007). We follow the
preprocessing and experimental protocol described in Appendix C in line with previous works. To
summarize, we train two-layer neural networks using a grid search to find optimal hyperparame-
ters. All experiments are repeated over 20 seeds with means and standard errors of means reported
throughout. For building SQR intervals, we followed the method prescribed by the authors which
consists of selecting the symmetric (0.05, 0.95) intervals. The results are included in Table 3 where
we provide the resulting coverage and MPIW for each dataset. We also include histograms of the
target distributions for each dataset to highlight the point that non-symmetric distributions should
be the standard expectation on real-world regression tasks. Of course, shorter intervals are only
desirable when the target level of coverage is maintained. Therefore, we exclude results that fail to
achieve coverage which we indicate with a((((((strikethrough. In line with previous work of Tagasovska
& Lopez-Paz (2019), we consider coverage to be met if the empirical coverage lies within 2.5%
of the target level α (after accounting for uncertainty). While obtaining empirical coverage that is
greater than the desired coverage level may often be less harmful than obtaining less than the de-
sired coverage level, at a minimum this still reflects an inefficiency. Additionally, there are many
applications in which we are primarily interested in the miscoverage cases (e.g. extreme events)
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Table 4: Benchmarking QFR-O. We compare our proposed loss function to those used in OQR for achieving
improved conditional coverage as evaluated using standard metrics (see Section 2). We report the empirical
coverage achieved and the % improvement obtained over OQR in Pearson correlation and HSIC (± a standard
error).

Dataset QFR-O (ours)
coverage

OQR
coverage

Pearson
correlation HSIC

concrete 88.75 (±0.14) 87.54 (±0.12) +80.19 (±0.72) +98.01 (±0.12)
power 90.00 (±0.05) 91.86 (±0.05) +86.49 (±0.63) +77.79 (±1.19)
wine 89.15 (±0.27) 88.59 (±0.10) +71.42 (±1.14) +96.77 (±0.29)
yacht 88.71 (±0.99) 89.07 (±0.20) -45.80 (±11.28) -18.49 (±10.7)
naval 90.58 (±0.07) 90.12 (±0.07) +87.83 (±0.48) +16.87 (±2.95)

energy 89.77 (±0.18) 90.42 (±0.09) +25.04 (±2.70) +76.57 (±2.12)
boston 90.49 (±0.18) 91.97 (±0.15) +75.97 (±0.80) +85.67 (±1.54)
kin8nm 90.40 (±0.07) 89.94 (±0.05) +89.16 (±0.30) +99.91 (±0.01)
protein 89.87 (±0.02) 89.45 (±0.03) +80.29 (±0.58) +99.91 (±0.01)

and, therefore, overcoverage may be problematic in addition to being inefficient. Thus, this proto-
col symmetrically discards intervals that undercover and overcover by a certain margin. The target
coverage level is set to 90% throughout our experiments. These results demonstrate that the added
flexibility of circumventing the standard step of learning predefined quantiles can be utilized to
obtain narrower intervals in practice.

Benchmarking QFR-O. In a similar vein, we evaluate QFR-O for its effectiveness in improving
measures of conditional coverage. In this case, we compare to the original OQR work of Feldman
et al. (2021). We evaluate both methods on the same benchmark datasets as previously and follow
the same experimental protocol as in Feldman et al. (2021). The key distinction in this experiment is
that the coefficient of the regularization parameter for both methods is incrementally reduced until
empirical coverage is achieved. This is because a comparison of conditional coverage using these
metrics is only meaningful if both methods achieve a similar level of empirical marginal coverage.
Again, the experimental setup is described in detail in Appendix C. We investigate this regulariza-
tion term’s effectiveness at achieving its stated objective of enforcing orthogonality between interval
width and instances of miscoverage. Since both methods use an identical regularization expression,
the gains obtained by QFR-O in this section are due to pairing this term with our QFR objective
from Equation (1) rather than existing quantile regression objectives that suffer from the limitations
discussed in Section 3.1. The results are provided in Table 4 where we compare performance based
on a test set evaluation of coverage, % improvement in Pearson correlation over OQR, and % im-
provement in HSIC over OQR. We generally find that QFR-O achieves a significant improvement in
these measures of conditional coverage, again indicating that the added flexibility of this approach
enables a more favorable solution to be found. An important takeaway from these results is that,
since Pearson’s correlation is the regularization objective used by both methods, the gains in perfor-
mance when considering it as an evaluation metric provide direct evidence that the added flexibility
provided by the OQR loss function (due to not being centered around the median) enables it to find a
better solution in the auxiliary task (in this case, minimizing Pearson’s correlation between instances
of miscoverage and interval width).

5 CONCLUSION

In this work we have introduced Quantile-Free Regression, a direct alternative to quantile regression
that circumvents the requirement to prespecify the specific quantiles being learned whilst main-
taining its attractive coverage properties. We then demonstrated that this new loss can be easily
combined with user-specified regularization terms to obtain a solution suitable for a given applica-
tion (i.e. narrower intervals or improved conditional coverage). Finally, we evaluated the method
against state-of-the-art single-model methods across standard benchmark tasks demonstrating that
this added flexibility is converted into improved performance in terms of either narrower intervals
or better conditional coverage, depending on the practitioner’s preference. For future work, devis-
ing new approaches to evaluating predictive intervals and developing complimentary regularization
terms such that they can be paired with QFR provides a promising direction.
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We have endeavored to ensure that the experiments in this work are reproducible. A detailed descrip-
tion of the experiments performed in Section 4 is provided in Appendix C. We have also provided the
code implementation in an attached zip file which we intend to also host on GitHub upon acceptance.
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A EXTENDED RELATED WORK

In this work, we have focused on single model approaches (i.e. quantile/interval regression) for
obtaining predictive intervals from neural networks with the intention of developing more effec-
tive methods within this category. Due to the vital importance of uncertainty quantification, a vast
literature of disparate alternative approaches has emerged, each representing interesting research
directions with their own respective strengths and weaknesses. In this section, we provide a broad
overview of the leading methods for obtaining predictive intervals from neural networks. Given the
extensive nature of this topic, this summary is not exhaustive and we refer the reader to the more
comprehensive references cited within each topic for a more complete overview. For a recent sur-
vey on predictive intervals in regression problems more generally (i.e. beyond neural networks) we
refer the reader to Dewolf et al. (2023) or for general neural network uncertainty quantification to
Gawlikowski et al. (2023).

Single model approaches. The subject of this work is individual models that output intervals rather
than point estimates which we refer to as single model approaches. An in depth description of
the state of the art methods within this category is provided in Section 2. Whilst these methods
typically estimate aleatoric uncertainty, it is quite straightforward to combine them with Bayesian
or ensemble methods to simultaneously account for epistemic uncertainty (Tagasovska & Lopez-
Paz, 2019). As previously discussed, quantile regression (Koenker & Bassett Jr, 1978) has excelled
in this category – including prior to and outside of the deep learning regime (Koenker & Hallock,
2001; Meinshausen & Ridgeway, 2006; Yu & Jones, 1998). Similarly, the evaluated direct interval
estimation method of Pearce et al. (2018) was also an evolution of the foundational work of Khosravi
et al. (2010). Elsewhere in the time series setting, Gasthaus et al. (2019) estimate quantiles using
monotonic regression splines. Whilst strictly speaking a dual model approach, variance networks
fit a second neural network to estimate the variance of a prediction (Skafte et al., 2019). A very
simple approach that can be easily combined with most other approaches is to regularize the neural
network such that measures of calibration are optimized using e.g. confident output penalization
(Pereyra et al., 2017), label smoothing (Szegedy et al., 2016), or induced label noise (Xie et al.,
2016).

Bayesian methods. Bayesian neural networks attempt to model the target probability distribu-
tion for a given test example x given some observed data D by marginalizing over a distribution
of network parameters θ such that P (y|x,D) =

∫
P (y|x, θ)P (θ|D) from which predictive in-

tervals can be derived. This expression requires intractable calculations which may be approxi-
mated in practice using various techniques. A simple approach consists of taking a second-order
Taylor expansion around the maximum a posteriori estimate of θ to produce a Gaussian approx-
imation of P (θ|D) known as the Laplace approximation (Tierney & Kadane, 1986). In prac-
tice, further scaling efforts have been required to apply this method in the modern deep learning
context (Daxberger et al., 2021). Alternatively, variational inference substitutes P (θ|D) ≈ q(θ)
where q(θ) denotes some tractable parametric approximation such as a Gaussian distribution (Hin-
ton & Van Camp, 1993). Significant research has investigated methods for extending this ap-
proach to account for modern datasets and architectures (Graves, 2011; Zhang et al., 2018). Monte
Carlo integration instead approximates the integral over parameters with a finite sum such that∫
P (y|x, θ)P (θ|D) ≈ 1

M

∑M
j=1 P (y|x, θj) (Caflisch, 1998). Then different choices of selecting a

subset of M weight parameterizations result in alternative instantiations of this approximation (see
e.g. Ch. 17 of Goodfellow et al. (2016)). Monte Carlo dropout, which drops neurons at test time ac-
cording to a Bernoulli distribution to estimate uncertainty, has become popular due to its conceptual
and implementation simplicity (Gal & Ghahramani, 2016). A somewhat distinct Bayesian approach
is the Gaussian process which is a collection of random variables of which any finite sample is
Gaussian distributed specified by a specific mean function and covariance kernel (Rasmussen et al.,
2006). Although this method suffers from important limitations (e.g. scaling), its adaption to the
deep learning setting has achieved notable performance on benchmark tasks (Wilson et al., 2016b;a).

Deep ensembles. Aggregating outputs over a set of neural networks has emerged as a simple but
effective method that accounts for epistemic uncertainty (Lakshminarayanan et al., 2017). Whilst
this approach can be considered studied through a Bayesian perspective (Wilson & Izmailov, 2020;
Wilson, 2020), it has primarily developed from the classical ensembling literature (Sagi & Rokach,
2018). It is hypothesised that the empirical success of deep ensembles is due to their better explo-
ration of the loss landscape (Fort et al., 2019) – with diversity typically achieved through random
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Table 5: Categories of interval construction approaches. A broad comparison of different cate-
gories of interval construction highlighting the key distinctions of single model approaches. Detailed
descriptions and discussion is provided in the text.

(1) (2) (3) (4)

Single model approaches ✓ ✓ ✓ ✓

Bayesian methods ✗ ✗ ✓ 1/2

Deep ensembles ✗ ✗ ✗ ✓

Parametric approaches 1/2 ✗ ✓ 1/2

Post-hoc methods ✓ ✓ ✗ ✓

initialization and batching due to known challenges in optimizing for exploration (Jeffares et al.,
2023; Abe et al., 2023). However, recent works have suggested that their improved calibration may
be overstated (Rahaman et al., 2021) and that performance increases may be better understood as
being due to an increased model capacity (Abe et al., 2022). These gains also come at the cost
of a significant computational overhead with the relative computational cost growing linearly with
ensemble size. More efficient approaches to deep ensembling have been proposed in recent years to
reduce this cost (e.g. Wen et al., 2019).

Parametric approaches. The classical statistics literature has a long history of developing prin-
cipled estimates of predictive intervals derived from parametric assumptions in the data generating
process (see e.g. Ch. 5.3 Seber & Lee, 2003). One such approach in the neural network setting
is the delta method which makes a linearity assumption in the region around a prediction paired
with a Gaussian assumption on the noise distribution (Hwang & Ding, 1997; Khosravi et al., 2011).
Another example is Nix & Weigend (1994) who also assume the noise distribution to be Gaussian
and derive a cost function to estimate its value with an auxiliary output to the network.

Post-hoc methods. Several methods exist in which calibrated intervals are constructed or updated
as a post-processing step for an existing point predictor or interval estimator respectively. Perhaps
the most notable of these is conformal prediction (Vovk et al., 2005) and, in particular, inductive
conformal prediction (Papadopoulos, 2008), which provides prediction intervals with finite sample
marginal coverage guarantees. Romano et al. (2019) further developed an approach that also per-
forms well conditionally (i.e. intervals where width is adaptive to a given example). As noted by
the authors, this method “can wrap around any algorithm for quantile regression”, thus making it
a complimentary post-hoc approach. Other methods typically focus on improving the calibration
of an underlying point predictor. Approaches include Platt scaling (Platt et al., 1999), temperature
scaling (Tomani et al., 2021), histogram binning (Zadrozny & Elkan, 2001), test time augmentation
(Hekler et al., 2023), and isotonic regression (Zadrozny & Elkan, 2002).

Comparing categories of interval construction. We now provide some high level distinctions
between these categories of approaches for constructing intervals. This is not intended as a com-
plete evaluation of competing uncertainty quantification approaches, rather we wish to highlight the
advantages of single model approaches to emphasize the significance of developments within this
category. Furthermore, due to the broadness of these categories and the lack of clear boundaries
between them, the following distinctions act as generalizations for which some exceptions exist.
A discussion of these distinctions is provided in the next paragraph with a summary provided in
Table 5.

(1) Minimal computational overhead - Deep ensembles require training a neural network from
scratch M times while Bayesian methods typically require approximations to produce tractable
algorithms for large-scale models (Abdullah et al., 2022; Osawa et al., 2019). Parametric methods
require some overhead with the specific amount method dependent. In contrast, the other categories,
including single model approaches, generally only require at most a change of loss function at train-
ing time. (2) Data-assumption-free valid intervals - Parametric approaches and Bayesian methods
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generally require assumptions on the data-generating process to provide validity guarantees on their
intervals. Deep ensembles don’t provide such guarantees on derived intervals. However, many
single model and post-hoc methods provide asymptotic or even finite sample guarantees of valid
intervals. (3) Distinguishes between aleatoric & epistemic uncertainty - Explicitly differentiating
between aleatoric (irreducible) and epistemic (reducible) uncertainty can be valuable (Hüllermeier
& Waegeman, 2021). As discussed in Tagasovska & Lopez-Paz (2019); Pearce et al. (2018), the
loss function of single model approaches generally estimates aleatoric uncertainty while epistemic
uncertainty can also be accounted for by applying e.g. orthonormal certificates or interval ensem-
bling. Explicitly modeling uncertainties in this way also tends to be at the heart of Bayesian and
parametric methods (see e.g. Kendall & Gal (2017)). Deep ensembles and post-hoc methods do
not typically make this distinction. (4) Directly applicable to any loss-based algorithm - Single-
model approaches are typically characterized by simply replacing a point estimate loss function
with a quantile regression loss (e.g. mean squared error → pinball loss). Similarly, deep ensem-
bles only require running an algorithm multiple times and post-hoc methods typically wrap around
or recallibrate arbitrary models. Some Bayesian and parametric methods are generally applicable
(e.g. Monte Carlo dropout) however others require more substantial changes resulting in different
algorithms when applied to neural networks (e.g. a Gaussian process).

B PROOFS

Theorem 3.1 (QFR Coverage). For any random variable Y associated with an input x, ∀α ∈ [0, 1],

(µ∗
1(x), µ

∗
2(x)) = argmin

µ1,µ2

{EY (LQFR
α ((µ1, µ2), x, Y ))} =⇒ P(µ∗

1(x) < Y < µ∗
2(x)) = α

Proof. In these proofs, we omit to precise the input x every line for clarification purposes. However,
the reader should not forget that Y is the random variable associated with the input x.

First, we can rewrite our new loss with an indicator function :
LQFR
α ((µ1, µ2), y)) = (y − µ1)(y − µ2)(α− Iy∈[µ1,µ2])

Then, we consider the expectation of the loss :

E(LQFR
α ((µ1, µ2), Y ))) = α

∫ ∞

−∞
(y − µ1)(y − µ2)dPY (y)−

∫ µ2

µ1

(y − µ1)(y − µ2)dPY (y)

We find the expression of its partial derivatives with respect to the bounds:

∂E(LQFR
α )

∂µ1
= −α

∫ ∞

−∞
(y − µ2)dPY (y) +

∫ µ2

µ1

(y − µ2)dPY (y)

∂E(LQFR
α )

∂µ2
= −α

∫ ∞

−∞
(y − µ1)dPY (y) +

∫ µ2

µ1

(y − µ1)dPY (y)

At the minimum, the gradient of the expected loss is null. Thus, if there is a minimum at the point
(µ∗

1, µ
∗
2) with µ∗

2 > µ∗
1,
∂E(LQFR

α )

∂µ1

∣∣∣
µ∗
1 ,µ

∗
2

− ∂E(LQFR
α )

∂µ2

∣∣∣
µ∗
1 ,µ

∗
2

= 0

=⇒ − α

∫ ∞

−∞
(µ∗

1 − µ∗
2)dPY (y) +

∫ µ∗
2

µ∗
1

(µ∗
1 − µ∗

2)dPY (y) = 0

=⇒ − α(µ∗
1 − µ∗

2)

∫ ∞

−∞
dPY (y) + (µ∗

1 − µ∗
2)

∫ µ∗
2

µ∗
1

dPY (y) = 0

=⇒ − α

∫ ∞

−∞
dPY (y) +

∫ µ∗
2

µ∗
1

dPY (y) = 0

=⇒ P(µ∗
1 < Y < µ∗

2) = α
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Theorem 3.2 (QFR with finite samples). For any random variable Y associated with an input x,
we consider N realizations of this random variable : {yi}i=1,N . ∀α ∈ [0, 1] such that α ·N ∈ N,

(µ∗
1(x), µ

∗
2(x)) = argmin

µ1,µ2

{
N∑
i=1

LQFR
α ((µ1, µ2), x, yi)} =⇒ 1

N

N∑
i=1

Iyi∈[µ1∗,µ2∗] = α

Proof. We rewrite our sum as an integral with discrete density Iy∈{yi}dy :

N∑
i=1

LQFR
α ((µ1, µ2), x, yi) = α

∫ ∞

−∞
(y − µ1)(y − µ2)Iy∈{yi}dy −

∫ µ2

µ1

(y − µ1)(y − µ2)Iy∈{yi}dy

We find the expression of its partial derivatives with respect to the bounds:

∂
∑N

i=1 LQFR
α ((µ1, µ2), x, yi)

∂µ1
= −α

∫ ∞

−∞
(y − µ2)Iy∈{yi}dy +

∫ µ2

µ1

(y − µ2)Iy∈{yi}dy

∂
∑N

i=1 LQFR
α ((µ1, µ2), x, yi)

∂µ2
= −α

∫ ∞

−∞
(y − µ1)Iy∈{yi}dy +

∫ µ2

µ1

(y − µ1)Iy∈{yi}dy

At the minimum, the gradient of the expected loss is null. Thus, if there is a minimum at the point
(µ∗

1, µ
∗
2) with µ∗

2 > µ∗
1,

∂
∑N

i=1 LQFR
α ((µ1, µ2), x, yi)

∂µ1

∣∣∣
µ∗
1 ,µ

∗
2

−
∂
∑N

i=1 LQFR
α ((µ1, µ2), x, yi)

∂µ2

∣∣∣
µ∗
1 ,µ

∗
2

= 0

=⇒ − α

∫ ∞

−∞
(µ∗

1 − µ∗
2)Iy∈{yi}dy +

∫ µ∗
2

µ∗
1

(µ∗
1 − µ∗

2)Iy∈{yi}dy = 0

=⇒ − α(µ∗
1 − µ∗

2)

N∑
i=1

1 + (µ∗
1 − µ∗

2)
∑

yi∈[µ∗
1 ,µ

∗
2 ]

1 = 0

=⇒ 1

N

N∑
i=1

Iyi∈[µ1∗,µ2∗] = α

Theorem 3.3 (QFR-W Coverage). For any random variable Y associated with an input x, ∀α ∈
[0, 1],

(µ∗
1(x), µ

∗
2(x)) = argmin

µ1,µ2

{EY (LQFR-W
α+2λ (µ1, µ2), x, Y ))} =⇒ P(µ∗

1(x) < Y < µ∗
2(x)) = α

Proof. Similarly, we are starting by rewriting the QFR-W loss with indicator functions.

QFR-Wα(µ1, µ2, y) = QFRα(µ1, µ2, y) +
λ(µ2 − µ1)

2

2

= (y − µ1)(y − µ2)(α− Iy∈[µ1,µ2]) +
λ(µ2 − µ1)

2

2

Then, we consider the expectation of the loss :

E(QFR-Wα(µ1, µ2, Y )) =

α

∫ ∞

−∞
(y − µ1)(y − µ2)dPY (y)−

∫ µ2

µ1

(y − µ1)(y − µ2)dPY (y) +
λ(µ2 − µ1)

2

2

We find the expression of the partial derivatives with respect to the bounds:
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∂E(QFR-Wα)

∂µ1
= −α

∫ ∞

−∞
(y − µ2)dPY (y) +

∫ µ2

µ1

(y − µ2)dPY (y)− λ(µ2 − µ1)

∂E(QFR-Wα)

∂µ2
= −α

∫ ∞

−∞
(y − µ1)dPY (y) +

∫ µ2

µ1

(y − µ1)dPY (y) + λ(µ2 − µ1)

At the minimum, the gradient of the expected loss is null. Thus, if there is a minimum at the point
(µ∗

1, µ
∗
2) with µ∗

2 > µ∗
1,

∂E(QFR-Wα)

∂µ1

∣∣∣
µ∗
1 ,µ

∗
2

− ∂E(QFR-Wα)

∂µ2

∣∣∣
µ∗
1 ,µ

∗
2

= 0

=⇒ − α

∫ ∞

−∞
(µ∗

1 − µ∗
2)dPY (y) +

∫ µ∗
2

µ∗
1

(µ∗
1 − µ∗

2)dPY (y) + 2λ(µ∗
1 − µ∗

2) = 0

=⇒ − α(µ∗
1 − µ∗

2)

∫ ∞

−∞
dPY (y) + (µ∗

1 − µ∗
2)

∫ µ∗
2

µ∗
1

dPY (y) + 2λ(µ∗
1 − µ∗

2) = 0

=⇒ − α

∫ ∞

−∞
dPY (y) +

∫ µ∗
2

µ∗
1

dPY (y) + 2λ = 0

=⇒ P(µ∗
1 < Y < µ∗

2) = α− 2λ

Then, as α is a constant, we can replace it with a corrected term. When choosing α̂ = α + 2λ, we
obtain

(µ∗
1, µ

∗
2) = argmin

µ1,µ2

{E(QFR-Wα̂(µ1, µ2, Y ))} =⇒ P(µ∗
1 < Y < µ∗

2) = α̂− 2λ = α

Proposition 3.1 (Existence and Uniqueness of Solution). µmin
1 and µmax

2 denote the boundaries of
our optimization problem. For a target distribution Y with a cumulative distribution function that
is k-Lipschitz continuous with k < 1 + α

µmax
2 −µmin

1
, when λ > max(0,

∫ µmax
2

µmin
1

dPY (y) − α), the

minimum of LQFR-W
α+2λ exists and is unique.

Proof. We study the function µ1, µ2 7→ E(LQFR-W
α ((µ1, µ2), Y ) in a closed subset of R2 where

µ1 < µ2. We named this subset D. On this closed subset of the space to say, it exists µmax
2 and

µmin
1 such that ∀(µ1, µ2) ∈ D µ2 < µmax

2 and µ1 > µmin
1 .

Moreover, we assume that Y can be associated with a probability density function dPY and that its
cumulative distribution function is k-Lipschitz continuous with k < 1 + α

µmax
2 −µmin

1

∀(µ2, µ1) ∈ [µmin
1 , µmax

2 ]2 |
∫ µ2

µ1

dPY (y)| < (1 +
α

µmax
2 − µmin

1

)|(µ2 − µ1)|

The non-negativity of the studied function gives us the existence of the minimum.

To demonstrate the uniqueness of the minimum, we show that the eigenvalues of the Hessian matrix
are positive. We start by computing the gradient of the expected loss :

∇E(LQFR-W
α ) =

[
∂E(LQFR-W

α )
∂µ1

∂E(LQFR-W
α )

∂µ2

]

=

[
−α

∫∞
−∞(y − µ2)dPY (y) +

∫ µ2

µ1
(y − µ2)dPY (y)− λ(µ2 − µ1)

−α
∫∞
−∞(y − µ1)dPY (y) +

∫ µ2

µ1
(y − µ1)dPY (y) + λ(µ2 − µ1)

]
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Then, we compute the Hessian matrix :

∇2E(LQFR-W
α ) =

[
µ2 − µ1 + λ α−

∫ µ2

µ1
dPY (y)− λ

α−
∫ µ2

µ1
dPY (y)− λ µ2 − µ1 + λ

]

The eigenvalues of the Hessian matrix are given by λ± = µ2 − µ1 + λ± |α−
∫ µ2

µ1
dPY (y)− λ|

From that, we get that λ >
∫ µmax

2

µmin
1

dPY (y) − α =⇒ ∀(µ1, µ2) ∈ D λ >
∫ µ2

µ1
dPY (y) − α (1)

because the probability density function dPY is positive.

Additionally, we use the assumption of the k-Lipschitz continuity of the CDF and we obtain the
following inequality :

∀(µ1, µ2) ∈ D µ2−µ1 ≥
∫ µ2

µ1

(1+
α

µ2 − µ1
)−α ≥

∫ µ2

µ1

(1+
α

µmax
2 − µmin

1

)−α ≥
∫ µ2

µ1

dPY −α

Therefore, under the condition λ > max(0,
∫ µmax

2

µmin
1

dPY (y)− α), we obtain the positiveness of λ− :

λ− = µ2 − µ1 + λ− |α−
∫ µ2

µ1

dPY (y)− λ| = µ2 − µ1 + λ− (λ− α+

∫ µ2

µ1

dPY (y)) (1)

=⇒ λ− = µ2 − µ1 − (−α+

∫ µ2

µ1

dPY (y)) > 0

The first eigenvalue λ+ is obviously non-negative, thus both eigenvalues are non-negative which
means that the Hessian matrix is semi-definite positive.

In conclusion, when the condition λ > max(0,
∫ µmax

2

µmin
1

dPY (y)−α) is respected, our optimal interval
prediction loss is convex. Hence, it has a unique minimum.

Both the existence and the uniqueness of the minimum have been proven.

Theorem 3.4 (Validity of QFR-O - A variation of the validity of orthogonal quantile regression
theorem from (Feldman et al., 2021)). Suppose Y |X = x follows a continuous distribution for each
x ∈ X , and suppose that µ1(X), µ2(X) ∈ F . Consider the infinite-data version of the QFR-O
optimization :

argmin
µ1,µ2∈F

{E(LQFR
α ((µ1, µ2), X, Y ) + γR(w,m))}

Then, true conditional intervals with α coverage are solutions to the above optimization problem.

Proof. We note m = Iy∈[µ1,µ2] the coverage function and w = |µ2−µ1| the interval length function.
We consider the true conditional intervals that satisfied P(µ1(X) < Y < µ2(X)|X = x) = α.
Feldman et al. (2021) has shown that for such intervals, the coverage and interval length functions
are independent.

Therefore, similarly to vanilla QR or the Winkler score, these true conditional intervals are a solution
to the QFR problem. Moreover, by definition, the independence of w and m fixes the Pearson
correlation (or the HSIC score) of these functions to 0. Thus, the orthogonal penalty term that is
based on these metrics is also minimized. Hence, the true conditional intervals with α coverage are
a solution to the QFR-0 optimization problem.

C EXPERIMENTAL DETAILS

We follow standard preprocessing on all datasets with features and targets standardized such that
they have zero mean and unit variance. All experiments are repeated over 20 random seeds with
means and standard errors of means reported throughout. We train two-layer neural networks with
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64 hidden units and ReLU activations throughout (consistent with (Feldman et al., 2021)). We also
use the Adam optimizer (Kingma & Ba, 2014).

In the benchmarking of QFR-W, we applied the following experimental design. A training-
validation-testing split with a ratio of 0.2 for testing and a further split of 0.95-0.05 for training-
validation is applied. Then we perform a hyperparameter grid search for all methods. Each com-
bination is first fit to the training data with the evaluation performed on the validation data. For
a given hyperparameter combination, the best model is selected based on the epoch that achieves
the best interval length (such that target coverage is achieved). Once the model has converged,
it is retrained on the combined training and validation data for the same number of epochs with
the final reported evaluation on the held-out test set. All methods evaluated follow this protocol
with the exception of SQR which we found to be unstable resulting in poor performance due to the
smaller datasets and its aforementioned more difficult learning problem. Therefore, SQR uses just
a single training-testing split. The grid search considers the following hyperparameters: dropout
probability ∈ {0, 0.1, 0.2, 0.3, 0.4}, maximum number of epochs ∈ {1000, 2000, 3000, 5000},
batch size ∈ {64, 512, 1014, 2048}, exponential learning rate schedule ∈ {0.995, 1}, learning rate
∈ [5e − 1, 5e − 5], and regularization coefficient ∈ [5e − 4, 5e + 2]. The learning rate started
at 0.0005 and incrementally increased and decreased until the bound was reached or the learning
dynamics became unstable and failed to converge. For the regularization coefficient, the same pro-
cedure was applied, starting at 0.1 and incrementally increasing and decreasing until the solution
has stopped achieving the desired coverage on the validation set or the bound is reached.

In the benchmarking of QFR-O, we followed the exact procedure and used the implementation
of the OQR baseline in Feldman et al. (2021). In what follows, we will describe this procedure.
A training-validation-testing split with a ratio of 0.4 for testing and a further split of 0.9-0.1 for
training-validation is applied. In this case, the model is not retrained and is simply evaluated on
the test set after converging on the validation set. The default hyperparameters are used for both
methods with only the regularization coefficient tuned. Specifically, it is set to 1 and then decreased
in increments following [1, 0.5, 0.1, 0.05, . . .] until the desired coverage is achieved. Both the QFR-
O and OQR hyperparameters are - learning rate: 1e-3, maximum number of epochs: 10000, dropout
probability: 0, and batch size: 1024. Early stopping patience is set to 200 epochs.

The code used to run these experiments is provided in the attached zip file and will be uploaded to
GitHub upon acceptance.

Table 6: Summary statistics of the standard benchmark datasets for quantile regression.
Dataset Mean Variance Skewness Kurtosis

concrete 35.82 279.08 0.42 -0.32
wine 5.64 0.65 0.22 0.29
yacht 10.50 229.84 1.75 2.00

energy 22.31 101.81 0.36 -1.25
kin8nm 0.71 0.07 0.09 -0.53
naval 0.99 0.00 -0.00 -1.20
power 454.37 291.28 0.31 -1.05
boston 22.53 84.59 1.10 1.47
protein 7.75 37.43 0.57 -1.14

D FORMAL DESCRIPTION OF EVALUATION METRICS

To ensure this work is self-contained, in this section we include a formal description of the evaluation
metrics introduced in Section 2 and used in Section 4. We implement these metrics as described
in the referenced works. In all cases we evaluate on some evaluation dataset D consisting of N
input/target pairs (x, y).

Definition 1 (Prediction Interval Coverage Probability (PICP) (Tagasovska & Lopez-Paz, 2019)).
Defined as the number of true observations falling inside the estimated prediction interval, this is
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calculated as
PICP :=

1

N

∑
(x,y)∼D

Iµ1≤y≤µ2
.

Definition 2 (Mean Prediction Interval Width (MPIW) (Tagasovska & Lopez-Paz, 2019)). Defined
as the average interval width across the evaluation dataset, this is calculated as

MPIW :=
1

N

∑
(x,y)∼D

|µ2 − µ1|.

Definition 3 (Width-coverage Pearson’s Correlation (WCPC) (Feldman et al., 2021)). Denoting w
as the vector of interval widths where wi = |µ2(xi) − µ1(xi)| and m as the indicator vector of
coverage events where mi = Iyi∈[µ1(xi),µ2(xi)] for i ∈ {1, 2, . . . , N}, then we define

WCPC :=

∣∣∣∣ Cov(w,m)

Var(w)Var(m)

∣∣∣∣ .
Definition 4 (Hilbert-Schmidt Independence Criterion (HSIC) (Greenfeld & Shalit, 2020; Feldman
et al., 2021)). In this definition, upper case bold letters denote matrices. Using the same definitions
of w and m from Definition 3, the coverage kernel matrix is given by Ri,j = k(mi,mj) and the
width kernel is given by Ki,j = k(wi,wj) where k denotes the Gaussian kernel. We also introduce
a centering matrix Hi,j = δi,j − 1

N where δi,j = 1 if i = j and 0 otherwise. Then we can calculate
HSIC as

HSIC :=

√
tr(KHRH)

(N − 1)2

E CROSSING BOUNDS

A well-known limitation of the quantile regression approach to constructing prediction intervals is
any estimation error of the population level intervals can result in crossing bounds where the upper
bound falls below the lower bound (see e.g. Brando et al. (2022); Park et al. (2022)). Apart from
being a conceptual limitation, this can also affect the users trust in the system. A key advantage of
directly estimating the interval as proposed in this work is that the raw model outputs are not strictly
associated with being a particular bound. In other words, our objective is invariant to permutations of
the upper and lower bounds, and simply sets the lower bound to be the minimum and the upper bound
to be the maximum of the two model outputs. Therefore, which output neuron acts as either bound
can even change on a per-example basis. Formally, this can be observed in the κ = (y−µ1)(y−µ2)
term in our loss function (Equation (1)) which is clearly invariant to permutations between µ1 and
µ2. In contrast, crossing bounds in the case of quantile regression will result in miscoverage if the
bounds are permuted to avoid a negative interval. This may be considered a distinct advantage of
the direct interval prediction approach which sidesteps the conceptual issue of crossing quantiles
which occurs due to the independent estimation of the upper and lower bounds in quantile-based
approaches.

Recent work in Brando et al. (2022) has proposed methods for preventing crossing bounds in the
case of quantile regression by using Chebyshev polynomials to add additional constraints into the the
objective. In what follows we compare our proposed QFR-W method to this non-crossing quantile
method using the same experimental setup as in Table 3. As this method is a quantile estimation
method and does not prescribe how to construct intervals we include two approaches (a) “narrowest”
where we bin search the narrowest interval at each new inference and (b) “symmetric” where we use
the symmetric quantiles (0.05, 0.95). The results are included in Table 7.

In these results we note that, as with the previously evaluated methods for estimating all quantiles
simultaneously, the non-crossing quantile approach consistently struggles to maintain coverage at
test time. We seek solutions that minimize interval width for a fixed level of coverage which is
not achieved by this baseline which we attribute to two limitations. Firstly, when we select the
narrowest possible interval from a set of possible intervals that each obtain marginal coverage, it is
not a random choice and it is more likely that we are selecting a particular interval in which coverage
is not maintained. Therefore, analogous to the effect of overfitting in the standard point prediction
setting, we would expect that picking the narrowest intervals is likely to result in more miscoverage
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Table 7: Comparison between QRF-W vs Deep Non-crossing Quantiles. We present two differ-
ent versions of the deep non-crossing quantiles method: ”Narrowest” and ”Symmetric” (see text for
details). For the 9 datasets, we display interval width and the coverage level achieved in parentheses.

Dataset QFR-W Narrowest Symmetric

concrete 0.43 (89.95) 0.20 (57.33) 0.30 (73.30)
boston 0.51 (89.8) 0.26 (64.90) 0.36 (78.53)
naval 0.01 (90.95) 0.01 (97.43) 0.02 (99.04)

energy 0.13 (89.87) 0.07 (50.39) 0.14 (72.86)
wine 0.35 (89.44) 0.19 (62.56) 0.28 (76.75)

power 0.03 (90.73) 0.02 (73.70) 0.03 (89.83)
protein 1.59 (90.07) 1.13 (78.04) 1.50 (89.26)
kin8nm 0.34 (90.59) 0.25 (70.96) 0.38 (85.87)
yacht 0.27 (93.23) 0.29 (51.29) 0.35 (61.61)

events than selecting a fixed interval (as is reflected in these results). Secondly, learning all quantiles
simultaneously is a more challenging learning problem than simply learning two quantiles for a fixed
capacity model. This results in poorer predictive performance at the task in hand.

F MOTIVATION FOR MINIMIZING INTERVAL WIDTH

Although several methods might achieve a desired level of marginal coverage with their intervals,
the task of finding a set of intervals that obtain such coverage is generally an underspecified problem
with a potentially infinite number of admissible solutions. Given this, any interval-producing method
is required to introduce some additional regularization (either implicit or explicit) in order to select
among the possible solutions. In the case of quantile regression, the pair of symmetric quantiles are
selected. However, given that other attributes are typically desired in these intervals (as illustrated
by the large body of work that attempts to minimize interval width (Chung et al., 2021; Tagasovska
& Lopez-Paz, 2019; Pearce et al., 2018) or maximize conditional coverage (Feldman et al., 2021;
Hunter & Lange, 2000)), for many applications there are likely more preferable solutions than the
symmetric quantiles found via quantile regression. One real-world example where this is the case
is in renewable energy sources where it has been noted that “the probability distribution of the
renewable energy source’s power output is generally skewed, thereby the width of CPIs is often
unnecessarily wide” (Zhang et al., 2023).

One additional motivation for minimizing the width of intervals beyond the advantage of narrower
predictive intervals is that the minimal width intervals generally lie in denser regions of the underly-
ing probability distribution. Because we estimate these statistics using a sample from the population
distribution we typically incur some variance in this estimate which is typically lower in the more
dense regions of the probability space. To illustrate this, consider the distribution we presented in
Figure 1 of the main text where the ground truth intervals are known. Now suppose we take a sample
from this distribution (i.e. a training set) and estimate both the empirical minimum width intervals
and the empirical quantiles. In both cases there is likely to be some estimation error. If we were to
repeat this process multiple times we note that the variance around the estimates in lower-density
regions (where the symmetric quantiles lie) is likely to be greater than in the high-density regions
(where the minimum width intervals lie). As a consequence of this, quantile estimation methods may
suffer from larger errors in estimating true quantiles (particularly in small sample regimes) resulting
in more difficulties in obtaining exact coverage. We verify this claim empirically in Figure 3.
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Figure 3: Variance of the estimated bounds. Estimating the minimal width interval rather than
symmetric quantiles is also likely to result in lower variance estimates of the two bounds due to
being estimated in more dense regions of the distribution. This is illustrated on the log-normal
distribution example from Figure 1. We take samples of various sizes from this distribution and
estimate both the quantiles and the minimum width bounds. We find that the variance of these
estimates is significantly larger when estimating the former.

G ADDITIONAL RESULTS

G.1 LOW COVERAGE PROBABILITY

Lower coverage intervals (i.e. narrower intervals) can lead to greater instability in the estimates.
Thus, it is valuable to evaluate our method in the low coverage probability regime to ensure this
increased instability doesn’t have a disproportionally large effect on our method. We empirically
analyze the relative performance of our method for a lower coverage level in Table 8.

Table 8: Comparison QR vs QRF-W on 50% targeted coverage. For the 9 datasets, we display
interval width and the coverage level achieved in parentheses ± a standard error for both. All results
report the test set mean over 20 runs.

Dataset QR QRF-W

boston 0.145 ± 0.006 (44.71 ± 1.60) 0.509 ± 0.082 (49.56 ± 2.05)
concrete 0.217 ± 0.008 (53.42 ± 1.04) 0.136 ± 0.001 (50.49 ± 0.96)
energy 0.106 ± 0.004 (53.02 ± 2.36) 0.091 ± 0.006 (48.77 ± 2.92)
kin8nm 0.132 ± 0.001 (50.05 ± 0.37) 0.489 ± 0.019 (50.38 ± 0.43)
naval 0.013 ± 0.001 (49.67 ± 2.17) 0.002 ± 0.000 (51.42 ± 2.16)
power 0.010 ± 0.000 (47.27 ± 1.57) 0.012 ± 0.001 (48.36 ± 2.26)
protein 0.829 ± 0.003 (49.69 ± 0.16) 0.662 ± 0.005 (52.66 ± 0.35)
wine 0.271 ± 0.052 (57.08 ± 7.22) 0.152 ± 0.006 (49.59 ± 4.12)
yacht 0.404 ± 0.022 (49.92 ± 2.53) 0.156 ± 0.007 (48.71 ± 1.87)

As we might expect, both methods have increased variance in their estimates at this level. The mean
standard errors for 90% coverage rate are 0.99 and 0.57 for QFR-W and QR respectively while they
are 1.9 (QFR-W) and 2.1 (QR) for the 50% coverage rate. Using the same definition of achieving
coverage as in Table 3, we find that the only case of not achieving coverage is QR on Boston. Of
the remaining 8 cases, QFR-W obtains narrower intervals in 6/8 cases, tying 1/8 and QR obtaining
narrower intervals in 1/8. Overall this is consistent with previous results indicating that QFR-W also
obtains more narrow intervals when we consider alternative coverage levels.

G.2 NON-SMOOTHED KIN8NM INTERVALS
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Figure 4: Non-smoothed kin8nm intervals. Figure 2 (left) without Savitzky–Golay filter applied.
In this version it is apparent that micoverage events do occur as we would expect while the difference
in interval width is less legible.
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