
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

E2RANK: YOUR TEXT EMBEDDING CAN ALSO BE AN
EFFECTIVE AND EFFICIENT LISTWISE RERANKER

Anonymous authors
Paper under double-blind review

ABSTRACT

Text embedding models serve as a fundamental component in real-world search
applications. By mapping queries and documents into a shared embedding space,
they deliver competitive retrieval performance with high efficiency. However,
their ranking fidelity remains limited compared to dedicated rerankers, especially
recent LLM-based listwise rerankers, which capture fine-grained query-document
and document-document interactions. In this paper, we propose a simple yet ef-
fective unified framework E2RANK, means Efficient Embedding-based Ranking
(also means Embedding-to-Rank), which extends a single text embedding model
to perform both high-quality retrieval and listwise reranking through continued
training under a listwise ranking objective, thereby achieving strong effectiveness
with remarkable efficiency. By applying cosine similarity between the query and
document embeddings as a unified ranking function, the listwise ranking prompt,
which is constructed from the original query and its candidate documents, serves
as an enhanced query enriched with signals from the top-K documents, akin to
pseudo-relevance feedback (PRF) in traditional retrieval models. This design pre-
serves the efficiency and representational quality of the base embedding model
while significantly improving its reranking performance. Empirically, E2RANK
achieves state-of-the-art results on the BEIR reranking benchmark and demon-
strates competitive performance on the reasoning-intensive BRIGHT benchmark,
with very low reranking latency. We also show that the ranking training process
improves embedding performance on the MTEB benchmark. Our findings indi-
cate that a single embedding model can effectively unify retrieval and reranking,
offering both computational efficiency and competitive ranking accuracy.

(a) (c)

(b)

Query Documents Listwise Prompt

InfoNCE
Loss

LLM
Labeled

Model

Ranknet
Loss

Figure 1: (a) Overview of E2RANK. (b) Average reranking performance on the BEIR benchmark,
E2RANK outperforms other baselines. (c) Reranking latency per query on the Covid dataset.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

1 INTRODUCTION

Text embedding and reranking are fundamental components in numerous natural language process-
ing (NLP) and information retrieval (IR) applications, including web search, question answering,
retrieval-augmented generation, and beyond (Karpukhin et al., 2020; Zhao et al., 2024). In general,
most production IR systems adopt a two-stage architecture: a lightweight embedding retriever re-
trieves a small candidate set, which is then reranked by a more powerful reranking model (Matveeva
et al., 2006). In the first stage, text embedding offers efficient similarity search abilities by map-
ping queries and documents into a shared low-dimensional vector space, enabling real-time and
web-scale applications (Karpukhin et al., 2020). The advent of large language models (LLMs) has
further improved the retrieval performance of these embedding models (Zhu et al., 2023; Ma et al.,
2023; BehnamGhader et al., 2024).

However, a performance gap persists between embedding-based retrievers and state-of-the-art
rerankers, particularly those using LLMs (Zhu et al., 2023). Specifically, listwise methods like
RankGPT (Sun et al., 2023) can model fine-grained interactions within the entire candidate set and
capture both query-document and document-document relationships, leading to rankings that better
reflect human judgment and achieving state-of-the-art results across various benchmarks (Sun et al.,
2023; Pradeep et al., 2023).

Despite their effectiveness, LLM-based listwise rerankers incur high computational costs and infer-
ence latency, limiting their deployment in real-time environments. The need to encode all candidates
in a single pass introduces substantial prefilling delays, while autoregressive decoding further slows
the process (Liu et al., 2025b). Therefore, some recent works tried to improve the efficiency of list-
wise rerankers by compressing the input documents (Liu et al., 2025b) and leveraging LLM’s output
logits or attention patterns to avoid expensive auto-regressive generation (Reddy et al., 2024; Chen
et al., 2024b; Zhang et al., 2025b).

Among the above works, an important observation is that the auto-regressive generation paradigm
adopted by RankGPT (Sun et al., 2023) is not necessary for ranking, while the interaction between
query and documents in the context is critical for ranking effectiveness (Chen et al., 2024b). Addi-
tionally, Liu et al. (2025b) shows that incorporating document embeddings in the ranking process
is also helpful. Based on these, we naturally raise the following question: What if incorporating the
interaction signals in embedding models for reranking?

Intuitively, this question can be addressed from two complementary perspectives. From the stand-
point of dense retrieval, the listwise prompt integrating both the document and the query can be
viewed as a form of pseudo relevance feedback (PRF) (Xu & Croft, 1996) query in traditional IR,
which can enhance the quality of query embeddings (Yu et al., 2021). Conversely, from the perspec-
tive of listwise reranking, the rich contextual information encoded in the listwise prompt enables
the use of simple cosine similarity in place of autoregressive decoding. In essence, the listwise
prompt can be transformed into a single PRF-enhanced query embedding, allowing reranking to be
efficiently performed via cosine similarity against precomputed document embeddings. This leads
to a unified scoring mechanism and a unified model that seamlessly bridges retrieval and reranking.

We then introduce E2RANK (Efficient Embedding-based Ranking or Embedding-to-Rank) and
propose a two-stage process to train the unified model, shown in Figure 1. First, we train an embed-
ding model via contrastive learning, then continue to train it under a multi-task learning framework
that jointly optimizes contrastive and ranking objectives. Specifically, we use the listwise prompt
as a pseudo query and adopt the RankNet loss (Burges et al., 2005) for optimization. This multi-
task approach encourages the embedding space to capture both query-document relevance and full
interactions. At inference time of reranking, we only compute cosine similarity between document
embeddings and the optimized query representation derived from the listwise prompt. This unified
design offers advantages for both efficiency and effectiveness. First, by operating in the embed-
ding space instead of generation, it eliminates the computational overhead of LLM-based rerankers,
enabling low-latency inference suitable for large-scale applications. Second, the full interaction
between query and documents and richer training signals substantially enhances reranking quality.

We evaluate E2RANK on popular reranking and embedding benchmarks. Experimental results
demonstrate that our model achieves state-of-the-art reranking performance on BEIR (Thakur et al.,
2021) and exhibits a strong performance on reasoning-intensive benchmark BRIGHT (Su et al.,
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2025), while notably improving inference efficiency. Additionally, trained solely on public data,
our model preserves a competitive embedding performance on MTEB (Muennighoff et al., 2022),
demonstrating the effectiveness of unifying retrieval and reranking.

Our contributions are summarized as follows:

• We reinterpret the listwise prompt as a PRF query and propose a unified framework,
E2RANK, for both retrieval and reranking.

• We propose a two-stage training process to optimize the unified model for both retrieval
and listwise reranking tasks.

• Extensive experiments show that E2RANK achieves state-of-the-art reranking performance,
with significantly lower latency than existing LLM-based rerankers, while maintaining
competitive retrieval performance on MTEB.

2 RELATED WORK

Large Language Model For Document Reranking Large language models (LLMs) like GPT-
4 (OpenAI, 2024) and Qwen-3 (Yang et al., 2025) have significantly advanced information retrieval,
achieving state-of-the-art performance in document ranking tasks across multiple benchmarks (Sun
et al., 2023; Zhu et al., 2023; Chen et al., 2024c). Existing methods generally fall into three prompt-
ing paradigms: pointwise, pairwise, and listwise. Pointwise methods evaluate each query-document
pair independently, offering efficiency but lacking cross-document comparisons (Liang et al., 2022;
Sachan et al., 2022; Zhang et al., 2023a; Liu et al., 2024b). Pairwise methods compare document
pairs for a given query to determine relative relevance (Qin et al., 2023). Listwise methods in-
stead consider the entire candidate set simultaneously and generate a ranking list based on global
relevance signals (Sun et al., 2023; Pradeep et al., 2023; Liu et al., 2024a). Recent studies further
improve listwise reranking by refining prompting strategies or the method of outputting the ranking
list (Reddy et al., 2024; Liu et al., 2025b; Chen et al., 2024b; Zhang et al., 2025b).

Text Embedding Models Text embeddings map queries and documents into a shared semantic
space and serve as a foundation component in modern search systems. Based on pre-trained lan-
guage models such as BERT (Devlin et al., 2018) and T5 (Raffel et al., 2020), they significantly im-
proved retrieval performance over traditional methods (Karpukhin et al., 2020; Ni et al., 2021; Zhao
et al., 2024), and approaches like GTE (Li et al., 2023b), E5 (Wang et al., 2022), and BGE (Xiao
et al., 2023) further boosted quality via large-scale contrastive learning. More recently, LLMs have
emerged as powerful backbones due to their strong semantic understanding and generalization capa-
bilities. Representative methods include LLM2Vec (BehnamGhader et al., 2024), E5-Mistral (Wang
et al., 2023), NV-Embed (Lee et al., 2025), and Qwen3-Embedding (Zhang et al., 2025c), which
explore architectural modifications, training data construction, or advanced training strategies. In-
struction following and in-context learning abilities of text embeddings are also studied (Su et al.,
2022; Li et al., 2024a). Additionally, GritLM (Muennighoff et al., 2024) unified the embedding
model and generative model through multi-task learning.

Compared to previous work, our work unifies the embedding and listwise reranking ability, which
share a similar objective, in a single embedding model, considering both effectiveness and efficiency.

Pseudo Relevance Feedback for Dense Retrieval Pseudo Relevance Feedback (PRF) is an im-
portant concept in classic IR. Specifically, it is an automatic query expansion technique widely used
in classic IR (Xu & Croft, 1996; Manning, 2008). After an initial retrieval, the system assumes
that the top-K retrieved documents are relevant, extracts informative terms from these documents,
and uses them to expand the original query for a second round of retrieval. Recent studies show
the effectiveness of incorporating PRF in dense retrievers. ANCE-PRF (Yu et al., 2021) consumed
the query and the top retrieved documents to learn a better query encoder, but is less robust for
strong models (Li et al., 2022; 2023a). Other works leveraged PRF in rerankers, but were limited
in pointwise cross-encoders and needed to generate keywords for query expansion (Li et al., 2024b;
Weller et al., 2024). Compared to previous work, we first interpret and systematically study PRF in
the framework of LLM-based listwise reranking instead of merely retrieval and without additional
query-augmented techniques, and also demonstrate its effectiveness in this context through training
under a ranking objective.
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3 METHODOLOGY

We first review embedding-based retrieval and LLM-based listwise reranking, then present our key
insight: listwise prompts can be treated as pseudo relevance feedback queries, then the cosine sim-
ilarity of embeddings could be a unified ranking function, leading to a unified model E2RANK.
Finally, we detail the training of E2RANK.

3.1 PRELIMINARY

For a LLM-based decoder-only text embedding model f and any document d, we append the special
end-of-sequence token [EOS] at the end of the input sequence, and the hidden state at the position
of [EOS] from the final decoder layer is taken as the sequence embedding: ed = f(d, [EOS])[−1].
Further, given a query q, we append the instruction I in front of the query to ensure its instruction-
following abilities (Su et al., 2022) and obtain the embedding eq = f(I, q, [EOS])[−1]. The rel-
evance between the query and the document is measured by the cosine similarity between their
corresponding embeddings, denoted as s(q, d) = cos (eq, ed).

While the embedding model learning encodes the semantic information of a single document in the
embedding space, it has not been optimized to capture nuanced differences between multiple docu-
ments. In contrast, LLM-based listwise rerankers (e.g., RankGPT (Sun et al., 2023)) use a listwise
prompt that includes the query and the entire candidate set, formulated as q̂ = (I, d1, ..., dk, q),
where {di}ki=1 is candidate documents set. The model is then asked to output a text form permuta-
tion (e.g., “[2] > [1] > [3]...”) of the documents in decreasing order of relevance. While effective,
this approach requires auto-regressive decoding or full-sequence encoding over long inputs, leading
to high computational cost and latency. Moreover, the decoding process is inherently sequential and
difficult to parallelize. Meanwhile, some work proposed that the auto-regressive decoding may not
be necessary for listwise reranker; however, the listwise prompt containing the interaction between
query and documents in the context is the most important (Chen et al., 2024b; Zhang et al., 2025b).

3.2 LISTWISE PROMPTS AS PSEUDO RELEVANCE FEEDBACK QUERY

Inspired by these observations, we propose to reinterpret the listwise prompt as a pseudo-relevance
feedback (PRF) query. Therefore, we can formulate the listwise reranking and retrieval in a unified
framework. Specifically, instead of generating a ranking list auto-regressively, we start from an
embedding model and use the cosine similarity of embeddings as a unified ranking function for both
retrieval and reranking. Formally, for the listwise prompt, we obtain its embedding

eq̂ = f(I, d1, ..., dk, q)[−1], (1)

and compute s(q̂, di) = cos (eq̂, edi) as the score for reranking. The instructions we use is similar to
“Given a query and some relevant documents, rerank the documents”, detailed in the Appendix C.
It should be noted that, different from text embedding, we apply chat templates for listwise prompt.

This design allows us to exploit listwise information for effectiveness without sacrificing efficiency
at inference time. First, the listwise prompt provides the model with additional contextual PRF sig-
nals, allowing it to refine the query representation by implicitly leveraging document-document and
query-document relationships. Second, both retrieval and reranking reduce to simple cosine simi-
larity computations in the shared embedding space, and the document embeddings can be reused.
Finally, PRF-based design enables feeding only partial candidates in LLM inputs for the full rank-
ing, for example, including only top-20 documents in the PRF query to rerank top-100, which can
further improve the efficiency.

3.3 TRAINING THE UNIFIED EMBEDDING AND LISTWISE RERANKING MODEL

We propose training E2RANK in two stages: first, training an embedding model, then endowing it
with listwise reranking capacity.

Stage I We start from training an LLM-based decoder-only text embedding model. In the train-
ing process, we employ standard contrastive learning to align relevant query–document pairs while
pushing apart irrelevant ones. Specifically, for a training query qi, there is one positive document
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d+i and a set of negative documents D−. Given a batch of N instances, we minimize the InfoNCE
loss (Izacard et al., 2021):

LInfoNCE = − 1

N

N∑
i=1

log
e(s(qi,d

+
i )/τ)

e(s(qi,d
+
i )/τ) +

∑
dj∈D− e(s(qi,dj)/τ)

, (2)

where τ is a temperature hyperparameter, which is set to 0.03 during training. This embedding
training stage ensures that the base embedding model learns strong semantic representations suitable
for large-scale retrieval.

Stage II To incorporate the listwise reranking capabilities into the embedding model, we continue
training the model using a multi-task learning framework. Basically, we include the contrastive
learning with InfoNCE loss to maintain the embedding capacity of the model and a new learning-
to-rank loss function, RankNet (Burges et al., 2005) loss, which is a pairwise loss that measures the
correctness of relative orders, for listwise ranking ability. The RankNet loss is defined as follows:

LRankNet =
1

N

N∑
i=1

∑
dj∈D

∑
dk∈D

1rj<rk log(1 + e(s(qi,dj)/τ−s(qi,dk)/τ)), (3)

where D is the same set of documents as used in contrastive learning (including both positive and
negative). τ is set to 0.1 in RankNet loss to scale the similarity score. rj is the rank of document
dj among D, and the smaller the rank, the more relevant. For example, rj = 2 means dj ranks
second among |D| documents. Following (Sun et al., 2023; Pradeep et al., 2023), we can leverage a
powerful LLM to generate the full ranking permutation and obtain a set of pairwise relative relevance
orders. The final training objective of stage II combines retrieval and reranking losses:

L = LInfoNCE + λLRankNet, (4)

where λ is a hyperparameter that balances two tasks, which is set to 2.0 based on prior experiments.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Base LLMs We conduct our main experiments with open-weight, instruction-tuned LLMs from
the Qwen3 family (Yang et al., 2025) across different sizes, including 0.6B, 4B, and 8B.

Training Datasets At Stage I, we use the public portion of the E5 training dataset (Wang et al.,
2023) with roughly 1.5 million samples, curated by Springer et al. (2025). For the second stage
training, we compare two different training datasets. First, we use the MS MARCO training data
provided by Pradeep et al. (2023) with 40K samples. The second training dataset we use is a mixture,
consisting of some of the retrieval datasets from the Stage I, as well as 2 additional public Chinese
retrieval datasets from BGE-M3 training dataset (Chen et al., 2024a). We further sample instances
from these datasets and construct hard negatives for each query, resulting in about 87k training
samples each with 1 query, 1 positive, and 15 negatives. We also leverage Qwen3-32B for labeling
the ranking permutation. For more details about the datasets, please refer to Appendix B.

Implementation Details We train the embedding model with full parameters for 1 epoch with a
batch size of 512, using a learning rate of 5e-6. At the second stage, we continue to train the model
for about 700 steps with a batch size of 128, and the number of negatives is 15. We provide other
hyperparameters in Appendix C.

4.2 RERANKING PERFORMANCE

Datasets Following Sun et al. (2023), we use TREC DL dataset (Craswell et al., 2020) and a subset
of BEIR (Thakur et al., 2021) for evaluation of general reranking ability. Specifically, we conduct
evaluations on 8 datasets of BEIR that contain a relatively small number of queries, including TREC
Covid, NFCorpus, Touch2020, DBPedia, SciFact, Signal1M, TREC News, and Robust04. Since the
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Table 1: Performance comparison on TREC DL and BEIR benchmarks across LLMs. We bold the
best performance for each task with each base LLM. The second column denotes the training data.

Model Data DL19 DL20 Coivd NFCorpus Touche DBPedia SciFact Signal News Robust Avg.

BM25 - 50.58 47.96 59.47 30.75 44.22 31.80 67.89 33.05 39.52 40.70 43.43

RankQwen3-0.6B MS. 69.11 67.74 78.35 36.41 37.54 39.19 71.01 30.96 44.43 46.31 48.03
E2RANK-0.6B MS. 70.78 70.55 80.03 37.63 36.60 41.90 73.19 35.66 51.17 49.70 50.74

+1.67 +2.81 +1.68 +1.22 -0.94 +2.71 +2.18 +4.70 +6.74 +3.39 +2.71
E2RANK-0.6B Mixed 70.84 70.15 79.17 38.60 41.91 41.96 73.43 35.26 52.75 53.67 52.09

+1.73 +2.41 +0.82 +2.19 +4.37 +2.77 +2.42 +4.30 +8.32 +7.36 +4.07

RankQwen3-4B MS. 72.36 69.83 83.91 39.88 32.66 43.91 76.37 32.15 50.81 59.36 52.38
E2RANK-4B MS. 70.67 71.05 84.90 39.32 35.44 43.66 77.69 34.21 51.22 57.49 52.99

-1.69 +1.22 +0.99 -0.56 +2.78 -0.25 +1.32 +2.06 +0.41 -1.87 +0.61
E2RANK-4B Mixed 70.44 70.64 83.30 39.20 43.16 42.95 77.19 34.48 52.71 60.16 54.14

-1.92 +0.81 -0.61 -0.68 +10.50 -0.96 +0.82 +2.33 +1.90 +0.80 +1.76

RankQwen3-8B MS. 73.15 70.75 85.37 40.05 31.73 45.44 78.96 32.48 52.36 60.72 53.39
E2RANK-8B MS. 71.66 70.87 85.43 39.57 36.59 44.26 78.17 33.52 55.36 57.95 53.86

-1.49 +0.12 +0.06 -0.48 +4.86 -1.18 -0.79 +1.04 +3.00 -2.77 +0.47
E2RANK-8B Mixed 72.95 71.16 84.09 39.08 42.06 43.44 77.49 34.01 54.25 60.34 54.35

-0.20 +0.41 -1.28 -0.97 +10.33 -2.00 -1.47 +1.53 +1.89 -0.38 +0.96

rise of reasoning-intensive ranking for complex retrieval-augmented tasks like DeepResearch, we
also evaluate E2RANK on BRIGHT (Su et al., 2025). We use BM25 as the first-stage retriever for
TREC DL and BEIR and use ReasonIR (Shao et al., 2025) with GPT4 reason-query for BRIGHT.
For all benchmarks, we rerank the top-100 candidate documents and use NDCG@10 as the metric.

Baselines In order to achieve a fair and direct comparison, we used the same base LLM to com-
pare RankGPT-like listwise rerank with E2RANK, and finetune Qwen3 on the training data provided
by Pradeep et al. (2023), denoted as RankQwen3. More training details will be provided in Ap-
pendix C. For RankQwen3, we use a sliding window strategy of window size 20 and step 10; while
for our model, we only feed the top-20 documents to the listwise prompt and use its embedding
to rerank the top-100. We believe that this direct comparison between E2RANK and RankQwen3
without the influence of base LLMs and training data can provide richer insights.

For reference, we also report other baseline results on TREC DL and BEIR, including cross-encoders
monoBERT (Nogueira et al., 2019), monoT5 (Nogueira et al., 2020), and RankT5 (Zhuang et al.,
2023), as well as listwise LLM-based rerankers ListT5 (Yoon et al., 2024), RankZephyr (Pradeep
et al., 2023), and RankGPT (Sun et al., 2023). As for the baselines of BRIGHT, we compare
E2RANK with reasoning rerankers with parameters less than 14B, including Rank-R1 (Zhuang et al.,
2025), Rank1 (Weller et al., 2025), JudgeRank (Niu et al., 2024), Rearank (Zhang et al., 2025a), ER-
ank (Cai et al., 2025), and ReasonRank (Liu et al., 2025c). Note that only RankGPT and JudgeRank
are zero-shot; others are all fine-tuned, and most reasoning rerankers are trained with RL.

E2RANK consistently outperforms RankQwen3. We present the direct comparison between
E2RANK and RankQwen3 on general reranking datasets in Table 1. When training on the same
datasets, our proposed E2RANK demonstrates a clear and consistent advantage over RankQwen3
baseline across all model sizes, especially for the 0.6B model with an average gain of +2.71
NDCG@10, while E2RANK-4B and E2RANK-8B show smaller but stable improvements on av-
erage. Additionally, using more diverse and richer datasets can further boost the performance of
E2RANK. As model size grows, both RankQwen3 and E2RANK improve over BM25, but E2RANK-
8B trained on mixed datasets achieves the best overall performance.

E2RANK achieves competitive rerank accuracy across other strong baselines. Table 2 presents
broader comparisons on the TREC DL and BEIR benchmarks, and our models compete effectively
with a diverse array of state-of-the-art rerankers. Compared to fine-tuned pointwise rerankers such
as monoBERT and monoT5, our approach achieves significantly higher average scores, and even
surpasses strong listwise baselines like RankZephyr and ListT5 on BEIR benchmarks. Notably,
while RankGPT-4o remains the strongest zero-shot model, our fine-tuned 8B model secures the top
performance on the DL20 dataset (71.16) and achieves the highest overall BEIR average (54.35),
surpassing even much larger zero-shot models like RankGPT-4o and establishing our approach as a
powerful and efficient alternative to existing fine-tuned and zero-shot methods.
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Table 3: Performance comparison on BRIGHT benchmarks across LLMs. We bold the best perfor-
mance for each task and underline the second best.

Model StackExchange Coding Theorem-based Avg.
Bio. Econ. Earth. Psy. Rob. Stack. Sus. Pony. LC. AoPS TheoQ. ThoT.

ReasonIR 43.5 32.8 43.0 38.9 21.1 30.6 27.3 31.6 19.6 7.3 36.7 34.1 30.5

RankT5 (3B) 11.4 22.1 10.9 13.6 11.4 11.4 16.0 27.5 38.1 9.2 18.3 9.5 16.6
RankZephyr 19.9 17.4 12.4 34.9 24.7 13.4 22.3 29.3 32.4 6.1 29.0 30.1 22.6

Rank-R1 (7B) 39.3 28.1 23.9 30.0 17.3 18.1 33.2 18.6 15.0 4.2 25.4 35.7 24.1
Rank-R1 (14B) 27.4 38.7 23.1 44.5 37.1 27.8 36.8 21.3 19.2 8.8 31.7 39.5 29.7
Rank1 (7B) 44.1 33.5 21.8 30.0 15.0 22.1 28.5 11.8 21.7 1.2 26.2 36.2 24.3
Rearank (7B) 35.3 29.8 25.5 35.7 19.1 20.1 32.9 29.9 20.2 6.2 36.7 38.3 27.5
JudgeRank (8B) 37.1 27.2 19.2 28.6 11.6 19.9 22.5 10.2 10.2 3.6 22.9 29.4 20.2
ERank (4B) 42.1 42.5 26.3 36.4 20.8 27.3 33.2 31.7 21.8 10.9 32.8 40.6 30.5
ERank (14B) 46.6 42.5 25.2 37.3 19.6 30.2 34.6 31.9 25.6 10.5 32.4 45.0 31.8
ReasonRank (7B) 35.1 47.8 31.2 56.7 47.8 32.5 40.9 23.2 25.0 7.7 39.5 41.8 35.7

RankQwen3-0.6B 44.7 38.7 28.4 40.4 20.5 26.1 28.5 19.9 29.1 6.8 35.8 30.5 29.1
E2RANK-0.6B (MS.) 41.2 46.5 30.9 34.3 24.2 24.0 27.4 9.4 35.6 10.5 30.4 27.2 28.5
E2RANK-0.6B 44.1 46.5 31.0 40.8 26.1 30.6 30.6 11.7 38.5 8.0 35.9 28.0 31.0

RankQwen3-4B 47.0 44.2 25.2 44.7 24.1 29.7 41.1 22.6 22.0 9.0 38.2 36.0 32.0
E2RANK-4B (MS.) 42.9 44.4 30.5 39.1 27.4 25.4 32.9 7.7 38.3 11.4 38.4 35.5 31.2
E2RANK-4B 47.6 46.7 31.8 43.1 26.8 31.4 34.6 8.6 38.4 8.2 39.8 31.6 32.4

RankQwen3-8B 49.5 44.2 30.4 44.9 24.9 26.1 39.6 18.8 20.8 7.6 39.0 37.9 32.0
E2RANK-8B (MS.) 45.0 48.1 31.9 38.5 29.3 32.2 36.4 10.3 36.0 10.6 37.9 36.6 32.7
E2RANK-8B 49.2 47.2 32.3 44.7 28.2 32.9 38.4 10.6 36.2 8.2 38.2 33.4 33.4

Table 2: Performance comparison across
broader baselines. The best result of each
benchmark is bolded, and the second best is
underlined.

Model DL19 DL20 BEIR Avg.

BM25 50.58 47.96 43.43

Fine-tuned Pointwise Reranker

monoBERT (340M) 70.50 67.28 47.16
monoT5 (3B) 71.83 68.89 51.36
RankT5 (3B) 72.50 70.40 52.50

Fine-tuned Listwise Reranker

ListT5 (3B) 71.80 69.10 53.00
RankZephyr 73.39 70.02 51.15

Zero-shot Listwise Reranker

RankQwen3 (14B) 74.19 69.10 53.67
RankGPT-4o 74.78 69.52 53.09
RankGPT-4o-mini 72.36 67.30 51.16

Ours

E2RANK-0.6B 70.84 70.15 52.09
E2RANK-4B 70.44 70.64 54.14
E2RANK-8B 72.95 71.16 54.35

Efficiency Analysis. We conduct the efficiency
analysis on the Covid dataset using a single NVIDIA
A100 80G GPU. The Covid dataset contains 50 test
queries, and the average length of documents to-
kenized by the Qwen3 tokenizer is approximately
350. We implement the evaluation code using
vLLM (Kwon et al., 2023), a highly-efficient LLM
inference infrastructure. As shown in Figure 1
(b), E2RANK significantly reduces inference latency
across all model sizes compared to RankQwen3,
achieving up to about 5× speedup at 8B while
maintaining superior ranking performance. Even
E2RANK-8B model is faster than RankQwen3-0.6B.
Since RankQwen3 uses a sliding window strategy, it
can’t use the batch inference techniques for infer-
ence, while full ranking is less effective. In con-
trast, E2RANK inherits the advantages of the em-
bedding model, supports batch inference, and can
encode document embeddings offline, further reduc-
ing online reranking latency. The detailed results of
reranking latency are listed in Appendix G, Table 12
and 13.

E2RANK demonstrates strong performance on the BRIGHT benchmark. On the challenging
BRIGHT benchmark, E2RANK delivers robust performance, as shown in Table 3. Without any RL
or reasoning process, E2RANK-8B attains a highly competitive average score of 33.4, surpassing
RankQwen3 and most reasoning rerankers and only underperforming ReasonRank trained on syn-
thetic reasoning data, validating the strong generalization capabilities.

4.3 EMBEDDING ABILITY

Benchmark and Baselines We evaluate E2RANK on the Massive Text Embedding Benchmark
(MTEB) (Muennighoff et al., 2022). Specifically, we mainly evaluate its English v1 version, a col-
lection of 56 datasets covering seven types of embedding tasks: classification, clustering, pairwise
classification, reranking, retrieval, sentence similarity (STS), and summarization. We also leverage
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Table 4: Performance comparison on MTEB. Note that some baselines are trained with non-public
data, and we only report the version trained on public data, marked using *. The best results for each
subtask are highlighted in bold, and the second-best results are underlined.

Categorias → Retr. Rerank. Clust. PairClass. Class. STS Summ. Avg.
# of datasets → 15 4 11 3 12 10 1 56

Instructor-xl 49.26 57.29 44.74 86.62 73.12 83.06 32.32 61.79
BGElarge-en-v1.5 54.29 60.03 46.08 87.12 75.97 83.11 31.61 64.23
GritLMMistral-7b-v1* 53.10 61.30 48.90 86.90 77.00 82.80 29.40 64.70
E5Mistral-7b-v1* 52.78 60.38 47.78 88.47 76.80 83.77 31.90 64.56
EchoMistral-7b-v1 55.52 58.14 46.32 87.34 77.43 82.56 30.73 64.68
LLM2VecMistral-7B 55.99 58.42 45.54 87.99 76.63 84.09 29.96 64.80
LLM2VecMeta-LLaMA-3-8B 56.63 59.68 46.45 87.80 75.92 83.58 30.94 65.01
BGE-en-iclMistral-7b-v1* (zero-shot) 59.59 56.85 42.61 87.87 75.47 83.30 29.52 64.67

E2RANK-0.6B (w/ only Stage I) 48.07 56.16 42.38 82.47 72.05 80.90 29.84 60.05
E2RANK-0.6B 51.74 55.97 40.85 83.93 73.66 81.41 30.90 61.25

E2RANK-4B (w/ only Stage I) 54.36 59.30 44.62 84.36 76.11 82.31 29.33 63.61
E2RANK-4B 55.33 59.10 44.27 87.14 77.08 84.03 30.06 64.47

E2RANK-8B (w/ only Stage I) 55.31 55.73 45.84 85.23 75.69 83.23 29.66 64.26
E2RANK-8B 56.89 59.58 44.75 86.96 76.81 84.52 30.23 65.03

Table 5: End-to-end ranking performance.

DL20 BEIR BRIGHT

E2RANK-0.6B Retrieval 66.77 47.60 18.37
+ Rerank 74.40 50.66 22.58

E2RANK-4B Retrieval 74.00 52.11 27.84
+ Rerank 76.88 54.12 32.15

E2RANK-8B Retrieval 75.83 53.39 25.09
+ Rerank 78.02 55.08 31.00

Table 6: Ablation on different training strategies.

DL20 BEIR BRIGHT MTEB(v2)

E2RANK-0.6B 70.15 52.09 30.96 63.41

w/o Stage I 69.32 51.33 30.66 60.61
w/o InfoNCE in Stage II 69.11 52.17 29.99 61.92

w/ only Stage I 63.55 46.31 15.30 62.40
w/o RankNet in Stage II 66.50 49.24 22.40 63.31

w/o Listwise in Stage II 66.29 49.93 22.69 63.66

its English v2 version for quick evaluation and ablation studies, which is smaller and cleaner with
41 tasks. We compare our models with recent advanced open source text embedding models that are
trained on public datasets, including Instructor-xl (Su et al., 2022), BGE-large-en-v1.5 (Xiao et al.,
2023), GritLM (Muennighoff et al., 2024), E5 (Wang et al., 2023), EchoEmbedding (Springer et al.,
2025), LLM2Vec (BehnamGhader et al., 2024), and BGE-ICL (Li et al., 2024a).

Results Table 4 presents the performance of E2RANK on the MTEB(Eng, v1) benchmark. When
leveraging only the public dataset, E2RANK demonstrates strong embedding capabilities, while
E2RANK-8B shows slight performance advantages on average compared to previous advanced mod-
els. Notably, compared with the variant with only contrastive learning, distilling from richer ranking
signals will bring consistent and significant enhancements in retrieval tasks (↑ 1.58 for E2RANK-
8B), demonstrating the effectiveness of the ranking objective. Noticed that here we focus on general
and pure embedding ability, so we do not use the listwise prompt for reranking tasks.

4.4 UNIFIED AND END-TO-END RETRIEVAL AND RERANKING

We also perform end-to-end ranking to evaluate if the single E2RANK model could be a unified
model in the search paradigm. Specifically, we use E2RANK first to retrieve the top-100 candidate
documents and then use it to rerank these documents further.

The results in Table 5 indicate that using a single E2RANK model for both retrieval and reranking
leads to consistent improvements across different model scales and datasets. Notably, as the model
size increases from 0.6B to 8B parameters, we observe progressive gains in end-to-end ranking
performance on all benchmarks. Additionally, reranking consistently enhances the initial retrieval
performance, with the E2RANK-8B achieving the best performance of 55.08 nDCG@10 on BEIR
after reranking. These results demonstrate the viability of using a single unified model for both
stages of the search pipeline, thereby reducing system complexity and latency while maintaining
strong performance.
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Figure 2: Trend of NDCG@10 changes with the
number of input documents in listwise prompt.
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Figure 3: Score distribution of using listwise
(with 20 documents) and non-listwise prompts.

4.5 ABLATION STUDY

We evaluate the effectiveness of different training strategies and conduct ablation studies using the
Qwen3-0.6B model on TREC DL20, BEIR, BRIGHT, and MTEB(eng, v2). The reranking settings
and metrics are the same as in Section 4.2. The results shown in Table 6 indicate that the full training
strategy achieves the best or highly competitive performance across all datasets, demonstrating the
effectiveness of the integrated design. For the last three lines, we use query-only embedding instead
of listwise prompt for evaluation since they are not trained on it. We provide more analysis in the
Appendix.

The first-stage contrastive learning is crucial for foundational query-document alignment and
embedding ability. Its removal causes consistent performance degradation, especially on MTEB.
This confirms that initial large-scale contrastive learning provides an essential foundation for subse-
quent ranking tasks.

The RankNet loss is the most critical element for effective ranking. Removing the RankNet loss
causes the most severe performance collapse, particularly on BEIR and BRIGHT. This underscores
that the pairwise ranking objective is indispensable for learning complex relevance ordering patterns.

The listwise prompts incorporating PRF documents substantially enhance ranking effective-
ness. If retaining the RankNet loss but removing the listwise prompt, the ranking performance will
still be greatly affected (last line). This indicates that the reranking ability is mainly from the listwise
prompt with PRF signals, but not the richer training labels.

4.6 ANALYSIS

In order to understand the reranking behaviors of E2RANK, we conduct a further analysis.

Table 7: Performance comparison across
other PRF baselines. The best result of each
benchmark is bolded.

DL20 BEIR BRIGHT

E2RANK-0.6B 70.15 52.09 30.96
w/o Listwise Prompt 65.25 49.46 21.50

w/o Listwise in Stage II 66.29 49.93 22.69
+ text-based PRF 56.57 46.52 29.62
+ vector-based PRF 63.96 49.20 21.85

Comparison with other PRF methods. For com-
parison, we implemented two classical PRF-style
baselines using the model without listwise training
(corresponding to “w/o Listwise in Stage II” in Ta-
ble 6), and applied (i) a text-based listwise prompt,
and (ii) a vector-based Rocchio-style fusion of query
and document embeddings. The results are shown in
Table 7. While both PRF baselines introduce PRF-
like signals, neither comes close to the performance
of E2RANK, and in some cases even harms ranking
quality. This demonstrates that simply injecting PRF
signals is insufficient and the model must be trained
to understand how to use these signals. In contrast, rather than just enriching the query, E2RANK
learns how to perform ranking-aware feature transformation conditioned on a set of candidate docu-
ments, which requires supervision to learn head–tail interactions, semantic reinforcement, and con-
flict resolution among top candidates. More details and discussion could be found in Appendix D.
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Figure 4: Results of selecting different documents as PRF on DL20.

Influence of number of input documents in the listwise prompts. Figure 2 shows that when
the number of input documents is small (less than 20), incorporating more documents into the list-
wise prompt consistently improves ranking performance. This trend can be interpreted as additional
documents enriching the query with pseudo-relevance signals, allowing the model to capture the
fine-grained relevance. Notably, the gains plateau after around 20 documents, indicating that the
marginal benefit of adding more feedback signals diminishes once the prompt already captures suf-
ficient relevance context, and may even bring negative benefits on different datasets.

Influence of the selection of documents. To evaluate the impact of document selection within
the listwise prompt, we conducted an ablation study varying the composition of documents in four
settings, as presented in Figure 4. Across all model sizes, using the Top-20 retrieved documents
consistently yielded the best ranking performance. In contrast, Random-20 and Last-20 settings
significantly reduced performance, even falling below the query-only baseline. This shows that the
benefit of document context comes not from adding more text, but from leveraging highly relevant
documents, which is just like the working mechanism of PRF. Conversely, low-quality or off-topic
documents introduce noise and conflicting signals, leading to deterioration in ranking quality.

Similarity score distribution. Figure 3 further analyzes how this pseudo relevance feedback affects
the ranking behavior by comparing similarity score distributions between listwise and non-listwise
settings. Specifically, we sort the reranking scores of 100 documents from high to low, and take
the average of all queries for the rank position. We can see that the listwise prompts yield con-
sistently higher similarity scores for top-ranked documents while maintaining a steeper decline for
lower-ranked ones, suggesting sharper discrimination between relevant and irrelevant documents. In
contrast, the query-only setting produces a flatter score distribution. This demonstrates that listwise
prompts with PRF enhance E2RANK ’s ability to allocate higher scores to truly relevant documents.

Influence of different first-stage retrievers. We evaluate the E2RANK’s reranking ability under
different first-stage retrievers, and detail the results in Appendix G, Table 27. Across all retriev-
ers, E2RANK consistently improves the performance, demonstrating its generalization ability and
robustness while adapting to varying initial retrieval qualities as a reranker. Additionally, this also
indicates that better search results as better PRF can lead to better ranking performance.

5 CONCLUSION

In this paper, we propose E2RANK, a unified framework that enables a single text embedding model
to perform both efficient retrieval and high-quality listwise reranking, by reformulating the listwise
reranking prompt as a pseudo relevance feedback query. Extensive experiments demonstrate that
E2RANK can be an independent reranker and achieve state-of-the-art reranking performance on
BEIR and strong results on BRIGHT, while significantly reducing inference latency compared to
existing RankGPT-like listwise rerankers. Moreover, E2RANK maintains competitive embedding
capabilities on the MTEB benchmark. Our work highlights the potential of single embedding models
to serve as unified retrieval-reranking engines, offering a practical, efficient, and accurate alternative
to complex multi-stage ranking systems.

ETHICS AND REPRODUCIBILITY STATEMENT

This study does not raise concerns related to discrimination, bias, or fairness. To ensure repro-
ducibility, we provide detailed descriptions of the experimental setup in Section 4.1 and additional
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implementation details in Appendix C. All data used in our experiments are obtained from previ-
ously released and widely adopted datasets. with details in Appendix B. All open source libraries
and resources used in this study are also fully specified. We also provide the complete source code
for reproduction directly in the supplementary material.
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A THE USE OF LARGE LANGUAGE MODELS

We only used large language models (LLMs) as auxiliary tools for grammar checking, language
polishing, and logo generation. All outputs were carefully reviewed by the authors, who take full
responsibility for the final manuscript.

B TRAINING DATASET DETAILS

Dataset composition We mainly leverage the public portion of the E5 dataset (Wang et al., 2023).
Specifically, for the training at Stage I, we use the sampled version with around 1.5 million samples
in total, which is constructed by Springer et al. (2025) and is also used by LLM2Vec (BehnamGhader
et al., 2024). The mixture consists of ELI5, HotpotQA, FEVER, MIRACL, MS MARCO passage
ranking and document ranking, NQ, NLI, SQuAD, TriviaQA, Quora Duplicate Questions, Mr.TyDi,
DuReader, and T2Ranking. Each query in the datasets has only one positive and one negative.

As for the training at Stage II, since we need more negatives to meet the training objective, the E5
dataset cannot fully meet our requirements. Therefore, we used the dataset from BGE-M3 (Chen
et al., 2024a), where each query contains multiple negatives. Specifically, we mainly used the re-
trieval dataset from the intersection of the E5 dataset and BGE-M3 dataset, including HotpotQA,
MIRACL, MSMARCO passage, NQ, TriviaQA, DuReader, and T2Ranking. In addition, we have
added two widely used Chinese retrieval datasets, cMedQAv2 and MMarco Chinese, which are in-
cluded in the BGE-M3 dataset. Due to the length division of the BGE-M3 dataset, we only used the
parts with document lengths less than 500. Meanwhile, we filtered queries containing fewer than 15
negative examples and further downsampled the dataset. In the end, we obtained a mixed dataset
containing approximately 157k samples, with each instance containing one query, one negative, and
fifteen negatives.
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Figure 5: Dataset distribution for training.

Producing full ranking labels using Qwen3-32B We leverage Qwen3-32B (disabled thinking
mode) (Yang et al., 2025) to generate the full ranking labels for the Stage II training data. The
process is similar to RankZephyr’s (Pradeep et al., 2023). Specifically, we use the instruction in
Table 9 to have the model generate a ranking list in text form, and then parse the text. Then, we
filter the results with the wrong output formations, which is only a very small portion of the entire
dataset. The instruction used for each dataset is adapted from BehnamGhader et al. (2024), which
can be found in Table 8.

Interestingly, we calculate the “accuracy” of model annotation, which refers to the frequency at
which the model places the “golden positive” in the dataset at the top of its ranking. The results are
shown in Figure 6. We can see that the LLM’s judgment and actual annotation of the most relevant
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Table 8: Instructions used for each of the E5 datasets in Stage I.

Dataset Instruction(s)

NLI Given a premise, retrieve a hypothesis that is entailed by the premise
Retrieve semantically similar text

DuReader Given a Chinese search query, retrieve web passages that answer the question
ELI5 Provided a user question, retrieve the highest voted answers on Reddit ELI5 forum
FEVER Given a claim, retrieve documents that support or refute the claim
HotpotQA Given a multi-hop question, retrieve documents that can help answer the question
MIRACL Given a question, retrieve Wikipedia passages that answer the question
MrTyDi Given a question, retrieve Wikipedia passages that answer the question
MSMARCO Passage Given a web search query, retrieve relevant passages that answer the query
MSMARCO Document Given a web search query, retrieve relevant documents that answer the query
NQ Given a question, retrieve Wikipedia passages that answer the question
QuoraDuplicates Given a question, retrieve questions that are semantically equivalent to the given question

Find questions that have the same meaning as the input question
SQuAD Retrieve Wikipedia passages that answer the question
T2Ranking Given a Chinese search query, retrieve web passages that answer the question
TriviaQA Retrieve Wikipedia passages that answer the question

documents are not always consistent. Especially in the MS MARCO dataset, the consistency rate
only barely exceeds half. Previous work discussed and compared using the golden label and using a
reranker for labeling, but they didn’t leverage LLMs (Zhang et al., 2023b). Since the construction of
the dataset is not the focus of this article, we will not discuss this discovery in detail and will leave
higher-quality dataset construction schemes for future work.

Table 9: Instruction for generating full ranking labels.

<|im start|>user
I will provide you with {N} passages, each indicated by
a numerical identifier []. Rank the passages based on
their relevance to the search query: {query}.
Documents:
[1] {document 1}
[2] {document 2}
...
[N] {document N}
Search Query: {query}
Rank the {N} passages above based on their relevance to
the search query. All the passages should be included
and listed using identifiers, in descending order of
relevance. The output format should be [] > [] > ...,
e.g., [4] > [2] > ..., Only respond with the ranking
results, do not say anything else or explain. <|im end|>
<|im start|>assistant
<think>\n\n</think>\n\n

C IMPLEMENTATION DETAILS

In this section, we provide a detailed introduction to our training settings.

Stage I training All models are trained with full parameters, DeepSpeed Zero3, brain floating
point (BF16) quantization, and gradient checkpointing to optimize GPU memory consumption. We
train on 8 NVIDIA A100 80G GPUs with an effective batch size of 512 for 1 epoch using a maxi-
mum sequence length of 512 tokens. We use a learning rate of 2 × 10−5 and a linear learning rate
warm-up for the first 300 steps.

Stage II training For the training data, it is important to note that we do not use the full datasets
introduced in Appendix B for training. Instead, for each dataset, we only sample at most 10,000
instances, leading to around 87k training instances actually.
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Figure 6: Accuracy for labeling the datasets.

Table 10: Instructions in listwise prompts used for each of the datasets in Stage II.

Dataset Instruction(s)

DuReader Given a Chinese search query and some relevant documents, rerank the documents that answer the query
HotpotQA Given a multi-hop question and some relevant documents, rerank the documents that answer the question
MIRACL Given a question and some relevant Wikipedia documents, rerank the documents that answer the question
MSMARCO Passage Given a web search query and some relevant documents, rerank the documents that answer the query
NQ Given a question, retrieve Wikipedia passages that answer the question
T2Ranking Given a Chinese search query and some relevant documents, rerank the documents that answer the query
TriviaQA Given a question and some relevant Wikipedia documents, rerank the documents that answer the question

The instructions for the listwise prompt are listed in Table 10.

We train all models on 8 NVIDIA A100 80G GPUs with an effective batch size of 128 for 1 epoch
(each instance contains multiple documents). We use DeepSpeed Zero3, BF16, and gradient check-
pointing to optimize GPU memory consumption. For documents, we use a maximum length of
1024. We also use in-batch negatives. We use a learning rate initialized at 5 × 10−6 with a linear
scheduler and a warmup ratio of 0.03.

Training RankQwen3 We fine-tune the Qwen3 model on the GPT-4 labeled listwise ranking
dataset provided by Pradeep et al. (2023). The dataset contains 40k samples, and we train the model
for 1 epoch with a batch size of 16 per device, leading to an effective batch size of 64. For different
sizes, we adjust the gradient accumulation steps to fit the batch size. We use DeepSpeed and BF16
mixed precision for acceleration. The learning rate is initialized at 5× 10−6 with a linear scheduler
and a warmup ratio of 0.03. The training is performed on 4 NVIDIA A100 80G GPUs. We use
LLM4Ranking Framework (Liu et al., 2025a) for training and evaluation.

Evaluation details We use the following instruction for the evaluation of all reranking tasks:

<|im start|>user
Given a web search query and some relevant documents,
rerank the documents that answer the query:
Documents:
[1] {document 1}
[2] {document 2}
...
[N] {document N}
Search Query: {query}
<|im end|>
<|im start|>assistant
<think>\n\n</think>\n\n
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Table 11: Instructions used for evaluation on the MTEB benchmark. “STS*” refers to all the STS
tasks.

Task Name Instruction

AmazonCounterfactualClassif. Classify a given Amazon customer review text as either counterfactual or not-counterfactual
AmazonPolarityClassification Classify Amazon reviews into positive or negative sentiment
AmazonReviewsClassification Classify the given Amazon review into its appropriate rating category
Banking77Classification Given a online banking query, find the corresponding intents
EmotionClassification Classify the emotion expressed in the given Twitter message into one of the six emotions: anger,

fear, joy, love, sadness, and surprise
ImdbClassification Classify the sentiment expressed in the given movie review text from the IMDB dataset
MassiveIntentClassification Given a user utterance as query, find the user intents
MassiveScenarioClassification Given a user utterance as query, find the user scenarios
MTOPDomainClassification Classify the intent domain of the given utterance in task-oriented conversation
MTOPIntentClassification Classify the intent of the given utterance in task-oriented conversation
ToxicConversationsClassif. Classify the given comments as either toxic or not toxic
TweetSentimentClassification Classify the sentiment of a given tweet as either positive, negative, or neutral
ArxivClusteringP2P Identify the main and secondary category of Arxiv papers based on the titles and abstracts
ArxivClusteringS2S Identify the main and secondary category of Arxiv papers based on the titles
BiorxivClusteringP2P Identify the main category of Biorxiv papers based on the titles and abstracts
BiorxivClusteringS2S Identify the main category of Biorxiv papers based on the titles
MedrxivClusteringP2P Identify the main category of Medrxiv papers based on the titles and abstracts
MedrxivClusteringS2S Identify the main category of Medrxiv papers based on the titles
RedditClustering Identify the topic or theme of Reddit posts based on the titles
RedditClusteringP2P Identify the topic or theme of Reddit posts based on the titles and posts
StackExchangeClustering Identify the topic or theme of StackExchange posts based on the titles
StackExchangeClusteringP2P Identify the topic or theme of StackExchange posts based on the given paragraphs
TwentyNewsgroupsClustering Identify the topic or theme of the given news articles
SprintDuplicateQuestions Retrieve duplicate questions from Sprint forum
TwitterSemEval2015 Retrieve tweets that are semantically similar to the given tweet
TwitterURLCorpus Retrieve tweets that are semantically similar to the given tweet
AskUbuntuDupQuestions Retrieve duplicate questions from AskUbuntu forum
MindSmallReranking Retrieve relevant news articles based on user browsing history
SciDocsRR Given a title of a scientific paper, retrieve the titles of other relevant papers
StackOverflowDupQuestions Retrieve duplicate questions from StackOverflow forum
ArguAna Given a claim, find documents that refute the claim
ClimateFEVER Given a claim about climate change, retrieve documents that support or refute the claim
CQADupstackRetrieval Given a question, retrieve detailed question descriptions from Stackexchange that are duplicates to

the given question
DBPedia Given a query, retrieve relevant entity descriptions from DBPedia
FEVER Given a claim, retrieve documents that support or refute the claim
FiQA2018 Given a financial question, retrieve user replies that best answer the question
HotpotQA Given a multi-hop question, retrieve documents that can help answer the question
MSMARCO Given a web search query, retrieve relevant passages that answer the query
NFCorpus Given a question, retrieve relevant documents that best answer the question
NQ Given a question, retrieve Wikipedia passages that answer the question
QuoraRetrieval Given a question, retrieve questions that are semantically equivalent to the given question
SCIDOCS Given a scientific paper title, retrieve paper abstracts that are cited by the given paper
SciFact Given a scientific claim, retrieve documents that support or refute the claim
Touche2020 Given a question, retrieve detailed and persuasive arguments that answer the question
TRECCOVID Given a query on COVID-19, retrieve documents that answer the query
STS* Retrieve semantically similar text.
SummEval Given a news summary, retrieve other semantically similar summaries

In fact, based on our experiments, different instructions have a very small impact on performance,
at least not statistically significant. So this will not affect the experimental results of the paper.

Instructions used for evaluation of MTEB When evaluating MTEB, we use the same instruc-
tions as Zhang et al. (2025c). The list of instructions for each task is listed in Table 11.

D DISCUSSION OF PRF-LIKE MECHANISM

Pseudo-Relevance Feedback (PRF) has long been used in classical IR systems to refine the query
representation using top-ranked documents, based on the assumption that these documents contain
valuable signals that reflect the underlying relevance intent. Traditional PRF methods typically fall
into two categories: (1) text-based PRF, where top-retrieved documents are used to extract expansion
terms or passages to enrich the query (e.g., Rocchio, RM3); and (2) vector-based PRF, where the
query embedding is updated by interpolating it with the embeddings of the top retrieved documents.
Both approaches require manually designed mechanisms—either for expansion term selection or for
embedding fusion—and do not involve end-to-end optimization of how such feedback is interpreted.
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In contrast, E2RANK does not explicitly modify the query representation through heuristic expan-
sion. Instead, it uses the top-N retrieved documents as implicit relevance feedback inputs and
“learns” to interpret these documents jointly in a listwise context through supervision, capturing
not only query-related relevance cues but also document–document relational signals. E2RANK
models the set-level interactions among these documents, which is essential for ranking.

For comparison, we implemented two classical PRF-style baselines using the model without listwise
training (corresponding to “w/o Listwise in Stage II” in Table 6), and applied (i) a text-based listwise
prompt, and (ii) a vector-based Rocchio-style fusion of query and document embeddings.

As the results shown and discussed in Section 4.6, merely injecting PRF signals is ineffective or
even harmful, and only a model like E2RANK that learns supervised, ranking-aware feature trans-
formations from candidate documents can achieve significant performance gains.

Interestingly, the behavior of E2RANK exhibits characteristics similar to PRF: it benefits most from
high-quality top-ranked documents and suffers when noisy or irrelevant documents (e.g., randomly
sampled or tail documents) are used as feedback, as shown in Figure 4 and Figure 2. This supports
the interpretation that E2RANK uses top-ranked documents as relevance cues in a PRF-like manner.
However, unlike classical PRF, E2RANK does not rely on manually designed fusion mechanisms,
but instead learns how to utilize these signals through end-to-end listwise supervision. This allows
the model to determine how much each feedback document should contribute, what type of signal
it provides, and how to incorporate it into the ranking-oriented embedding space, rather than merely
enriching the query surface form or interpolating embedding vectors.

In summary, while E2RANK is not a traditional PRF system, it operates under a learned PRF-like
mechanism, where top-ranked documents provide weak relevance signals, but the ability to interpret,
weight, and operationalize those signals is learned through listwise ranking supervision, rather than
manually designed. We believe this inspires a new paradigm that bridges PRF intuition with modern
embedding-based ranking.

E EFFICIENCY

We listed the detailed latency results in Table 12 and Table 13. For E2RANK, we calculate the
latency of encoding documents separately from other latencies, because if we use E2RANK as the
retrieval model at the same time, the embedding of the document can be reused to avoid duplicate
encoding.

Table 12: Reranking latency per query (s) for
E2RANK on the Covid Dataset.

Encoding Documents Others Overall

E2RANK-0.6B 0.50 0.13 0.63
E2RANK-4B 1.74 0.43 2.17
E2RANK-8B 2.76 0.64 3.40

Table 13: Reranking latency per query (s) on
the Covid Dataset.

Overall Latency

Qwen3-0.6B (Pointwise) 0.40
Qwen3-4B (Pointwise) 1.39
Qwen3-8B (Pointwise) 2.32

RankQwen3-0.6B 4.58
RankQwen3-4B 11.25
RankQwen3-8B 16.93

F ANALYSIS

F.1 INFLUENCE OF THE RERANKING DEPTH

We conducted a comprehensive set of reranking experiments to evaluate the generalizability and ro-
bustness of our approach. Specifically, we varied both the reranking depth (Top-10, Top-20, Top-50,
Top-100) and evaluated performance using three standard ranking metrics: NDCG@1, NDCG@5,
and NDCG@10. The dataset we used is DL20 and BM25 is served as the first-stage retriever. This
setup enables us to analyze not only the ability to correctly identify the single most relevant docu-
ment, but also the overall relevance distribution across the top-ranked results.

Figure 7 presents a comparison between E2RANK and RankQwen3 across all configurations. A
clear trend emerges: E2RANK consistently matches or outperforms RankQwen3 on NDCG@5
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Figure 7: Results of different reranking settings on DL20.

and NDCG@10, highlighting stronger listwise ranking capability and better top-K discrimination.
RankQwen3 achieves higher NDCG@1 in several cases—particularly with smaller models or shal-
lower reranking depths. We believe this is consistent with its generative design, which is effective
when selecting the most relevant document at the first generative position. In contrast, E2RANK op-
timizes the distribution of cosine similarity, making it inherently better at capturing global document
relevance across the ranked list.

Furthermore, E2RANK exhibits strong scalability, generalizing well across different ranking depths.
Importantly, E2RANK maintains competitive precision at rank 1 while delivering stronger perfor-
mance at broader cutoffs, striking an effective balance between ranking quality and efficiency. These
results collectively confirm the robustness, scalability, and practical applicability of E2RANK in real-
world reranking scenarios.

F.2 RERANKING BEHAVIOR

We analyze the behavior of our rerankers along two dimensions: (i) their ability to refine the ranking
in the head (top-ranked documents) and (ii) their ability to surface relevant documents from the tail
(lower-ranked documents). We use a head cut-off H (typically H = 20) to distinguish the “head”
(ranked ≤ H) from the “tail” (ranked > H). For the analytical experiments in this section, we
reranked the top 100 of BM25 on DL20.

Promotion and demotion analysis. To study the interaction between head and tail, we track
which documents move into and out of the head when switching from the baseline to a reranker.
For each query q and reranker, let π(q, d) and πr(q, d) denote the rank positions assigned to d by
the first-stage retriever and the reranker, respectively (with π(q, d) = ∞ if d is not retrieved). We
define:

Pr(q) = {d | π(q, d) > H, πr(q, d) ≤ H}
Dr(q) = {d | π(q, d) ≤ H, πr(q, d) > H}

corresponding to promoted and demoted documents, respectively. For each reranker, we aggregate
basic statistics over all q: the total number of promoted or demoted documents, and the proportion
of promoted or demoted documents are relevant (with relevance score > 0). This reveals whether
rerankers tend to replace less relevant head documents with more relevant tail documents.

Table 14 compares how different rerankers modify the head of the ranking by promoting documents
from the tail and demoting baseline head documents. Across all models, the fraction of promoted
documents with qrels > 0 is always higher than for demoted documents . This indicates that all
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Table 14: Comparison of document promotion and demotion behavior across rerankers, showing
how many documents are promoted from beyond rank 20 into the head, and the relevance quality of
promoted versus demoted documents.

Model NDCG@10 #Promoted (Demoted) % Rel. Promoted % Rel. Demoted

RankQwen3-0.6B 67.74 386 0.56 0.33
RankQwen3-4B 69.83 405 0.61 0.31
RankQwen3-8B 70.75 396 0.62 0.32

E2RANK-0.6B 70.15 515 0.57 0.26
E2RANK-4B 70.64 527 0.56 0.27
E2RANK-8B 71.16 518 0.58 0.26

rerankers perform meaningful exchanges, generally replacing less relevant head documents with
more relevant tail documents rather than perturbing the ranking arbitrarily.

Within the RankQwen3 family, larger models tend to make slightly higher-quality promotions: the
fraction of relevant promoted documents increase from the 0.6B to the 8B, while the relevance of
demoted documents decreases slightly.

Compared to RankQwen3, E2RANK promote substantially more documents into the head, indi-
cating a more aggressive reshaping of the top ranks. The relevance profile of these exchanges is
still favourable: promoted documents have higher relevance score, while demoted documents are
markedly less relevant. In other words, E2RANK performs more head–tail swaps overall, and al-
though each individual promotion is slightly less selective than for the strongest RankQwen3 model,
the net effect is to clear out a larger number of low-quality head documents while maintaining a
strong bias towards surfacing relevant items from the tail.

Decomposing head vs. tail contributions to NDCG@100. To disentangle improvements due
to local reranking in the head from those due to promoting tail documents, we decompose the
NDCG@100 gain of each reranker relative to the first-stage retriever. We first construct a synthetic
head-only run that only reranks the head, specifically, given the top-100 candidates of each query,
rerank the documents ranked ≤ 20 while keeping the other candidate set fixed. Then, we can de-
fine the NDCG@100 gain from only reranking the head, specifically, the difference of NDCG@100
between the head-only run and the original ranking, denoted as gwithin. Similarly, we can define
the NDCG@100 gain of the full run, i.e., the difference of NDCG@100 between the full run and
the original ranking, denoted as gtotal. The NDCG@100 gain from reranking the tail is defined as
gtail = gtotal − gwithin.

Intuitively, gwithin measures the gain attributable solely to reranking documents already in the head,
while gtail captures the additional gain from promoting documents from the tail (or, more generally,
changing the composition of the head). We report mean and distributional statistics of these gains
across queries to characterise each reranker as more “head-refining” or “tail-mining”.

Table 15: Decomposition of NDCG@100 gains into contributions from head reordering (within
top-20) and tail promotions (beyond rank 20). The NDCG@100 of BM25 is 49.01. The numbers
in parentheses represent the percentage improvement in NDCG@100 relative to the BM25 search
results.

Model NDCG@100 Mean Gain (Within-20) Mean Gain (Tail) Mean Gain (Total)

RankQwen3-0.6B 56.09 3.44 (7.0%) 3.64 (7.4%) 7.08 (14.4%)
RankQwen3-4B 57.10 4.35 (8.9%) 3.74 (7.6%) 8.09 (16.5%)
RankQwen3-8B 57.02 4.09 (8.3%) 3.92 (8.0%) 8.01 (16.3%)

E2Rank-0.6B 57.16 4.27 (8.7%) 3.88 (7.9%) 8.15 (16.6%)
E2Rank-4B 56.95 4.38 (8.9%) 3.57 (7.3%) 7.94 (16.2%)
E2Rank-8B 57.51 4.56 (9.3%) 3.94 (8.0%) 8.50 (17.3%)

Table 15 reports the decomposition of NDCG@100 improvements into gains from within-top-20
reranking and from promoting relevant documents from the tail. Across all models, the improvement
in overall ranking quality is a combination of two complementary effects. The results consistently
show that both contributions are substantial and of similar magnitude, confirming that all rerankers
are capable of both head refinement and tail mining.
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Within each model family, scaling generally improves total NDCG gain. Comparing model fam-
ilies, E2RANK exhibits higher total gains than RankQwen3 at the same scale. Notably, E2RANK
tends to achieve slightly higher within-20 gains, indicating stronger head refinement ability, while
maintaining competitive tail promotion capability. Meanwhile, RankQwen3 shows a more balanced
pattern, with slightly lower head gains but comparable tail gains.

Overall, the results align with our previous observations: RankQwen3 scales toward more selective
and precise head–tail exchanges, whereas E2RANK not only makes more extensive replacements in
the head but also converts those changes into slightly stronger global effectiveness improvements.

F.3 TRAINING FROM EXISTING EMBEDDING MODELS

In this work, we mainly chose LLMs (Qwen3 family) primarily because they offer stronger semantic
understanding, richer contextual modeling, and longer context length than previous encoder-only
models, which we believe is crucial for effectively capturing listwise interactions in the reranking
stage. Additionally, it provided checkpoints of different sizes.

However, E2RANK is not restricted to decoder-only models and indeed generally applicable to dif-
ferent embedding backbones. To further validate generality, we have additionally applied our Stage-
II training procedure to an existing encoder-based embedding model, GTE-Qwen2-1.5B (based on
an LLM but integrated with bidirectional attention mechanisms), without modifying its architecture.

Table 16: Results of training on GTE-Qwen2-1.5B.

Q Prompt DL19 DL20 Covid NFC. Touche DBPedia SciFact Signal News Robust Avg. MTEB(v2)

- 50.58 47.96 59.47 30.75 44.22 31.80 67.89 33.05 39.52 40.70 43.43 -

GTE-Qwen2-1.5B Query-Only 68.07 61.97 82.75 37.94 36.25 41.86 77.43 31.10 50.29 54.86 51.56 67.20

+ E2RANK Training
Query-Only 71.31 66.20 83.52 38.48 35.38 43.56 77.16 32.68 48.65 57.63 52.13 67.19Listwise 69.98 68.97 81.16 39.49 46.17 41.81 75.47 34.37 53.55 56.51 53.57

The results in Table 16 show consistent improvements in both reranking benchmarks while maintain-
ing the embedding performance, similar to those observed with the Qwen3 backbone. This supports
our claim that the ranking objective and PRF-style listwise prompt are broadly effective and not tied
to a particular model class.

G ADDITIONAL EXPERIMENTAL RESULTS

Full comparison on BEIR with baselines We present all detailed results of baselines in Table 17,
which is an extended version of Table 2. We report the results of reasoning-intensive rerankers,
however, not all of them perform well on these general reranking tasks. In addition, we use the same
training dataset with E2RANK to train a cross-encoder style pointwise reranker, using the same
RankNet loss. We believe that the reason why them do not perform so well is due to insufficient
training data. This comparison between the pointwise model and E2RANK also demonstrates the
effectiveness of listwise reranking.

Full results on MTEB We present the detailed results on MTEB (eng, v1) benchmark of our
models in Table 18. We also evaluate the models on MTEB (eng, v2) benchmark, and the results are
shown in Table 19.

Full results for end-to-end retrieval We present the detailed results of Table 5 in Table 20 and
Table 21.

Full results for the ablation studies of training We present the detailed results of Table 6 on
Table 22, Table 23, and Table 24.

Full results for the comparison with PRF baselines We present the detailed results of Table 7
on Table 25 and Table 26.
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Table 17: Full results on BEIR. For reasoning rerankers, the results are borrowed from Liu et al.
(2025c) and only contain 7 datasets, excluding Touche2020.

Covid NFCorpus Touche DBPedia SciFact Signal News Robust Avg. (7) Avg. (8)

BM25 59.47 30.75 44.22 31.80 67.89 33.05 39.52 40.70 43.31 43.43

Previous Fine-tuned Pointwise Reranker

MonoBERT (340M) 70.01 36.88 31.75 41.87 71.36 31.44 44.62 49.35 49.36 47.16
MonoT5 (3B) 79.80 37.30 32.20 48.30 58.50 76.30 32.50 44.80 53.93 51.21
RankT5 (3B) 81.70 37.40 31.90 49.50 58.30 77.10 38.80 45.00 55.40 52.46

Previous Fine-tuned Listwise Reranker

ListT5 (3B) 84.70 37.70 33.80 53.20 57.80 77.00 33.60 46.20 55.74 53.00
RankVicuna 79.50 32.50 33.30 45.00 47.00 68.80 32.90 44.50 50.03 47.94
RankZephyr 83.20 37.60 32.40 44.50 74.90 31.50 52.50 54.30 54.07 51.36

Zero-shot Listwise Reranker

RankGPT-4o 83.41 39.67 32.26 45.56 77.41 34.20 51.92 60.25 56.06 53.09
RankGPT-4o-mini 80.03 38.73 30.91 44.54 73.14 33.64 50.91 57.41 54.06 51.16
RankQwen3-14B 84.45 38.94 38.30 44.52 78.64 33.58 51.24 59.66 55.86 53.67
RankQwen3-32B 83.48 39.22 37.13 45.00 78.22 32.12 51.08 60.74 55.69 53.37

Reasoning Reranker

Rank-R1 (7B) 83.71 38.94 - 42.27 72.16 33.08 50.60 54.46 53.60 -
Rank-R1 (14B) 84.63 38.58 - 44.05 75.96 32.95 49.20 56.91 54.61 -
Rank1 (7B) 79.04 37.52 - 35.79 73.32 25.41 47.67 57.11 50.84 -
Rearank (7B) 81.28 35.20 - 45.23 75.02 36.00 51.88 57.49 54.59 -
ReasonRank (7B) 82.01 39.60 - 46.03 75.55 31.36 50.50 55.40 54.35 -

Fine-tuned Listwise Reranker based on Qwen3

RankQwen3-0.6B 78.35 36.41 37.54 39.19 71.01 30.96 44.43 46.31 49.52 48.03
RankQwen3-4B 83.91 39.88 32.66 43.91 76.37 32.15 50.81 59.36 55.20 52.38
RankQwen3-8B 85.37 40.05 31.73 45.44 78.96 32.48 52.36 60.72 56.48 53.39

Pointwise reranker finetund by RankNet loss based on Qwen3

Qwen3-0.6B (Pointwise) 84.01 33.13 36.89 33.07 70.27 27.28 37.53 45.58 47.27 45.97
Qwen3-4B (Pointwise) 80.40 31.58 29.92 40.84 72.09 25.98 47.56 56.60 50.72 48.12
Qwen3-8B (Pointwise) 81.02 28.36 34.05 40.10 70.55 26.17 43.91 52.27 48.91 47.05

Ours

E2RANK-0.6B 79.17 38.60 41.91 41.96 73.43 35.26 52.75 53.67 53.55 52.09
E2RANK-4B 83.30 39.20 43.16 42.95 77.19 34.48 52.71 60.16 55.71 54.14
E2RANK-8B 84.09 39.08 42.06 43.44 77.49 34.01 54.25 60.34 56.10 54.35

Results of using different first-stage retrieval models We evaluate the reranking performance
of E2RANK on TREC DL19 and DL20 using different first-stage retrieval models, including pop-
ular dense embedding models Contriver (Izacard et al., 2021), BGE-base (Xiao et al., 2023), and
Qwen3-Embedding-0.6B (Zhang et al., 2025c), as well as an effective neural sparse retrieval model
SPLADE++ED (Formal et al., 2022). The full results are shown in Table 27.

We report the reranking results on BRIGHT, using BM25 and the original query for first-stage
retrieval, as presented in Table 28. We also report the reranking results on BRIGHT, using BM25
and the GPT4 reasoning query for first-stage retrieval, as presented in Table 29.
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Table 18: Detailed Results on MTEB(eng, v1) Benchmark.

Task Qwen3-0.6B Qwen3-4B Qwen3-8B
Stage I Stage II Stage I Stage II Stage I Stage II

AmazonCounterfactualClassification 79.72 82.21 83.52 82.63 81.90 81.84
ArXivHierarchicalClusteringP2P 57.38 58.55 57.86 56.72 57.82 58.50
ArXivHierarchicalClusteringS2S 55.44 54.00 56.09 55.37 56.99 54.26
ArguAna 52.88 50.56 52.13 51.28 55.25 54.41
AskUbuntuDupQuestions 62.21 62.92 66.45 66.92 66.31 66.80
BIOSSES 84.68 85.22 86.13 87.93 86.46 88.40
Banking77Classification 79.96 80.88 83.12 83.68 84.46 85.04
BiorxivClusteringP2P.v2 38.50 39.28 40.11 40.21 39.06 39.31
CQADupstackGamingRetrieval 56.19 55.35 61.47 61.95 61.99 62.18
CQADupstackUnixRetrieval 41.53 39.31 49.86 50.24 51.07 50.51
ClimateFEVERHardNegatives 26.37 30.80 37.85 27.07 39.99 31.90
FEVERHardNegatives 88.02 85.68 92.26 88.85 92.86 88.91
FiQA2018 38.12 40.84 50.76 49.97 52.95 52.27
HotpotQAHardNegatives 53.52 68.42 61.72 73.20 64.11 75.11
ImdbClassification 76.66 82.57 86.57 89.97 86.10 89.39
MTOPDomainClassification 92.60 93.62 94.09 95.71 94.11 95.70
MassiveIntentClassification 72.90 72.48 76.36 76.41 76.77 77.08
MassiveScenarioClassification 74.58 74.71 78.96 79.54 78.04 79.24
MedrxivClusteringP2P.v2 33.82 35.17 34.00 34.96 34.65 35.44
MedrxivClusteringS2S.v2 32.61 31.19 32.19 32.58 32.06 33.37
MindSmallReranking 30.67 29.85 32.04 31.09 32.52 31.54
SCIDOCS 16.87 17.85 20.14 20.77 20.47 22.32
SICK-R 79.69 79.89 81.92 82.24 82.21 82.80
STS12 76.75 74.12 77.48 76.03 78.88 77.65
STS13 84.07 84.19 83.47 87.07 85.00 87.48
STS14 78.48 78.98 79.76 82.37 81.62 83.05
STS15 85.99 86.25 87.41 88.96 88.46 89.45
STS17 89.92 90.09 91.63 92.59 91.58 92.09
STS22.v2 60.30 65.60 62.89 67.69 64.77 68.44
STSBenchmark 84.39 84.75 86.82 88.73 87.06 88.69
SprintDuplicateQuestions 91.15 93.49 90.64 95.63 92.45 95.07
StackExchangeClustering.v2 56.38 53.12 55.68 52.04 56.96 52.71
StackExchangeClusteringP2P.v2 38.91 38.95 40.34 41.36 40.82 41.72
SummEvalSummarization.v2 31.55 31.66 33.53 35.08 34.62 35.07
TRECCOVID 70.48 81.03 81.41 81.84 78.53 82.28
Touche2020Retrieval.v3 53.79 58.46 52.39 57.51 52.37 56.61
ToxicConversationsClassification 64.42 64.99 69.56 69.32 68.68 69.59
TweetSentimentExtractionClassification 66.04 66.23 64.86 65.38 63.72 63.96
TwentyNewsgroupsClustering.v2 44.40 38.29 42.70 44.06 47.42 42.84
TwitterSemEval2015 70.68 72.13 75.93 78.47 76.49 78.35
TwitterURLCorpus 85.59 86.16 86.51 87.31 86.74 87.46

Average 62.40 63.41 65.33 66.12 65.96 66.56
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Table 19: Detailed Results on MTEB(eng, v2) Benchmark.

Task Qwen3-0.6B Qwen3-4B Qwen3-8B
Stage I Stage II Stage I Stage II Stage I Stage II

AmazonCounterfactualClassification 79.72 82.21 83.52 82.63 81.90 81.84
ArXivHierarchicalClusteringP2P 57.38 58.55 57.86 56.72 57.82 58.50
ArXivHierarchicalClusteringS2S 55.44 54.00 56.09 55.37 56.99 54.26
ArguAna 52.88 50.56 52.13 51.28 55.25 54.41
AskUbuntuDupQuestions 62.21 62.92 66.45 66.92 66.31 66.80
BIOSSES 84.68 85.22 86.13 87.93 86.46 88.40
Banking77Classification 79.96 80.88 83.12 83.68 84.46 85.04
BiorxivClusteringP2P.v2 38.50 39.28 40.11 40.21 39.06 39.31
CQADupstackGamingRetrieval 56.19 55.35 61.47 61.95 61.99 62.18
CQADupstackUnixRetrieval 41.53 39.31 49.86 50.24 51.07 50.51
ClimateFEVERHardNegatives 26.37 30.80 37.85 27.07 39.99 31.90
FEVERHardNegatives 88.02 85.68 92.26 88.85 92.86 88.91
FiQA2018 38.12 40.84 50.76 49.97 52.95 52.27
HotpotQAHardNegatives 53.52 68.42 61.72 73.20 64.11 75.11
ImdbClassification 76.66 82.57 86.57 89.97 86.10 89.39
MTOPDomainClassification 92.60 93.62 94.09 95.71 94.11 95.70
MassiveIntentClassification 72.90 72.48 76.36 76.41 76.77 77.08
MassiveScenarioClassification 74.58 74.71 78.96 79.54 78.04 79.24
MedrxivClusteringP2P.v2 33.82 35.17 34.00 34.96 34.65 35.44
MedrxivClusteringS2S.v2 32.61 31.19 32.19 32.58 32.06 33.37
MindSmallReranking 30.67 29.85 32.04 31.09 32.52 31.54
SCIDOCS 16.87 17.85 20.14 20.77 20.47 22.32
SICK-R 79.69 79.89 81.92 82.24 82.21 82.80
STS12 76.75 74.12 77.48 76.03 78.88 77.65
STS13 84.07 84.19 83.47 87.07 85.00 87.48
STS14 78.48 78.98 79.76 82.37 81.62 83.05
STS15 85.99 86.25 87.41 88.96 88.46 89.45
STS17 89.92 90.09 91.63 92.59 91.58 92.09
STS22.v2 60.30 65.60 62.89 67.69 64.77 68.44
STSBenchmark 84.39 84.75 86.82 88.73 87.06 88.69
SprintDuplicateQuestions 91.15 93.49 90.64 95.63 92.45 95.07
StackExchangeClustering.v2 56.38 53.12 55.68 52.04 56.96 52.71
StackExchangeClusteringP2P.v2 38.91 38.95 40.34 41.36 40.82 41.72
SummEvalSummarization.v2 31.55 31.66 33.53 35.08 34.62 35.07
TRECCOVID 70.48 81.03 81.41 81.84 78.53 82.28
Touche2020Retrieval.v3 53.79 58.46 52.39 57.51 52.37 56.61
ToxicConversationsClassification 64.42 64.99 69.56 69.32 68.68 69.59
TweetSentimentExtractionClassification 66.04 66.23 64.86 65.38 63.72 63.96
TwentyNewsgroupsClustering.v2 44.40 38.29 42.70 44.06 47.42 42.84
TwitterSemEval2015 70.68 72.13 75.93 78.47 76.49 78.35
TwitterURLCorpus 85.59 86.16 86.51 87.31 86.74 87.46

Average 62.40 63.41 65.33 66.12 65.96 66.56

Table 20: Full end-to-end ranking performance on BEIR.

Coivd NFCorpus Touche DBPedia SciFact Signal News Robust Avg.

E2RANK-0.6b Retrieval 81.03 33.80 29.96 41.36 71.12 27.97 42.85 52.71 47.60
+ Rerank 83.33 37.62 30.87 43.68 72.95 27.94 50.03 58.89 50.66

E2RANK-4b Retrieval 81.84 38.64 27.95 47.75 78.94 27.90 49.56 64.29 52.11
+ Rerank 84.42 41.39 33.19 47.74 78.48 27.10 52.85 67.81 54.12

E2RANK-8b Retrieval 82.29 40.08 27.95 48.75 80.91 28.13 53.46 65.55 53.39
+ Rerank 86.61 42.33 34.86 48.20 78.99 26.31 53.75 69.58 55.08

Table 21: Full end-to-end ranking performance on BRIGHT.

StackExchange Coding Theorem-based Avg.
Bio. Econ. Earth. Psy. Rob. Stack. Sus. Pony. LC. AoPS TheoQ. ThoT.

E2RANK-0.6b Retrieval 19.9 29.8 17.5 20.7 17.3 15.4 12.3 4.2 38.9 9.1 13.7 21.7 18.4
+ Rerank 27.1 37.4 23.1 31.0 22.4 19.3 20.0 3.7 38.8 8.9 17.9 21.5 22.6

E2RANK-4b Retrieval 35.4 42.6 23.7 34.4 24.5 22.2 22.4 7.2 43.0 11.3 33.5 34.1 27.8
+ Rerank 43.6 49.8 29.2 43.8 29.6 32.1 31.0 4.6 40.4 10.6 36.2 34.9 32.2

E2RANK-8b Retrieval 28.6 36.6 22.3 30.9 22.2 21.7 19.8 7.3 37.9 10.3 30.2 33.3 25.1
+ Rerank 39.9 46.6 28.9 41.7 28.3 29.7 34.4 6.1 37.4 9.1 33.6 36.7 31.0
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Table 22: Full results of ablation study on BEIR.

Coivd NFCorpus Touche DBPedia SciFact Signal News Robust Avg.

BM25 59.47 30.75 44.22 31.80 67.89 33.05 39.52 40.70 43.43

E2RANK-0.6B 79.17 38.60 41.91 41.96 73.43 35.26 52.75 53.67 52.09

w/o Stage I 79.22 38.13 40.98 40.99 73.18 33.35 51.74 53.01 51.33
w/o InfoNCE in Stage II 79.48 39.02 40.87 42.27 74.27 34.42 52.44 54.59 52.17

w/ only Stage I 77.04 35.83 25.35 40.58 70.08 31.91 43.95 45.72 46.31
w/o RankNet in Stage II 80.85 36.27 32.67 40.93 71.95 31.69 47.55 51.98 49.24

w/o Listwise in Stage II 81.47 36.79 33.33 41.41 72.44 31.93 48.83 53.24 49.93

Table 23: Full results of ablation study on BRIGHT.

StackExchange Coding Theorem-based Avg.
Bio. Econ. Earth. Psy. Rob. Stack. Sus. Pony. LC. AoPS TheoQ. ThoT.

ReasonIR 43.5 43.0 32.8 38.9 21.1 30.6 27.3 31.6 19.6 7.3 34.1 36.7 30.5

E2RANK-0.6B 44.1 46.5 31.0 40.8 26.1 30.6 30.6 11.7 38.5 8.0 35.9 28.0 31.0

w/o Stage I 44.4 46.9 29.9 40.7 25.8 26.5 32.0 13.8 37.5 8.1 31.5 30.8 30.7
w/o InfoNCE in Stage II 42.2 45.0 27.4 41.4 25.5 29.9 29.0 10.4 36.8 7.1 36.1 29.1 30.0

w/ only Stage I 11.1 16.7 13.0 13.3 14.8 11.0 10.3 10.0 37.4 9.0 14.4 22.7 15.3
w/o RankNet in Stage II 25.1 36.2 22.0 26.2 19.8 20.1 16.2 8.0 40.2 9.7 20.2 25.0 22.4

w/o Listwise in Stage II 25.1 36.5 22.1 27.0 20.1 20.4 16.9 8.4 40.1 10.1 20.7 25.0 22.7

Table 24: Detailed Results of ablation study on MTEB(eng, v2) Benchmark.

Task E2RANK-0.6B w/o Stage I w/o InfoNCE
in Stage II w/ only Stage I w/o RankNet

in Stage II
w/o Listwise
in Stage II

AmazonCounterfactualClassification 82.21 70.34 80.76 79.72 81.6 81.18
ArXivHierarchicalClusteringP2P 58.55 57.87 57.09 57.38 58.52 58.13
ArXivHierarchicalClusteringS2S 54.00 54.23 55.77 55.44 54.74 54.66
ArguAna 50.56 51.46 50.85 52.88 49.04 49.59
AskUbuntuDupQuestions 62.92 61.94 61.21 62.21 62.72 62.98
BIOSSES 85.22 85.35 85.13 84.68 85.54 85.64
Banking77Classification 80.88 79.99 81.1 79.96 80.82 81.23
BiorxivClusteringP2P.v2 39.28 38.63 38.27 38.50 38.82 40.17
CQADupstackGamingRetrieval 55.35 53.32 55.36 56.19 56.33 57.02
CQADupstackUnixRetrieval 39.31 38.3 39.27 41.53 40.42 40.6
ClimateFEVERHardNegatives 30.80 28.91 28.03 26.37 30.53 30.91
FEVERHardNegatives 85.68 76.43 63.58 88.02 86.17 85.35
FiQA2018 40.84 36.79 34.74 38.12 40.88 40.91
HotpotQAHardNegatives 68.42 63.33 59.29 53.52 67.8 69.22
ImdbClassification 82.57 73.02 82.01 76.66 80.73 80.91
MTOPDomainClassification 93.62 92.75 93.67 92.60 93.61 93.84
MassiveIntentClassification 72.48 69.5 71.78 72.90 72.35 72.28
MassiveScenarioClassification 74.71 72.92 74.9 74.58 74.57 74.82
MedrxivClusteringP2P.v2 35.17 35.21 34.47 33.82 34.98 36.07
MedrxivClusteringS2S.v2 31.19 30.82 32.17 32.61 31.18 32.04
MindSmallReranking 29.85 29.95 30.22 30.67 30.17 30.15
SCIDOCS 17.85 17.07 18.13 16.87 17.63 18.09
SICK-R 79.89 70.59 80.63 79.69 79.81 79.9
STS12 74.12 63.39 75.15 76.75 74.28 74.28
STS13 84.19 80.41 84.93 84.07 83.83 84.83
STS14 78.98 74.29 79.15 78.48 78.86 79.2
STS15 86.25 82.54 86.57 85.99 86.41 86.68
STS17 90.09 83.99 90.42 89.92 90.01 90.17
STS22.v2 65.60 65.08 65.53 60.30 62.9 63.78
STSBenchmark 84.75 79.05 85.46 84.39 84.58 84.88
SprintDuplicateQuestions 93.49 94.73 92.67 91.15 93.78 93.82
StackExchangeClustering.v2 53.12 53.99 52.16 56.38 52.82 54.59
StackExchangeClusteringP2P.v2 38.95 39.1 38.94 38.91 39.19 39.77
SummEvalSummarization.v2 31.66 28.75 31.63 31.55 31.12 31.02
TRECCOVID 81.03 78.78 67.55 70.48 81.11 82.01
Touche2020Retrieval.v3 58.46 56.42 51.36 53.79 59.77 58.44
ToxicConversationsClassification 64.99 61.35 65.41 64.42 64.52 64.91
TweetSentimentExtractionClassification 66.23 62.33 66.38 66.04 66.08 65.81
TwentyNewsgroupsClustering.v2 38.29 41.01 41.35 44.40 39.43 42.63
TwitterSemEval2015 72.13 65.49 69.93 70.68 72.08 71.41
TwitterURLCorpus 86.16 85.71 85.61 85.59 86.23 86.14

Average 63.41 60.61 61.92 62.40 63.31 63.66
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Table 25: Full results of PRF baselines on BEIR.

Coivd NFCorpus Touche DBPedia SciFact Signal News Robust Avg.

BM25 59.47 30.75 44.22 31.80 67.89 33.05 39.52 40.70 43.43

E2RANK-0.6B 79.17 38.60 41.91 41.96 73.43 35.26 52.75 53.67 52.09
w/o Listwise Prompt 81.35 36.27 33.50 41.09 71.88 31.70 47.15 52.70 49.46

w/o Listwise in Stage II 81.47 36.79 33.33 41.41 72.44 31.93 48.83 53.24 49.93
+ text-based PRF 75.30 34.44 34.46 37.59 67.59 33.06 48.88 40.85 46.52
+ vector-based PRF 78.73 37.08 38.06 40.66 70.50 30.61 48.12 49.84 49.20

Table 26: Full results of PRF baselines on BRIGHT.

StackExchange Coding Theorem-based Avg.
Bio. Econ. Earth. Psy. Rob. Stack. Sus. Pony. LC. AoPS TheoQ. ThoT.

ReasonIR 43.5 43.0 32.8 38.9 21.1 30.6 27.3 31.6 19.6 7.3 34.1 36.7 30.5

E2RANK-0.6B 44.1 46.5 31.0 40.8 26.1 30.6 30.6 11.7 38.5 8.0 35.9 28.0 31.0
w/o Listwise Prompt 24.9 34.6 21.0 25.7 17.7 18.1 15.2 7.0 38.5 9.4 20.8 25.1 21.5

w/o Listwise in Stage II 25.1 36.5 22.1 27.0 20.1 20.4 16.9 8.4 40.1 10.1 20.7 25.0 22.7
+ text-based PRF 49.3 49.4 31.2 22.0 22.0 30.6 27.0 26.5 33.9 7.0 34.2 22.5 29.6
+ vector-based PRF 26.0 45.3 20.5 29.0 16.1 21.9 17.5 8.0 35.8 6.9 23.3 12.0 21.8

Table 27: Reranking results using different first-stage retrievers.

BGE-base Contriver SPLADE++ED Qwen3E-0.6B
DL19 DL20 DL19 DL20 DL19 DL20 DL19 DL20

First-stage Retrieval 70.22 66.21 62.02 63.42 73.08 71.97 68.05 66.69

RankQwen3-0.6B 72.60 72.51 68.63 71.78 75.82 74.34 74.00 72.65
E2RANK-0.6B 74.53 73.97 71.81 74.52 76.04 77.82 74.83 73.42

RankQwen3-4B 72.71 76.31 70.89 76.06 75.56 74.78 72.42 73.29
E2RANK-4B 75.46 74.90 72.71 76.01 75.74 79.25 74.92 74.88

RankQwen3-8B 73.73 75.68 72.62 75.94 74.61 75.81 73.96 75.26
E2RANK-8B 74.15 76.40 73.77 75.04 77.37 80.08 74.97 75.24

Table 28: Reranking results on BRIGHT. We use BM25 as the first-stage retriever and use original
queries to obtain the top-100 candidates. The baseline results are mainly borrowed from Cai et al.
(2025). RankQwen3-14B (32B) are zero-shot, others are all fine-tuned.

StackExchange Coding Theorem-based Avg.
Bio. Econ. Earth. Psy. Rob. Stack. Sus. Pony. LC. AoPS TheoQ. ThoT.

BM25 18.2 27.9 16.4 13.4 10.9 16.3 16.1 4.3 24.7 6.5 2.1 7.3 13.7

Non-reasoning Listwise Reranker

RankZephyr 21.9 23.7 14.4 10.3 7.6 13.7 16.6 6.5 24.7 6.8 2.0 7.3 13.0
RankQwen3-0.6B 21.2 32.3 17.4 20.8 14.7 14.9 18.8 6.0 26.6 6.4 4.5 8.7 16.0
RankQwen3-4B 28.8 37.4 19.2 31.4 20.5 21.8 26.8 10.0 22.5 6.3 11.5 10.8 20.6
RankQwen3-8B 29.7 40.2 21.0 31.0 23.3 23.2 27.0 10.1 16.9 6.5 12.0 11.6 21.1
RankQwen3-14B 30.7 41.3 23.4 30.1 24.7 21.1 27.4 7.5 30.0 8.9 12.0 11.7 22.4
RankQwen3-32B 31.9 45.5 23.8 33.2 25.6 22.5 30.8 7.5 29.7 10.9 11.7 13.0 23.8

Reasoning-Intensive Reranker

Rank-R1-7B 26.0 28.5 17.2 24.2 19.1 10.4 24.2 4.3 19.8 4.3 10.9 8.3 16.4
Rank1-7B 31.6 34.4 18.0 23.5 16.7 18.6 22.9 20.1 9.4 4.5 9.4 9.9 18.3
Rearank-7B 23.4 27.4 18.5 24.2 17.4 16.3 25.1 8.0 27.0 7.4 9.5 7.9 17.7
JudgeRank-8B 28.7 32.2 20.9 24.6 16.5 18.3 20.6 11.7 7.1 4.7 8.4 10.0 17.0
ERank-4B 30.4 42.5 21.5 27.7 22.4 22.9 24.0 31.6 14.6 11.0 12.1 11.4 22.7
ERank-14B 31.2 43.6 25.8 27.8 23.1 23.9 24.6 29.8 16.8 8.6 10.5 11.9 23.1

Ours

E2RANK-0.6B 27.1 41.7 20.7 24.3 19.8 22.1 19.6 4.8 32.7 10.7 8.6 9.9 20.2
E2RANK-4B 27.8 45.6 23.9 27.6 21.4 25.0 24.3 5.0 34.8 12.3 9.3 10.8 22.3
E2RANK-8B 28.7 45.2 24.4 27.2 22.9 25.2 25.6 6.6 32.5 11.8 9.3 10.7 22.5
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Table 29: Reranking results on BRIGHT. We use BM25 as the first-stage retriever and use GPT4
reasoning-queries to obtain the top-100 candidates. The baseline results are mainly borrowed
from Cai et al. (2025).

StackExchange Coding Theorem-based Avg.
Bio. Econ. Earth. Psy. Rob. Stack. Sus. Pony. LC. AoPS TheoQ. ThoT.

BM25 18.2 27.9 16.4 13.4 10.9 16.3 16.1 4.3 24.7 6.5 2.1 7.3 13.7

Non-reasoning Listwise Reranker

RankQwen3-0.6B 26.8 50.5 46.5 23.6 37.7 21.5 27.7 26.6 19.7 21.3 4.4 22.6 20.1
RankQwen3-4B 31.7 49.6 47.6 25.8 44.5 27.3 30.9 37.5 31.2 20.8 6.8 32.7 25.6
RankQwen3-8B 31.6 50.8 47.0 26.8 45.4 28.0 30.5 38.1 27.4 20.0 6.4 32.4 26.8

Reasoning-Intensive Reranker

Rank-R1-7B 23.9 38.2 29.4 23.4 33 24.9 14.9 33.2 18.2 16.1 3.8 16.6 34.8
Rank1-7B 25.5 45.8 37 22.2 31.7 20.6 23 34.2 15.7 19.8 1.3 19.8 34.7
Rearank-7B 29.1 42 37.5 26.4 39.1 25 25.1 32.6 26.2 29.2 5.9 28 32.2
JudgeRank-8B 24.4 41.4 34.7 26.2 36 24 27.6 26.1 10.2 14.2 3.4 20.3 28.9
ERank-4B 32.9 48.2 46.7 30 43.1 28.4 31.5 38.1 28.5 23.5 10.4 26.9 39.0
ERank-14B 33.5 51.4 48.6 30.8 41.3 26.7 35.6 39.1 27.3 26.4 10.9 25.7 37.9

Ours

E2RANK-0.6B 29.6 47.6 52.2 27.4 42.0 26.8 31.5 29.5 19.5 31.8 7.5 19.2 20.5
E2RANK-4B 32.0 49.6 51.1 31.6 43.8 29.0 33.7 33.2 16.4 31.9 7.6 33.2 22.9
E2RANK-8B 32.6 51.7 51.4 32.1 45.6 27.3 35.5 34.5 16.2 31.1 8.3 32.7 25.2
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