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Abstract001

Temporal Table Reasoning is a critical chal-002
lenge for Large Language Models (LLMs), re-003
quiring effective reasoning to extract relevant004
insights. Despite existence of multiple prompt-005
ing methods, their impact on table reasoning re-006
mains largely unexplored. Furthermore, model007
performance varies drastically across different008
table and context structures, making it diffi-009
cult to determine an optimal approach. This010
work investigates multiple prompting technique011
on diverse table types to determine that perfor-012
mance depends on factors such as entity type,013
table structure, requirement of additional con-014
text and question complexity, with "NO" sin-015
gle method consistently outperforming others.016
To address this, we introduce SEAR, an adap-017
tive prompting framework inspired by human018
reasoning that dynamically adjusts to context019
and integrates structured reasoning. Our re-020
sults demonstrate that SEAR achieves superior021
performance across all table types compared022
to baseline prompting techniques. Addition-023
ally, we explore the impact of table structure024
refactoring, finding that a unified representation025
enhances model reasoning.026

1 Introduction027

Temporal table reasoning presents a unique chal-028

lenge, requiring Large Language Models (LLMs)029

to interpret tabular data while capturing embed-030

ded temporal relationships. Unlike static tables031

that provide a fixed snapshot of information, tem-032

poral tables evolve over time, incorporating event033

sequences, timestamps, and dynamic updates. Rea-034

soning over such structures is essential for tasks035

like financial forecasting, historical trend analysis,036

medical diagnosis, and event-based decision mak-037

ing (Gupta et al., 2023; Xiong et al., 2024). How-038

ever, existing LLMs often struggle to model these039

intricate temporal dependencies, underscoring the040

need for more effective reasoning frameworks.041

Question: what time period had no shirt
sponsor?
Dataset: WikiTabQA
Req: Evidence and Direct Answer

Question: What films did Aaron Taylor-
Johnson appear in in 2017 and 2018?
Dataset: FeTaQA
Req: Evidence and Decomposition

Question: what was the percentage change
in total rental expense under operating
leases from july 2 , 2005 to july 1 , 2006?
Dataset: FinQA
Req: Evidence from Text and PoTQuestion: What is the sum of Ground leases

of 2020, Health Plan of 2016, and Property
mortgages and other loans of Thereafter ?
Dataset: MultiHiertt
Req: Evidence from multiple table and F-COT

Year Title Role
2015 Avengers Pietro Maimoff

2016
Nocturnal
Animals Ray Marcus

2017 The Wall Issac
2018 Outlaw King James Douglas

2018
A Million Little
Pieces -

Table Title - Aaron Taylor-Johnson
Table Subtitle - Film

Table Pretext - ... operating leases
was $ 100690000 , $ 92710000 ,
and $ 86842000 in fiscal 2006 ,
2005 and 2004 ...

amount
2007 56499000
2008 46899000
2009 39904000
2010 33329000

Table 0
Benefit Plan 2017 2016
Pension Plan $3,856 $3,979
Health Plan 11426 11530

Table_1
2020 Thereafter

Property mortgages $703,018 $1,656,623
MRA facilities — —
Sr. unsecured notes 250000 100000
Ground leases 31436 703254

Year
Kit

Manufacturer Shirt Sponsor

1977–1978 -
National
Express

1982–1985 Umbro -
1985–1986 Umbro Whitbread

... ... ...
2008– Errea Mira Showers

Figure 1: Examples of Different Table and Contextual
structure, taken from different datasets with efficient rea-
soning method based on specific question, Full Tables
are in Appendix C.

Recent work has demonstrated that LLMs can 042

improve table reasoning performance through ad- 043

vanced prompting strategies (Zhang et al., 2025). 044

Nevertheless, studies such as Wang and Zhao 045

(2024) highlight persistent challenges in tempo- 046

ral reasoning, with models often failing to track 047

evolving data or infer event sequences reliably. 048

Moreover, most existing approaches rely on single- 049

step prompting methods such as direct prompting 050

or chain-of-thought reasoning (Wei et al., 2022) 051

which frequently fail to generalize across diverse 052

table structures and time-sensitive queries. 053

Although several prompting techniques have 054

been proposed to improve LLM reasoning, their 055

effectiveness for temporal table reasoning remains 056

underexplored. In this study, we evaluate five 057

single-step prompting methods as baselines Chain- 058

of-Thought (CoT), Evidence Extraction, Decompo- 059
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sition, Faithful CoT (Radhakrishnan et al., 2023),060

and Program of Thought (PoT) (Chen et al., 2023).061

Each baseline aims to enhance logical and numer-062

ical reasoning, yet their impact on temporal table063

reasoning performance has not been systematically064

analyzed. Furthermore, we evaluate an extensive065

set of baselines covering structural, temporal, and066

agentic reasoning approaches.067

This study addresses this gap by analyzing the068

performance of multiple established baselines and069

a novel adaptive reasoning strategy on a Temporal070

Tabular Question Answering (TTQA) task. We aim071

to answer the following research questions: (RQ1)072

Given a table and a question, which reasoning strat-073

egy should be employed?, (RQ2) Is there a Single074

reasoning method that can perform well across all075

types of tabular structure?, and (RQ3) Is there a076

unified representation that can encapsulate all dif-077

ferent tabular structures in most effective manner078

for the TTQA task?079

To address these research questions, we con-080

ducted experiments on eight distinct tabular struc-081

tures using multiple state-of-the-art LLMs for the082

TTQA task. To overcome the limitations of exist-083

ing baselines we propose SEAR (Select-Elaborate-084

Answer & Reasoning) framework, a novel adaptive085

prompting strategy. Our motivation can be likened086

to a carpenter building a chair. They have many087

tools, such as a hammer, saw and drill. Each is088

capable of performing part of the task, but none089

of them can build the whole chair. It is the skill-090

ful selection and combination of these tools that091

brings the chair to life. Similarly, SEAR equips092

models with multiple reasoning tools, and then it093

is on the model’s capability to choose them for094

solving the task at hand. From 10, we observe that095

models actually use multiple tools to answer these096

questions.097

SEAR operates in three distinct phases. In the098

Initial Select phase, it identifies high-level crucial099

steps, in the subsequent Elaborate phase it refines100

these steps by adding detailed instructions, ensur-101

ing comprehensive road map. Finally, the Answer102

& Reasoning phase leverages the structured plan103

to deliver accurate answers, supported by clean,104

logical explanations and where necessary, includes105

integration of Python code for computational tasks.106

Furthermore, we combined these three phases107

to create a single step reasoning strategy, which108

we call SEAR_Unified. Our results show that109

SEAR_Unified outperforms all single step baseline110

reasoning strategies by significant margins, and111

even standard 3-step SEAR and existing multi-step 112

reasoning strategies such as Self Discover (Zhou 113

et al., 2024). This demonstrates the supremacy and 114

efficacy of our proposed reasoning strategy. Addi- 115

tionally, our study also includes detailed analysis 116

of refactoring process, wherein we transform di- 117

verse tabular structure into a unified representation 118

("Refactor"), Our main contributions are: 119

• Benchmarking Prompting Methods: We eval- 120

uate five single-step prompting methods and 121

show that their effectiveness varies based on 122

table structure, entity type, sparsity and ques- 123

tion complexity. 124

• Adaptive Reasoning Framework: We intro- 125

duce SEAR, a multi-step adaptive prompting 126

approach that generalizes well across diverse 127

table structures, also we integrate them into a 128

single unified adaptive prompt SEAR_Unified, 129

outperforming individual methods. 130

• Table Structure Refactoring: We propose 131

refactoring as an enhancement, demonstrating 132

its effectiveness in improving model reason- 133

ing by optimized table representation. 134

• Comprehensive Evaluation: We conduct a 135

systematic analysis across various table types, 136

highlighting the impact of different reasoning 137

strategies and structure modifications. 138

2 Why is Temporal Table Reasoning 139

Challenging? 140

Temporal table QA requires models to reason 141

over structured data while accounting for time- 142

dependent relationships. This challenge arises from 143

three key factors: the diverse structures of tables, 144

the domain-specific reasoning requirements, and 145

the complexity of the questions asked. 146

Structural Variability. Tables range from sim- 147

ple grids to hierarchical or semi-structured layouts 148

with merged cells and implicit links (e.g., HiTab’s 149

multi-level indexes, HybridQA’s tables mixed with 150

text). They also come in diverse file formats (CSV, 151

HTML, Markdown), so parsing must be flexible. 152

SEAR first flattens and standardises these varied 153

structures, making them easier for downstream rea- 154

soning. 155

Domain-Specific Complexity. Reasoning strate- 156

gies must adapt to the table’s domain. Wikipedia- 157

based datasets like WikiTableQuestions demand 158

general factual reasoning and entity linking. Finan- 159

cial datasets like FinQA or TAT-QA emphasize nu- 160

merical reasoning, requiring multi-step arithmetic 161
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and temporal trend analysis. SEAR dynamically162

adapts to these needs by identifying relevant enti-163

ties and values, then applying suitable prompting164

strategies such as F-CoT or PoT. In numerically165

intensive domains, PoT facilitates executable code166

generation for precise computation.167

Question Complexity. Temporal QA questions168

range from direct lookups (e.g., “What year did169

the team win?”) to complex reasoning (e.g., “What170

was the profit two quarters after policy X?”). These171

often require temporal anchoring, arithmetic, and172

sequential logic. SEAR addresses this by decom-173

posing questions and tailoring its strategy based on174

both table and query characteristics.175

Limitations of Prior Work. Despite recent in-176

terest, most prior work underrepresents the struc-177

tural and domain diversity seen in real-world tables.178

Datasets like TempTabQA (Gupta et al., 2023) fo-179

cus narrowly on specific formats, limiting general-180

izability. Annotation inconsistencies (Deng et al.,181

2024) further complicate benchmarking. Sym-182

bolic approaches (e.g., DATER (Ye et al., 2023),183

BINDER (Cheng et al., 2023)) offer logical preci-184

sion on well-structured tables but falter on hybrid or185

semi-structured formats. Conversely, text-focused186

models (e.g., C.L.E.A.R. (Deng et al., 2024)) pro-187

vide strong language understanding but lack robust188

symbolic reasoning. These limitations highlight189

the need for hybrid systems like SEAR, which dy-190

namically integrate symbolic and neural strategies191

based on task demands.192

3 Adaptive Reasoning Framework193

Humans naturally begin by understanding the ob-194

jective and analyzing table structures, including195

cell relationships, headers, and implicit dependen-196

cies, while incorporating additional context if avail-197

able. In temporal tables, this involves identify-198

ing both implicit and explicit time-based patterns.199

Once the problem and context are clear, relevant200

information is retrieved directly or by decompos-201

ing the task into subproblems based on complexity.202

Finally, logical and numerical reasoning is applied203

systematically to arrive at a well-founded conclu-204

sion.205

Inspired by this intuitive approach, we propose206

the SEAR (Select-Elaborate-Answer & Reasoning)207

a framework designed to dynamically adapt reason-208

ing strategies based on the structure and complex-209

ity of the given table. SEAR builds upon existing210

prompting methods by introducing a structured,211

multi-step reasoning process that mirrors human 212

problem solving. It follows a structured three step 213

process to improve temporal table reasoning, ensur- 214

ing systematic problem solving while leveraging 215

In-context learning for adaptability. 216

Step1: Select Crucial Steps : Identify key rea- 217

soning steps without answering directly, creating 218

an efficient problem solving path. Figure 3 shows 219

the actual prompt. 220

• Problem Understanding: Define the ques- 221

tion’s objective and analyze table structure. 222

• Reasoning Process: Select single or multiple 223

strategies from Extract relevant evidence, de- 224

compose complex queries, apply logical steps, 225

and generate Python code if needed (when the 226

question involves numerical or arithmetic rea- 227

soning. This is guided by the prompt as seen 228

in Figure 3) 229

• Optimization tips: Simplify steps, retrieve di- 230

rect answers when possible, and use code for 231

numerical operations. 232

Step 2: Elaborate Crucial Steps : Refine and 233

comprehend selected steps for clarity and effective- 234

ness. Figure 4 shows the actual prompt. 235

• Add contextual details, specify exact table el- 236

ements, and refine decomposition. 237

• Ensure a structured and logically coherent 238

flow toward the final answer. 239

Step 3: Answer & Reasoning : Execute 240

the structured steps to derive an accurate, well- 241

supported answers. Figure 5 shows the actual 242

prompt. 243

• Follow elaborated steps precisely, referencing 244

extracted evidence. 245

• Justify answers with logical explanations, 246

when possible directly answer from evidence 247

and integrate Python code for calculations 248

when needed. 249

By progressively refining reasoning, SEAR en- 250

sures adaptability and robustness across diverse 251

table formats and complexities. 252

Standard SEAR is a three-step process that adds 253

overhead and can impact efficiency. To address 254

this, we propose SEAR_Unified, a single-step adap- 255

tive prompt that merges SEAR’s structured rea- 256

soning into a unified framework. It dynamically 257

selects and refines reasoning steps based on the 258
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Dataset Structure Domain Reasoning Question Types Answer Types
Flat Hierarichal Hybrid Wikipedia Finance. Numerical Textual Lookup Multi-step Temporal Long-form SQL

FeTaQA ✓ ✗ ✗ ✓ ✗ ✗ ✓ ✓ ✓ ✗ ✓ ✗
FinQA ✓ ✗ ✗ ✗ ✓ ✓ ✓ ✗ ✓ ✓ ✗ ✗

HiTab† ✗ ✓ ✗ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✗ ✗
HybridQA ✗ ✗ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗
MultiHierTT ✗ ✓ ✗ ✗ ✓ ✓ ✓ ✗ ✓ ✓ ✗ ✗
Squall ✓ ✗ ✗ ✓ ✗ ✓ ✗ ✓ ✓ ✗ ✗ ✓
TAT-QA ✓ ✗ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗
WikiTableQuestions ✓ ✗ ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✗ ✗ ✗

Table 1: Comparison of Temporal Table QA datasets by structure, domain, reasoning, and question types. †HiTab
spans Wikipedia and financial domains. Binary indicators simplify complex question types (e.g., SQL, long-form).

query and table structure, retrieving key informa-259

tion, decomposing complex queries when needed,260

and selectively using Python for numerical opera-261

tions. SEAR_Unified validates intermediate steps262

and performs error checks to ensure accuracy while263

reducing redundant complexity. Figures 6 and 7264

illustrate the prompt and reasoning path.265

We also introduce table and context refactor-266

ing as a preprocessing step that clarifies headers,267

aligns data, and removes irrelevant context. This268

improves retrieval precision, reduces reasoning er-269

rors, and enhances adaptability across diverse tab-270

ular formats. Table 2 summarizes the refactoring271

changes for each dataset.272

4 Experimental Setup273

Datasets. We selected eight diverse tabular as274

shown in table 3 datasets spanning structured, semi-275

structured, hierarchical, and hybrid tables to ensure276

a comprehensive evaluation. These datasets present277

challenges such as entity relations, numerical rea-278

soning, and textual integration, making them well-279

suited for assessing table reasoning in LLMs as280

shown in Table 1. For detailed overview of the281

dataset refer appendix E.

Categories fetaqa finqa hitab hybridqa multi squall tatqa wiki

Table Structure 1580 961 616 1528 1587 774 2240 1503
Title Clarity 1582 962 386 1528 1587 774 2244 1504
Column/Row Header 1268 919 353 1229 1587 774 2158 1283
Data Formatting 1329 957 269 1476 1585 774 2124 1399
Bolding & Emphasis 1207 934 206 1460 1524 347 2200 478
Other 328 273 82 468 539 197 696 309

Table 2: Dataset evaluation for refactoring categories.282
Dataset Filtering: Adapting TempTabQA’s283

(Gupta et al., 2023) keyword filter (§3.2), we se-284

lected temporal cues (e.g., before, year, latest)285

along with domain-specific terms (e.g., fiscal, quar-286

terly) and applied them across all datasets. This287

approach reliably captures most of the explicit tem-288

poral questions, though purely implicit cases may289

be missed. Incorporating human judgment could290

improve coverage but at the cost of scalability.291

Dataset Brief description #Qs

FeTaQA Wikipedia tables; long-form answers from discon-
tinuous facts

1,582

FinQA Financial reports; multi-step numerical reasoning 962
HiTab Hierarchical tables; fine-grained numeric questions 897
HybridQA Wiki tables + linked text; hybrid reasoning 1,528
MultiHierTT Finance; multiple hierarchical tables + long text 1,587
Squall WikiTableQ + SQL alignments; structured query

tasks
774

TAT-QA Finance; tables + text with arithmetic / counting 2,244
WikiTableQ Wikipedia trivia; factual + numeric Q over large

tables
1,504

Table 3: Number of retained temporal Questions.

Models: We used 3 LLM models: GPT4o-mini, 292

Gemini 1.5 Flash, and LLaMA 3.1 70B. 293

Prompts & Frameworks: Effective prompting 294

improves task comprehension and response quality 295

by providing structured instructions. We evaluated 296

13 prompting strategies spanning direct, structured, 297

temporal, and agentic approaches, as summarized 298

in Table 4. 299

To ensure a balanced evaluation, we included 300

both textual and symbolic reasoning prompts. CoT, 301

Evidence Extraction, and Decomposed Prompting 302

guide models through step-by-step interpretation. 303

SCP augments multiple chains of thought and se- 304

lects the majority vote. PoT and F-CoT generate 305

structured logic for consistent reasoning. The tem- 306

poral baselines NoT and C.L.E.A.R. inject explicit 307

chronological cues to help the model track event 308

ordering. The structured baselines Self-Discover, 309

Self-Ask, and Plan & Solve introduce autonomous 310

decomposition and planning to improve reasoning 311

quality. The agentic methods ToT and GoT explore 312

tree- or graph-structured reasoning paths to identify 313

high-value solutions. All methods were evaluated 314

in a few-shot setting except Self-Discover. 315

Evaluation: Evaluating diverse datasets is chal- 316

lenging due to varying answer types, from nu- 317

merical values to long-form text. A rigid metric 318

may miss semantic correctness, so we propose the 319

Hybrid Correctness Score (HCS), which balances 320
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Baseline Brief description Category

Chain-of-Thought (COT) (Wei et al., 2022) Step-by-step natural-language rationale Direct
Evidence Extraction(EE) Extracts supporting cells first, then answers Direct
Decomposed Prompting(Decomp)(Khot et al., 2023) Splits complex queries into simpler sub-prompts Direct
Faithful COT (F-COT) (Lyu et al., 2023) Adds consistency checks to Chain-of-Thought Direct
Program-of-Thought (POT)(Chen et al., 2023) Generates executable code (e.g., Python) for reasoning Direct
Self-Discover (Zhou et al., 2024) Model autonomously picks reasoning modules Structured
Self-Ask (Press et al., 2023) Iteratively asks and answers sub-questions Structured
Plan & Solve (Wang et al., 2023a) Separates plan generation from execution Structured
C.L.E.A.R. (Deng et al., 2025) Injects temporal cues for semi-structured tables Temporal
Narration of Thought (NoT) (Zhang et al., 2024) Requires chronological narration to keep temporal order Tempooal
Self-Consistency Prompting (SCP) (Wang et al., 2023b) Samples multiple COTs and votes Agentic
Tree of Thought (ToT) (Yao et al., 2023) Searches a tree of reasoning states with pruning Agentic
Graph of Thought (GoT) (Besta et al., 2023) Generalises ToT to graph search Agentic

Table 4: Prompting baselines grouped by category.

lexical and semantic accuracy by combining Re-321

laxed Exact Match Score (REMS, F1-based) and322

Contextual Answer Evaluation (CAE, LLM-based).323

A response is considered correct if its REMS score324

exceeds 80 or if CAE deems it correct. By in-325

tegrating both lexical and contextual evaluation,326

HCS offers a more robust measure of answer cor-327

rectness. all reported scores represent HCS for328

consistency. Detailed REMS and CAE results are329

provided in Tables 14 15, 16 in Appendix B.330

5 Result and Analysis331

In this section, we analyze results using Tables (6,332

7, 8) which showcase HCS scores.333

Is there a single existing reasoning strategy334

which works best on all table types? Perfor-335

mance varies depending on table structure, domain,336

and question complexity. As observed in Gemini337

1.5 Flash results (Table 6), COT performs best on338

HybridQA, Evidence Extraction excels in HiTab,339

TATQA, FeTaQA and Squall, while Decomposition340

is most effective for WikiTabQA and FinQA. POT341

shows the highest performance in MultiHierTT,342

whereas F-COT does not emerge as the best base-343

line in any dataset. A similar trend is evident across344

GPT and LLaMA models as shown in Table 5.345

Thus, no single prompting method universally out-346

performs others, as effectiveness is higly dependent347

on the dataset’s structure and complexity.348

Does the Adaptive Reasoning Framework Help?349

Table 5 confirms that COT, Evidence Extraction,350

and Decomposition dominate in most datasets, with351

POT and F-COT experience improvement in per-352

formance for financial and Squall datasets. SEAR353

dynamically selects its reasoning path, primarily354

leveraging Evidence Extraction, Decomposition,355

and Logical Steps (COT) while integrating Python356

Gemini 1.5 Flash GPT 4o mini Llama 3.1 70B

COT HybridQA MultiHierTT HiTab
TATQA HybridQA
FeTaQA

EE HiTab WikiTabQA FeTaQA
TATQA HiTab Squall
FeTaQA HybridQA

Decomp Squall
WikiTabQA FinQA WikiTabQA

FinQA MultiHierTT
TATQA

POT MultiHierTT Squall FinQA
F-COT - - -

Table 5: Dataset for which Baseline reasoning strategy
performed best for each model

Program for numerical reasoning. by design, it opti- 357

mally combines dominant reasoning strategies with 358

computation support. SEAR outperforms baseline 359

in 5 dataset for Gemini, in 2 dataset for GPT, and in 360

4 datasets for LLaMA. While SEAR consistently 361

improves performance over baseline across multi- 362

ple models, it does not generalize equally across 363

all datasets. 364

Does unification of SEAR help? SEAR_Unified 365

optimizes reasoning by merging and refining steps 366

into a single adaptive prompt, reducing overhead 367

while enhancing flexibility. As seen in Table 6, 7 , 368

8, SEAR_Unified outperforms baselines across all 369

datasets for Gemini, while for GPT and LLaMA, it 370

surpasses baselines in 6 datasets, demonstrating its 371

superiority. This highlights SEAR_Unified’s abil- 372

ity to generalize effectively across diverse datasets 373

and models. 374

We compared our methods with recent struc- 375

tured and modular reasoning approaches, including 376

Self-Discover, Self-Ask, and Plan & Solve. Our ap- 377

proach consistently outperforms these baselines, 378

with particularly strong gains on Multi-HierTT, 379

HiTabs, Squall, and HybridQA. Among them, 380

Self-Discover performs the closest, underscor- 381

ing the value of modular and adaptive reason- 382
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ing. We also benchmarked against temporal (NoT,383

C.L.E.A.R.) and agentic (ToT, GoT, SCP) strate-384

gies. Although NoT, C.L.E.A.R., and GoT perform385

well on FetaQA, TAT-QA, and HiTabs, they fail to386

deliver consistent improvements on more complex387

benchmarks.388

wiki multi hitab finqa tatqa fetaqa squall hybridqa

COT 73.60 58.79 79.04 60.08 87.30 71.30 69.90 80.76
F-COT 66.89 60.68 52.06 62.16 78.79 56.13 61.11 17.93
Decomp 78.52 61.00 75.47 62.58 91.67 67.07 67.57 74.67
EE 76.33 60.43 80.82 55.93 92.20 77.62 72.32 80.10
PoT 74.40 61.12 70.68 60.52 79.68 50.88 63.57 38.48
NoT 75.19 46.12 81.60 51.03 86.54 87.89 69.12 79.84
ToT 81.98 58.72 77.81 51.24 91.04 79.26 75.32 82.52
GoT 74.86 56.08 84.05 50.83 90.95 84.57 66.14 81.02
SCP 81.71 60.42 80.93 52.70 91.22 84.32 72.35 84.29
CLEAR 82.71 55.57 79.71 53.95 93.27 84.00 78.81 84.48
Self Ask 78.52 45.43 79.15 64.66 81.42 80.15 70.67 63.48
Plan & Solve 81.72 39.51 67.56 66.32 90.60 81.83 77.00 62.63
Self Discover 80.32 59.42 78.93 65.49 91.35 81.16 74.81 80.43
SEAR 81.45 60.18 79.71 65.90 90.02 82.87 80.23 81.15
SEAR_U 82.18 61.75 82.61 68.71 92.78 79.84 81.52 82.00
SEAR+R 82.71 58.54 81.05 65.49 89.39 84.20 78.04 65.90
SEAR_U+R 83.38 56.58 82.83 67.36 91.53 85.52 77.91 67.08

Table 6: HCS scores (in %) using Gemini 1.5 Flash,
R stands for "Refactoring" and U stands for "Uni-
fied".Bold represents the best performer and the un-
derlined represents the second best performer.

wiki multi hitab finqa tatqa fetaqa squall hybridqa

COT 78.92 57.97 77.59 64.14 92.91 84.13 67.57 78.21
F-COT 71.61 55.32 71.35 64.97 91.04 77.81 56.46 34.62
Decomp 79.79 57.03 76.14 65.18 92.65 78.45 62.40 77.68
EE 80.12 56.77 79.38 56.03 92.81 83.88 66.67 79.58
POT 79.59 57.91 76.25 56.13 90.15 72.00 72.35 61.98
NoT 65.82 44.54 80.82 50.41 88.01 85.46 52.58 76.83
ToT 81.91 56.89 79.04 55.40 96.60 82.30 66.67 80.49
GoT 71.54 52.04 74.58 51.35 90.90 81.68 53.61 75.58
SCP 79.05 57.59 79.71 55.19 92.29 84.19 66.53 80.01
CLEAR 82.84 58.09 78.26 55.92 85.22 84.00 68.08 82.26
Self Ask 78.66 54.38 79.60 66.11 90.76 83.03 72.09 63.48
Plan & Solve 82.65 56.77 78.26 64.97 90.34 83.92 77.26 62.63
Self Discover 82.71 56.46 79.60 65.70 91.67 84.51 70.28 80.43
SEAR 80.19 57.40 77.37 67.26 92.42 83.38 69.64 75.33
SEAR_U 79.92 61.00 78.93 71.10 92.91 84.89 76.74 78.27
SEAR + R 82.91 56.65 78.82 66.94 91.84 84.77 79.33 68.72
SEAR_U + R 84.18 59.29 80.27 69.75 91.44 84.39 79.20 70.48

Table 7: HCS scores (in %) using GPT 4o mini, R stands
for "Refactoring" and U stands for "Unified".Bold rep-
resents the best performer and the underlined represents
the second best performer.

Is table refactoring lossless? While LLM-based389

refactoring may introduce a risk of hallucination,390

we empirically evaluate this using the AutoQA met-391

ric (Jain et al., 2024), which measures answer ac-392

curacy on both original and refactored tables. As393

shown in Table 9, the loss in fidelity is minimal.394

The slight drop in accuracy is primarily due to pur-395

poseful modifications, such as the addition of nu-396

merical units, adjustments to headers, and revised397

table titles. Although these changes alter the struc-398

ture, they improve semantic clarity and enhance399

the tables’ utility for downstream reasoning tasks.400

wiki multi hitab finqa tatqa fetaqa squall hybridqa

COT 81.05 57.59 82.95 66.22 91.00 86.03 75.45 81.66
F-COT 66.22 39.82 64.55 51.77 45.12 52.78 61.11 33.31
Decomp 82.85 59.29 81.84 65.28 93.18 84.51 73.51 80.53
EE 81.91 58.92 82.84 61.75 92.54 86.62 80.10 81.07
POT 76.53 58.98 67.56 66.42 91.40 50.44 68.22 37.76
NoT 55.57 39.76 49.83 42.23 48.57 61.18 44.85 65.32
ToT 84.57 45.35 74.99 57.58 82.67 83.50 78.29 83.18
GoT 71.27 52.61 68.45 40.24 72.73 88.49 59.19 74.80
SCP 82.96 57.80 79.38 52.52 85.22 85.46 74.96 79.75
CLEAR 86.23 54.93 76.39 56.23 92.15 86.97 79.84 79.71
Self Ask 81.98 56.84 82.06 67.46 91.69 85.98 76.10 72.32
Plan & Solve 82.65 55.95 80.39 66.57 92.51 83.96 76.23 70.55
Self Discover 85.77 57.91 83.95 66.11 92.87 86.09 79.33 83.25
SEAR 82.65 59.61 83.05 66.63 92.34 85.52 81.40 79.78
SEAR_U 82.05 62.19 82.39 70.17 93.27 87.04 882.04 80.27
SEAR + R 82.65 57.09 82.39 67.26 91.67 86.85 76.87 67.74
SEAR_U + R 85.11 58.16 83.05 69.67 92.89 87.23 82.49 72.16

Table 8: HCS scores (in %) using Llama 3.1 70B,
R stands for "Refactoring" and U stands for "Uni-
fied".Bold represents the best performer and the un-
derlined represents the second best performer.

Dataset fetaqa finqa hitab multi squall tatqa wiki hybridqa

Accuracy 99.41 95.36 98.06 88.04 86.66 99.40 96.43 84.59

Table 9: AutoQA Accuracy after refactoring Tables.

Error Analysis Summary. We conduct a 401

fine-grained error analysis across six datasets as 402

shown in Figure 2 and find that evidence extrac- 403

tion is the most common failure mode, accounting 404

for the majority of errors in five out of six cases. 405

These errors arise from shallow string matching, 406

ambiguous headers, and missed qualifiers (e.g., 407

years, units, footnotes), leading models to anchor 408

to plausible but incorrect cells, often before any 409

reasoning or computation can take place. Reason- 410

ing errors are more prominent in datasets requiring 411

temporal alignment or multi-hop inference, such as 412

TAT-QA, while code-generation failures dominate 413

in WikiTQ due to parsing issues and faulty aggre- 414

gation over semi-structured tables. Overall, this 415

suggests that early-stage grounding remains the 416

key bottleneck across tasks, with dataset-specific 417

challenges emerging in reasoning and execution 418

stages. Please refer to Appendix D for a detailed 419

breakdown of error types by dataset. 420

6 Discussion 421

The Adaptive Framework consistently generalizes 422

across multiple datasets by dynamically selecting 423

appropriate reasoning paths. Table 10 summarizes 424

the reasoning paths chosen by GPT-4o-mini, show- 425

ing that Evidence Extraction is always included. 426

This step helps the model focus on relevant infor- 427

mation, aligning with human intuition (Section 3). 428

For lookup-based questions, Evidence Extraction 429

alone suffices, while more complex tasks require a 430
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Figure 2: Distribution of error types (evidence extrac-
tion, reasoning, and Python code execution) across six
benchmark datasets. Evidence extraction emerged as
the dominant failure mode in five of the six cases.

combination of reasoning methods.431

Datasets with long-form answers, such as Fe-432

TaQA, textual strategies works best. As shown in433

Table 8, for LLaMA 3.1 70B, FeTaQA achieves434

higher accuracy with CoT (84.13%) and Decom-435

posed Prompting (78.45%). This trend is further436

supported by Table 10, where Evidence Extraction437

+ Decomposed Prompting is the most frequently438

chosen. Table 11 reinforces this, showing that 87%439

of FeTaQA’s reasoning paths rely on textual meth-440

ods, highlighting their effectiveness for free-form441

responses.442

FinQA, which is heavy on numerical computa-443

tion, favors symbolic methods. As seen in Table444

8, PoT achieves the best performance, with F-CoT445

also performing well. Table 10 further confirms446

this, with Evidence Extraction + F-CoT as the most447

common reasoning path. Similarly, Table 11 shows448

that 88.25% of FinQA’s reasoning paths involve449

PoT and F-CoT, emphasizing the strength of sym-450

bolic reasoning for computation-heavy datasets.451

This pattern extends across datasets, with cho-452

sen reasoning paths aligning with their respective453

strengths. Table 12 and 13 in Appendix B provide454

reasoning path analysis for LLaMA 3.1 70B and455

Gemini-1.5-flash, respectively. By dynamically456

selecting the most effective reasoning approach457

based on question type and tabular context, the458

Adaptive Framework consistently delivers strong459

performance across diverse table structures and rea-460

soning tasks.461

Impact of Table Refactoring. Refactoring tab-462

ular data enhances LLM accuracy by improving463

clarity, structure, and accessibility. Table 2 cate-464

gorizes key refactoring techniques that aid model465

interpretation. In ‘Table Structure’, standardizing466

tables to Markdown format significantly improves 467

performance. For instance, the Squall dataset, orig- 468

inally in JSON, benefits from this transformation. 469

As shown in Table 7, GPT-4o-mini with SEAR + 470

Refactoring (79.33%) outperforms SEAR (69.64%) 471

by 9.69%, and SEAR_U + Refactoring (79.20%) 472

exceeds SEAR_U (76.74%) by 2.46%. Similarly, 473

LLaMA 3.1 70B achieves its highest accuracy 474

(82.49%) with SEAR_U + Refactoring. In ‘Title 475

Clarity’, refining ambiguous or missing table titles 476

improves context. 477

Figure 10 illustrates how adding a player’s name 478

in the title enhances model comprehension. ‘Col- 479

umn/Row Headers’ are refined to eliminate ambi- 480

guity and better align entities. ‘Data Formatting’ 481

reduces redundant details, such as excessive dec- 482

imal places, which can increase hallucinations as 483

context size grows (Liu et al., 2023). Limiting dec- 484

imals helps models focus and improves accuracy. 485

‘Bolding and Emphasis’ highlights key details, di- 486

recting the model’s attention to relevant content. 487

‘Other’ refinements, such as adding units, removing 488

whitespace, and reformatting text, further enhance 489

readability. The prompt for table refactoring is 490

shown in Figure 9.

Reasoning Path Datasets

fetaqa finqa hitab hybridqa multi squall tatqa wiki

EE 175 46 476 1332 194 13 929 703
EE,Decomp 1365 65 191 28 127 160 249 293
EE,F-COT 23 703 111 5 335 581 547 246
EE,POT 9 138 107 143 909 14 482 186
COT,EE 1 1 4 12 5 - 5 32
COT,EE,Decomp 8 1 3 2 - 1 1 13
COT,EE,F-COT 1 7 1 - 5 5 12 17
COT,EE,POT - 1 4 6 12 - 19 14

Total 1582 962 897 1528 1587 774 2244 1504

Table 10: Reasoning Path distribution for GPT-4o-mini. 491
Dataset COT EE Decomp POT F-COT

# % # % # % # % # %
fetaqa 10 0.63 1582 100 1373 86.79 9 0.57 24 1.52
finqa 10 1.03 962 100 66 6.86 139 14.45 710 73.8
hitab 12 1.34 897 100 194 21.63 111 12.38 112 12.49
hybridqa 20 1.31 1528 100 30 1.96 149 9.75 5 0.33
multi 22 1.39 1587 100 127 8.01 921 58.03 132 8.32
squall 6 0.78 774 100 161 20.8 14 1.81 586 75.71
tatqa 37 1.65 2244 100 250 11.14 501 22.33 559 24.91
wiki 76 5.05 1504 100 306 20.35 200 13.3 263 17.49

Table 11: Distribution of reasoning methods across all the
datasets for GPT-4o-mini.

SEAR in the Context of Agentic Frameworks. 492

Agentic frameworks have gained attention for their 493

ability to handle complex reasoning tasks through 494

modular, interacting components such as planning, 495

memory retrieval, and tool use. Although SEAR is 496

not agentic by design, its structured reasoning pro- 497

cess aligns with the modular philosophy of agentic 498

systems. Each SEAR module could be instantiated 499
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as an individual agent within such a framework.500

However, the goal of this work is to explore how far501

prompting alone without external tools or orches-502

tration can be used to address temporal table QA.503

This design choice prioritizes simplicity and self-504

containment. Importantly, the central challenge505

SEAR addresses is selecting and sequencing the506

appropriate reasoning strategies for a given ques-507

tion and table structure remains critical even within508

agentic systems.509

While agentic architectures offer a more general510

execution framework, they still depend on effective511

strategy selection. In this sense, SEAR provides a512

complementary perspective, offering insights into513

reasoning decomposition that could inform or en-514

hance agent-based designs.515

7 Related Work516

Tabular Reasoning. LLMs have been widely ap-517

plied to tabular reasoning tasks such as question an-518

swering, semantic parsing, and table-to-text gener-519

ation (Chen et al., 2020a; Gupta et al., 2020; Zhang520

et al., 2020; Zhang and Balog, 2020). Early ap-521

proaches like TAPAS (Herzig et al., 2020), TaBERT522

(Yin et al., 2020), and TABBIE (Iida et al., 2021)523

improve table comprehension by integrating tab-524

ular and textual embeddings, allowing models to525

better process structured information. Other meth-526

ods, such as Table2Vec (Zhang et al., 2019) and527

TabGCN (Pramanick and Bhattacharya, 2021), ex-528

plore alternative tabular representations, enhancing529

LLMs’ ability to infer relationships between table530

elements. However, these methods primarily focus531

on structured tables and do not explicitly address532

temporal reasoning, which introduces additional533

complexity when reasoning over tabular data.534

Symbolic Reasoning for Tables. Recent work535

has explored symbolic reasoning for structured ta-536

bles with predefined schemas, improving logical537

inference and data consistency (Cheng et al., 2023;538

Ye et al., 2023; Wang et al., 2024). These methods539

rely on well-defined structures to extract and pro-540

cess information effectively. However, they strug-541

gle with semi-structured and hierarchical tables,542

where relationships between data points are im-543

plicit rather than explicitly defined.544

Other Reasoning Frameworks. C.L.E.A.R545

(Deng et al., 2024) demonstrated strong tempo-546

ral reasoning on domain-specific semi-structured547

tables by integrating domain knowledge into re-548

sponses. Similarly, Meta-Reasoning Prompting549

(MRP)(Gao et al., 2024) selects the optimal reason- 550

ing strategy through a two-step process but does not 551

combine reasoning techniques for complex tasks. 552

In contrast, our approach integrates both textual 553

and symbolic reasoning to enhance performance 554

across diverse table types while dynamically select- 555

ing the best reasoning path. Moreover, our SEAR- 556

Unified prompt streamlines this into a single-step 557

process, ensuring efficiency and consistency across 558

different table structures. 559

8 Conclusion and Future Work 560

This paper introduces SEAR, an adaptive reason- 561

ing strategy for LLMs to tackle TTQA tasks, along 562

with its consolidated version, SEAR_Unified. Ad- 563

ditionally, we take a step toward a unified table 564

representation by incorporating table refactoring as 565

an enhancement. Our study provides a comprehen- 566

sive analysis of various reasoning strategies across 567

eight diverse datasets, benchmarking SEAR and 568

SEAR_Unified against multiple baselines. 569

Results demonstrate that SEAR, SEAR_Unified 570

and with Table Refactoring significantly outper- 571

forms popular LLM reasoning methods, with 572

SEAR_Unified surpassing SEAR itself, showcas- 573

ing its ability to optimize and streamline reasoning 574

with minimal overhead. This highlights capability 575

of modern LLMs to dynamically adjust reasoning 576

within a single prompt, reducing the need for ex- 577

plicit multi-step processes. Our findings reinforce 578

the importance of adaptive reasoning and struc- 579

tured table representation, paving the way for fur- 580

ther advancements in LLM-based temporal table 581

reasoning. 582

While SEAR-based approaches have signifi- 583

cantly improved Temporal Table QA, several ar- 584

eas remain open for further exploration. In this 585

work, we have explored Markdown as a unified tab- 586

ular representation, exploring alternative formats 587

such as JSON, CSV, or HTML may further im- 588

prove adaptability across diverse table structures. 589

Currently, our experiments relied on in-context 590

learning, which can limit scalability and efficiency. 591

Future work should explore lightweight adaptive 592

reasoning techniques with self-refinement loops, 593

building on the flexibility demonstrated by SEAR. 594

Lastly, valuating SEAR-based methods on addi- 595

tional domains, such as medical or scientific evolu- 596

tion datasets, would help validate the robustness of 597

adaptive reasoning strategies for LLMs. 598
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Limitations599

While our study has yielded interesting observa-600

tions, it’s crucial to acknowledge its limitations.601

A closer look at the HCS scores in Table 6, 7, 8,602

reveals that while improvements are observed for603

datasets with single table contexts, datasets con-604

taining multiple tables, such as MultiHierTT and605

Hybrid tables, show a decline in performance with606

SEAR-based approaches. This highlights a key lim-607

itation of our Table Refactoring method, suggesting608

that restructuring strategies may need further refine-609

ment to handle multi-table contexts effectively. Ad-610

ditionally, scalability remains a concern, as our ap-611

proach relies on In-Context Learning (ICL), which612

may not scale effectively for large table datasets.613

The reliance on ICL-based reasoning can lead to614

performance bottlenecks.615

Ethics Statement616

We confirm that our work adheres to the highest617

ethical standards in research and publication. We618

will publicly release our code and filtered datasets619

to enable the research community to validate and620

build upon our findings. We are committed to the621

responsible and fair use of computational linguis-622

tics methodologies. The claims in our paper ac-623

curately reflect the experimental results. While624

using black-box large language models introduces625

some stochasticity, we mitigate this by maintaining626

a fixed temperature. We utilize an AI assistive tools627

for writing while ensuring absence of bias. We pro-628

vide comprehensive details on annotations, dataset629

splits, models used, and prompting methods tried,630

ensuring the reproducibility of our work.631

References632

Maciej Besta, Nils Blach, Ales Kubicek, Robert Ger-633
stenberger, Lukas Gianinazzi, Joanna Gajda, Tomasz634
Lehmann, Michal Podstawski, Hubert Niewiadom-635
ski, Piotr Nyczyk, and Torsten Hoefler. 2023. Graph636
of thoughts: Solving elaborate problems with large637
language models. Preprint, arXiv:2308.09687.638

Wenhu Chen, Xueguang Ma, Xinyi Wang, and639
William W. Cohen. 2023. Program of thoughts640
prompting: Disentangling computation from rea-641
soning for numerical reasoning tasks. Preprint,642
arXiv:2211.12588.643

Wenhu Chen, Hongmin Wang, Jianshu Chen, Yunkai644
Zhang, Hong Wang, Shiyang Li, Xiyou Zhou, and645
William Yang Wang. 2020a. Tabfact: A large-scale646
dataset for table-based fact verification. Preprint,647
arXiv:1909.02164.648

Wenhu Chen, Hanwen Zha, Zhiyu Chen, Wenhan Xiong, 649
Hong Wang, and William Yang Wang. 2020b. Hy- 650
bridQA: A dataset of multi-hop question answering 651
over tabular and textual data. In Findings of the Asso- 652
ciation for Computational Linguistics: EMNLP 2020, 653
pages 1026–1036, Online. Association for Computa- 654
tional Linguistics. 655

Zhiyu Chen, Wenhu Chen, Charese Smiley, Sameena 656
Shah, Iana Borova, Dylan Langdon, Reema Moussa, 657
Matt Beane, Ting-Hao Huang, Bryan Routledge, and 658
William Yang Wang. 2021. FinQA: A dataset of nu- 659
merical reasoning over financial data. In Proceedings 660
of the 2021 Conference on Empirical Methods in Nat- 661
ural Language Processing, pages 3697–3711, Online 662
and Punta Cana, Dominican Republic. Association 663
for Computational Linguistics. 664

Zhoujun Cheng, Haoyu Dong, Zhiruo Wang, Ran Jia, 665
Jiaqi Guo, Yan Gao, Shi Han, Jian-Guang Lou, and 666
Dongmei Zhang. 2022. HiTab: A hierarchical table 667
dataset for question answering and natural language 668
generation. In Proceedings of the 60th Annual Meet- 669
ing of the Association for Computational Linguistics 670
(Volume 1: Long Papers), pages 1094–1110, Dublin, 671
Ireland. Association for Computational Linguistics. 672

Zhoujun Cheng, Tianbao Xie, Peng Shi, Chengzu 673
Li, Rahul Nadkarni, Yushi Hu, Caiming Xiong, 674
Dragomir Radev, Mari Ostendorf, Luke Zettlemoyer, 675
Noah A. Smith, and Tao Yu. 2023. Binding lan- 676
guage models in symbolic languages. Preprint, 677
arXiv:2210.02875. 678

Irwin Deng, Kushagra Dixit, Vivek Gupta, and Dan 679
Roth. 2024. Enhancing temporal understand- 680
ing in llms for semi-structured tables. Preprint, 681
arXiv:2407.16030. 682

Irwin Deng, Kushagra Dixit, Dan Roth, and Vivek 683
Gupta. 2025. Enhancing temporal understanding 684
in LLMs for semi-structured tables. In Findings 685
of the Association for Computational Linguistics: 686
NAACL 2025, pages 4936–4955, Albuquerque, New 687
Mexico. Association for Computational Linguistics. 688

Peizhong Gao, Ao Xie, Shaoguang Mao, Wenshan 689
Wu, Yan Xia, Haipeng Mi, and Furu Wei. 2024. 690
Meta reasoning for large language models. Preprint, 691
arXiv:2406.11698. 692

Vivek Gupta, Pranshu Kandoi, Mahek Vora, Shuo 693
Zhang, Yujie He, Ridho Reinanda, and Vivek Sriku- 694
mar. 2023. TempTabQA: Temporal question answer- 695
ing for semi-structured tables. In Proceedings of the 696
2023 Conference on Empirical Methods in Natural 697
Language Processing, pages 2431–2453, Singapore. 698
Association for Computational Linguistics. 699

Vivek Gupta, Maitrey Mehta, Pegah Nokhiz, and Vivek 700
Srikumar. 2020. INFOTABS: Inference on tables 701
as semi-structured data. In Proceedings of the 58th 702
Annual Meeting of the Association for Computational 703
Linguistics, pages 2309–2324, Online. Association 704
for Computational Linguistics. 705

9

https://arxiv.org/abs/2308.09687
https://arxiv.org/abs/2308.09687
https://arxiv.org/abs/2308.09687
https://arxiv.org/abs/2308.09687
https://arxiv.org/abs/2308.09687
https://arxiv.org/abs/2211.12588
https://arxiv.org/abs/2211.12588
https://arxiv.org/abs/2211.12588
https://arxiv.org/abs/2211.12588
https://arxiv.org/abs/2211.12588
https://arxiv.org/abs/1909.02164
https://arxiv.org/abs/1909.02164
https://arxiv.org/abs/1909.02164
https://doi.org/10.18653/v1/2020.findings-emnlp.91
https://doi.org/10.18653/v1/2020.findings-emnlp.91
https://doi.org/10.18653/v1/2020.findings-emnlp.91
https://doi.org/10.18653/v1/2020.findings-emnlp.91
https://doi.org/10.18653/v1/2020.findings-emnlp.91
https://doi.org/10.18653/v1/2021.emnlp-main.300
https://doi.org/10.18653/v1/2021.emnlp-main.300
https://doi.org/10.18653/v1/2021.emnlp-main.300
https://doi.org/10.18653/v1/2022.acl-long.78
https://doi.org/10.18653/v1/2022.acl-long.78
https://doi.org/10.18653/v1/2022.acl-long.78
https://doi.org/10.18653/v1/2022.acl-long.78
https://doi.org/10.18653/v1/2022.acl-long.78
https://arxiv.org/abs/2210.02875
https://arxiv.org/abs/2210.02875
https://arxiv.org/abs/2210.02875
https://arxiv.org/abs/2407.16030
https://arxiv.org/abs/2407.16030
https://arxiv.org/abs/2407.16030
https://doi.org/10.18653/v1/2025.findings-naacl.278
https://doi.org/10.18653/v1/2025.findings-naacl.278
https://doi.org/10.18653/v1/2025.findings-naacl.278
https://arxiv.org/abs/2406.11698
https://doi.org/10.18653/v1/2023.emnlp-main.149
https://doi.org/10.18653/v1/2023.emnlp-main.149
https://doi.org/10.18653/v1/2023.emnlp-main.149
https://doi.org/10.18653/v1/2020.acl-main.210
https://doi.org/10.18653/v1/2020.acl-main.210
https://doi.org/10.18653/v1/2020.acl-main.210


Jonathan Herzig, Pawel Krzysztof Nowak, Thomas706
Müller, Francesco Piccinno, and Julian Eisenschlos.707
2020. Tapas: Weakly supervised table parsing via708
pre-training. In Proceedings of the 58th Annual Meet-709
ing of the Association for Computational Linguistics.710
Association for Computational Linguistics.711

Hiroshi Iida, Dung Thai, Varun Manjunatha, and Mohit712
Iyyer. 2021. Tabbie: Pretrained representations of713
tabular data. Preprint, arXiv:2105.02584.714

Parag Jain, Andreea Marzoca, and Francesco Piccinno.715
2024. STRUCTSUM generation for faster text com-716
prehension. In Proceedings of the 62nd Annual Meet-717
ing of the Association for Computational Linguis-718
tics (Volume 1: Long Papers), pages 7876–7896,719
Bangkok, Thailand. Association for Computational720
Linguistics.721

Tushar Khot, Harsh Trivedi, Matthew Finlayson, Yao722
Fu, Kyle Richardson, Peter Clark, and Ashish Sab-723
harwal. 2023. Decomposed prompting: A modu-724
lar approach for solving complex tasks. Preprint,725
arXiv:2210.02406.726

Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paran-727
jape, Michele Bevilacqua, Fabio Petroni, and Percy728
Liang. 2023. Lost in the middle: How language mod-729
els use long contexts. Preprint, arXiv:2307.03172.730

Qing Lyu, Shreya Havaldar, Adam Stein, Li Zhang,731
Delip Rao, Eric Wong, Marianna Apidianaki, and732
Chris Callison-Burch. 2023. Faithful chain-of-733
thought reasoning. In Proceedings of the 13th In-734
ternational Joint Conference on Natural Language735
Processing and the 3rd Conference of the Asia-Pacific736
Chapter of the Association for Computational Lin-737
guistics (Volume 1: Long Papers), pages 305–329,738
Nusa Dua, Bali. Association for Computational Lin-739
guistics.740

Linyong Nan, Chiachun Hsieh, Ziming Mao, Xi Victoria741
Lin, Neha Verma, Rui Zhang, Wojciech Kryściński,742
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A Prompt Examples 875

This section contains the Prompts example for stan- 876

dart 3-step SEAR (Figure 3, 4, 5), SEAR Unified 877

(Figure 6 7), Evaluation Prompt (Figure 8) and 878

Refactoring Prompt and Response (Figure 9, 10). 879

B REMS and CAE Results 880

This section contains the additional result for 881

Reasoning Path Distribution for Llama and Gemini 882

(Table 12, 13) and also contains complete result 883

for CAE and REMS score for all GPT, Gemini and 884

Llama (Table 14, 15, 16). 885

886

1. Relaxed Exact Match Score(REMS): This 887

metric uses an F1-score to measure token overlap 888

between the predicted and gold answer, allowing 889

partial matches for better precision-recall balance. 890

Unlike strict exact match, REMS is more flexible 891

with lexical variations. For numerical answers, it 892

permits a ±5% tolerance after decimal instead of 893

token matching. For example, if the correct answer 894

is 10.64, a prediction of 10.62 is accepted, while 895

11.64 is not. 896

Despite its flexibility, REMS does not always 897

reflect true semantic accuracy. High scores indicate 898

strong token alignment, but valid paraphrases can 899

be unfairly penalized. For instance, the correct 900

answer “Barack Obama was the 44th President of 901

the United States” would receive a high score for 902

“Obama was the 44th U.S. President” due to token 903

overlap, but “Obama, a politician, led the U.S.” 904

may score lower despite being factually correct. 905

This limitation makes careful interpretation 906

907

2. Contextual Answer Evaluation(CAE): CAE 908

is an LLM-based scoring method that assesses re- 909

sponses based on meaning rather than exact token 910

overlap. Using a carefully crafted prompt, it de- 911

termines whether a response correctly conveys the 912

intended information. Unlike traditional lexical 913

matching, CAE accounts for paraphrasing and re- 914

wording, ensuring a more nuanced assessment of 915

correctness, particularly for complex or free-form 916

answers. The full CAE prompt used for evaluation 917

is provided in Figure 8 918

C Full Table and Context used in Figure 1 919

This section includes the actual table and context 920

represented in Figure 1. FinQA Table 21, FetaQA 921

Table 19, WikiTabQA Table 18 and MultiHiertt 922

Table 17, 20. 923
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Reasoning Path fetaqa finqa hitab hybridqa multi squall tatqa wiki
EE 221 39 561 1072 356 9 1040 987
EE,Decomp 553 21 19 8 33 28 59 81
EE,F-COT 571 853 123 35 262 709 391 236
EE,POT 234 45 194 405 919 25 753 187
COT,EE - - - 6 5 - 1 7
COT,EE,Decomp 3 - - 2 10 1 - 2
COT,EE,F-COT - 3 - - - 2 - 4
POT - 1 - - 2 - - -
Total 1582 962 897 1528 1587 774 2244 1504

Table 12: Reasoning Path distribution across all datasets for Llama 3.1 70B.

Reasoning Path fetaqa finqa hitab hybridqa multi squall tatqa wiki
EE 982 106 675 1492 155 112 1160 875
EE,DecompE 197 16 6 2 87 17 9 186
EE,F-COT 175 796 29 - 333 516 49 173
EE,POT 191 42 186 33 1010 119 1025 268
COT,EE 25 - - 1 - 1 1 2
COT,EE,Decomp 3 - - - - 1 - -
COT,EE,F-COT 2 1 - - - 6 - -
COT,EE,POT 7 - 1 - - 1 - -
Decomp - 1 - - - - - -
POT - - - - 2 1 - -
Total 1582 962 897 1528 1587 774 2244 1504

Table 13: Reasoning Path distribution across all datasets for Gemini-1.5-Flash.

wiki multi hitab finqa tatqa fetaqa squall hybridqa

REMS CAE REMS CAE REMS CAE REMS CAE REMS CAE REMS CAE REMS CAE REMS CAE

COT 77.31 76.66 57.49 49.72 75.26 74.58 58.94 57.07 81.68 87.48 28.38 84.13 66.27 65.25 74.07 76.51
F−COT 67.85 67.82 49.39 51.35 41.44 69.79 60.78 61.12 67.36 86.76 40.46 77.69 52.97 53.36 29.78 32.79
Decomp 77.69 76.60 56.12 49.02 73.19 73.36 60.40 58.21 86.13 87.25 28.71 78.45 61.07 59.30 74.71 74.87
EE 78.57 77.86 56.32 48.27 76.16 76.92 50.94 46.88 90.22 88.06 28.42 83.82 65.55 64.60 75.85 76.96
POT 76.28 75.93 53.41 53.12 41.92 73.47 51.88 52.49 66.88 86.10 29.71 72.00 65.90 69.12 58.66 60.27
NoT 63.07 63.56 39.04 38.44 69.96 76.25 44.22 46.05 72.78 82.58 29.23 85.46 51.11 50.52 72.17 75.65
ToT 79.79 78.92 53.00 52.43 68.39 76.92 51.96 49.90 81.13 88.01 30.15 82.17 64.98 63.44 76.96 78.01
GoT 69.33 67.09 48.80 45.05 65.91 71.68 47.41 46.36 83.30 86.14 28.95 81.67 52.67 48.58 71.79 72.05
SCP 77.10 76.73 56.44 52.11 74.58 77.15 51.90 50.00 84.71 86.63 28.51 84.13 64.71 64.47 75.49 78.73
CLEAR 80.23 79.72 52.67 57.40 68.62 75.81 85.23 91.13 29.28 83.94 65.85 66.28 77.98 79.84
SEAR 78.32 76.60 54.70 50.98 67.36 74.58 62.52 60.91 81.94 85.83 29.53 83.38 67.56 60.72 72.07 73.63
SEAR_U 77.50 77.53 56.39 56.84 71.78 76.70 62.87 67.57 88.31 89.75 31.06 84.89 72.26 73.77 74.96 75.85
SEAR + R 80.51 79.39 54.04 51.10 68.40 75.92 61.88 60.08 81.63 85.87 29.71 84.39 76.85 74.03 65.89 66.03
SEAR_U + R 81.14 81.25 55.54 55.51 72.13 77.59 62.43 66.53 86.56 88.23 30.47 84.70 76.21 76.87 66.96 67.74

Table 14: REMS & CAE score (in %) for all reasoning strategies across all datasets using GPT-4o mini. R stands
for “Refactoring,” U for “Unified.”

wiki multi hitab finqa tatqa fetaqa squall hybridqa

REMS CAE REMS CAE REMS CAE REMS CAE REMS CAE REMS CAE REMS CAE REMS CAE

COT 71.86 71.28 57.29 39.26 73.97 74.25 58.00 39.29 80.81 85.34 28.25 71.24 69.44 69.66 77.29 76.57
F-COT 64.76 57.51 58.36 47.83 35.68 49.34 60.60 34.20 64.86 74.88 37.05 55.69 60.40 60.73 17.86 15.97
Decomp 76.26 75.00 58.90 41.84 71.70 72.44 60.72 32.22 84.23 85.12 29.91 67.07 66.01 65.98 72.94 69.31
EE 74.24 72.81 59.02 42.41 74.61 76.43 54.54 30.46 86.14 86.27 28.63 77.62 71.89 72.03 74.12 68.72
POT 72.65 66.69 60.00 47.01 41.37 67.54 54.90 58.10 66.74 75.61 26.73 50.88 62.66 62.99 38.18 33.84
NoT 70.40 73.07 40.59 41.46 72.08 75.59 58.32 64.24 69.41 76.69 30.73 87.99 65.03 67.05 75.43 77.68
ToT 79.79 78.92 54.65 54.88 70.33 75.70 41.68 47.40 76.84 86.68 29.48 79.20 71.90 73.00 79.42 80.17
GoT 72.82 70.88 51.20 50.03 68.41 82.16 48.34 46.57 79.15 85.34 29.57 84.45 62.08 63.05 77.14 78.53
SCP 79.40 78.92 57.72 56.27 75.90 78.37 46.53 46.26 81.38 86.72 27.85 84.32 68.82 70.80 79.26 82.00
CLEAR 79.82 79.79 56.08 0.06 70.38 76.92 49.47 48.13 79.94 90.42 28.63 83.94 75.32 77.26 79.59 81.81
SEAR 79.08 78.19 57.15 54.69 74.93 76.81 59.90 61.02 75.07 83.87 28.75 82.87 76.14 68.60 77.61 78.08
SEAR_U 79.32 80.32 59.27 57.34 78.53 79.38 63.16 65.59 82.70 86.68 31.57 79.77 77.29 79.59 77.11 79.84
SEAR + R 80.27 78.46 55.32 52.30 75.08 77.37 59.88 60.50 73.57 84.54 28.97 84.20 76.13 72.09 62.43 62.24
SEAR_U + R 80.78 81.32 53.09 53.62 78.94 79.60 61.98 63.83 82.20 85.65 32.89 85.52 75.16 75.97 62.96 64.86

Table 15: REMS & CAE score (in %) for all reasoning strategies across all datasets using Gemini1.5 Flash. R
stands for “Refactoring,” U for “Unified.”
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SEAR: Step 1
You are a adaptive reasoner tasked with constructing the most efficient pathway for solving tabular questions. Your goal is to
select or create minimal, high-level steps to guide reasoning, avoiding direct answers. NOTE - Do not answer, only select crucial
steps.

Guidelines:
Problem Understanding:
Identify Objective: Define the question's goal.
Comprehend Problem: Understand the scope and nature of the problem.

Reasoning Process:
Evidence Extraction: Extract relevant rows, columns, and text.
Decomposition: Break down complex questions into sub-questions if necessary.
Step-by-Step Reasoning: Apply logical steps to solve sub-questions or the main problem.
Python Code Generation: Opt to generate code (single or multiple scripts) if calculations are required.

Optimization Tips:
Direct Answer Path: Use evidence extraction to find the answer directly, when possible.
Simplify: Break down complex questions into simpler components.
Code Integration: Include Python code generation for essential calculations.

Few examples are given below with their respective crucial steps selected from the meta-reasoning process. Each example
contains its own table, text, and question. Interpret the problem and select only the most essential steps for reaching to answer.

Table: 

  Model            | 2005   | 2006   | 2007   | 2008   | 2009   | 2010   | 2011   | 2012   | 2013   |
  Škoda Octavia    | 233322 | 270274 | 309951 | 344857 | 317335 | 349746 | 387200 | 409360 | 359600 |
  Škoda Fabia      | 236698 | 243982 | 232890 | 246561 | 264173 | 229045 | 266800 | 255025 | 202000 |
  Škoda Superb     | 22091  | 20989  | 20530  | 25645  | 44548  | 98873  | 116700 | 106847 | 94400  |
  Škoda Roomster   |       | 14422  | 66661  | 57467  | 47152  | 32332  | 36000  | 39249  | 33300  |
  Škoda Yeti       |       |       |       |       | 11018  | 52604  | 70300  | 90952  | 82400  |
  Škoda Rapid      |       |       |       |       |       |       | 1700   | 9292   | 103800 |
  Škoda Citigo     |       |       |       |       |       |       | 509    | 36687  | 45200  |

Question: How many Skoda cars were sold in 2010? 

Crucial Steps:

Identify Objective: Define the goal.
Evidence Extraction:Extract relevant rows, columns, and text.
Python Code Generation: Generate single Python code to sum the extracted values.

LLM Output

Figure 3: Sear Step 1 Prompt Example

wiki multi hitab finqa tatqa fetaqa squall hybridqa

REMS CAE REMS CAE REMS CAE REMS CAE REMS CAE REMS CAE REMS CAE REMS CAE

COT 79.20 78.86 56.91 48.71 80.77 81.38 60.91 60.81 83.69 86.10 28.07 86.03 73.21 73.39 79.10 79.78
F-COT 63.02 62.43 37.21 37.30 37.35 61.76 48.14 48.44 59.67 61.72 25.34 52.72 56.53 58.01 30.30 31.28
Decomp 80.71 80.78 58.39 52.24 78.71 80.72 60.50 59.77 86.62 86.41 29.36 84.51 71.00 71.58 79.98 77.75
EE 80.30 79.79 57.70 48.27 81.42 80.05 57.03 53.53 89.09 87.70 28.63 86.62 78.12 77.78 78.33 78.73
POT 74.74 73.34 56.47 55.14 37.05 65.44 62.44 61.75 65.02 87.17 20.25 50.44 63.43 64.73 35.63 35.60
NoT 51.86 52.39 30.77 34.85 43.25 46.82 33.88 39.50 41.53 46.75 20.86 61.19 44.86 47.03 68.12 69.50
ToT 82.28 81.72 40.89 46.06 78.48 80.71 55.79 49.06 86.05 90.01 29.13 83.44 74.88 75.97 78.24 80.96
GoT 69.34 68.02 50.49 48.08 65.25 66.33 36.59 40.24 72.59 77.58 30.22 88.50 59.04 61.88 70.42 73.23
SCP 82.57 85.10 55.19 59.48 80.15 84.05 52.65 51.98 84.19 90.06 28.68 85.40 77.03 77.39 77.15 79.71
CLEAR 83.49 82.91 83.50 85.95 83.50 85.95 36.50 42.20 90.06 92.15 29.36 86.92 77.39 79.84 75.58 77.55
SEAR 80.69 78.79 57.76 50.79 75.45 78.60 61.40 60.40 84.67 88.41 29.47 85.52 78.74 72.22 76.43 77.29
SEAR_U 78.91 79.26 60.02 58.03 75.12 79.38 63.30 66.01 89.20 86.36 34.15 87.04 78.74 80.62 77.11 78.24
SEAR + R 80.17 78.46 54.97 48.02 75.77 78.37 62.00 61.43 81.71 86.99 29.53 86.85 73.95 70.67 67.35 70.75
SEAR_U + R 82.53 82.05 56.15 52.68 76.19 77.70 61.66 66.03 86.58 86.47 34.83 87.17 79.01 80.68 67.11 67.80

Table 16: REMS & CAE score (in %) for all reasoning strategies across all datasets using Llama3.170B. R stands
for “Refactoring,” U for “Unified.”

Benefit Plan 2017 2016 2015
Pension Plan 3856 3979 2732
Health Plan 11426 11530 8736
Other plans 1463 1583 5716
Total plan contributions 16745 17092 17184

Table 17: Benefit Plan Contributions, Benefits, Multi-
Hiertt example Table 0

Year Amount ($)
2007 56499000
2008 46899000
2009 39904000
2010 33329000
2011 25666000
Later Years 128981000

Table 21: Aggregate Minimum Lease Payments, Lease
Payments FinQA

13



SEAR: Step 2
Your task is to comprehend the crucial steps for a given table and question, making each step more detailed and ensuring they
effectively lead to the correct answer. 

Few Examples are given below with detailed steps by elaborating from the crucial steps. Interpret the examples and understand
the task to comprehend the crucial steps according to the specific table, text and question to reach the answer efficiently.

Table: 

  Model            | 2005   | 2006   | 2007   | 2008   | 2009   | 2010   | 2011   | 2012   | 2013   |
  Škoda Octavia    | 233322 | 270274 | 309951 | 344857 | 317335 | 349746 | 387200 | 409360 | 359600 |
  Škoda Fabia      | 236698 | 243982 | 232890 | 246561 | 264173 | 229045 | 266800 | 255025 | 202000 |
  Škoda Superb     | 22091  | 20989  | 20530  | 25645  | 44548  | 98873  | 116700 | 106847 | 94400  |
  Škoda Roomster   |       | 14422  | 66661  | 57467  | 47152  | 32332  | 36000  | 39249  | 33300  |
  Škoda Yeti       |       |       |       |       | 11018  | 52604  | 70300  | 90952  | 82400  |
  Škoda Rapid      |       |       |       |       |       |       | 1700   | 9292   | 103800 |
  Škoda Citigo     |       |       |       |       |       |       | 509    | 36687  | 45200  |

Question: How many Skoda cars were sold in 2010? 

Crucial Steps:

Identify Objective: Define the goal.
Evidence Extraction:Extract relevant rows, columns, and text.
Python Code Generation: Generate single Python code to sum the extracted values.

Detailed Steps:

Identify Objective: Determine that the goal is to find the total number of Škoda cars sold in 2010.
Evidence Extraction: Extract the relevant data (the 2010 column) for all models listed in the table.
Python Code Generation: Generate Python code to sum the extracted values for the year 2010.

LLM Output

Figure 4: Sear Step 2 Prompt Example

Total Debt Overview: for FinQA example. Total924

debt at July 1, 2006 was $1,762,692,000, of which925

approximately 75 was at fixed rates averaging 6.0926

with an average life of 19 years, and the remainder927

was at floating rates averaging 5.2. Certain loan928

agreements contain typical debt covenants to pro-929

tect noteholders, including provisions to maintain930

the company’s long-term debt to total capital ratio931

below a specified level. Sysco was in compliance932

with all debt covenants at July 1, 2006.933

The fair value of Sysco’s total long-term debt934

is estimated based on the quoted market prices for935

the same or similar issues or on the current rates936

offered to the company for debt of the same remain-937

ing maturities. The fair value of total long-term938

debt approximated $1,669,999,000 at July 1, 2006939

and $1,442,721,000 at July 2, 2005, respectively.940

As of July 1, 2006 and July 2, 2005, letters of credit941

outstanding were $60,000,000 and $76,817,000, re-942

spectively.943

Leases: for FinQA example. Although Sysco944

normally purchases assets, it has obligations under945

capital and operating leases for certain distribution946

facilities, vehicles, and computers. Total rental ex-947

pense under operating leases was $100,690,000,948

$92,710,000, and $86,842,000 in fiscal 2006, 2005,949

and 2004, respectively. Contingent rentals, sub- 950

leases, and assets and obligations under capital 951

leases are not significant. Aggregate minimum 952

lease payments by fiscal year under existing non- 953

capitalized long-term leases are as follows: 954

D Detailed Error Analysis 955

We conduct a detailed error analysis across six 956

datasets to identify the primary failure modes in 957

pipeline-based table QA. As shown in plot 2 evi- 958

dence extraction errors dominate in most datasets, 959

often occurring before reasoning or code execu- 960

tion can contribute. However, we also observe 961

notable secondary errors particularly in reasoning 962

(e.g., TAT-QA) and code (e.g., WikiTQ) which vary 963

by dataset structure and modality. 964

Dataset-specific Observations 965

HybridQA. Most errors result from incorrect 966

row/column selection, driven by surface-level 967

matches to look-alike strings (e.g., “season,” “di- 968

vision”) and missed disambiguators (e.g., years or 969

suffixes like “(q)”). These tokens frequently appear 970

in adjacent cells or parentheses, making shallow 971

matches more likely. A small number of reason- 972

ing errors stem from failure to disambiguate linked 973
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Year Kit Manufacturer Shirt Sponsor Back of Shirt Sponsor Short Sponsor
1977–1978 - National Express - -
1982–1985 Umbro - - -
1985–1986 Umbro Whitbread - -
1986–1988 Henson Duraflex - -
1988–1989 - Gulf Oil - -
1991–1993 Technik Gulf Oil - -
1993–1994 Club Sport Gulf Oil - -
1994–1995 Klūb Sport Empress - -
1995–1996 Matchwinner Empress - -
1996–1997 UK Endsleigh Insurance - -
1997–1999 Errea Endsleigh Insurance - -
1999–2004 Errea Towergate Insurance - -
2004–2008 Errea Bence Building Merchants - -

2008– Errea Mira Showers - -
2009–2011 Errea Mira Showers PSU Technology Group -
2011–2013 Errea Mira Showers Barr Stadia Gloucestershire Echo

2013– Errea Mira Showers Gloucestershire College Gloucestershire Echo

Table 18: Historical Sponsorship and Kit Manufacturer Data, WikiTabQA example

entities across tables. Code issues are rare due to974

minimal programmatic computation.975

HiTABs. Models often fail due to header ambi-976

guity and dense, repetitive tabular layouts. Errors977

stem from misidentified rows/columns and unac-978

counted qualifiers like ranges or footnotes. Since979

the task is primarily table lookup, downstream rea-980

soning errors are minimal, and code is not a signifi-981

cant factor.982

MultiHiertt (Multi). High error rate in evidence983

selection is attributed to multi-hop grounding and984

similar-looking headers across tables. Subtle dis-985

tinctions in qualifiers or column semantics are fre-986

quently overlooked. The remaining errors are due987

to misinterpretation of multi-hop logic, where the988

model fails to chain intermediate inferences.989

TAT-QA. While evidence errors are common,990

reasoning mistakes form a large minority (36%),991

often caused by temporal mismatches (e.g., Q1 vs.992

FY) or incorrect unit normalization (e.g., billions993

vs. millions). Models struggle to align period-based994

values or compute correct numerical operations995

even with correct evidence.996

FETAQA. Evidence-level failures persist due to997

repeated phrases across seasons, clubs, and divi-998

sions. Parenthetical markers (e.g., “(q)”) in head-999

ers lead to grounding mismatches. Some errors1000

stem from reasoning failures, particularly aggre-1001

gation mismatches or improper scoping across1002

semi-structured tables. A few errors involve minor1003

code missteps, such as summing incorrect subsets.1004

WikiTQ. Unlike others, code generation errors1005

dominate (44%). The model often produces in-1006

correct filters or aggregation logic due to brittle1007

parsing of semi-structured HTML-derived tables.1008

Even when correct evidence is identified, the final 1009

output is wrong due to mis-joins, faulty parsing of 1010

footnotes, or wrong aggregation. Evidence errors 1011

(40%) and reasoning mistakes (16%) persist but 1012

are less frequent. 1013

The analysis reveals that evidence selection re- 1014

mains the primary bottleneck across most datasets. 1015

However, reasoning errors are increasingly rele- 1016

vant in multi-hop or temporal computation tasks 1017

(TAT-QA), and code execution errors emerge as a 1018

major challenge in semi-structured, programmatic 1019

tasks like WikiTQ. Addressing early-stage ground- 1020

ing and late-stage execution together is critical for 1021

end-to-end accuracy. 1022

E DataSet Overview 1023

1. FeTaQA(Nan et al., 2021) : A Wikipedia- 1024

based table QA dataset that requires generat- 1025

ing long-form answers by integrating multiple 1026

discontinuous facts and reasoning across struc- 1027

tured tables. Temporal Questions: 1,582 1028

2. FinQA(Chen et al., 2021) : A financial QA 1029

dataset from reports, requiring expert-verified 1030

multi-step numerical reasoning and gold rea- 1031

soning programs for explainability. Temporal 1032

Questions: 962 1033

3. HiTab(Cheng et al., 2022) : A cross-domain 1034

QA and NLG dataset featuring hierarchical 1035

tables, analyst-authored questions, and fine- 1036

grained annotations for complex numerical 1037

reasoning. Temporal Questions: 897 1038

4. HybridQA(Chen et al., 2020b) : A QA 1039

dataset requiring reasoning over Wikipedia 1040

tables and linked free-form text, demanding 1041

both tabular and textual data for accurate an- 1042

swers. Temporal Questions: 1,528 1043
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Year Title Role Director Notes
2000 The Apocalypse Johanan Raffaele Mertes -
2002 Tom & Thomas Tom Sheppard / Thomas Esmé Lammers -
2003 Behind Closed Doors Sam Goodwin Louis Caulfield -
2003 Shanghai Knights Charlie Chaplin David Dobkin -
2004 Dead Cool George David Cohen -
2006 The Thief Lord Prosper Richard Claus -
2006 The Illusionist Young Eisenheim Neil Burger -
2006 Fast Learners Neil Christoph Röhl Short film
2006 The Best Man Michael (Aged 15) Stefan Schwartz -
2007 The Magic Door Flip Paul Matthews -
2008 Dummy Danny Matthew Thompson Nominated — ALFS Award
2008 Angus, Thongs Robbie Jennings Gurinder Chadha -
2009 The Greatest Bennett Brewer Shana Feste -
2009 Nowhere Boy John Lennon Sam Taylor-Johnson Empire Award for Best...
2010 Kick-Ass David "Dave" Lizewski Matthew Vaughn Nominated — Empire Award...
2010 Chatroom William Collins Hideo Nakata -
2011 Albert Nobbs Joe Mackins Rodrigo García -
2012 Savages Ben Oliver Stone -
2012 Anna Karenina Count Vronsky Joe Wright Final time credited as...
2013 Kick-Ass 2 David "Dave" Lizewski Jeff Wadlow First time credited as...
2014 Captain America: Winter Soldier Pietro Maximoff Anthony and Joe Russo Uncredited cameo
2014 Godzilla Lt. Ford Brody Gareth Edwards -
2015 Avengers: Age of Ultron Pietro Maximoff Joss Whedon -
2016 Nocturnal Animals Ray Marcus Tom Ford Golden Globe Award for...
2017 The Wall Isaac Doug Liman -
2018 Outlaw King James Douglas David Mackenzie -
2018 A Million Little Pieces James Frey Sam Taylor-Johnson -
2020 Kingsman: The Great Game - Matthew Vaughn Filming

Table 19: Aaron Taylor-Johnson Filmography, example FeTaQA

2018 2019 2020 2021 2022 Thereafter Total
Property mortgages and other loans 153593 42289 703018 11656 208003 1656623 2775182
MRA facilities 90809 0 0 0 0 0 90809
Revolving credit facility 0 0 0 0 0 40000 40000
Unsecured term loans 0 0 0 0 0 1500000 1500000
Senior unsecured notes 250000 0 250000 0 800000 100000 1400000
Trust preferred securities 0 0 0 0 0 100000 100000
Capital lease 2387 2411 2620 2794 2794 819894 832900
Ground leases 31049 31066 31436 31628 29472 703254 857905
Estimated interest expense 226815 218019 184376 163648 155398 281694 1229950
Joint venture debt 200250 717682 473809 449740 223330 2119481 4184292
Total 954903 1011467 1645259 659466 1418997 7320946 13011038

Table 20: Loans and Liabilities, Loans, MultiHiertt example Table 1

5. MultiHierTT(Zhao et al., 2022) : A finan-1044

cial QA benchmark requiring reasoning over1045

multiple hierarchical tables and long unstruc-1046

tured text, with detailed multi-step numerical1047

reasoning annotations. Temporal Questions:1048

1,5871049

6. Squall(Shi et al., 2020) : An extension of1050

WikiTableQuestions with manually created1051

SQL equivalents and fine-grained alignments,1052

supporting structured query reasoning in tabu-1053

lar environments. Temporal Questions: 7741054

7. TAT-QA(Zhu et al., 2021) : A financial QA1055

dataset requiring reasoning over both tabu-1056

lar and textual data, involving operations like1057

arithmetic, counting, and sorting for quantita-1058

tive and qualitative analysis. Temporal Ques- 1059

tions: 2,244 1060

8. WikiTableQ(Pasupat and Liang, 2015) : A 1061

Wikipedia-based QA dataset with trivia-style 1062

questions requiring factual and numerical rea- 1063

soning over tables with at least 8 rows and 5 1064

columns. Temporal Questions: 1,504 1065
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SEAR: Step 3
You are responsible for delivering precise answers by strictly following the provided detailed steps. Each answer must be carefully
reasoned, supported by clear explanations, and based on thorough analysis of the given table, text, and question.

Few examples are given below. Interpret the examples and understand the task to answer the tabular question according to the
specific table, text, question by following the detailed steps to answer efficiently.

Table: 

  Model            | 2005   | 2006   | 2007   | 2008   | 2009   | 2010   | 2011   | 2012   | 2013   |
  Škoda Octavia    | 233322 | 270274 | 309951 | 344857 | 317335 | 349746 | 387200 | 409360 | 359600 |
  Škoda Fabia      | 236698 | 243982 | 232890 | 246561 | 264173 | 229045 | 266800 | 255025 | 202000 |
  Škoda Superb     | 22091  | 20989  | 20530  | 25645  | 44548  | 98873  | 116700 | 106847 | 94400  |
  Škoda Roomster   |       | 14422  | 66661  | 57467  | 47152  | 32332  | 36000  | 39249  | 33300  |
  Škoda Yeti       |       |       |       |       | 11018  | 52604  | 70300  | 90952  | 82400  |
  Škoda Rapid      |       |       |       |       |       |       | 1700   | 9292   | 103800 |
  Škoda Citigo     |       |       |       |       |       |       | 509    | 36687  | 45200  |

Question: How many Skoda cars were sold in 2010? 

Crucial Steps:

Identify Objective: Define the goal.
Evidence Extraction:Extract relevant rows, columns, and text.
Python Code Generation: Generate single Python code to sum the extracted values.

Detailed Steps:

Identify Objective: Determine that the goal is to find the total number of Škoda cars sold in 2010.
Evidence Extraction: Extract the relevant data (the 2010 column) for all models listed in the table.
Python Code Generation: Generate Python code to sum the extracted values for the year 2010.

Answer and Reasoning:

Identify Objective: The goal is to find the total number of Škoda cars sold in 2010.

Evidence Extraction: Extract the relevant data (the 2010 column) for all models listed in the table:
Škoda Octavia: 349746
Škoda Fabia: 229045
Škoda Superb: 98873
Škoda Roomster: 32332
Škoda Yeti: 52604
Škoda Rapid: N/A (No data for 2010)
Škoda Citigo: N/A (No data for 2010)

Python Code Generation: We can now sum the extracted values for the year 2010 using Python code
``` python ```
# Data for 2010
skoda_sales_2010 = [349746, 229045, 98873, 32332, 52604]
# Calculate the total sales for 2010
total_sales_2010 = sum(skoda_sales_2010)
print(f”Final Answer: {{total_sales_2010}}”)
#Done
```
Answer and Reasoning: Summing these values gives the total number of Škoda cars sold in 2010.
Final Answer: 762600

LLM Output

Figure 5: Sear Step 3 Prompt Example
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Instruction
You are a adaptive-reasoner with the capabilities to select or merge  steps to create the most appropriate reasoning pathway based on the tabular question provided by the user. You can even develop
new reasoning steps by combining the new steps or learning from illustrations to create new pathways depending on the provided problem.

Steps for Adaptive Reasoning:
Each section has multiple approaches, you do not have to use all the approaches. Understand their use-cases and then pick minimal relevant steps to create your own optimal approach to answer the
question.  

Problem Understanding:
- Determine the objective: Identify the goal or desired outcome of the reasoning process.
- Understand the problem: Comprehend the nature and scope of the problem.

Reasoning Process:
- Step-by-step reasoning: Approach the problem logically, ensuring clarity at each step or stage.
- Extract relevant information: Gather all necessary data and details pertinent to the problem, by extracting relevant rows, columns and textual information.
- Decomposition of problem into sub-problems: Break down the main question into smaller and more manageable sub questions.
- Individually answer each sub-problem with reasoning: Apply logical steps to solve each sub question separately.
- Write a single Python program for solving the problem: Create a detailed unified Python script with comments describing the steps and stages.
- Individually write a Python program for each sub-problem: Develop separate Python scripts for each sub-problem, ensuring modularity and clarity.

Conclusion:
- Summarize findings: Combine the results from each step or sub question to give the final answer as Final Answer: {{Answer}}.
- Combine Python code: If necessary, integrate the individual Python scripts into a cohesive program at the end. Print the final answer as Final Answer: {{Answer}}, end your code with a comment
“#Done”.

Error Detection:
- Review each step or sub-problem: Ensure each step or sub-problem has been addressed thoroughly and correctly.
- Ensure logical flow: Verify that the reasoning process flows logically from one step to the next.
- Check Python program for syntax and errors: Confirm that the final Python program is syntactically correct and free of errors.

**Helpful Tips for Creating Appropriate and Optimal Approach**:
- Understand what is asked in the question, mention all the steps required to answer the question and why each step is necessary.
- If the question can be broken into smaller and more manageable sub questions, always decompose the question into relevant sub questions.
- If there are **calculations involved you must use python code** for performing calculations and reaching the final answer.
- If the question is directly answerable by direct look up from the tabular data or from the extracted evidence then provide a direct answer.

Table: 
Context:

### Race Results Overview

This table showcases the results of various athletes who participated in different heats, including their times and nationalities.

| Rank | Heat | Name                         | Nationality       | Time   | Notes |
|------|------|------------------------------|--------------------|--------|-------|
| 1    | 1    | Salem Al-Yami                | Saudi Arabia       | 10.55  | Q     |
| 2    | 1    | Hiroyasu Tsuchie            | Japan              | 10.64  | Q     |
| 3    | 1    | Khaled Yousef Al-Obaidli    | Qatar              | 10.68  | Q     |
| 4    | 1    | Chintake De Zoysa           | Sri Lanka          | 10.78  | q     |
| 5    | 1    | Suminda Mendis               | Sri Lanka          | 10.82  | q, PB |
| 6    | 1    | Vissanu Sophanich           | Thailand           | 10.87  |       |
| 1    | 2    | Gennadiy Chernovol          | Kazakhstan         | 10.59  | Q     |
| 2    | 2    | Yuta Kanno                  | Japan              | 10.64  | Q     |
| 3    | 2    | Shen Yunbao                 | China              | 10.72  | Q     |
| 4    | 2    | Tsai Meng-Lin               | Chinese Taipei     | 10.74  | q     |
| 5    | 2    | Tan Kok Lim                 | Malaysia           | 10.83  | q     |
| 6    | 2    | Ahmad Hudeib Al-Mamari      | Oman               | 10.97  |       |
| 1    | 3    | Jamal Al-Saffar             | Saudi Arabia       | 10.57  | Q     |
| 2    | 3    | Reanchai Srihawong          | Thailand           | 10.72  | Q     |
| 3    | 3    | Shin Jung-Ki                | South Korea        | 10.79  | [2]   |
| 4    | 3    | Chen Tien-Wen               | Chinese Taipei     | 10.74  | q     |
| 5    | 3    | To Wai Lok                  | Hong Kong          | 10.92  |       |
| 6    | 3    | Poh Seng Song               | Singapore          | 11.10  | SB    |
| 1    | 4    | Chen Haijian                | China              | 10.65  | Q     |
| 2    | 4    | Saad Faraj Al-Shahwani      | Qatar              | 10.67  | Q     |
| 3    | 4    | Azmi Ibrahim                | Malaysia           | 10.78  | Q     |
| 4    | 4    | Chiang Wai Hung             | Malaysia           | 10.89  |       |
| 5    | 4    | Nguyen Thanh Hai            | Vietnam            | 11.16  | PB    |
| 6    | 4    | Piphop Rasme Prum Keo      | Cambodia           | 11.70  | PB    |

Question : which country finished earlier, thailand or japan?

Optimal Approach:

SEAR_UNIFIED PROMPT

Figure 6: SEAR_UNIFIED Prompt Example
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To answer the question "Which country finished earlier, Thailand or Japan?" using the
provided table, we will apply optimal meta-reasoning to create an appropriate approach
to develop the final answer.

Problem Understanding (Step-by-Step):
1. Determine the objective: Identify the country that finished earlier between Thailand and
Japan.
2. Understand the problem: We need to compare the finish times of athletes from
Thailand and Japan. Since the table contains data on athletes from various countries,
including Thailand and Japan, we can extract the relevant information and compare the
times.

Reasoning Process:
3. Extract Relevant Information:
We need to find the finish times of athletes from Thailand and Japan. From the table, we
can see that there are multiple athletes from each country. We will extract the times for
each athlete and then compare them.

Here are the relevant rows and columns extracted from the table:

Evidence - 
From Heat 1:
| Rank | Name                         | Nationality       | Time   | Notes |
|------|------------------------------|--------------------|--------|-------|
| 6    | Vissanu Sophanich           | Thailand           | 10.87  |       |
| 2    | Hiroyasu Tsuchie            | Japan              | 10.64  | Q     |

From Heat 2:
| Rank | Name                         | Nationality       | Time   | Notes |
|------|------------------------------|--------------------|--------|-------|
| 2    | Yuta Kanno                  | Japan              | 10.64  | Q     |

From Heat 3:
| Rank | Name                         | Nationality       | Time   | Notes |
|------|------------------------------|--------------------|--------|-------|
| 2    | Reanchai Srihawong          | Thailand           | 10.72  | Q     |

4. Decompose the problem into sub-problems:
- Compare the times of athletes from Thailand and Japan in each heat.
- Determine which country had the fastest time overall.

5. Individually answer each sub-problem with reasoning:
- In Heat 1, Hiroyasu Tsuchie from Japan finished with a time of 10.64, while Vissanu
Sophanich from Thailand finished with a time of 10.87. Japan finished earlier in this heat.
- In Heat 2, Yuta Kanno from Japan finished with a time of 10.64, which is the same as
Hiroyasu Tsuchie in Heat 1.
- In Heat 3, Reanchai Srihawong from Thailand finished with a time of 10.72, which is
slower than the times of the Japanese athletes in Heats 1 and 2.

6. Conclusion:
Based on the extracted information and comparison of times, Japan finished earlier than
Thailand.

Final Answer: Japan.

RESPONSE (REASONING PATH: COT, EE, DECOMPOSITION)

COT

EE

DECOMP

Figure 7: The figure illustrates the response path followed by SEAR_Unified Prompting. The reference prompt is provided in
Figure 6
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Input :

You are an expert LLM evaluator tasked with assessing the accuracy of model responses against gold standard
answers. Your role is to determine if the core content and intent of the model’s response align with the gold answer,
considering various answer formats and implicit information.

Key Guidelines

• Understand the question’s essence, including specific operations or units mentioned.

• Compare model responses to gold answers, focusing on key information.

• Allow a small margin of error (±0.1%) for numerical answers.

• Recognize correct answers in different formats, such as percentages and decimals.

• Consider implicit information and context in responses.

• For list-type answers:

– Evaluate based on content rather than order.
– If more than two elements are missing (context-dependent), evaluate as incorrect.

• Assess mathematical answers based on value range unless a specific value is required.

• Check for appropriate units in mathematical answers.

Final Judgment
Provide a "Yes" or "No" judgment without explanation unless explicitly requested.

Figure 8: Prompt for Contexual Answer Evaluation(CAV)
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Input :

Instruction
You are given the following Question and Context. The Context includes a table that may be incomplete, ambiguous,
or poorly structured. Your task is to produce a cleaned version of the table that improves its clarity and structure so
that it can be correctly used to answer the Question.

Guidelines

1. Do not add, remove, or alter any data. Only restructure and clarify what is already present.

2. You may improve the table title if it is missing or ambiguous:

• If a title is missing, infer an appropriate one based on the question and table content.
• If the existing title is unclear or misleading, revise it for clarity while keeping its original meaning.

3. You may improve the table headers if needed:

• Rename ambiguous column/row headers for clarity.
• Ensure column and row labels accurately describe their content.

4. You may fix structural inconsistencies:

• Align misaligned data properly under the correct headers.
• Ensure row and column structures are uniform.
• Remove redundant headers or merge split headers where necessary.

5. The data should be kept in the same order whenever possible. However, if minor reordering of rows or
columns helps fix structural issues, you may do so only if it does not change or omit any data.

Output Format

• Provide only the cleaned table as your output in a structured format appropriate for the data in Markdown
format.

• Do not add any explanations, reasoning, or commentary.

Question: {question}

Context: {context}

Now produce just the cleaned table.

Figure 9: Prompt for Refactoring Tables.
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Title : afl statistics
|    year    |    team    |    passing    |        |        |        |        |        |        |    rushing    |        |        |    
|        |        |    cmp    |    att    |    pct    |    yds    |    td    |    int    |    rtg    |    att    |    yds    |    td    |    
|    2010    |    chicago    |    65    |    102    |    63.7    |    767    |    14    |    2    |    112.66    |    8    |    9    |    2    |    
|    2011    |    chicago    |    64    |    105    |    61.0    |    888    |    16    |    2    |    118.27    |    4    |    8    |    2    |    
|    2011    |    kansas city    |    311    |    500    |    62.2    |    3,723    |    65    |    17    |    103.28    |    48    |    138    |    5    |    
|    2012    |    iowa    |    413    |    618    |    66.8    |    4,870    |    93    |    10    |    121.49    |    37    |    110    |    8    |    
|    2013    |    iowa    |    346    |    575    |    60.2    |    4,015    |    78    |    18    |    102.19    |    32    |    10    |    8    |    
|    2014    |    los angeles    |    211    |    383    |    55.1    |    2,335    |    38    |    19    |    77.53    |    6    |    5    |    1    |    
|    2014    |    iowa    |    101    |    163    |    62.0    |    1,320    |    22    |    1    |    118.65    |    37    |    111    |    9    |    
|    2015    |    las vegas    |    178    |    325    |    54.8    |    1,986    |    35    |    9    |    88.57    |    32    |    19    |    6    |    
|    career    |        |    1,689    |    2,771    |    61.0    |    19,904    |    361    |    78    |    103.65    |    204    |    410    |    41

**Title: Player Statistics for J.J. Raterink**

| Year  | Team           | Passing Completions | Passing Attempts | Completion Percentage | Passing Yards | Touchdowns | Interceptions | Rating   | Rushing Attempts |
Rushing Yards | Rushing Touchdowns |
|-------|----------------|----------------------|------------------|-----------------------|----------------|------------|----------------|----------|-------------------|----------------|---------------------|
| 2010  | Chicago        | 65                   | 102              | 63.7%                 | 767            | 14         | 2              | 112.66   | 8                 | 9              | 2                   |
| 2011  | Chicago        | 64                   | 105              | 61.0%                 | 888            | 16         | 2              | 118.27   | 4                 | 8              | 2                   |
| 2011  | Kansas City    | 311                  | 500              | 62.2%                 | 3,723          | 65         | 17             | 103.28   | 48                | 138            | 5                   |
| 2012  | Iowa           | 413                  | 618              | 66.8%                 | 4,870          | 93         | 10             | 121.49   | 37                | 110            | 8                   |
| 2013  | Iowa           | 346                  | 575              | 60.2%                 | 4,015          | 78         | 18             | 102.19   | 32                | 10             | 8                   |
| 2014  | Los Angeles    | 211                  | 383              | 55.1%                 | 2,335          | 38         | 19             | 77.53    | 6                 | 5              | 1                   |
| 2014  | Iowa           | 101                  | 163              | 62.0%                 | 1,320          | 22         | 1              | 118.65   | 37                | 111            | 9                   |
| 2015  | Las Vegas      | 178                  | 325              | 54.8%                 | 1,986          | 35         | 9              | 88.57    | 32                | 19             | 6                   |
| **Career** |            | 1,689                | 2,771            | 61.0%                 | 19,904         | 361        | 78             | 103.65   | 204               | 410            | 41

Table Refactoring Example

Initial Table

Refactored Table

Question: how many passing yards did J.J. Raterink get in 2012?

Lack of Context About Table

Bad Column Headers

Improved Title for better Context

Improved Column Headers

Figure 10: Refactored Table Example
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